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Resumo

Code smells são sintomas de possíveis problemas no código e que indicam a necessidade

de uma refatoração. Uma das formas de detecção de smells é através da Code Review,

prática importante no desenvolvimento de software que visa promover boas práticas de pro-

gramação. Todavia, entre os estudos que conhecemos, apenas um investigou code smells

durante reviews, mas não diretamente as discussões. Isso limita o entendimento do tema e

aumenta o risco de viés, pois afeta a validade e generalização dos resultados. Visando mit-

igar essa falta, Xiaofeng Han et al. (2021) analisaram manualmente 19.146 comentários e

extraíram 1.190 revisões relacionadas a smell. Foi encontrado que i) code smells não são

comumentes encontrados nas revisões de código, ii) smells são causados por violações de

convencções de código, iii) revisores usualmente fornecem feedbacks contrutivos e iv) de-

senvolvedores geramente seguem as recomendações e praticam as mudanças sugeridas no

código. Apesar do estudo fornecer resultados relevantes, existe uma limitação na evidên-

cia empírica e na aplicabilidade atual, pois o estudo foi feito utilizando 1) projetos de uma

mesma organização e 2) projetos que usam, essencialmente, a mesma tecnologia (python).

Visando aumentar a confiabilidade científica e a extensão da aplicabilidade do estudo fizemos

uma replicação sob um novo contexto. Para isso, 26 desenvolvedores foram envolvidos em

um processo de análise manual em 18.850 comentários que extraiu 2.164 smell reviews dos

projetos gRPC, Neovim e Keycloak, que utilizam as linguagens C++, Java e Vim. Através

desse conjunto, classificações foram realizadas de forma a replicar o estudo do trabalho orig-

inal. Para esse novo contexto, o estudo confirmou os resultados i), ii) e iv), com destaque

para o resultado de 831 (70%) de causas de smell não fornecidas, o que fortalece o resul-

tado do estudo anterior pela semelhança da frequência encontrada e indica a necessidade de

outras abordagens para investigar o tipo da causa. Além disso, as discussões sobre a inter-

pretação da ação dos revisores foi extendida e em 1.781 (82%) das ocorrências, o smell é

capturado mas nenhuma ação de correção é realizada. Assim, esse estudo permite para os

desenvolvedores: Aprender como as decisões de código são percebidas e como lidar com

smells. E para os revisores: Aprender como melhorar a comunicação e construção de re-

visões através dos tipos de smell mais frequentes e como as suas sugestões são recebidas

pelos desenvolvedores.
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Abstract

Code smells are symptoms of possible problems in the code and indicate the need for refac-

toring. One of the ways to detect smells is through Code Review, an important practice in

software development that aims to promote good programming practices. However, among

the studies we know of, only one investigated code smells during reviews, but not directly

the discussions. This limits the understanding of the topic and increases the risk of bias, as it

affects the validity and generalizability of the results. Aiming to mitigate this lack, Xiaofeng

Han et al. (2021) manually analyzed 19,146 comments and extracted 1,190 smell-related

reviews. It was found that i) code smells are not commonly found in code reviews, ii) smells

are caused by violations of code conventions, iii) reviewers usually provide constructive

feedback and iv) developers generally follow recommendations and implement suggested

changes to the code . Although the study provides relevant results, there is a limitation

in the empirical evidence and current applicability, as the study was carried out using 1)

projects from the same organization and 2) projects that essentially use the same technol-

ogy (python). Aiming to increase the scientific reliability and extend the applicability of the

study, we carried out a replication under a new context. To this end, 26 developers were in-

volved in a manual analysis process of 18,850 comments that extracted 2,164 smell reviews

from the gRPC, Neovim and Keycloak projects, which use the C++, Java and Vim languages.

Through this set, classifications were carried out in order to replicate the study of the original

work. For this new context, the study confirmed results i), ii) and iv), with emphasis on the

result of 831 (70%) smell causes not provided, which strengthens the result of the previous

study due to the similarity of frequency found and indicates the need for other approaches

to investigate the type of cause. Furthermore, discussions about the interpretation of the

reviewers’ actions were extended and in 1,781 (82%) of the occurrences, the smell was cap-

tured but no corrective action was taken. Thus, this study allows developers to: Learn how

code decisions are perceived and how to deal with smells. And for reviewers: Learn how

to improve communication and construction of reviews through the most frequent types of

smells and how your suggestions are received by developers.
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Chapter 1

Introduction

1.1 Problem

Code smells are clues or patterns in source code that suggest the presence of design problems

or potential bugs. These smells indicate areas of the code that may need refactor to improve

the software’s readability, maintainability, and efficiency. Identifying and correcting code

smells contributes to the development of more robust and high-quality code [13] [33] [3]

[26] [19].

Detecting code smells is important because these clues in the source code often point

to design, readability, or efficiency problems that, if left untreated, can lead to bugs, main-

tenance difficulties, and decreased software quality. Identifying and correcting code smells

contributes to the creation of cleaner, more sustainable, and resilient code, improving the

overall quality of the system and facilitating future modifications. Some studies highlight

the different types of code smells that can be detected in programs: security problems, per-

formance flaws, duplicate code, large methods or classes, and complex logic, among others

[21] [13] [22].

One of the ways to detect smells is through Code Review, an important practice in

software development that aims to promote good programming practices. A review is a

way of evaluating a program written by another developer by identifying potential prob-

lems, making suggestions for improvement, and providing feedback [37] [29]. Review helps

ensure code consistency and quality, as well as promotes the exchange of knowledge and

best practices between team members, contributing to more efficient and reliable software

1



1.1 Problem 2

development.

There is an advancement of automatic tools that help with code review, including static

analysis tools, like PMD, SonarQube, and Designite [42] [30]. Automatic tools provide fast

and systematic detection of smells, increasing efficiency and reducing the time needed to

identify and fix code issues compared to manual analysis.

However, manual review is still widely used and it is possible to point out that reviewers

have complete contextual information about the programs they evaluate, as they usually re-

view codes from the projects in which they are inserted [27]. Also, some authors highlight

that the context and program domain are important to detect smells, which is often con-

sidered in manual review [40] [44]. Additionally, that approach may avoid false positives,

common in automatic review [38] [12].

Despite the benefits of the review, among the studies we know, only one investigated

code smells during code review [34], and not directly the smell discussions but about the

side effects of code review suggestions on code smell reduction in files, this limits the under-

standing of the topic and increases the risk of bias, as it affects validity and generalizability

of the results. To mitigate this lack, Han, Xiaofeng et al. (2021) manually analyzed 19.146

comments and extracted 1.190 reviews related to smell and found relevant results: i) code

smells are not commonly found in code reviews, ii) smells are caused by violations of code

conventions, iii) reviewers usually provide constructive feedback and iv) generally develop-

ers follow the recommendations and make suggested changes to the code.

Despite these results, it suffers from some threats to external validity: 1) Change sets

are from a single organization, namely OpenStack. Perhaps the technique is not suitable for

other organizations. 2) The example dataset used was extracted from projects that mostly use

only Python code. It is not clear whether the results apply to other programming languages.

These threats mean that the study results may not be generalizable to other contexts.

To improve the robustness of the study, it is beneficial to diversify the sample, including

projects from different organizations that use different technologies. Replication in more

varied contexts helps to validate conclusions and provide more comprehensive insights into

the applicability of findings in more diverse environments [16].



1.2 Solution 3

1.2 Solution

Aiming to increase the scientific reliability and extend the applicability of the study, we repli-

cated the work of Han, Xiaofeng et al. (2021) in a new context. The replication follows the

original study as closely as possible, except that we deliberately changed the context to better

understand how broadly applicable the results were. According to Gomez’s classification,

Omar S et al. (2014) for replications, our study is a replication of changing populations/ex-

periments.

The objective of the study is to understand how common it was for reviewers to identify

code smells during code review, why the code smells were introduced, what actions they

recommended for those smells, and how developers proceeded with those recommendations.

To this end, the study sought to answer the following research questions, initially defined in

the original study:

• RQ1: Which code smells are the most frequently identified by code reviewers?

• RQ2: What are the common causes for code smells that are identified during code

reviews?

• RQ3: How do reviewers and developers treat the identified code smells?

– RQ3.1: What actions do reviewers suggest to deal with the identified smells?

– RQ3.2: What actions do developers take to resolve the identified smells?

– RQ3.3: What is the relationship between the actions suggested by reviewers and

those taken by developers?

To answer these questions, the list of terms that are related to code smells, used by the

original work [Table 1.1], was also used to carry out our study classification, this list contains

terms initially defined by Martin Fowler (1999) [13] and cited in the systematic review by

M. Zhang et al. (2011) [46] and Tahir et al. (2020) [40]. The list includes general terms

like “code smell”, “bad smell”, “bad pattern”, “anti-pattern”, and “technical debt”. Based

on those terms, the authors built a keyword set [Table 1.2], that was created from data pro-

cessing that included removing stopwords, punctuation, and numbers. Also, was applied the



1.2 Solution 4

Table 1.1: Code smell terms used in classification. Table extracted of Han, Xiaofeng et al.

(2021)

Code Smell Terms

Accidental Com-

plexity

Anti Singleton Bad Naming Blob Class

Circular Depen-

dency

Coding by Ex-

ception

Complex Class Complex Condi-

tionals

Data Class Data Clumps Dead Code Divergent

Change

Duplicated Code Error Hiding Feature Envy Functional De-

composition

God Class God Method Inappropriate In-

timacy

Incomplete Li-

brary Class

ISP Violation Large Class Lazy Class Long Method

Long Parameter

List

Message Chain Middle Man Misplaced Class

Parallel Inheri-

tance Hierarchies

Refused Bequest Bad Naming Shotgun Surgery

Similar Sub-

classes

Softcode Spaghetti Code Speculative Gen-

erality

Suboptimal In-

formation Hiding

Swiss Army

Knife

Temporary Field Use Deprecated

Components

identifier splitting rules and the stem of each term was obtained. That set was used to guide

the keyword search process.

Initially, we ranked open source projects available on Github that have the highest aver-

age number of comments on pull requests 1.3. We’ve considered pull requests in any state

(open, closed, aborted). Thus, we extract 104,321 review comments from the gRPC, Neovim

and Keycloak projects. They were selected using the following criteria: 1) To use different

programming languages: C++, Java, and Vim, respectively, and 2) To extract a sample that

allows us to have a keyword smell filtered set quantity similar to the quantity of the original
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Table 1.2: Code smell keywords used in mining.

Code Smell Keywords

smell smelly anti pattern

bad technical debt accidental

complexity complex singleton bad

naming blob circular circularity

dependency dependent exception complex

complexity complex complexity conditional

condition data class clump dead

death unused useless divergent

divergence duplicated duplicate duplication

clone hiding hide envy

decompose decomposition god brain

inappropriate intimacy incomplete library

ISP violate violation large

big lazy parameter list long

chain middle misplace misplaced

parallel inheritance obsession refuse

refused bequest shotgun surgery

similar subclass softcode spaghetti

speculative generality suboptimal hiding

hide swiss army knife

temporary temporal deprecated deprecate

component

study. The details of the filtering processing can be found in Section 3.

Using those comments extracted in the previous step and the set of code smell keywords,

we did a keyword search to find comments related to code smells. Thus, 19,149 comments

that had at least one of the keywords were collected.

Next, a qualitative study involved 26 experienced developers, who in 13 pairs, indepen-

dently and manually analyzed 18,850 comments filtered in the previous step. This quantity



1.2 Solution 6

Table 1.3: Github projects with highest review comments average

Projects PR’s Comments AVG Date

Neovim 14729 3.68 13/09/23

React 13860 3.55 12/09/23

gRPC 23090 3.52 14/09/23

Quarkus 19679 3.42 13/09/23

Distrobox 294 3.13 10/09/23

LazyGit 1310 2.66 10/09/23

TLDR 9521 2.51 12/09/23

DLP 2174 2.44 10/09/23

Backstage 14194 2.19 12/09/23

FD 582 2.15 10/09/23

Keycloak 12600 1.77 12/09/23

was selected for simplicity from the set of 19,149 to allow each pair to analyze a similar

quantity of 1,450 comments. This study sought to understand the context of the comments

to confirm previous keyword searches and remove false positives. Thus, 4,563 smell com-

ments were extracted.

With this set, to confirm previous findings, two experienced developers from the last set,

including the author of this work, carried out a new qualitative analysis, seeing the entire

thread of comments and source code when needed, to simultaneously and manually analyze

those results. Only two developers performed this step because of the time range available

to finish the analysis and the higher availability demanded on simultaneous meetings. Thus,

with 0,95 Cohen’s Kappa coefficient of agreement, 3,702 smell comments were extracted in

this step.

Additionally, as a result of a random sample selection, 96 smell comments were added

to the set of comments eligible to be classified, with 95% C.I. and 3% E.M. This sampling

followed the same steps as the rest, and it used the comments that were not extracted at the

keywords search step.

In the end, the 3,798 review comments were mapped into groups of pull requests, in-

cluding specific info like thread of comments, pull request url and source code change. This
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process resulted in 2,164 smell reviews, and those were manually analyzed to answer the

research questions. This step allows us to obtain observations and a deep understanding of

the comments. The methodology of this work is explained in detail in Section 3, and the

results of this study are presented in Section 4.

Understanding how code smells are discussed during code reviews is crucial, as it allows

for the early identification of design and quality issues in the software, contributing to more

robust code production. This enriches the state of the art by improving the understanding of

effective practices in detecting and mitigating code smells.

Replication strengthens the knowledge base of the scientific community and contributes

to the continued advancement of software engineering. Replicating experiments allows in-

dependent verification of conclusions, promoting the reliability and practical applicability of

results in industry and academia.

1.3 Main Contributions

A replication was carried out on a sample of pull requests and obtained the following contri-

butions:

• Dataset of 2,164 smell reviews from three different projects (gRPC, Keycloak, and

Neovim).

• Replication that discovered the following hypotheses:

– Smells are not commonly discussed in reviews (only 2,164 smell reviews were

found from a set of 104,321 review comments).

– Duplicated Code (32,9%) and Bad Naming (9%) are the most commonly smells

discussed.

– Reviewers usually capture the smell but don’t recommend explicitly fixing it

(82%).

– Developers usually fix the code smells found (94%).

– Developers usually agree with the reviewer suggestions (79%).



1.4 Outline 8

• A replication package1 with the scripts to reproduce this study.

1.4 Outline

This document is structured as follows: Section 2 provides the necessary basis for under-

standing this work. Section 3 describes the methods used to replicate the original study.

Section 4 presents the results of replication. Section 5 presents the threats to the replication.

Section 6 provides an overview of related work. Section 7 concludes this work by outlining

the main results and possible locations for future work.

1https://zenodo.org/records/10607935



Chapter 2

Backgroung

2.1 Code Smell

Martin Fowler (1999) explains that code smells are indications of problems in the code that

can be solved through refactoring. Therefore, the author defines some refactoring sugges-

tions if a developer comes across code smells, but emphasizes that his suggestions may be

debatable depending on the developer’s interpretation and the code being analyzed.

Some examples are:

• Duplicated Code: When identical or very similar pieces of code appear in multiple

parts of the system, it can lead to difficult maintenance and inconsistencies.

• Long Method: Very long and complex methods can be difficult to understand, main-

tain, and test. They also tend to mix responsibilities, which undermines modularity.

• Large Class: Classes that have many responsibilities or many methods and attributes

can become difficult to manage and understand.

• Feature Envy: Occurs when a method of a class accesses more methods and attributes

of another class than of the class in which it is defined. This may indicate a poor

distribution of responsibilities.

• Dead Code: Refers to portions of code that are no longer used or reachable within the

application, cluttering the codebase and increasing maintenance overhead.

9



2.1 Code Smell 10

• Switch Statements: Excessive use of switch statements to make decisions can in-

crease complexity and make code more difficult to extend and maintain.

• Bad Naming: Involves poorly chosen identifiers (variables, functions, etc.) that ob-

scure the purpose and functionality of the code, hindering readability and comprehen-

sion.

• Swiss Army Knife: Refers to a class or module that tries to do too much, violating the

Single Responsibility Principle (SRP), leading to high complexity and low cohesion

in the codebase.

• Circular Dependency: Occurs when modules or classes circularly depend on each

other, leading to tangled and brittle code.

M. Zhang et al. (2011) performed a systematic literature review to understand the types

of code smells identified to date and summarize the main findings from the software engi-

neering community. The article presents different definitions of smells and highlights the

lack of a standard definition. This reflects the subjective and context-dependent nature of

code smells. The authors propose a comprehensive classification of the different types of

smell, grouping them into categories such as "Excessive Complexity", "Lack of Cohesion",

and "Excessive Coupling", among others.

We consider, in this work, the list of code smell terms presented in Table 1.1, which

includes the list made by Tahir et al. (2020), that contains smells defined by Fowler (1999)

and M. Zhang et al. (2011). Also, we consider code smells as a subset of design problems,

because code smells are often indicators of questionable practices at the code level, while

design issues can encompass broader issues related to the overall structure, architecture, and

approach of the system. Therefore, although all code smells are design problems, not every

design problem is a code smell, as deeper problems may exist beyond the scope of issues

identified by code smells.

In Source Code 2.1, written in Python, the functions print_file_content

and convert_csv_to_pdf have a code duplication when reading the file

(with open(file_path, ’r’) as file: csv_data = file.read()).

This can be considered a code smell because it violates the DRY (Don’t Repeat Yourself)
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principle. Reading the file is a common concern between the two methods, but they have

different logic after reading. One approach to eliminate code duplication would be to extract

the file reading logic into a separate method and call it in both methods.

Código Fonte 2.1: Reading a file with the code smell: Duplicated Code

def p r i n t _ f i l e _ c o n t e n t ( f i l e _ p a t h ) :

t r y :

w i th open ( f i l e _ p a t h , ’r’ ) a s f i l e :

d a t a = f i l e . r e a d ( )

# P r i n t f i l e c o n t e n t

p r i n t ( d a t a )

e xc e p t F i l e N o t F o u n d E r r o r :

p r i n t ( f"File not found: {file_path}" )

def c o n v e r t _ c s v _ t o _ p d f ( f i l e _ p a t h ) :

t r y :

w i th open ( f i l e _ p a t h , ’r’ ) a s f i l e :

c s v _ d a t a = f i l e . r e a d ( )

# Conver t CSV t o PDF

p d f _ d a t a = c o n v e r t _ c s v _ t o _ p d f _ f u n c t i o n ( c s v _ d a t a )

# Save or p r i n t t h e PDF da ta ( i m p l e m e n t a t i o n d e t a i l s n o t shown )

# . . .

e xc e p t F i l e N o t F o u n d E r r o r :

p r i n t ( f"File not found: {file_path}" )

def c o n v e r t _ c s v _ t o _ p d f _ f u n c t i o n ( c s v _ d a t a ) :

# A c t u a l i m p l e m e n t a t i o n t o c o n v e r t CSV t o PDF ( n o t shown f o r b r e v i t y )

# . . .

re turn p d f _ d a t a

In Source Code 2.2, written in Python, in turn, there is no visible code smell because the

design problem in the example given is more related to the overall architecture of the system

and the ability to extend the code cleanly, as the problem presents the lack of flexibility to

add new types of cars such as hybrids, steam engines, etc. If we want to add a new type of

car, we need to modify the class Car existing, violating the Open/Closed Principle. A more

extensible approach would be to use inheritance and create separate classes for different
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types of cars.

Código Fonte 2.2: Classes with the design problem: Class hierarchy between type of cars

c l a s s Car :

def _ _ i n i t _ _ ( s e l f , make , model , year , i s _ e l e c t r i c ) :

s e l f . make = make

s e l f . model = model

s e l f . y e a r = y e a r

s e l f . i s _ e l e c t r i c = i s _ e l e c t r i c

def s t a r t _ e n g i n e ( s e l f ) :

i f s e l f . i s _ e l e c t r i c :

p r i n t ("Starting electric engine..." )

e l s e :

p r i n t ("Starting normal engine..." )

n o r m a l _ c a r = Car ("Toyota" , "Corolla" , 2022 , F a l s e )

e l e c t r i c _ c a r = Car ("Tesla" , "Model S" , 2022 , True )

Code smells are not obvious syntax errors or bugs, but rather indicators of potential

design issues that can affect the maintainability, extensibility, and readability of the code.

These smells are perceived as clues to possible improvements in the software design. Re-

solving code smells often involves refactoring the code, which means restructuring existing

code without changing its external behavior.

2.2 Code Review

Code review is an important practice in software development that aims to improve the qual-

ity and reliability of written code. It is a way of evaluating code written by another devel-

oper, identifying possible problems, and suggestions for improvement, and providing [37]

[29] feedback.

MCR differs from traditional review (software inspection), initially defined in 1976 by

Fagan, M. E. (1976) [11] as a manual code inspection structure with the aim of improving the

quality of software projects. As it is based on more efficient and collaborative approaches,

it is carried out through collaboration and automation tools, which allow developers to work
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together more efficiently and effectively. Furthermore, modern review is also based on effi-

cient static analysis methods, which allows you to detect problems in the code long before it

is run [36].

With the popularization of distributed version control systems like Git and the advent

of code hosting platforms like GitHub and Bitbucket, code review began to be integrated

directly into the development workflow. These platforms offered a more efficient and collab-

orative way to perform reviews, allowing team members to review, comment, and collaborate

on code asynchronously and in real-time.

Key concepts in modern code review include an emphasis on early detection of problems,

the continuous integration of reviews into the development process, the automation of code

reviews, and the promotion of a culture of constructive feedback. Furthermore, modern

code review goes beyond bug detection, incorporating concerns about code readability, good

programming practices, and knowledge sharing among team members [37][[14][15][29].

Some studies carried out a systematic review of code review where they explain that

several tools can be used to allow it and that each software team has its particularities in the

review process, which can be defined as follows: The developer creates the code and, then

sends the modification to a versioning tool. Other team members review the code and provide

feedback, and there may be iterations for adjustments. After approval and passing tests, the

changes are merged into the main project code and eventually deployed to the production

environment. The process aims to ensure quality, consistency, and effective collaboration.

[Figure 2.1] [15][14]

2.3 Pull-based software development

Pull-based software development is a collaborative development model in which contribu-

tions are made through Pull Requests (PRs). In this context, developers create isolated copies

of the source code in their branches, implement the desired changes, and later propose these

changes through PRs. These requests serve as a formal mechanism for other team members

to review, discuss, and eventually merge changes into the main [17] branch.

Contribution through PRs is crucial in this model as it provides a framework for collab-

orative reviews, detailed discussions, and adjustments before changes are incorporated. This
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Figure 2.1: Workflow of modern code review. Figure extracted from Freire, Victor et al.

(2016)

promotes transparency, quality, and effective collaboration in software development.

For open-source projects, the benefit is notable. Pull-based development makes it easier

for external developers to participate, allowing them to contribute to projects without needing

direct access to the main branch. This expands the collaborator base and promotes diversity

of ideas and experiences [17].

GitHub, a leading code hosting platform, plays a key role in this scenario. With more than

100 million repositories and millions of contributors, GitHub is essential for collaboration on

software projects [1]. It offers robust tools for code review, issue tracking, and continuous

integration [2]. These numbers underscore the importance of GitHub as a global hub for

developers, facilitating discovery, contribution, and collaboration on an international scale.

A Pull Request (PR) on GitHub [Figure 2.2] can contain all changes proposed by a devel-

oper on a given branch. In addition to the code itself, a PR can contain detailed descriptions

of the changes made, justifications for the changes, screenshots, or relevant links. Com-

ments and discussions between collaborators are also part of the content of a PR, providing

full context about the proposed changes.
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Figure 2.2: An example of a pull request from GitHub.

2.4 Replication of Studies in SE

Replication of academic studies in the area of Software Engineering involves repeating pre-

vious research to confirm, validate, or refute its results. This practice is fundamental to

guarantee the reliability and generalization of findings, contributing to the construction of a

solid body of knowledge in the area.

It is notable that Software Engineering historically has a low number of replications.

According to systematic analyses and reviews, only a small percentage of studies in the area

are replicated [23]. This finding suggests a significant gap in the validation and verification

of the results obtained, raising questions about the reliability of conclusions in many studies.

The lack of replications in Software Engineering can be attributed to several factors,

including the varying complexity of software projects, a lack of standardization in research

practices and methods, as well as a culture that has historically emphasized the production

of new knowledge at the expense of systematic validation [5][8].
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2.4.1 Gómez et al. classification of SE replications

Gómez et al. [16] noticed a lack of agreement among Software Engineering (SE) researchers

regarding the definition of a replication, along with identified deficiencies in previously pro-

posed classifications. Consequently, they devised a classification system for SE replications

with the purpose of rectifying these issues. Specifically, their classification seeks to achieve

four objectives: "(1) clearly delineate the boundaries of a replication and permissible alter-

ations; (2) comprehensively outline all potential modifications to the original experiment; (3)

employ self-explanatory terminology; and (4) link each replication type with its verification

purpose(s)" [16].

In this classification, experiments have four dimensions:

• Operational: consists of the operational definitions of the cause and effect constructs.

For example, in this work, the cause construct is the ClusterChanges technique and its

operationalization is JClusterChanges and how it is applied in the experiment.

• Protocol: the materials and instruments used. This dimension includes the experimen-

tal design, measuring instruments, and data analysis techniques.

• Population: the subjects and/or objects used in the experiment. In this work, for

instance, the objects are the pull requests to which JClusterChanges is applied.

• Experimenters: roles performed in the experiment. If the same experimenters partic-

ipate in the replication, but they perform different roles, the replication is considered

to have changed this dimension. Examples of roles are the data analyst and the exper-

imental designer.

Given that all dimensions can undergo changes in a replication, a critical question

emerges regarding the minimum criteria for a study to retain its status as a replication. Ac-

cording to Gómez et al. [16], for a study to qualify as a replication, it must conduct an

experiment and retain some of the hypotheses from the original study. Specifically, "at least

two treatments and one response variable need to be shared" [16].

Furthermore, the nomenclature of replication is determined by the altered dimensions,

except in cases where either no dimensions were changed or all dimensions were changed.
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In such instances, they are respectively termed repetition and reproduction. For example,

a replication that involves modifications to both the protocol and population is labeled as a

changed-protocol/-population replication.



Chapter 3

Methodology

In this chapter, we describe the methods to replicate the quantitative substudy of the original

study from Han, Xiaofeng et al. (2021) . First, we explain the study design and the rationale

behind it. Then, we explain how data was collected. Finally, we list the main threats to

validity.

3.1 Study Design

The goal of this study is to minimize the threats to external validity from the original study

which were enumerated in Section 1.2. To accomplish this, we perform a replication where

we change the population dimension as recommended by Gómez et. al [16] classification of

SE replications in Section 2.4.1. Hence, this is a changed-population/changed-experimenters

replication.

To address the problems presented in Section 1.1, on the importance of studying smell

discussions, the following research questions were defined by Han, Xiaofeng et al. (2021) :

• RQ1: Which code smells are the most frequently identified by code reviewers?

• RQ2: What are the common causes for code smells that are identified during code

reviews?

• RQ3: How do reviewers and developers treat the identified code smells?

– RQ3.1: What actions do reviewers suggest to deal with the identified smells?

18



3.1 Study Design 19

– RQ3.2: What actions do developers take to resolve the identified smells?

– RQ3.3: What is the relationship between the actions suggested by reviewers and

those taken by developers?

To answer those questions, a replication was carried out to seek to understand the par-

ticularities, challenges and solutions adopted in the specific context, using qualitative and

quantitative data to extract valuable insights. For each research question, the following plans

were made, all following the proposal by Han, Xiaofeng et al. (2021) :

3.1.1 Design of RQ1

The comments were analyzed in order to identify and record the type of smell discussed. The

list of terms defined in Table 1.1, which contains terms such as "Dead Code" or "Duplicated

Code", was used as inspiration for choosing terms and analyzing this research question.

When a reviewer used general terms to discuss the smell, such as "smelly", "anti-patter",

"comments", "lazy", "Inappropriate", "Large", among others, we classified the smell type of

those reviews as "general".

3.1.2 Design of RQ2

Thematic analysis [7] was carried out to find the causes for the identified smells, but we also

used the main causes found in the original study:

• Violation of coding conventions: certain violations of coding conventions (e.g. nam-

ing convention) cause the smell. (Example: “moreThanOneIp (CamelCase) is not our

naming convention”).

• Lack of familiarity with existing code: developers introduced the smell due to un-

familiarity with the functionality or structure of the existing code. (Example: “This

useless line because None will be returned by default” ).

• Unintentional mistakes of developers: the developer forgets to fix the smell or in-

troduces the smell by mistake. (Example: “You can see I renamed all of the other test

methods and forgot about this one” 18 ).
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• Improper design: The smell is identified to be related to the improper design of the

code. (Example: “...If that’s the case something is smelly (too coupled)....”).

• Detection by code analysis tools: The reviewer points out that the smell was detected

by code analysis tools. (Example: “pass is considered as dead code by python coverage

tool”).

During the classification process, we selected the discussion excerpts that point to a pos-

sible cause for the smell discussed. Next, we looked over all the code that we created to

identify common patterns among them, but no additional themes than the previously defined

ones were found during the classification. We then reviewed the generated themes by re-

turning to the dataset and comparing our themes against it to define the causes of the smells.

When no cause was found, the review was classified as "cause not provided/unknown".

3.1.3 Design of RQ3

Manual analyses of code reviews were carried out to identify the actions suggested by the

reviewer and carried out by the developers.

• RQ3.1: We characterized the actions suggested by the reviewers using the categories

proposed by Tahir et al. (2018) , as carried out in the original study:

1. Fix: recommendations are made to refactor the code smell.

2. Capture: detect that there may be a code smell, but no direct refactoring recom-

mendations are given.

3. Ignore: recommendations are to ignore the identified smells.

• RQ3.2: We investigated developers’ reactions to reviewers who pointed out code

smells in their code. This study was conducted in three phases: initially, we examined

the developer’s response to the reviewer during the discussion. We then investigate the

source code file(s) associated with the change before the review and the modifications

made to the source code after the review. Finally, if developers have not responded

to reviewers or made changes to the source code, we check the status of the corre-

sponding change (i.e., whether it has been merged or abandoned). We consider that
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the identified code smells were resolved in at least one of the following scenarios: 1)

the original developer recognized the need for refactoring (as part of the review dis-

cussion), 2) changes were made to the source code file(s), and 3) the smelly code was

later abandoned.

• RQ3.3: Based on the results of the previous questions, we did a tree map with the

following categories:

1. A developer agreed with the reviewer’s recommendations.

2. A developer disagreed with the reviewer’s recommendations

3. A developer did not respond to the reviewer’s comments.

We mapped those categories in two actions:

1. Fixed the smell (i.e., refactoring was done)

2. Ignored the change (i.e., no changes were performed to the source code with

regard to the smell)

The entire classification process was carried out by two reviewers. A third author (co-

author of this work) was involved in cases of disagreement between the two coders. The

manual analysis process took around two months of part-time work for the coders. We

also provided a full replication package containing all the data, scripts, and results from the

manual analysis online1.

3.2 Data Collection

This section explains how we collected a sample of 2164 reviews from GitHub [Figure 3.1].

3.2.1 Software Project Sample Selection

1. Crawling review comments: To select the data, using the script [1]2 available in

our replication repository, a ranking was made with the GitHub projects that have

1https://zenodo.org/records/10607935
2https://zenodo.org/records/10607935
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Figure 3.1: Overview of replication methodology

the highest average number of comments per pull requests between 09/11/2023 and

09/14/2023. Table 1.3 presents the top 15 projects from different contexts. Thus, we

extract 104,321 review comments from the gRPC, Neovim, and Keycloak projects,

which use the C++, Java, and Vim languages, respectively.

2. Smell keywords search: Using those comments extracted in the previous step and the

list of code smell keywords 1.2, with the script [2]3 we did a keyword search to find

comments related to code smells. Thus, 19,149 comments that had at least one of the

keywords were collected [Table 3.1].

Table 3.1: Overview of collected data

Project Raw quantity Keyword filtered qty Keyword used qty Interval

Neovim 39372 5965 5666 01/14 - 08/23

gRPC 46483 9125 9125 01/14 - 08/23

Keycloak 18466 4059 4059 01/14 - 08/23

Total 104321 19149 18850

gRPC 4 is known as Google Remote Procedure Call and is an open-source remote proce-

3https://zenodo.org/records/10607935
4https://grpc.io/
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dure calling system first developed at Google in 2015 as the next generation RPC infrastruc-

ture, Stubby. Its main project on github mostly uses C++ as its standard language. Keycloak

5 is an open source software product that enables single sign-on with identity and access

management for modern applications and services. It was initially developed in 2014 and

uses Java as its main programming language. Neovim 6 is a Vim refactoring project, which

seeks to maximize the tool’s contribution and extension.

For simplicity and to reduce documentation difficulties found in the original work to

reproduce the codes, all scripts used in this selection were done from scratch following the

goals to allow the software project sample selection 7.

3.2.2 Pull Request Sampling

For data mining, we followed the step-by-step guide done by Han, Xiaofeng et al. (2021) .

All steps are illustrated in Figure 3.1 and are explained in the details:

1. Manual Independent Analysis: A qualitative study involved voluntarily 26 experi-

enced developers, who in 13 pairs, independently and manually analyzed one of the 13

sets of 1,450 comments (total of 18,850) filtered in the previous step. This study sought

to understand the context of the comments to confirm previous keyword searches and

remove false positives when both reviewers in a pair agreed that the discussion was not

related to smells. Thus, 4,563 smell comments were extracted. Among the reviewer

characteristics: They have at least three years of experience with software development

and, in addition, they all declared having previous contact with code review.

2. Manual Simultaneous Analysis: To confirm previous findings, two experienced de-

velopers, including the author of this work, carried out a new qualitative analysis,

seeing the entire thread of comments and source code when needed, to simultaneously

and manually analyze those results. Thus, with 0,95 Cohen’s Kappa coefficient of

agreement, 3,702 smell comments were extracted in this step. A total of 23 comments

required analysis by a third reviewer to ensure mining agreement and 15 additional

5https://www.keycloak.org/
6https://neovim.io/
7https://zenodo.org/records/10607935
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comments were extracted. The discussion below shows an example of that. It may

have raised doubts because the discussion was edited to no longer highlight a smell.

However, a third reviewer also analyzed the comment and considered it as a smell

discussion, considering the reviewer’s initial suggestion.

Link: https://api.github.com/repos/grpc/grpc/pulls/19971

Reviewer: Feels like ‘LocalConnectionType‘ reads better alongside the rest of

Python API.

Developer: This API is exposed internally. Change the naming might need

another large-scale change.EDIT: Turn out there are only a few call sites that I

can manually change. Updated.

Project: gRPC

Smell keywords: [naming, large]

Methodology: Pull request sampling through keyword search

A total of 3,798 comments remained at the end of the process.

3. Contextual information: As carried out in the original study, the contextual informa-

tion of each comment was stored in an external text8 file for later analysis, containing:

1) the URL to the code change , 2) the type of the identified code smell, 3) the discus-

sion between reviewers and developers, and 4) a URL to the source code. We ended

up with a total of 2,068 smell-related reviews.

4. Random selection sample The 85,471 review comments that were not keywords fil-

tered were used to create an additional random sample of 1,054 comments [Table 3.2],

based on a 95% confidence level and 3% margin of error [20]. Steps 1 to 3 were made

to this sample and additionally, 96 smell reviews were added to the final set. Resulting

in 2,164 smell-related reviews.

5. Classification process The classification process was carried out with the same two

authors from step 2 and sought to answer the research questions through the design

presented in Section 3.1. It is important to highlight that, as in the original study, the

8https://zenodo.org/records/10607935
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results from the random sample and keyword filtering were merged and classified si-

multaneously. Therefore, no specific results were cataloged for the random sample.

The entire classification process took 2 months of partial dedication from the develop-

ers.

The results of this study are presented in Section 4.

Table 3.2: Overview of Random Sample with 95% IC and 3% ME

Project row quantity keyword used qty Diff Random selection sample

Neovim 39372 (38%) 5666 401 (38%)

gRPC 46483 (44%) 9125 465 (44%)

Keycloak 18466 (18%) 4059 191 (18%)

Total 104321 18850 85471 1054
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Results

Next, we present the results and discuss them.

For each of the research questions addressed in the original study by Han, Xiaofeng et

al. (2021) , we carried out new analyses based on the new data context studied.

4.1 RQ1: Which code smells are the most frequently iden-

tified by code reviewers?

We identified 2,164 smell reviews, which compared to the initial number of comments stud-

ied (104,321) demonstrates that smells are not commonly discussed in code reviews. Under

a new context, the most frequent smell in code reviews is Duplicate Code (39,9%). Also,

Bad Naming (9%) and Dead Code (7,1%) are discussed with high frequency during reviews.

However, the General type of smell had the highest frequency in the replication (48,9%)

[Figure 4.1]. The terms such as "code smell", "smelly", "comments", "lazy", "Inappropriate"

and "Large" were used to categorize as a General type, as mentioned in Section 3.1.1. The

reviewer discussion below shows an example of a duplicated code comment:
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Link: https://api.github.com/repos/grpc/grpc/pulls/22774

Reviewer: Instead of refactoring out this php_grpc_clean_persistent_list

function in channel.c, perhaps we can limit our changes to only php_grpc.c,

and refactor out these 4 lines instead, and call them in those 2 separate places, but

within php_grpc.c

Project: gRPC

Smell keywords: [list]

Methodology: Pull request sampling through keyword search

In the example, there is duplication because the clean_pesistent function does not

need to be refactored again in the channelc class. All modification and use of the method

can be done reusably in the php_grpc.c class.

RQ1: The most frequently identified smells in code reviews.

Smells are not commonly discussed during code reviews. The most frequent smells

in reviews are Duplicated Code, Bad Naming, and Dead Code.

4.2 RQ2: What are the common causes for code smells that

are identified during code reviews?

Figure 4.2 presents the results found on the most common causes of smells. 831 (70%) of

the reviews have a cause not provided. This frequency is our closest result to the one found

in the original study (70%) and confirms the previous finding. Identifying the cause of code

smells is a challenge in itself, as it would require deeper knowledge of the code and nuances

of that software. Often the cause is not even known yet. This is the kind of thing that is

trickier to infer just based on PR comments and motivates a future study extension to better

handle these possible causes. See example below:
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Figure 4.1: Number of reviews for the identified code smells.

Link: https://api.github.com/repos/grpc/grpc/pulls/17643

Developer: I have updated the comment to clarify why we have the if condition.

Project: gRPC

Smell keywords: [condition]

Methodology: Pull request sampling through keyword search

The cause is not provided here because the comment aims to improve readability but

even those who have familiarity with the code might need clarification to understand why

the developer chose to use the if in that case. We believe that every smell has an underlying

cause, however, during code review discussions, the cause is not always provided due to some

reasons, such as lack of adequate documentation or simply because the reviewer/author may

not be aware of the underlying cause of the smell.

However, it was possible to notice that the lack of familiarity with the existing code, pre-
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sented in 198 (9%) of the reviews, the inappropriate design, in 214 (10%), and violation of

code conventions, in 147 ( 7%) of the occurrences, had a similar frequency. This demon-

strates the influence of project knowledge, knowing established programming conventions,

and familiarity, to avoid smells. Other possible causes were identified, but to a lesser extent,

such as unitentional errors (85 reviews) and detection by code analysis tools (11 reviews).

RQ2: The common causes for smells as identified during code reviews.

Most of the smells discussions don’t have a specific cause provided during code

reviews. The lack of familiarity, violation of code conventions, and inappropriate

design have a low and similar frequency to be pointed as the cause of the smell.

Figure 4.2: Reasons for the identified smells.



4.3 RQ3: How do reviewers and developers treat the identified code smells? 30

4.3 RQ3: How do reviewers and developers treat the iden-

tified code smells?

4.3.1 RQ3.1: What actions do reviewers suggest to deal with the iden-

tified smells?

Table 4.1 shows that only 290 (13%) reviews present correction recommendations, in con-

trast, 1781 (82% ) reviews capture the smell but do not provide any additional suggestions.

At a lower frequency, reviewers recommended ignoring smells in 22 (1%) of the occurrences.

Comments where reviewers directly point out the smell even if they indirectly suggest mod-

ifications or criticize the code were considered as "smell capture". Therefore, only direct

comments were marked as correction recommendations, which may explain the low fre-

quency, independently whether they provided an implementation suggestion or not. See the

example below, where the reviewer indirectly pointed out a readability problem, but neither

provided directly a recommendation for fixing it nor a suggestion on how this should be

done:

Link: https://api.github.com/repos/grpc/grpc/pulls/10210

Reviewer: Please comment the thinking behind this condition?

Project: gRPC

Smell keywords: [condition]

Methodology: Pull request sampling through keyword search

Table 4.1: Actions recommended by reviewers to resolve smells in the code

Reviewer’s recommendation Count

Fix (without recommending any specific implementation) 204

Fix (provided specific implementation) 86

Capture (just noted the smell) 1781

Ignore (no side effects) 22
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4.3.2 RQ3.2: What actions do developers take to resolve the identified

smells?

To answer this question, we analyzed the developer’s actions, mentioned in Section 3.1.3,

like understanding the developer’s response to reviewers, the changes made to the source

codes, and the status of their pull requests to infer if the code smell was solved. Table

4.2 presents the developer’s correction for the identified smells. Most types of code smells

identified had a high percentage of correction, especially the most frequent smells, such as

Duplicated code (96% fixed), Bad Naming (98% fixed), and Dead Code (82% fixed), totaling

94% of smells corrected.

Table 4.2: Developers’ actions to code smells identified during reviews

Code smell Reviews Fixed by developers % of fixes

Duplicated Code 713 687 96%

Bad Naming 194 190 98%

Dead Code 153 150 98%

Long Method 33 27 82%

Circular Dependency 11 4 36%

Swiss Army Knife 2 1 50%

General Smell 1058 977 92%

Total 2164 2044 94%

4.3.3 RQ3.3: What is the relationship between the actions suggested by

reviewers and those taken by developers?

To answer this research question, Figure 4.3 presents a map between reviewers’ recommen-

dations and the resulting actions taken by developers. The replication shows that, in the ma-

jority, 1713 (79%) reviews had discussions in agreement with the reviewer, of which 1671

(77%) resulted in code fixes. Less frequently, 407 (18%) of the reviews were not responded

to, although in the majority of them, 326 (15%) resulted in code correction. The replication

shows that the developer disagreed with the reviewer in 2% of occurrences and in 24 (1%

of occurrences) the code was still corrected. An example where the developer disagreed
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with the reviewer but made changes is shown below because the developer believes that the

argument presented by the reviewer contradicts what has been discussed previously:

Link: https://api.github.com/repos/grpc/grpc/pulls/1163

Reviewer: I’m pretty sure you aren’t supposed to have binary metadata values unless

the metadata key ends with ’-bin’.

Reviewer: The or premetadata smells stale here, given that calling

add_metadata after premetadata is how terminal metadata gets added, right?

Developer: This contradicts what I’ve heard offline; ostensibly metadata values have

to both have a length value and be null-terminated. Yes, it’s redundant, but that was

my impression from offline conversations. This sounds like it needs a clarifying issue

to me.EDIT: Although, the core implementation appears to Do The Right Thing™

and use the length as far as I can tell.

Project: gRPC

Smell keywords: [data, smell]

Methodology: Pull request sampling through keyword search

RQ3: The reviewers’ recommendations and developers’ actions.

Reviewers usually capture the smell but don’t directly recommend fixes. Develop-

ers often fix the discussed smells. In most of the smell discussions, the developer

agreed with the reviewer and fixed the code.

4.4 Discussion

Although we pointed out the motivations to manually detect and discuss smells, because of

the project domain and contextual information that it provides, the results of RQ1 present that

the code smells are not widely discussed during code reviews. This might represent that most

of the smells have been detected and fixed in previous steps, using automatic techniques, for

example. Also, Duplicated Code was the type more discussed in our analyses, it tends to be

discussed more in code reviews due to its immediate visibility and its direct impact on code

maintainability and readability, often generating more discussion than other types of smells.
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Figure 4.3: A treemap of the relationship between developers’ actions in response to review-

ers’ recommendations regarding code smells identified in the code.

Its detection is more direct and its ramifications are widely recognized as critical to software

quality.

Most of the findings at RQ2 show that reviews usually don’t provide specific causes for

the identified smells. However, the causes pointed out, like lack of familiarity, violation

of code conventions, and inappropriate design, show us that most of the smells might be

avoided whether the developer has the domain of the project.

The results of RQ3 present that, in the majority, developers have review discussions in

agreement with the reviewer’s suggestions, and most of its reviews result in code fixes. This

analysis indicates that suggestions or concerns raised by reviewers have been acknowledged

and addressed by developers through source code adjustments. These numbers suggest re-

markable effectiveness in the review process, where constructive communication between

reviewers and developers often leads to tangible code improvements.
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Threats to Validity

During the course of this work, a new study [18] was published by the same authors of the

original work [19]. In the new approach, an extension of the original work was made by

including a set of data from Qt community projects that use C++ as the majority program-

ming language, keeping the original research questions and including new ones. Given this,

some threats to validity addressed as a motivation for replicating this study may have been

corrected in the new extension. Still, we promote an approach that has a different vision,

focusing on the gRPC, Neovim, and Keycloak projects, which use the C++, Java, and Vim

languages.

As 26 reviewers contributed to this work, even with similar experiences their analysis

can be put at risk because the qualitative decisions on what is code smells or not may vary.

Also, the familiarity with the programming languages might be different. To reduce this

threat, before starting the manual analysis, the reviewers received a guide about what should

be considered a smell discussion, the document contains the smell background explained in

Section 2 and aims to guide everyone with the same concepts.

At RQ1, to classify "general" terms we have used the definition made by Han, Xiaofeng

et al. (2021) and their examples like "code smell", "smelly", but we also considered more

terms as general types, like "lazy" and "Inappropriate". The original study allows room for

interpretation of the examples and a specific study can be carried out on those topics to

improve the accuracy of those general terms definition.

The analysis of RQ2 for the specific provided causes for code smells had each one at

most 10% of occurrences and this small sample might not reflect the reality. To mitigate this,
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a comparison with the results for the same RQ in the original work by Han, Xiaofeng et al.

(2021) was done and showed similar results for a different data context.

Also, for RQ3 a low number (2%) of results shows that the developer disagreed with

the reviewer. This low frequency might not be realistic enough to imply results, but it gives

space to deeper manual analysis of those kinds of threads, especially about human behaviors

during code reviews.
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Related Work

We found studies that present techniques and highlight the importance of smell detection.

Furthermore, we identified other works that relate to code reviews and software development.

In this chapter, we summarize these techniques.

6.1 Studies on Code Smells Detection

Some studies analyze code smell statistics in projects of different sizes and complexities

and discuss the implications of the results for software development. The analyses are per-

formed by extracting code smells from repositories for different programming languages and

versioning tools [38] [43] [10].

Pereira dos Reis, José, et al. (2022) analyzed 80 studies to identify the most common

approaches to scent detection. They present that the most commonly used approaches for

detecting code smells are search-based (30.1%), metrics-based (24.1%), and symptom-based

approaches (19.3%). Furthermore, machine learning (ML) techniques are used in 35% of

studies. However, the study emphasizes the need to reduce the subjectivity associated with

the definition and detection of smells as a challenge.

Azeema, M, et al. (2019) also highlight the challenge of reducing subjectivity and pro-

mote a systematic review of machine learning techniques for smell detection. The study

shows that Decision Trees and Support Vector Machines are the Most commonly used ma-

chine learning algorithms for code smell detection.

Lin, T et al. (2021) conducted research on code smell detection based on deep learning.

36
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Their solution uses a convolutional neural network to train a model to detect several common

code smell issues in software engineering. The solution achieves a satisfied F2 score with an

average above 0.75.

S, Shcherban et. al (2020) [39] present a proposal on how to automatically detect code

smell-related textual discussions in stack overflow (SO) using an automatic classifier. They

conducted an experiment using a manually labeled dataset that contains 3000 code-smell

and 3000 non-code-smell posts to evaluate the performance of different classifiers when

automatically identifying code-smell discussions. The results show that the machine learning

approach can effectively locate code-smell posts even if the posts’ titles and/or tags cannot

be of help. However, this approach was not used in this replication because it is a preliminary

investigation and neither code nor instructions are provided to guide reproduction.

Although there are several smell detection techniques, our study, however, focuses on

manually detected smells in code reviews, motivated by the benefit of contextual informa-

tion characteristic of the reviewer. Still, the results from Section 4 show that there are few

discussions about code smells in code review. This leaves room for new studies that seek

to understand the impact of automatic smell detections on reducing discussions during code

review.

6.2 Studies on what is discussed on Code Review

Several studies [29] [28], [24] have explored the impact of modern code reviews on software

quality. Other research has also addressed the impact of code reviews on different aspects

of software quality, such as vulnerabilities [6], design decisions [45], anti-patterns [31] and

code smells [32] [34].

Pascarella, L., et al. (2019) present a study where that checks the detection and reduc-

tion of several code smells in files during reviews. For those reviews with reduction, authors

manually analyzed reviews and found that reviewer suggestions provided “side effects” that

helped to reduce smells. Our study differs from it because we directly analyze the smell re-

view discussions with the goal of understanding the developer’s and reviewer’s perspectives.

The study by Ferreira, I, (2021) seeks to understand the characteristics of incivility in the

discussion of code review, hitherto little explored in software engineering, which can occur
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due to disagreements between developers and reviewers. This involves heated discussions

and sometimes involves personal attacks and unnecessary disrespectful comments. They

performed a qualitative analysis on 1,545 posts and found that more than half (66.66%) of

non-technical discussions included uncivil characteristics. Furthermore, frustration, swear-

ing and impatience are the most common characteristics of rude arguments. Our study does

not seek to understand behavioral existence characteristics in code review discussions, but

mainly as actions suggested/taken by reviewers/developers and how it can impact review

standards.

6.3 Study by Han, Xiaofeng et al. (2021)

6.3.1 Overview

The objective of this study was to investigate the concept behind code smells identified dur-

ing code reviews and what actions are suggested by these reviewers and carried out by devel-

opers in response to the identified smells. This work was the basis for our replication. What

motivated us to explore it was the existence limitations in the empirical evidence and current

applicability, highlighted in Section 1.2.

To this end, they created the research questions presented in Section 1.2. Two active

projects on OpenStack were chosen for the analysis (Nova and Neutron) and a total of

309,311 comments were collected [Table 6.1] to compose the data processing steps described

in Figure 6.1.

Table 6.1: An overview of the subject projects (Nova and Neutron). Table extracted from

Han, Xiaofeng et al. (2021)

Project Review Period Code Changes Comments

Nova Jan 14 - Dec 18 22,762 156,882

Neutron Jan 14 - Dec 18 15,256 152,429

Total 38,018 309,311
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Figure 6.1: Overview of data mining. Figure extracted from Han, Xiaofeng et al. (2021)

6.3.2 Mining Process

1. Creation of the set of keywords: A set of keywords from the list of terms [Table

1.1] was constructed using variations of terms that refer to code smell, such as "code

smell", " bad pattern", etc. This set considered the smells initially defined by Martin

Fowler (1999) and also those extracted by Tahir et al. (2020).

2. Data extraction: Python code was developed to collect review comments that have at

least one of the keywords described in the set. At this stage, 18,082 comments were

collected.

3. Identification of smell-related keywords-searched comments by two authors in-

dependently: In this step, two authors manually analyzed the same set of comments,

and excluded those that were not related to code smell. At the end of the process, the

comments where both authors marked as not related to smell were deleted and Co-

hen’s Kappa agreement coefficient was calculated, resulting in a value of 0.85, which

indicates high agreement. A total of 3,666 comments remained after this process.

4. Identification of smell-related keywords-searched comments by two authors to-

gether: At this stage, simultaneously, the same two authors analyzed the comments

and consulted the source code when necessary. Furthermore, the authors tried to agree

on the relationship between the comment and code smell. At the end of the process,

only the comments where the two authors agreed about being related to code smell

were kept. A third author also participated in the process when doubts arose and the
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initial authors did not agree. Thus, this resulted in a reduction to 1,235 comments.

5. Contextual information about the review comment: At this stage, the contextual

information of each review comment was collected and includes the following infor-

mation: 1) Url of the code change; 2) The type of code smell identified; 3) The discus-

sion between reviewers and developers and 4) The Url to the source code. At the end

of this process, 1,164 reviews related to code smells were collected.

6. Identification of smell-related comments in randomly-selected set: With 95% con-

fidence and 3% margin of error [20], a sample with an additional 1,064 comments was

collected from a set of 291,229 comments, which represents the rest of comments that

did not pass the keyword filtering described in step 2). After this extraction, steps 3)

to 5) were followed and another 16 smell-related reviews were collected. Therefore,

a sample of 1,190 smell-related reviews was used for the remaining research analy-

ses. As an artifact of this phase of the study, a replication package was made available

online 1.

To improve the robustness of the study, we diversify the sample, including projects from

different organizations that use different technologies. Our data processing is described in

Section 1.2, it tries to follow the original study as closely as possible, except that in step 3,

instead of using only two reviewers we involved 26 experienced developers, who in 13 pairs,

independently and manually analyzed the data.

6.3.3 Results

In response to the research questions, the authors made the following assessments:

RQ1: Which code smells are the most frequently identified by code reviewers?

From the set of 1,190 smell-related reviews, in comparison with the total population

studied, it was identified that the proportion of smells found is low. Even so, among the

identified smells duplicated code has the highest frequency, with 620 occurrences [Figure

6.2], followed by bad naming and dead code, with 304 and 221 occurrences, respectively.

To a lesser extent, long method, circular dependency and swiss army were also identified. In

11 reviews, smells were described with general terms, such as code smell

1https://doi.org/10.5281/zenodo.4468035
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Figure 6.2: Number of reviews for the identified code smells. Figure extracted from Han,

Xiaofeng et al. (2021)

RQ2: What are the common causes for code smells that are identified during code

reviews?

Using Thematic Analysis, we defined the causes presented in Section 4, and the following

causes were found:

Figure 6.3 shows that most reviews do not provide any information about the possible

cause of the smell, they just point out the problem. Still, it was possible to understand that

in 276 (26%) reviews the cause for the smell was code convention violation. In smaller

quantities, the causes of lack of familiarity with existing code (40 reviews) (3%), intentional

errors (19 reviews), and improper design (18 reviews) were also found.

RQ3: How do reviewers and developers treat the identified code smells?

The results of RQ3 were divided into three sub-questions:

RQ3.1: What actions do reviewers suggest to deal with the identified smells?

Table 6.2 presents the results of this question, which indicate that after the classification

made by the authors, it was extracted that in the majority of reviews (870, 73% of the total

reviews), reviewers recommend corrections for the identified smells. In 303 of these reviews

(35%), the reviewers provided specific implementations for correction, while in 272 of the

occurrences (23%) the smells were highlighted but were suggested for correction. In 48
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Figure 6.3: Reasons for the identified smells. Figure extracted from Han, Xiaofeng et al.

(2021)

reviews (4%), reviewers suggested ignoring the code smell found.

Table 6.2: Actions recommended by reviewers to resolve smells in the code. Table extracted

from Han, Xiaofeng et al. (2021)

Reviewer’s recommendation Count

Fix (without recommending any specific implementation) 567

Fix (provided specific implementation) 303

Capture (just noted the smell) 272

Ignore (no side effects) 48

RQ3.2: What actions do developers take to resolve the identified smells?

Table 6.3 shows that 1029 (86%) were corrected by the developers. The rest of the

reviews did not cause changes to the source code after the reviewer’s suggestion, which

indicates, according to the authors, that the developers understood in that situation that the

smell may not require priority attention.

RQ3.3: What is the relationship between the actions suggested by reviewers and

those taken by developers?

Figure 6.4 demonstrates a map between reviewers’ recommendations and resulting de-

veloper actions. In 775 (65%) of the reviews analyzed, developers agreed with reviewers’

suggestions and followed exactly the same recommended actions, whether fixing or ignoring.
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Table 6.3: Actions made by developers to resolve smells in the code. Table extracted from

Han, Xiaofeng et al. (2021)

Code smell Reviews Fixed by developers % of fixes

Duplicated Code 620 508 82%

Bad Naming 304 276 91%

Dead Code 221 210 95%

Long Method 30 25 83%

Circular Dependency 3 2 67%

Swiss Army Knife 1 1 100%

General Smell 11 7 64%

Total 1190 1029 86%

Among these cases, there were 20 situations in which developers agreed to ignore the smell

(i.e., a problem was identified, but the reviewer considered its impact to be insignificant).

In 23% of the reviews (274 cases), developers implemented the necessary changes to

source code files without even responding directly to reviewers in the review system. We

observed an additional 66 reviews (5%) in which developers disagreed with the reviewers’

opinions and chose to ignore recommendations for code refactoring and smell removal.

Similarly, in 75 reviews (6%), developers did not respond to reviewers or change the

source code. In these cases, it was assumed that the developers did not find the recommen-

dations on how to deal with specific smells in the code useful and therefore decided not to

make changes.

6.3.4 Comparison to the replication

It was possible to compare the main results of the original study with the replication, pre-

sented in Section 4:

RQ1: Which code smells are the most frequently identified by code reviewers?

We identified 2,164 smell reviews, which compared to the initial number of comments

studied (104,321) demonstrates that smells are not commonly discussed in code reviews,

this behavior was similar to the result found at the original work 6.3.3. In comparison with

Figure 6.2, we identified that under a new context, the most frequent smell in code reviews
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Figure 6.4: A treemap of the relationship between developers’ actions in response to review-

ers’ recommendations regarding code smells identified in the code. Figure extracted from

Han, Xiaofeng et al. (2021)

is also code duplication [Figure 4.1]. However, the general type of smell, which was one

of the least frequent in the original study, had a higher frequency in our classification. This

might happen because the original study doesn’t indicate a clear definition for it and allows

room for interpretation of the examples of general terms that may explain this variation

in frequency. To classify as the "general type", in addition to terms such as "code smell"

and "anti-pattern", we consider other terms like "smelly", "comments", "Inappropriate" and

"Large" to categorize the general type in the replication.

RQ2: What are the common causes for code smells that are identified during code

reviews?

Similar to the original study [6.3.3], 831 (70%) of the reviews have a cause not provided

[4.2]. This frequency is our closest result to the one found in the original study (70%) and

confirms the previous finding. But differently, while in the original study 26% reviews had

the "violation of code convention" cause as the most common, in the replication besides that
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cause with 7%, "lack of familiarity with existing code" (9%) and "improper design" (10%)

had all similar frequencies. It’s important to consider that the frequency of causes presented

is not that high and the comparison shows that might not be the most frequent cause.

RQ3: How do reviewers and developers treat the identified code smells?

At a lower frequency, similar to the original study 6.2, reviewers recommended ignoring

smells in 22 (1%) of the occurrences 4.1. The replication showed high frequency (82%)

reviewers usually noted the smell but didn’t recommend suggestions, this result is different

from the original study (23%). During the classification process, we realized that some

data might have uncertainty on which action should be classified, especially between the

Capture and the Fix actions. It’s not clear the decision points used in the original study for

this, but to mitigate it we considered only comments with direct and clear indications of

recommendation.

In agreement with the original study [Table 6.3], most types of code smells identified had

a high percentage of correction, especially the most frequent smells, such as Duplicated code

(96% fixed), Bad Naming (98% fixed) and Dead Code (82% fixed), totaling 94% of smells

corrected 4.2.

In confirmation of the original results [Figure 6.4], the replication shows that, in the ma-

jority, 1713 (79%) reviews had discussions in agreement with the reviewer, of which 1671

(77%) resulted in code fixes. Less frequently, 407 (18%) of the reviews were not responded

to, although in the majority of them, 326 (15%) resulted in code correction. Despite present-

ing a similar result in relation to the number of discussions in which the developer disagreed

with the reviewer (2% of occurrences), unlike the original study, the replication shows that

in 24 (1% of occurrences) the code was still corrected.

6.4 Study by Han, Xiaofeng et al. (2022)

The authors provided an extension of the original work presented in 2021 [19]. It was pub-

lished during the course of this work, therefore this replication is still based on the 2021

study. The following goals were addressed in the extension:

1. Extend the dataset by including the code review data from two large projects of the Qt

community;
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2. Explore specific refactoring actions suggested by reviewers;

3. Investigate two additional research questions discussing the resolution time of smells

and also the reasons why developers chose to ignore the identified smells.

The same methodology used in the original study was performed and the following re-

sults were found:

1. Code smells were not commonly identified in code reviews;

2. Smells were usually caused by violation of coding conventions;

3. Reviewers usually provided constructive feedback, including fixing (refactoring) rec-

ommendations to help developers remove smells;

4. Developers generally followed those recommendations and actioned the changes;

5. Once identified by reviewers, it usually takes developers less than one week to fix the

smells;

6. The main reason why developers chose to ignore the identified smells is that it is not

worth fixing the smell.

As mentioned in the threat of validity for this replication, some threats to validity ad-

dressed as a motivation for replicating this study may have been corrected in the extended

work. However, in the extension the authors still highlight new threats that endorse the

importance of this replication:

• Usage of different domains, such as the ones chosen for the replication: gRPC,

Neovim, and Keycloak.

• Usage of different programming languages, such as C++, Java, and Vim, used for

replication.

Different domains and programming languages can help improve the external validity

and make the study results and findings more generalizable to other systems. Also, including

code review discussions from other communities will supplement their findings and this may

lead to more general conclusions.
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Conclusion

The present study replicates data from the original study by Han, Xiaofeng et al. (2021) on

understanding code smell discussions in code reviews. The study highlights the importance

of detecting code smells through code review, especially due to the context and domain of

the program that is presented by those who use this review process. Furthermore, it allows

you to understand the perspectives of developers and reviewers regarding code smells.

The study confirms the results presented by the original work, on the low frequency

detection of smells using this manual review process and also on the most frequent types and

suggestions of reviewers. In these analyses, replication was able to extend the interpretation

on general types of smells and on suggestions that point to the smell and indirectly suggest

a modification by the reviewer. This allows the evaluator to consider that the interpretative

analysis of discussions is essential in the classification process.

Furthermore, the study also confirms that the majority of smells are corrected (94% of

occurrences) and that in 79% of cases, the developers agree with the suggestions provided

by the reviewer.

This study can benefit developers as they can gain valuable insights into how their code

decisions are perceived by reviewers and learn best practices for dealing with code smells.

This can improve the quality of the code they produce. It’s also beneficial for reviewers, who

can hone their skills by understanding how their suggestions are received by developers. This

can lead to more effective communication and more constructive code reviews.

47
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7.1 Future Work

This study provides scope for some new work, namely:

1. Extend the current study with the skill profile of participants involved in the replication

process;

2. Deeper analysis to understand how the cause of smells can be better classified;

3. Analyse the effect of programming languages on code smell discussions during re-

views;

4. Study of reviews that contain disagreement between the reviewer and the developer;

5. Investigate how a classifier can be used to create a document, for a specific reposi-

tory, with standards of code review practices (refactoring suggestions, most discussed

smells, etc.).
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