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Abstract

Multi-task learning (MTL) is a design paradigm for neural networks that aims to improve

generalization while solving multiple tasks simultaneously in a single network. MTL has

been successful in various fields such as Natural Language Processing, Speech Recognition,

Computer Vision, and Drug Discovery. Neural Architecture Search (NAS) is a subfield of

Deep Learning that proposes methods to automatically design neural networks by search-

ing and arranging layers and blocks to maximize an objective function. Currently, there are

few methods in the literature that explore the use of NAS to build MTL networks. In this

context, this work investigates a sequence of comparative experiments between multi-task

networks, single-task networks, and networks created with a neural architecture search strat-

egy. These experiments aim to understand better the differences between these paradigms

of neural network design and compare the results achieved by each. We investigated neu-

ral network architectures for different use cases, such as the ICAO-FVC dataset, MNIST,

FASHION-MNIST, Celeb-A, and CIFAR-10 datasets. Additionally, we experimented with a

well-established dataset of NAS to benchmark new proposed methods in the field. Our exper-

iments have revealed that the NAS technique, developed through Reinforcement Learning,

is capable of discovering optimal architectures in a shorter time than the current state-of-the-

art technique based on Regularized Evolution. Furthermore, this technique has demonstrated

competitive results across various datasets of multi-task learning, in terms of accuracy and

equal error rate. While it may not be the top performer in the case of ICAO-FVC, it still

delivers a competitive outcome and holds the potential to uncover even better architectures

than the best handcrafted one.
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Resumo

O aprendizado multitarefa (MTL) é um paradigma de design para redes neurais que visa

melhorar a generalização enquanto resolve múltiplas tarefas simultaneamente em uma única

rede. A MTL tem tido sucesso em vários campos, como Processamento de Linguagem Natu-

ral, Reconhecimento de Fala, Visão Computacional e Descoberta de Medicamentos. Neural

Architecture Search (NAS) é um subcampo do Deep Learning que propõe métodos para

projetar redes neurais automaticamente, pesquisando e organizando camadas e blocos para

maximizar uma função objetivo. Atualmente, existem poucos métodos na literatura que ex-

ploram o uso de NAS para construção de redes MTL. Neste contexto, este trabalho investiga

uma sequência de experimentos comparativos entre redes multitarefa, redes monotarefa e

redes criadas com uma estratégia de busca de arquitetura neural. Esses experimentos visam

compreender melhor as diferenças entre esses paradigmas de projeto de redes neurais e com-

parar os resultados alcançados por cada um. Investigamos arquiteturas de redes neurais para

diferentes casos de uso, como o conjunto de dados ICAO-FVC, conjuntos de dados MNIST,

FASHION-MNIST, Celeb-A e CIFAR-10. Além disso, testamos um conjunto de dados bem

estabelecido de NAS para avaliar novos métodos propostos em campo. Nossos experimentos

revelaram que a técnica NAS, desenvolvida através do Reinforcement Learning, é capaz de

descobrir arquiteturas ótimas em um tempo menor do que a atual técnica de última geração

baseada na Evolução Regularizada. Além disso, esta técnica demonstrou resultados compet-

itivos em vários conjuntos de dados de aprendizagem multitarefa, em termos de acurácia e

equal error rate. Embora possa não ter o melhor desempenho no caso do ICAO-FVC, ainda

oferece um resultado competitivo e tem o potencial de descobrir arquiteturas ainda melhores

do que a melhor feita à mão.
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Chapter 1

Introduction

The chapter introduces the context and background of this thesis, describes an existing prob-

lem in the field of study, the automatic design of multi-task neural networks, and lists ex-

pected contributions and the structure of this doctoral thesis.

1.1 Context and Background

The use of Machine Learning and Deep Learning is expanding, with numerous applications

in fields such as Computer Vision (CV) and Natural Language Processing (NLP). Deep learn-

ing has made a significant impact on a variety of tasks, such as object detection [Redmon

and Farhadi, 2018], image segmentation [Long et al., 2015; Ronneberger et al., 2015], face

detection [Kumar et al., 2019; Yang et al., 2015; Sun et al., 2018], named-entity recognition

[Li et al., 2022; Shen et al., 2017], and image captioning [Karpathy et al., 2014]. Its accuracy

is consistently improving and is widely adopted in production scenarios.

In seminal works, a neural network’s architecture was defined and tuned meticulously by

highly qualified experts to solve a specific task following the Single-Task Learning (STL)

paradigm [Caruana, 1997]. However, manually finding and tuning a neural network is time-

consuming. Early research observed that the tasks’ performance could increase if some of

them are solved together, following the so-called Multi-Task Learning paradigm [Caruana,

1997; Torralba et al., 2007]. Besides, MTL networks present a lower memory footprint and

higher inference speeds when compared to equivalent solutions based on STL [Vandenhende

et al., 2020].
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However, it remains an open challenge to design the network architectures for solving

multiple tasks simultaneously. A literature review presented in this research and other exist-

ing literature reviews [Ruder, 2017; Zhang and Yang, 2017; Vandenhende et al., 2020] have

identified, in recent years, different strategies for designing these networks in a partial or

fully automatic way. Besides that, the literature review also identified an increasing interest

in Neural Architecture Search (NAS) applied to Multi-Task Learning (MTL) - as presented

in Chapter 3 - since it can reduce the amount of time dedicated to develop and tune new deep

neural networks, especially for the case of multi-task networks.

Considering these literature reviews and previous works, we designed experiments to

evaluate STL, MTL, and Neural Architecture Search (NAS) models for a specific scenario:

the International Civil Aviation Organization (ICAO) compliance checking - which is de-

scribed in Chapter 4. Ultimately, we compared the performances of each approach in terms

of well-defined metrics: accuracy and Equal Error Rate (EER).

The aforementioned experiments guided the proposition of a new NAS technique for

partial or fully automated design of network architectures in the context of MTL problems

such as the ICAO photographic compliance checking. To evaluate the generalization of the

proposed technique, we expanded the experiments to include other domain datasets (MNIST

[LeCun et al., 1998], CIFAR-10 [Krizhevsky, 2009], CelebA [Liu et al., 2015], and Fashion-

MNIST [Xiao et al., 2017]).

The NAS technique proposed in this study yields promising results in the ICAO com-

pliance checking scenario when compared to the state-of-the-art (SOTA) works in terms of

equal error rate (EER). It also demonstrates excellent generalizability by achieving SOTA re-

sults in traditional datasets. However, it is worth noting that the best results are still achieved

by a handcrafted MTL neural network in the ICAO-FVC dataset.

1.2 Research Questions

We formulated the following research questions:

• RQ 1: How to apply NAS to design MTL architectures automatically for image clas-

sification tasks?
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• RQ 2: How do the architectures discovered through NAS differ from handcrafted ar-

chitectures designed using the STL and MTL paradigms, and what insights can be

gained from this comparison?

The above two questions we address are related to NAS and MTL. Specifically, we

aim to investigate the potential of using NAS techniques to optimize the performance of

MTL networks for image classification tasks. By leveraging the power of NAS, we hope to

discover cost-effective architecture designs to enhance the capabilities of MTL networks.

1.3 Contributions

• The development of a new technique of NAS in the context of MTL able to find new

MTL architectures faster than the available techniques;

• Apply the created NAS technique to the FVC-ICAO dataset and achieve a competitive

result;

• A comparative study of the proposed technique with existing related works on multiple

datasets (MNIST, CIFAR-10, CelebA, Fashion-MNIST);

1.4 Thesis Structure

This thesis is structured as follows: Chapter 2 describes basic concepts to help understand

the techniques and experiments studied. Chapter 3 evaluates related works on Multi-Task

Learning and Neural Architecture Search. Subsequently, Chapter 4 presents the methodol-

ogy and experimental designs to help with the proposition of the technique developed in this

thesis. Chapter 5 discusses the experiment’s results and performs an analysis of the errors.

Finally, Chapter 6 summarizes this thesis, its main results, provides some conclusions and

possible future research steps.



Chapter 2

Fundamental Concepts

This chapter presents some key concepts needed to better understand the research topics and

the proposed thesis. The following specific concepts are included in this chapter: Transfer

Learning, Interpretability, Multi-Task Learning, Neural Architecture Search, and Reinforce-

ment Learning.

2.1 Transfer Learning

Transfer learning (TL) is a technique used in machine learning to transfer the knowledge

learned from one task to another related task. The primary goal of transfer learning is to

reuse the knowledge acquired in one domain to solve a problem in a different but related

domain. The idea behind TL is that there are common features shared by different tasks,

such as image recognition or natural language processing, and that these features can be

leveraged to improve performance on a new task. By using the learned weights of a pre-

trained neural network, the model can be fine-tuned on a new dataset with fewer examples,

reducing the need for a large amount of training data. This makes it possible to achieve

higher accuracy and faster convergence when training on a new task. In summary, TL allows

us to apply the knowledge acquired from one task to another related task, thus accelerating

the learning process and improving the performance of the model [Goodfellow et al., 2016].

16
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2.2 Grad-CAM and Interpretability

Grad-CAM [Selvaraju et al., 2020] is a technique that enhances the transparency and explain-

ability of convolutional neural networks. This innovative method uses gradients to evaluate

an image and determine the most critical regions used by the network to classify it. By su-

perimposing a heatmap on the original image, Grad-CAM allows users to easily identify the

relevant regions that the neural network has considered to produce its classification.

This technique is especially useful in cases where the neural network’s processes are not

immediately apparent. Grad-CAM’s visual explanations provide insights into how the model

is weighting and processing data, thus making it easier to understand how it works.

For example, when identifying a “dog” or a “cat” in an image, Grad-CAM maps the

crucial regions of the image considered by the network to produce the classification. These

regions are then visually highlighted using a heatmap, making it easy to see which parts

of the image were most influential in the network’s decision-making process. Figure 2.1

demonstrates this example.

Overall, Grad-CAM is useful for ensuring that convolutional neural networks are trans-

parent and trustworthy. By providing visual explanations for the decisions made by these

models, Grad-CAM helps ensure that they are used responsibly and ethically.

Figure 2.1: Grad-CAM outputs when the deep neural network is asked to identify a "dog"

(on the right) or a "cat" (on the center) in an image. The original image is on the left. Note

that the regions in red that the network is paying attention to make the classification. Source:

[Selvaraju et al., 2020]

2.3 Multi-Task Learning (MTL)

Multi-task learning is a learning approach that aims to enhance the generalization perfor-

mance of related tasks, as compared to solving them independently (STL) [Caruana, 1997].



2.4 Neural Architecture Search (NAS) 18

In MTL, the tasks are learned in parallel and share common representations. These shared

representations enable the network to solve tasks more efficiently.

There are several benefits of using the MTL paradigm. Firstly, there is a reduction in

memory utilization as the network shares many layers between the solved tasks. Secondly,

the inference speed is faster since many unnecessary calculations are avoided. Calculations

occur once, and the results are shared among tasks during inference. Lastly, the different

tasks may act as regularizers for each other, thereby improving overall performance [Van-

denhende et al., 2020]. Additionally, MTL enables positive results to be achieved even when

training data is limited [Kaiser et al., 2017].

2.4 Neural Architecture Search (NAS)

2.4.1 Definition

The common practice of searching and training deep learning neural networks involves man-

ual probing of network designs and hyperparameters optimization, which is time-consuming

and requires a lot of expertise [Dong et al., 2022]. In this scenario emerges the subfield of

NAS.

Neural Architecture Search is a Deep Learning (DL) subfield dedicated to studying new

automatic techniques for neural architecture design, where the networks layers or blocks are

searched and arranged in different ways within the network architecture [Zoph and Le, 2017;

Zoph et al., 2018]. Each new architecture is tested against a validation set until convergence,

and the best architecture is selected. Figure 2.2 [Elsken et al., 2019] shows the NAS general

schema.

Figure 2.2: NAS general scheme. Initially, a Search Space (A) of neural architectures is

defined. Then, a Search Strategy selects a neural architecture (A) and its performance is

measured. The search repeats these steps until the architecture with the best performance is

found. Source: [Elsken et al., 2019]
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2.4.2 Search space exploration strategies

Some strategies to explore the search space have been applied: Random search, Bayesian op-

timization, evolutionary methods, Reinforcement Learning (RL), and gradient-based meth-

ods [Elsken et al., 2019]. Random searching is usually applied as a baseline to evaluate

the other strategies, as we also do in this research. It just randomly selects neural network

architectures in a defined search space.

Bayesian optimization [Jin et al., 2018; Kandasamy et al., 2018] is commonly used for

Hyperparameter Optimization, a closely related field of NAS, whose goal is to automatically

find the best set of hyperparameters in a neural network [Hutter et al., 2020; Bergstra et al.,

2011; Domhan et al., 2015].

Historically, evolutionary methods or algorithms have been applied to evolve neu-

ral networks architectures, with many examples in the literature [Angeline et al., 1994;

Stanley and Miikkulainen, 2002; Floreano et al., 2008] but with limited success in achieving

or surpassing human performance on datasets evaluations with hand-crafted neural networks

architectures. However, in recent works [Liu et al., 2018b; Real et al., 2019], these methods

achieved reasonable success in reducing search time and presenting competitive results.

Also, recently, techniques applying RL or Gradient-based methods were successful

across multiple datasets and domains, e.g. image classification [Zoph and Le, 2017;

Maziarz et al., 2019], object detection [Zoph and Le, 2017], semantic segmentation [Chen

et al., 2018], speech recognition [Hu et al., 2021; Chen et al., 2020].

Gradient-based methods [Liu et al., 2018b; Xie et al., 2019] use a gradient-descent al-

gorithm to improve the performance of the neural architecture search. These methods treat

the search space as a continuous space and then can differentiate architecture representations

[Liu et al., 2018b]. So, the problem of navigating the search space becomes similar to the

loss function minimization occurring in deep neural network training. In this approach, the

time spent on the neural architecture search is highly optimized compared to the other search

strategies.

NAS methods based on RL [Zoph and Le, 2017; Zoph et al., 2018; Pham et al., 2018]

were responsible for the popularization of the field in 2017, when Zoph et al. [Zoph and Le,

2017] obtained competitive results on CIFAR-10 and Penn Treebank datasets. Although this

first result required nearly three to four weeks with 800 GPUs for processing and training the
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models, the field has evolved, and better RL methods have emerged. Next, we discuss this

strategy in detail.

2.5 Reinforcement Learning (RL)

This section discusses Deep Reinforcement Learning (RL), the REINFORCE algorithm, and

the mathematical background of this framework. The presented description is based on the

work of [Graesser and Keng, 2020]. Figure 2.3 depicts the general framework of a problem in

RL. In this framework, an agent performs actions on an environment. Based on the outcomes

of these actions, the agent’s internal state is modified. The interactions between the agent and

the environment are interpreted and generate a reward, which can either increase or decrease

the agent’s progress toward the final goal.

Figure 2.3: RL general framework. Source: own author.

2.5.1 Policy

In the context of Reinforcement Learning, a policy π is a function that takes a specific state

and returns action probabilities. An action a ∼ π(s) is selected based on this function. A

good policy is essential to maximize the cumulative discounted rewards, and function ap-

proximation techniques are necessary to achieve this. A deep neural network is a powerful
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tool for representing a policy using learnable parameters θ, and this policy network is known

as πθ. In other words, the policy is defined by its θ parameters. As an agent operating in

an environment, your objective is a specific aim you strive to achieve, such as winning a

game or attaining the highest score possible. A trajectory is the sequence of your actions

and the resulting states and is denoted as τ = s0, a0, s1, a1, ..., sT , aT . The return of a tra-

jectory Rt(τ) is the discounted sum of rewards from the present time step t to the end of the

trajectory, expressed by Equation 2.1.

Rt(τ) =
T∑

t′=t

γt′−tr′
t

(2.1)

It should be emphasized that while the total amount starts at a specific time step, the

discount factor γ is raised to the power of t′− t to calculate the return, where t’ is the current

step in the agent trajectory. Therefore, the power must be corrected by starting at the time

step t [Graesser and Keng, 2020].

2.5.2 Objective Function

The objective function determines the anticipated return of an agent based on the complete

trajectories. This is expressed in Equation 2.2.

J(πτ ) = Eτ∼πθ
[R(τ)] = Eτ∼πθ

[
T∑

t=0

γtrt] (2.2)

The calculation in Equation 2.2 suggests that the expectation is determined by obtaining

several trajectories from a particular policy, also known as τ ∼ πθ. To ensure accuracy, it is

crucial to obtain a larger number of samples and use an appropriate policy, πθ. The discount

factor γ determines the significance given to future rewards while computing the reinforcing

signal R(τ). A higher γ value indicates a greater emphasis on future rewards, and the optimal

value of γ varies depending on the problem. When the agent needs to consider the impact of

its actions on future rewards over a more extended period, it is advisable to use a higher γ

value.
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2.5.3 Policy Gradient

In the policy gradient algorithm, we introduced both the policy denoted by πθ and the objec-

tive function J(πθ). The policy permits an agent to execute an action, whereas the objective

sets a goal for the agent to achieve. The policy gradient is the last part of the algorithm that

aims to resolve the following problem:

max
θ

J(πθ) = Eτ∼πθ
[R(τ)] (2.3)

Where Eτ∼πθ
[R(τ)] is the expected reward value of the entire trajectory of the agent.

We utilize gradient ascent to maximize the objective function J by modifying the policy

parameters θ. As per calculus, the gradient shows the direction of the steepest ascent. We

compute the gradient and employ it to update the parameters to improve the objective, as

depicted in Equation 2.4.

θ ← θ + α∇θJ(πθ) (2.4)

The parameter update, which is represented by the symbol α, is determined by the learn-

ing rate. The policy gradient is defined by ∇θJ(πθ), which represents the gradient of the

policy. Equation 2.4 describes the method of updating the parameter θ with the policy gradi-

ent. The scalar value of the learning rate α impacts the magnitude of the update.

Equation 2.5 presents the formula for the policy gradient, where the expected value is

taken over all possible trajectories τ generated by the policy πθ. The policy gradient takes

into account the reward at each time step t denoted by Rt(τ) and the log probability of the

action executed by the agent at time step t denoted by∇θlogπθ(at|st).

∇θJ(πθ) = Eτ∼πθ
[

T∑

t=0

Rt(τ)∇θlogπθ(at|st)] (2.5)

The steps to obtain Equation 2.5 are outlined in [Graesser and Keng, 2020]. πθ(at|st)

denotes the probability of the agent’s action at time step t, which is sampled from the policy.

The policy gradient updates the action probabilities based on the rewards received, increasing

the probability of actions that result in positive returns and decreasing the probability of

actions that result in negative returns. Over time, the policy learns to produce actions that

yield higher rewards.
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To estimate the policy gradient accurately, the REINFORCE algorithm relies on Monte

Carlo sampling, which is a powerful technique that leverages random sampling to generate

data and approximate a function. The method gained prominence thanks to Stanislaw Ulam,

a renowned mathematician who worked at the Los Alamos research lab during the 1940s

[Graesser and Keng, 2020].

By integrating Monte Carlo sampling, Equation 2.5 can be converted into Equation 2.6.

The notation Eτ∼πθ
means that as we collect more trajectories τ by applying the policy πθ and

calculate their mean value, we get closer to the actual policy gradient ∇θJ(πθ). This method

remarkably enhances the capability to estimate the policy gradient and enhance overall per-

formance.

∇θJ(πθ) ≈
T∑

t=0

Rt(τ)∇θlogπθ(at|st) (2.6)

We utilize the REINFORCE algorithm to compute the policy gradient by means of Monte

Carlo sampling with a single trajectory. Although this technique provides an unbiased es-

timate of the policy gradient, it is affected by high variance. To reduce this variance, it is

common practice to utilize a baseline value. In this thesis, we investigate the use of reward

normalization as a solution to tackle the issue of reward scaling, as discussed in Chapter 4.

The variance of the policy gradient estimate can be high when employing Monte Carlo

sampling, owing to various factors. Firstly, actions are randomly selected from a probabil-

ity distribution, contributing to the variance. Secondly, the starting state may differ across

episodes, leading to an increase in variance. Furthermore, the environment transition func-

tion may be stochastic, exacerbating the variance issue. To address this problem, a recom-

mended approach is subtracting an appropriate action-independent baseline from the returns.

This technique is depicted in Equation 2.7 [Graesser and Keng, 2020].

∇θJ(πθ) ≈
T∑

t=0

(Rt(τ)− b(st))∇θlogπθ(at|st) (2.7)

2.5.4 REINFORCE Algorithm

A standard algorithm used to define the best policy is the REINFORCE algorithm [Williams,

1992]. The central intuition behind the algorithm is that good actions should become more
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probable during the agent environment exploration because it feeds a reinforce mechanism

with positive outcomes. At the same time, it punishes the agent with negative outcomes when

the interaction with the environment is harmful. The agent’s goal must be to maximize the

objective by selecting good actions. This happens once the agent learns to interact with the

environment and to select good actions, which are reinforced by positive rewards [Graesser

and Keng, 2020].

The REINFORCE algorithm aims to instruct agents on acting in an environment by creat-

ing a policy that determines action probabilities based on the states. This is done by adjusting

the action probabilities using the policy gradient, making REINFORCE a policy gradient al-

gorithm. Algorithm 1 [Graesser and Keng, 2020; Williams, 1992] integrates the previously

defined formulae. Note that a new trajectory is calculated for every new episode, and the old

one is discarded after each parameter update in the algorithm.

Algorithm 1 REINFORCE Algorithm

Require: Initialize MaxEpisode

Require: Initialize learning rate α

Require: Initialize weights θ of a policy network πθ

1: for episode = 0, ...,MaxEpisode do

2: Sample a trajectory τ = s0a0, r0, ..., sT , aT , rT

3: Set ∇θJ(πθ) = 0

4: for t = 0, ..., T do

5: Rt(τ) =
∑

T

t′=t
γt′−tr′

t

6: ∇θJ(πθ) = ∇θJ(πθ) +Rt(τ)∇θ log πθ(at|st)

7: end for

8: θ = θ + α∇θJ(πθ)

9: end for

When applied to NAS, it is possible to map the presented concepts as follows: the RL en-

vironment is the search space, the actions are the networks architectures found - also called

child networks -, and the rewards are the validations accuracies scores achieved for each

child network. During the training phase, while the validation increases, the reward is posi-

tively reinforced by choosing better child network architectures. Usually, a Recurrent Neu-

ral Network (RNN) - such as a Long-Short Term Memory (LSTM) - is the agent propos-
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ing and selecting new neural architectures, as we see in works like [Zoph and Le, 2017;

Zoph et al., 2018]. In the case of NAS, the LSTM learns to propose better architectures

through the feedback received and the minimization of a proposed loss function (cost). One

of the main advantages of deep RL over supervised learning, for example, is that it does not

need to obtain optimal results in every learning iteration to achieve an optimal result at the

end of the learning process. The drawback of using RL is that it usually takes longer searches

to reach optimal results. Besides that, RL-based NAS methods may suffer from convergence

problems, presenting unstable results during the search process.



Chapter 3

Related Works

This chapter details previous related works, specifically in Multi-Task Learning and Neural

Architecture Search, that are close to this doctoral research.

3.1 MTL

Historically, deep multi-task techniques (MTL) have been divided into two categories: Soft-

Parameter Sharing and Hard-Parameter Sharing [Vandenhende et al., 2020; Ruder, 2017].

In Hard-Parameter Sharing, a shared encoder branch is commonly subdivided into task-

specific branches that specialize in solving a single task. In Soft-Parameter Sharing, there is

an algorithm to automatically find where to share or branch within the network, and the task

branches intersect at multiple points. Figure 3.1 [Vandenhende et al., 2020] shows the dif-

ference between (a) hard-parameter sharing and (b) soft-parameter sharing. Note that there

is a common branch in the case of hard-parameter sharing. In contrast, on soft-parameter

sharing, there is information exchange between the task branches, and during the training,

the connections - which can happen at multiple points - are strengthened or weakened. This

work focuses on hard-parameter sharing methods once they produce memory and computa-

tion efficient MTL networks [Zhang et al., 2022].

Numerous examples of hard-parameter sharing MTL techniques exist in the literature.

Some works developed techniques to create branches simultaneously from a backbone model

[Ruder, 2017; Nekrasov et al., 2019; Suteu and Guo, 2020; Leang et al., 2020] and from a

single point in the network, similarly as we do in this research and described in the following

26
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Figure 3.1: Soft and Hard-Parameter Sharing in MTL. Source: [Vandenhende et al., 2020]

paragraphs of this section.

Other techniques allow branches to emerge from different points in the network. In the

Learning-to-Branch [Guo et al., 2020] technique, the authors derive a tree-like architecture

using a differentiable neural architecture search technique. The developed technique learns

where to branch in the network without previous calculations of task relatedness. BMTAS

(Branched Multi-Task Architecture Search) [Bruggemann et al., 2020] also makes a differ-

entiable neural architecture search on a tree-like architecture, extending [Guo et al., 2020]

work by applying a computational budget to limit the neural architecture search. However,

both works fail to guarantee an optimal multi-task architecture [Choromanska et al., 2015;

Sun et al., 2020] and to control the user’s budget during the search space exploration.

A more recent work, TS-MTL (Tree-Structured Multi-Task Learning) [Zhang et al.,

2022], addresses these issues and proposes a tree-structured multi-task model recommender,

which chooses neural network architectures in a designed search space and respects a user-

defined computation budget. The authors evaluated their work with NYU-v2 and Tiny

Taskonomy datasets and different backbone models: Deeplab-ResNet34 and MobileNetV2.

In both cases, they report competitive results when compared with the state-of-the-art results.

The basic schema of our work also uses a base model and derives multi-task architectures

from them through the use of multiple task branches.

Some previous works are based on task-relatedness calculation. The Fully-Adaptive Fea-

ture Sharing (FAFS) [Lu et al., 2017] technique calculates the task relatedness level in order

to group similar tasks in shared branches. Depending on the difficulty of solving a task with

others, the tasks are grouped or ungrouped, and new network layers are stacked in a greedy
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fashion to compose the final model. The experiments made in this work by the authors are in

the CelebA dataset. A different aspect of the work of this thesis is that their technique does

the task grouping automatically, which is one of our future research topics.

In the What-to-Share [Vandenhende et al., 2019] technique, the authors also calculate the

layer-sharing possibility based on the task-relatedness score. The difference to [Lu et al.,

2017] is that this score is calculated previously to training, which becomes a drawback in

the method adoption and requires the training of single-task networks before the multi-task

network training.

Other works, such as AdaShare [Sun et al., 2019] and AutoMTL [Zhang et al., 2022],

propose techniques that learn a task-specific policy to select the layers that should be exe-

cuted for a given task during the MTL network training. The policy also considers the user’s

computational budget, besides the tasks’ accuracy scores. The authors used many dataset to

validate their technique: NYUv2, Tiny-Taskonomy, CityScapes, and PASCAL VOC; each

dataset has its own type of task, and the competitive results achieved in terms of accuracy

demonstrates the method’s effectiveness. The complexity of the method may hinder the

interpretability and implementation of task-specific policies for layer execution in various

contexts.

Deep Elastic Network (DEN) [Ahn et al., 2019] proposes an estimator network and a

selection network trained together based on samples of inputs of tasks. The first network is

based on a backbone model, from which the technique derives network architectures with

a hierarchical structure. The second network selects candidate models based on an input

instance of a task. The authors used some datasets to evaluate their approach: CIFAR-10,

CIFAR-100, Tiny-ImageNet, STL-10, and ImageNet. Based on several experiments, they

report competitive results in terms of accuracy in each dataset evaluated and resource effi-

ciency once the model selection network leverages compactness as a positive characteristic

when choosing a new model.

Shi et al. proposes in the work Multitask Learning with Progressive Parameter Sharing

(MPPS) [Shi et al., 2023] a new method based on a soft-parameter sharing paradigm to

dynamically decide the links between the network neurons based on their own proposed

algorithm. This algorithm estimates the task relatedness inspired by curriculum learning

during training. The author used the datasets NYUv2, Multi-CIFAR100, and Cityscapes to



3.1 MTL 29

evaluate their technique.

Arnaldo et al. [Gualberto et al., 2022] applies a semi-supervised learning approach to

train a handcrafted MTL network based on autoencoders in the context of ICAO compliance

checking. The method is the first to apply a MTL solution to solve all 23 ICAO requisites

and achieves SOTA results in 9 out of 23 requisites - all results are discussed in Chapter 5 -

when evaluated in a benchmark platform. However, the method leaks in generalization since

the authors designed it for the resolution of this specific problem and did not test it in other

datasets with other domains of image classification, as we did in this work.

Other recent works also can be cited, such as [Zhang et al., 2023; Xu et al., 2023]. In the

first research, [Zhang et al., 2023] proposed a recommender of tree-based architectures that

uses a given pre-trained base model and an architecture within a user-specified computation

budget. The second work [Xu et al., 2023] used knowledge distillation between a teacher

MTL model for a student MTL model. Although both works show improvements in the

context of MTL, we can not compare directly with ours since they tested their methods in

other datasets.

Table 3.1 summarizes the works found in our literature review, considering works until

2023 in MTL.



3.1 MTL 30

M
et

h
o
d

C
it

a
ti

o
n

M
et

h
o
d

T
y
p

e
E

v
a
lu

a
te

d
D

a
ta

se
ts

L
ea

rn
in

g
T

o
B

ra
n
ch

[ G
u
o

et
al

.,
2
0
2
0
]

H
ar

d
-P

ar
am

et
er

S
h
ar

in
g

C
el

eb
A

,
T

as
k
o
n
o
m

y

B
M

T
A

S
[ B

ru
g
g
em

an
n

et
al

.,
2
0
2
0
]

H
ar

d
-P

ar
am

et
er

S
h
ar

in
g

P
A

S
C

A
L

,
N

Y
U

D
v
2

T
S

-M
T

L
[ Z

h
an

g
et

al
.,

2
0
2
2
]

H
ar

d
-P

ar
am

et
er

S
h
ar

in
g

N
Y

U
v
2
,
T

in
y
T

as
k
o
n
o
m

y

F
A

F
S

[ L
u

et
al

.,
2
0
1
7
]

H
ar

d
-P

ar
am

et
er

S
h
ar

in
g

C
el

eb
A

,
D

ee
p
fa

sh
io

n

A
d
aS

h
ar

e
[ S

u
n

et
al

.,
2
0
1
9
]

S
o
ft

-P
ar

am
et

er
S

h
ar

in
g

N
Y

U
v
2
,
C

it
y
S

ca
p
es

,
T

in
y
T

as
k
o
n
o
m

y,
D

o
m

ai
n
N

et
,
..
.

A
u
to

M
T

L
[ A

h
n

et
al

.,
2
0
1
9
]

H
ar

d
-P

ar
am

et
er

S
h
ar

in
g

N
Y

U
v
2
,
T

in
y
T

as
k
o
n
o
m

y,
C

it
y
S

ca
p
es

,
P
A

S
C

A
L

V
O

C

M
P

P
S

[ S
h
i

et
al

.,
2
0
2
3
]

S
o
ft

-P
ar

am
et

er
S

h
ar

in
g

M
u
lt

i-
C

IF
A

R
1
0
0
,
N

Y
U

v
2
,
C

it
y
sc

ap
es

T
re

eM
T

L
R

ec
o
m

m
en

d
er

[ Z
h
an

g
et

al
.,

2
0
2
3
]

H
ar

d
-P

ar
am

et
er

S
h
ar

in
g

N
Y

U
v
2
,
T

in
y
T

as
k
o
n
o
m

y,
D

o
m

ai
n
N

et

M
T

L
-K

D
D

P
[ X

u
et

al
.,

2
0
2
3
]

H
ar

d
-P

ar
am

et
er

S
h
ar

in
g

N
Y

U
v
2
,
P
A

S
C

A
L

-C
o
n
te

x
t

Ic
ao

N
et

[ G
u
al

b
er

to
et

al
.,

2
0
2
2
]

H
ar

d
-P

ar
am

et
er

S
h
ar

in
g

IC
A

O
-F

V
C

T
ab

le
3
.1

:
S

et
o
f

re
la

te
d

w
o
rk

s
in

M
T

L
w

it
h

th
e

h
ig

h
li

g
h
te

d
m

et
h
o
d

ty
p
es

an
d

d
at

as
et

s
u
se

d
fo

r
ev

al
u
at

io
n
.



3.2 NAS 31

3.2 NAS

This section describes some relevant works from the literature that developed and applied

NAS techniques or strategies and inspired our work.

Based on the successful results achieved by Zoph and Le [Zoph and Le, 2017], the Ef-

ficient Neural Architecture Search (ENAS) [Pham et al., 2018] work applies the one-shot

model strategy [Elsken et al., 2019]: search for an optimal subgraph within a large computa-

tional graph through RL. The seminal work by Zoph and Le was evaluated on the CIFAR-10

and Penn Treebank datasets and reported a 96.35% accuracy score and 62.4 perplexity score

in the respective datasets. ENAS authors also used the CIFAR-10 and Penn Treebank datasets

to evaluate their solution and obtained a 97.11% accuracy score in the first dataset and re-

ported a low perplexity score in the second dataset: 55.8 (lower perplexity scores indicate

better predictive performance and that the model has a better understanding of the language

context).

Stochastic Neural Architecture Search (SNAS) [Xie et al., 2019] uses RL, but differently

from [Pham et al., 2018] and [Zoph and Le, 2017], the authors change the feedback mech-

anism from “constant rewards”, such as validation accuracy, to a “generic loss” calculated

during training. The proposed method is not based on Reinforcement Learning or Regu-

larized Evolution and achieves a 97.15% accuracy score in the CIFAR-10 dataset. Besides

that, the method does enforce a resource-efficient constraint, producing smaller architectures

when possible. Despite the promising results, the generalizability of the method to other

tasks and domains is not fully explored: the analysis is limited to only two datasets.

Other work in NAS, Progressive Neural Architecture Search (PNAS) [Liu et al., 2018a]

used sequential model-based optimization (SMBO) to perform the neural architecture search.

This strategy starts with a simple model and increases its complexity. It stacks new blocks in

the final model architecture as the heuristic progresses in the search, eliminating unpromising

model architectures simultaneously. To predict the architecture performance, the technique

trains a surrogate function to optimize the search time so that there is no need to train the

entire proposed model in every iteration.

Differentiable Architecture Search (DARTS) [Liu et al., 2018c] uses a one-shot model

strategy but performs the architectural search using the gradient descent algorithm by contin-
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uously relaxing the different neural architecture representations, making them differentiable.

Differently from works with RL-based NAS or RE-based NAS, DARTS uses a gradient-

based method to navigate into a continuous search space of architectural networks.

MTL-NAS [Gao et al., 2020] proposes a neural architecture search technique leveraged

by a gradient-based search algorithm that explores a predefined NAS search space inspired in

previous researches [Misra et al., 2016; Gao et al., 2018]. The search space design enables

the algorithm to find inter-task relations inside the neural networks, discovering multiple

fusion points between the task-specific branches. This approach suffers from low flexibility

in relation to the architectures that can be generated if compared with other methods such as

DARTS [Liu et al., 2018c] or the ones based on reinforcement learning, where more diverse

search spaces may exist.

A recent work on NAS named LayerNAS [Fan et al., 2023] proposes a method to re-

duce the search space available for creating new architectures considering certain constraints.

However, there is a problem with the method’s stability: it can find efficient architectures at

the beginning of the search, but the efficacy of new proposed architectures decreases as the

search advances.

Other recent works, but not closely related to this work, also can be cited: [Qin et al.,

2023] proposed a technique based on supernets in the context of graph neural architecture

search (GraphNAS) and MTL. Graph neural networks (GNNs) are a class of artificial neural

networks capable of processing data represented as graphs [Wu et al., 2022] with many appli-

cations, such as molecular biology, natural language processing, and social networks. [Wang

et al., 2023] also proposed a technique based on supernets, but for the context of visual trans-

formers with the neural architecture search space designed for producing visual transformers

networks, differently from our work that focuses on convolutional neural networks. Lastly,

[Shen et al., 2023] used mathematical programming for creating optimized convolutional

neural networks, the main idea of their work is to demonstrate how convolutional neural

network still can surpass visual transformers-based architecture if well designed. Table 3.2

summarizes the works found in our literature review, considering works until 2023 in NAS.
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3.3 Final Considerations

As presented in this chapter, MTL and NAS continuously evolve, with important advance-

ments in recent years. Each strategy has its advantages and disadvantages. MTL is easier

to implement and evaluate and cheaper to train but does not generalize as well as NAS ap-

proaches, which, in turn, are harder to implement and more expensive to train. However,

NAS approaches may generalize better between different domains [Elsken et al., 2019].

We have encountered a challenge in the field that we are focusing on, which is to develop

a new technique of NAS for the context of MTL. Observe that the developed NAS tech-

nique is hardware-agnostic, which means it does not focus on creating new networks that are

resource-efficient as some works do, such as BMTAS [Bruggemann et al., 2020] and ENAS

[Pham et al., 2018]. We plan to explore other topics in the future, such as creating branches

of tasks within an MTL neural network architecture automatically to achieve optimal results

for the entire set of tasks. We believe that this approach could be beneficial for MTL net-

works, as stated in the literature, and intend to research methods to achieve this. For now, we

are concentrating on creating the NAS method and following the appropriate methodology.

In addition, we need to address the generalizability of any proposed method across various

domains and tasks using multiple datasets. We have outlined our methodology in the next

chapter.



Chapter 4

Methodology

This chapter presents the methodology adopted in this thesis, the datasets used for exper-

imental evaluation, the evaluation metrics, and the architecture and underpinnings of each

approach we studied.

4.1 Overview

The diagram presented in Figure 4.1 illustrates the methodology adopted in this study. Our

research involved the exploration of five distinct network designs, each stemming from dif-

ferent paradigms: Single-Task Learning (STL), Multi-Task Learning (MTL), and Neural

Architecture Search (NAS). Initially, we utilized the FVC-ICAO dataset to evaluate the

Single-Task Learning (STL) approach. This initial phase allowed us to gain insights into

the performance of single-task scenarios, where the context is relatively straightforward and

networks can be evaluated more effectively through error analysis. These findings were a

foundational benchmark for subsequent experiments in the domains of the Multi-Task Learn-

ing (MTL) and Neural Architecture Search (NAS).

Subsequent to the Single-Task Learning (STL) experiments, we conducted Multi-Task

Learning (MTL) experiments with the aim of enhancing results by employing different con-

figurations and network designs at both the data and model levels. These Multi-Task Learn-

ing (MTL) experiments yielded significant improvements. By comparing the outcomes of

various architectural approaches and paradigms, such as Single-Task Learning (STL) and

Multi-Task Learning (MTL), we were able to define the basis architecture and search space

35
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Figure 4.1: Scheme of applied methodology, specifying the used datasets and each approach

experimented: STL, MTL, and NAS, which derive distinct neural networks (NN) and are

evaluated with common metrics (Accuracy and EER). Note that previously to the comparison

between STL, MTL, and NAS-based methods in the five selected datasets, we developed and

tuned the proposed NAS RL-based method in the NATS-Bench dataset, which is based on

CIFAR-10, CIFAR-100, and ImageNet16-120 image datasets.

for our Neural Architecture Search (NAS) approach.

In the course of our study, besides ICAO-FVC, we also introduced the use of traditional

datasets, including CIFAR-10, Celeb-A, MNIST, and FASHION-MNIST. Prior to feeding

these datasets into the networks, we applied a data augmentation step to expose the networks

to a broader range of data variations, ultimately benefiting the training process. To evaluate
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the trained networks, we employed standard metrics such as Accuracy and Equal Error Rate

(EER) to facilitate a comparison of results and provide guidance for developing our Neural

Architecture Search (NAS) technique.

Note that we treat the datasets as binary task datasets, regardless of whether it is a multi-

class dataset or not, we let the EER threshold decide in the end whether a given network

result will belong to class 0 or class 1. Therefore, the network must also incorporate into

its internal knowledge whether or not the dataset is multi-class, in which the same image

can have multiple simultaneous labels. Previous works also use some of these datasets as

described in Chapter 3.

Subsequently, following a comprehensive literature review and an in-depth analysis of

potential Neural Architecture Search (NAS) algorithm types and available datasets, we de-

cided to adopt a Reinforcement Learning approach. Our technique was implemented and

fine-tuned based on the NATS-Bench dataset, which is detailed in Section 4.8 of this chapter.

In the following sections, we delve into the specifics of the datasets used, the software

and materials employed, and the design particulars of the networks under consideration.

4.2 Datasets Used

4.2.1 FVC dataset

The first dataset, called FVC, was used in the ICAO case study in STL, MTL, and NAS

contexts. The FVC-Ongoing competition [Ferrara et al., 2022] built the FVC dataset as a

reference dataset for ICAO requisites compliance checking [Ferrara et al., 2012].

Next, we briefly describe the ICAO compliance checking context and the specification

ISO/IEC 19795-4 for facial images of passports. Before designing our experiments, we

mapped the facial image requisites described in the ISO/IEC official documents into a set of

tasks to be solved by the deep neural networks.

ICAO

International Civil Aviation Organization (ICAO) is a United Nations entity whose objec-

tives include establishing good practices and patterns for aerial navigation and developing
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security, defense, operational effectiveness, sustainable economic development, and envi-

ronmental responsibility policies in the aviation sector [ICAO, 2022].

One of the ICAO specifications is related to travel documents that must be readable by

machines (Machine Readable Travel Documents (MRTD))[ICAO, 2015]. This specification

defines patterns for an expedited identification document of people in traffic, such as pass-

ports with electronic chips, during international travels between countries that are also ICAO

State members. The defined standard specifies how biometric data, such as facial images,

digital fingerprints, and iris images, should be captured and stored digitally. So, any system

in a member country can read, understand, and use the same pattern, avoiding disseminating

different patterns and system incompatibilities. To achieve this, ICAO have partnerships with

internationally recognized standards development organizations, such as International Orga-

nization for Standardization (ISO) and International Electrotechnical Commission (IEC).

ISO/IEC 19795-4 Specification

The ICAO specification [ICAO, 2015] known as ISO/IEC 19795-4 defines required pro-

cesses and the main components of a biometric identification system, as shown in Figure 4.2

for the case of facial identification and verification. Initially, the person’s identity emitting

the new document must be established and checked. Next, a proper device captures the raw

data, such as a person’s frontal picture. Then the face location is identified in the image, and

the system creates a template. Lastly, a comparison between the two templates verifies the

person’s identity.

Figure 4.2: Facial Identification Process

ICAO defines facial identification as the best biometric identification method for various

reasons:

• Facial pictures do not share information the person does not routinely disclose to the

general public;
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• Facial photographs are socially and culturally accepted internationally;

• Faces are already collected and verified routinely as part of applying for an identifica-

tion document such as a passport or ID card;

• Human verification of facial biometrics is relatively simple and familiar to the border

control authorities.

Despite being a widespread method, not every photograph conforms to use in a biometric

identification system. The quality of the facial image obtained is of fundamental importance

for successful identification. Because of this, the ISO/IEC 19794-5 [ISO, 2017] standard

proposes, among other things, best practices for face photographs, as well as specifies prop-

erties, attributes, and restrictions related to face images, the process of obtaining photos of

faces and their storage, transmission, and recording.

Following this ISO standard, ICAO defines 23 requirements that passport photos must

meet and that a biometric identification system must consider in the process of capturing new

images at the time of registration [Ferrara et al., 2022]. Some examples of these requirements

are the following: the image cannot be blurred, the person must be looking directly at the

camera, the hair cannot cover the eyes, and the person cannot wear a hat or cap.

The system must evaluate each ICAO requirement during the capturing process, and the

facial image must achieve a minimum quality score to be accepted by the system. Otherwise,

the document issuer receives feedback explaining the reason for the rejection and asking

for a new image. For example, in Figure 4.3, we can see examples of facial images with

problems (the three on the left) and one that complies (the last one on the right) with the

ICAO requirements.

Figure 4.3: Examples of facial images with different qualities.
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In our experiments, we map each of the 23 ICAO requisites as a binary (compliant or

non-compliant) task to the deep neural network to solve. Table 4.1 lists the ICAO requisites

[Ferrara et al., 2012] and the aliases used in our research.

The FVC dataset is composed of sub-datasets gathered from different origins and is pro-

vided as a training dataset by the FVC-Ongoing competition organization, as follows:

• AR dataset [Benavente, 1998] with 1741 images of size 768 x 576 pixels;

• FRGC dataset [Phillips et al., 2005] with 1935 images of size 2048 x 1536 pixels;

• PUT dataset [Kasiński et al., 2008] with 291 images of size 1704 x 2272 or 1200 x

1600 pixels;

• 804 artificially generated images by applying ink-marked/creased, pixelation, and

washed-out effects to compliant images from the AR database;

• new manually acquired 817 images of size 1600 x 1200 pixels to cover missing requi-

sites labels.

Also, we included other ad-hoc images for increasing the number of available samples

by ICAO requisite and for having images with higher resolution. As it is well known in the

field, increasing the number of images and their general quality tends to improve the deep

neural network efficacy [Goodfellow et al., 2016]. Figure 4.4 presents some examples of

images from the FVC dataset.

We selected random partitions of this dataset to perform our experiments with the fol-

lowing proportions: 75% are training images, 15% are validation images, and 10% are test

images. These partitions are the same for all experiments involving the FVC dataset. The

dataset has 5,865 images in total.

4.2.2 Traditional datasets

Additionally, we performed experiments with traditional datasets briefly described in this

section to evaluate the generalizability of our proposed NAS approach.
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# Requisite Name Alias

1 Blurred BLURRED

2 Looking Away L_AWAY

3 Ink Marked \Creased INK_MARK

4 Unnatural Skin Tone SKIN_TONE

5 Too Dark \Too Light LIGHT

6 Washed Out WASHED_OUT

7 Pixelation PIXELATION

8 Hair Across Eyes HAIR_EYES

9 Eyes Closed EYES_CLOSED

10 Varied Background BACKGROUND

11 Roll \Pitch \Yaw Greater than 8° ROTATION

12 Flash Reflection on Skin REFLECTION

13 Red Eyes RED_EYES

14 Shadows Behind the Head SH_HEAD

15 Shadows Across Face SH_FACE

16 Dark Tinted Lenses DARK_GLASSES

17 Flash Reflection on Lenses FLASH_LENSES

18 Frames too Heavy FRAMES_HEAVY

19 Frame Covering Eyes FRAME_EYES

20 Hat \Cap HAT

21 Veil over Face VEIL

22 Mouth Open MOUTH

23 Presence of Other Faces or Toys too Close to Face CLOSE

Table 4.1: ICAO requisites and respective aliases used in this thesis.
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Figure 4.4: Examples of images in FVC dataset. Source: own author.

MNIST

The MNIST dataset [LeCun et al., 1998] has its roots in the NIST Special Database 1 and

Special Database 3. Created to gauge the accuracy of algorithms in recognizing handwritten

characters, these databases served as the foundation for MNIST, which is widely regarded

as a standard for testing machine learning models, especially in deep learning and image

classification. The dataset contains 60,000 training images and 10,000 test images of hand-

written digits recorded in black and white with a shape of 28x28. We implemented the NAS

architecture in the way the neural architecture had to learn ten tasks, one binary task for each

digit between 0 and 9. Figure 4.5 shows examples extracted from the MNIST test dataset.

MNIST images consist of grayscale pixel values that vary from 0 (black) to 255 (white),

indicating the intensity of each pixel. MNIST dataset is intentionally designed to be difficult

as it includes a wide range of writing styles, sizes, and orientations of digits. The dataset

also includes handwritten digits from different individuals, which adds to its diversity and

complexity. This diversity makes it a realistic and challenging task for the digit recognition

algorithms to classify and recognize the digits accurately.

FASHION-MNIST

FASHION-MNIST [Xiao et al., 2017] is a dataset by Zalando Research, which includes

70,000 grayscale images of clothing and fashion items. It provides a challenging dataset for

image classification tasks, divided into a training set of 60,000 images and a testing set of

10,000 images. Each image has 28x28 pixels.

FASHION-MNIST is similar to MNIST, but instead of handwritten digits, it contains
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Figure 4.5: MNIST dataset sample. Source: [Steppan, 2022]

clothing items. FASHION-MNIST contains images with complex textures, patterns, and

shapes, making them challenging for classification. The appearance of clothing items varies

greatly, making it difficult to recognize details and distinguish between similar categories.

Figure 4.6 shows an example of the dataset.

Celeb-A

Researchers at the Chinese University of Hong Kong created the CelebA [Liu et al., 2015]

dataset to aid facial analysis and recognition research. It contains over 200,000 celebrity

images, making it ideal for real-world facial recognition tasks.

CelebA is a rich dataset with 40 binary attributes for each image and precise facial land-

marks. It’s ideal for evaluating facial recognition and landmark detection algorithms due to

its varied lighting conditions, expressions, and poses. Celebrities of all types are included.

See Figure 4.7 for a sample.

CIFAR-10

University of Toronto researchers developed the CIFAR-10 [Krizhevsky, 2009] dataset as

part of the Canadian Institute for Advanced Research program. It contains 60,000 color

images categorized into 10 classes, including “airplane”, “automobile”, “bird”, “cat”, “dog”,

“deer”, “frog”, “horse”, “ship”, and “truck”. The dataset is used to train and evaluate image
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Figure 4.6: FASHION-MNIST dataset sample. Source: [Xiao et al., 2017]

classification models and is split into a training set of 50,000 images and a test set of 10,000

images. All images are in RGB color format and have a fixed size of 32 by 32 pixels.

The CIFAR-10 dataset has images with labels assigned from 0 to 9 representing different

categories. The dataset diversity presents a challenge for image classification algorithms,

making it an excellent tool to evaluate their effectiveness. Figure 4.8 shows an extract of the

dataset.

4.3 Data Augmentation

Our datasets can be considered undersized for the Deep Learning field, especially the FVC

dataset: datasets commonly have hundreds of thousands of samples for successful deep net-

work training. However, there are techniques to improve the model’s generalization, such as

data augmentation [Goodfellow et al., 2016].
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Figure 4.7: Celeb-A dataset sample. Source: [Liu et al., 2015]

We performed data augmentation operations in the input images for the FVC dataset so

that the network could identify the correct patterns in the images despite small variations,

such as rotations in a predefined range of degrees. Table 4.2 shows the data augmentation

operations applied and a brief explanation.

Operation Input Values Description

Horizontal Flip True Horizontally flip the image

Rotation Range 20 Rotates the image in a defined range of degrees

Zoom Range 0.15 Applies zoom of -15% to +15% in the image

Width Shift Range 0.1 Expands image randomly between 10% to the right or 10% to the left

Height Shift Range 0.1 Expands image randomly between 10% up and 10% down

Shear Range 0.15 Shear intensity in counter-clockwise direction in degrees

Fill Mode Nearest Repeats the nearest pixel in the eventually created empty spaces on the image borders.

Table 4.2: Data augmentation operations applied to FVC dataset

As further explained in Section 4.4, we used Tensorflow1, Keras2 and PyGlove [Peng

et al., 2020] frameworks for network training, implementing data augmentation, and NAS

1Official site: https://www.tensorflow.org/. Date of access: April 4th, 2022
2Official site: https://www.tensorflow.org/guide/keras. Date of access: April 4th, 2022
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Figure 4.8: CIFAR-10 dataset sample. Source: [Krizhevsky, 2009]

approaches. We obtained the values listed in Table 4.2 experimentally, and, to the best of our

efforts, these yielded the best results so far.

4.4 Softwares and Frameworks

All implemented scripts and auxiliary material is available digitally on a GitHub repository3,

so all experiments can be verified and reproduced.

We used Python programming language4 and common libraries for data analysis, such as

Pandas5, NumPy6, and Scikit-Learn7. For model training and evaluation, we used Tensorflow

3Official site: https://github.com/guilhermemg/icao_nets_training. Date of access: April 5th, 2022.
4Official site: https://www.python.org/. Date of access: April 5th, 2022
5Official site: https://pandas.pydata.org/. Date of access: April 5th, 2022
6Official site: https://numpy.org/. Date of access: April 5th 2022
7Official site: https://scikit-learn.org/. Date of access: April 5th, 2022
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and Keras frameworks. The NAS experiments were greatly simplified using the PyGlove8

framework[Peng et al., 2020] and the NATS-Bench API9 [Dong and Yang, 2020; Dong et al.,

2022].

We conducted the experiments and data analysis using Jupyter Notebooks10 - also avail-

able in the GitHub repository - in a Linux Ubuntu 20.04 machine with a single Nvidia GPU

2080 RTX with 6GB of GDDR memory, 32GB of DDR4 RAM, and AMD Ryzen 5 3600

6-core processor with 12 threads.

4.5 Metrics

4.5.1 Accuracy

Accuracy if the ratio between the sum of true positives (TP) and true negatives (TN) and

the total of analyzed samples (true positives, true negatives, false positives (FP), and false

negatives (FN)). Equation 4.1 formalizes this metric [Guido, 2017].

ACC =
TP + TN

TP + TN + FP + FN
(4.1)

When analyzing binary classifiers with the accuracy metric, it is important to consider an

issue: the class unbalancing. When a class is much more present in the dataset, for example,

80% of the instances are of 1’s in a distribution of 1’s and 0’s; if one classifier estimates

uniquely 1’s, it has already reached 80% of accuracy without learning to distinguish the first

class from the second. So, the analysis must consider this problem when investigating the

classifiers’ outputs, which may hide bad results behind high accuracy scores.

Despite being sensitive to unbalanced datasets, which is our case for some requisites, we

instead use accuracy together with a less sensitive metric: Equal Error Rate, as discussed in

the following subsection. Depending on the evaluated dataset we use one metric or the other.

8Official site: https://github.com/D-X-Y/NATS-Bench. Date of access: November 25th, 2023.
9Official website: https://github.com/google/pyglove. Date of access: November 25th, 2023.

10Official site: https://jupyter.org/. Date of access: April 4th, 2022.
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4.5.2 Equal Error Rate - EER

Examples of biometric systems are fingerprint recognition, face recognition, and iris recog-

nition systems. The accuracy of such systems is usually measured based on the number of

mistakes they perform in a test with multiple combinations of valid and invalid pairs of col-

lected features, like fingerprints or facial pictures. For example, a valid pair of features is

a pair of fingerprints captured from the same finger. An invalid one is a pair of fingerprints

captured from different fingers or of different persons.

Equal Error Rate is a standard metric to check biometric systems’ performance. It is

the error rate at a specific threshold t in which False Non-Match Rate (FNMR) and False

Match Rate (FMR) are equal. The threshold t is the acceptance threshold, i.e., if the match-

ing score is equal to or above t, the user is admitted into the system. Otherwise, he/she is

not allowed. FNMR - also called False Rejection Rate (FRR) - at threshold t is the rate of

incorrect non-matches over all comparisons between genuines and impostors, i.e., this rep-

resents the difficulty that a real user may encounter in logging into the system. FMR - also

called False Acceptance Rate (FAR) - at a threshold t is the rate of incorrect matches over

all comparisons, i.e., how much lower this number is, the more difficult it is to penetrate the

system. ZeroFNMR and ZeroFMR are the points where both FNMR is zero and FMR is

zero [Maltoni et al., 2009]. Figure 4.9 illustrates this concept.

Figure 4.9: Example of FMR and FNMR curves with EER, ZeroFNMR, and ZeroFMR

points. Source: [Maltoni et al., 2009]
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4.6 Single-Task Learning

Initially, we made a series of experiments with Single-Task networks, where each task was

an ICAO requisite. The main idea was to compare the available methods from the literature

for the same classification tasks and the results obtained with task-specific neural network

training.

Our STL method uses the same single-task architecture for all 23 tasks separately and

is based on the concept of transfer learning. Different base models, e.g. previously trained

models with other datasets and used as a starting point of the training, were tested: VGG16

[Simonyan and Zisserman, 2015], VGG19 [Simonyan and Zisserman, 2015], MobileNetV2

[Sandler et al., 2018], Inception-V3 [Szegedy et al., 2015] and ResNet50-V2 [He et al.,

2016].

The VGG-16 and VGG-19 networks share similar architectures, utilizing 3x3 convolu-

tional filters and max-pooling to downsample the input. Both networks consist of a series

of convolutional layers followed by a fully connected network. The VGG-16 has 16 layers,

while the VGG-19 has 19 layers.

The ResNet50-v2 utilizes residual blocks and skip-connections to overcome the vanish-

ing gradient problem. Meanwhile, the MobileNet-v2 leverages depthwise convolutions to

reduce computational cost while maintaining accuracy.

Figure 4.10: Single-Task Network architecture using Transfer Learning technique
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Inception-v3 is a computer vision model that efficiently captures features at different

scales using various-sized convolutional filters within its "Inception modules". It uses 1x1

convolutions to reduce dimensionality and auxiliary classifiers to improve training.

The best base model identified by our tests was VGG16. We have frozen the base model

weights during the network training, as illustrated in Figure 4.10, and trained just the dense

layers and the classification layer to learn the new tasks. Each single-task network determines

if an input image is compliant or non-compliant with a specific ICAO requisite. Chapter 5

discusses the experiments and results.

4.7 Multi-Task Learning

After the single-task networks trainings and evaluations, we studied different architectural

settings with all ICAO tasks being analyzed simultaneously in the same neural network.

Thus, checking handcrafted architectures again, but through multi-task learning. In the fol-

lowing paragraphs, we discuss the proposed architecture of each MTL experiment.

4.7.1 Architecture HANDCRAFTED 1

Figure 4.11: Multi-Task Learning Handcrafted 1 architecture
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The first architecture tested was similar to the one used in the single-task learning ex-

periments. As in the STL case, we used VGG16 as the base model, removing the original

network output layer and freezing the trained weights. Also, new layers and an output layer

were added, with 23 branches corresponding to each ICAO task. Figure 4.11 shows the

general schema of this network.

A fully connected (FC) layer with 64 neurons, followed by a fully connected layer with

two neurons corresponding to the binary outputs of each task, compose each branch of the

network. The activation function used in the output layer was softmax.

4.7.2 Architecture HANDCRAFTED 2

Figure 4.12 presents this network configuration. Note that we maintained the same general

schema from architecture Handcrafted 1. However, we removed the shared branch and linked

all task branches directly to the Global Average Pooling layer. Also, we kept just one FC

layer (1 x 64) for each task branch to test the learning potential of each branch with the

minimum of FC layers possible. The number of FC layers is key for our research and is

explained in more detail in Section 4.8 and Chapter 5.

Figure 4.12: Multi-Task Learning Handcrafted 2 architecture
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4.7.3 Architecture HANDCRAFTED 3

Next, we grouped some ICAO requisites into common task branches with shared weights.

So we could test the hypothesis that distinct tasks may benefit each other and increase the

total gain while the network solves some tasks jointly, which means higher accuracy and

lower EER.

The ICAO tasks were hand-picked and manually grouped by analyzing their general

characteristics, assuming they may share common features that the network could use to

solve them more effectively. For example, if the network should analyze the face’s bottom

half region for different tasks, they should be in the same group, e.g., the tasks of mouth and

veil classification, because both tasks analyze this region of the face. Figure 4.13 shows this

proposed architecture.

Figure 4.13: Multi-Task Learning Handcrafted 3 architecture

We grouped the following tasks into common branches:

• Group 1: Background, Close, Ink Mark, Pixelation, Washed Out, Blurred, Shadow

Head;

• Group 2: Mouth and Veil;

• Group 3: Red Eyes, Flash Lenses, Dark Glasses, Looking Away, Frame Eyes, Hair

Eyes, Eyes Closed, and Frames Heavy;

• Group 4: Shadow Face, Skin Tone, Light, Hat, Rotation, and Reflection.
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In this architecture, we also experimented with increasing the number of FC layers per

task branch, e.g., the branches’ length, so we could verify the hypothesis that increasing the

number of FC layers of a task branch would benefit the network’s efficacy in solving it. As a

result, all 23 task’s branches have more FC layers than in the first and second studied MTL

architectures, but the number of FC layers is fixed for each branch yet, as shown in Table

4.3.

Task Group Number of dense layers

Group 1 2

Group 2 3

Group 3 3

Group 4 2

Table 4.3: Number of FC layers for each task branch in Handcrafted 3 architecture

4.8 Neural Architecture Search

We implemented new approaches with automatic neural architecture search using as baseline

the different handcrafted MTL architectures described in previous sections. Firstly, we had

to define what kind of searching we would target: micro-searching or macro-searching. To

reduce the search space and make the problem treatable, considering the number of resources

available (just a single GPU), we decided to do a micro-searching and define the architectural

search based on each branch’s numbers of convolutional layers and FC layers.

Figure 4.14 shows the generic architecture our search is based on. We maintain the base

model and the general aspect of Handcrafted 3 MTL architecture, where we have grouped

branches of tasks. We assure that the algorithm may find equally powerful architectures as

the Handcrafted 3. The neural architecture search consists of finding the values m1, m2, m3,

m4, n1, n2, n3, and n4. These eight values, which we call a config, correspond respectively

to the four grouped tasks branches’ lengths in terms of the number of convolutional layers

(mi), where i ∈ [1, 2, 3] and the number of dense layers (nj), where j ∈ [1, 2, 3, 4, 5].

Figure 4.15 depicts the neural architecture search process. We have a controller compo-

nent (1) first selects a candidate architecture (2) and trains it in a validation set (3), then this
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Figure 4.14: Neural Architecture Search generic architecture showing the searched param-

eters m1,m2,m3,m4 relative to the number of convolutional layers, and n1,n2,n3,n4, relative

to the number of dense layers. Source: own author.

candidate architecture is evaluated based on a chosen metric like accuracy or EER (4), and

finally, the controller stores the result in its memory. This process occurs for many iterations

(also called trials), and the architecture with the best result found at the end is chosen as the

search result (5).

4.8.1 NAS Approaches

Random Search

We evaluated three different NAS approaches. The first was random search [Bergstra et al.,

2012]. We randomly sorted from the predetermined search space (number of dense layers

and number of convolutional layers) the config values and trained the random neural architec-

ture. This interval was designed based on the number of available resources, so the proposed
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architectures did not extrapolate the established training time limits. This first approach

consists of a baseline for comparison with the other approaches.

Regularized Evolution

Regularized Evolution (RE) [Real et al., 2019] may be considered the state-of-the-art

method. RE-based NAS involves evolutionary algorithms to create and select architec-

tures based on their fitness scores. This method maintains a population of architectures

and evolves them over successive generations. Compared to reinforcement learning-based

methods, this approach is less complex, computationally efficient, and requires fewer re-

sources. Additionally, it is faster at searching as multiple architectures can be evaluated

concurrently, making it particularly effective in discovering architectures in large and dis-

crete search spaces. We also have experimented with regularized evolution to compare the

achieved results with the proposed method.

Reinforcement Learning Search

The process of neural architecture search fits very well with the deep reinforcement learning

framework as discussed in Chapter 3. We based our work on previous research: we trained

one LSTM network - our agent - as in [Zoph and Le, 2017; Zoph et al., 2018; Pham et al.,

2018; Sable, 2019] and used Monte Carlo-based sampling as in [Yu et al., 2016] in the

process of architectural composition.

Figure 4.15: Neural Architecture Search basic process. Source: own author.
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As the first trial, the NAS process starts with a random config, which represents a random

proposed neural network for training and evaluation. Following the training and evaluation

of each new architecture, we calculate the mean accuracy of all tasks and record it in the

NAS Controller’s history with the respective architecture configuration.

Figure 4.16 depicts the training schema of the LSTM model used as a learning agent in

the Reinforcement Learning approach. The Search Space contains the list of candidates for

the number of dense layers and the number of convolutional layers, independent of the task

group. Based on the search space values and LSTM output, the controller selects the four

numbers for each type of layer and each group of tasks using Monte Carlo sampling. So,

the model is assembled and passed to the Model Trainer module, where it is trained, and the

validation accuracy is measured.

Figure 4.16: LSTM Training Schema. We have three main modules: the Search Space, the

Model Trainer, and the NAS Controller. Note the LSTM agent receives the four numbers

of dense layers and the four numbers of convolutional layers. When a batch of proposed

architectures is trained and evaluated, the LSTM is retrained with this last batch of data.

Source: own author.

After a batch of 20 architectures and respective accuracies are formed, the Controller

model (LSTM) is retrained with this new data. The process repeats for a predefined number

of trials. During the REINFORCE feedback loop, this validation accuracy is used as input
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to calculate the discounted reward of the algorithm in the customized loss function of the

LSTM. Note we also insert some noise in the LSTM input jointly with the previous models

configurations. We checked experimentally that this method helps to improve the variability

of proposed configurations (architectures), preventing the LSTM from repeatedly propos-

ing the same architectures. When the searching process ends, we recreate the best model

architecture found, train it for 50 epochs, and evaluate it in the test set to obtain the final

results

Policy Gradient Formula

The process of applying reinforcement learning generally involves a series of steps. First,

the agent executes an action based on a policy in a given environment. This leads to a new

state in which the agent updates its policy based on a reward function. In the end, the process

is repeated with the updated policy and new state.

In Chapter 2, we explained policy gradients as a set of methods used to update the policy,

such as the REINFORCE algorithm. When implementing policy gradients in neural archi-

tecture search (NAS), the REINFORCE algorithm maximizes the log-likelihood per search

step with the reward at each step. This technique aims to optimize the objective function that

maximizes the agent’s total rewards. Equation 4.2 presents the policy gradient formula we

use in our Reinforcement Learning approach. In the context of NAS, the validation accuracy

of each architecture created by the controller can serve as the reward function.

∇θJ(πθ) =
T∑

t=0

∇θlogπθ(at|st)(
T∑

t′=t+1

(γt′−t−1(r(st′)− b(st′)))) (4.2)

The equation above represents a reinforcement learning algorithm. The variable b is

referred to as the baseline and it has a fixed value of 0.5. The purpose of the baseline is to

balance the positive and negative rewards equally. This means that all values are normalized

around this baseline. Additionally, γ is another variable that represents the discount factor. In

this case, we have set γ to 0.3 using a more conservative approach. This approach gives more

importance to the recently discovered networks over future ones, which helps to stabilize the

search process.

Using the REINFORCE gradient for neural architecture search makes it possible to get
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improved architectures. In this context, the feasible actions refer to the various layers or

connections in the architecture, and the policy is the softmax distribution of these layers per

controller step.

4.8.2 Transfer Learning and NAS

Our proposal for NAS (Neural Architecture Search) employs Transfer Learning from a base

model, similar to our STL and MTL studies. Other studies have also demonstrated the effec-

tiveness of Transfer Learning in the context of NAS [Wistuba et al., 2019; Xie et al., 2019;

Wong et al., 2018; Istrate et al., 2018; Kokiopoulou et al., 2019]. We experimented with

different base models, including MobileNetV2 and VGG16, which showed similar accuracy

with the ICAO-FVC dataset. However, the inference time of MobileNetV2 was significantly

lower than that of VGG16, which made the costly neural architecture search process quicker.

Due to resource limitations, we did not explore deep VGG16 as a base model and instead

used MobileNetV2 for all NAS experiments. The change on the base network used in the

STL and MTL experiments in contrast with the NAS experiments may partially threaten the

validity of our methodology. However, we achieved the desired results in a timely man-

ner by conducting exploratory research, despite the unavailability of source code and NAS

benchmarks during the experiments. We developed all necessary scripts and source code by

studying various source repositories and existing studies that came to our knowledge during

the research development. Moreover, we took the necessary precautions, such as verifying

the accuracy of the base models before implementing any changes.

4.8.3 NAS Benchmarks

To do a more extensive analysis, we performed our experiments with Neural Architecture

Search in a previously calculated dataset of NAS: the NATS-Bench [Dong et al., 2022],

so that we could observe the method’s effectiveness across different datasets (CIFAR-10,

CIFAR-100 [Krizhevsky, 2009], and ImageNet16-120 [Chrabaszcz et al., 2017]). Building

benchmarks such as NATS-Bench allows quicker advancements in the research field. In par-

ticular, evaluating the NAS algorithms investigated in this thesis did not require the training

and evaluation of every proposed child architecture.
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Other similar benchmarks are available for use, such as NAS-Bench-101 [Ying et al.,

2019], NAS-Bench-201 [Dong and Yang, 2020], TransNAS-Bench-101 [Duan et al., 2021],

and NAS-Bench-1Shot1 [Zela et al., 2020]. Each presents a dataset of architectures in a lim-

ited search space and the respective evaluation data like training time, training accuracy, vali-

dation accuracy, test accuracy, and architecture specifications. With these precomputed data,

we can evaluate multiple NAS algorithms within seconds instead of hours or days, as would

be necessary if we train and evaluate every proposed architecture. The main idea behind

these benchmarks is to help create NAS algorithms capable of finding the best architecture

faster than previously developed algorithms made available inside each NAS benchmark.

NATS-Bench Dataset

We preferred using the NATS-Bench dataset to develop and refine our NAS technique be-

cause it has a well-established API with good documentation and is already used in other

related works [Fan et al., 2023; Li et al., 2023]. The NATS-Bench dataset has two different

search spaces: a Size Search Space (SSS) and a Topology Search Space (TSS).

Figure 4.17 depicts the NATS-Bench search spaces and the basic architecture skeleton.

The diagram contains three sets of cells linked by residual blocks. The base architecture is a

ResNet-like neural network, with a sequence of five (N = 5) residual cells intercalated with

two residual blocks and a global average pooling at the end. The figure top section exhibits

the SSS search space, which has eight distinct options for the number of channels or filters

of each cell, while the bottom part presents five diverse candidate operations that establish

the topology of the Direct Acyclic Graph (DAG) forming the cells, defining the TSS search

space. Considering this setup, a macro-search is done during the neural architecture search

process (remind Chapter 2).

The datasets used for training and evaluating the proposed architectures are CIFAR-

10 [Krizhevsky, 2009], CIFAR-100 [Krizhevsky, 2009], and ImageNet-16-120 [Chrabaszcz

et al., 2017]. Every possible cell architecture is trained and evaluated within these two search

spaces, and the results are stored in three different moments. The SSS has 32768 architec-

tures, and the TSS has 15625 cell candidates, representing 48393 different architectures.

In the next chapter, we discuss the experiments performed with the different setups de-

scribed in this chapter.
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Figure 4.17: NATS-Bench dataset search spaces. Source: [Dong and Yang, 2020]

.



Chapter 5

Experimental Evaluation and Discussion

This chapter presents the experiments performed and the individual results in the test sets,

followed by a discussion.

5.1 Single-Task Learning

Table 5.1 shows the results obtained for each STL network trained with ten epochs. We de-

cided on ten epochs because the training converged with this number of epochs, we did not

use early stopping in these experiments. Figure 5.1 depicts an example of this convergence

for the dark glasses STL training. All networks have approximately 3.2M trainable param-

eters from 17.9M parameters, i.e., 14.7M were not modified during the training. In general,

the results are not competitive: 15 out of 23 requisites presented an EER above 10%, and on

average, the EER was 15.09%.

Note, that we did not evaluate the requisite Ink Mark once the random test set selected

did not have instances of this requisite, so we could not calculate the metrics for it. We also

did not evaluate this requisite throughout the other experiments for the same reason.

Error Analysis

Grad-Cam [Selvaraju et al., 2020] is a technique developed for aiding the explanation of the

CNN-based models’ decisions through visualizations produced on top of evaluated images.

The technique facilitates the understanding of the model during analysis and gives insights

into the model’s failures.

61
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ICAO Requisite EER

Mouth 21.20%

Rotation 27.94%

Looking Away 21.04%

Eyes Closed 18.31%

Close 3.32%

Hat 1.40%

Dark Glasses 1.81%

Frames Heavy 50.00%

Frame Eyes 15.58%

Flash Lenses 11.76%

Veil 2.38%

Reflection 19.40%

Light 14.63%

Shadow Face 15.18%

Shadow Head 9.18%

Blurred 10.21%

Ink Mark -

Skin Tone 21.13%

Washed Out 1.06%

Pixelation 31.79%

Hair Eyes 12.94%

Background 7.30%

Red Eyes 14.40%

Mean EER 15.09%

EER std dev. 11.54%

EER Median 14.52%

Table 5.1: Single-Task networks results for 10 epochs

The technique produced a heatmap plotted over the analyzed image in our implemen-

tation. The region that the network is paying attention to when deciding - compliant or
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Figure 5.1: Training curves of accuracy and loss with STL with the dark glasses requisite.

not compliant with an ICAO requisite - is highlighted in green and yellow. In contrast, the

regions highlighted in red are those the model is not paying attention to.

For example, we can observe in Figure 5.2 that the network is looking for the region right

below the person’s nose when the person is wearing a veil, meaning that it is not compliant

with the Veil requisite. This pattern occurs in all true negative (the person truly is with the

face occluded) images of Veil requisite and is coherent with human intuition. Similar results

were observed in successful trainings - with low EERs - such as for Dark Glasses: 1.81%

EER and Hat: 1.40% EER ICAO requisites. Observe that we evaluate each ICAO requisite

in isolation, so there are no shared weights and, therefore, no learned features between the

tasks, contributing to better results.

Figure 5.2: True negative examples of Veil requisite with Grad-CAM heatmaps

We also identified other patterns through Grad-CAM’s heatmaps analysis. The network
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pays attention to the person’s shirt and headwear, such as hats and caps. Figure 5.3 exem-

plifies these cases. Despite the network’s positive assertion (correctly classifies a compliant

image) and high accuracy for this ICAO requisite, this can lead to failures in generalization.

Figure 5.3: True positives examples of Veil requisite with Grad-CAM technique applied.

Figure 5.4 shows the single case where the network failed to identify that the person was

not wearing a veil. However, we can check that the case is dubious once the person has

the face partially occluded by the shirt. Cases like this may even trick a human being into

labeling this requisite, but certainly should not pass a system of ICAO requisites checking

deployed in a real-world scenario.

Figure 5.4: False positive case of Veil requisite with Grad-CAM.

The Grad-CAM heatmap’s analysis suggests a multi-task learning approach may be suc-

cessful for the ICAO case: the fact the network makes hits in one task - such as the Veil

requisite - while looking into regions of interest of other tasks - such as the Hat requisite -
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reinforces the hypothesis that jointly learning the tasks may be beneficial and lead to better

results. The Appendix A presents further STL results followed by Grad-CAM analysis of

other ICAO requisites.

5.2 Multi-Task Learning

In this section, each multi-task learning approach result is analyzed in isolation and some

conclusions are drawn.

5.2.1 Architecture HANDCRAFTED 1

We performed three experiments with the Handcrafted 1 approach. In the first one (Exp.

I), we trained the network by ten epochs and observed the evolution of training curves:

accuracy vs. epoch and loss vs. epoch while monitoring the training convergence. In the

second one (Exp. II), we increased the number of trained epochs to 200 to see if the final

accuracy would be higher with more training epochs and again observed the training curves.

Lastly (Exp. III), we tried to fine-tune the base model for ten epochs, froze the base model

weights, and trained the whole model for 200 epochs so that we could test the effect of the

base model’s fine-tuning for some epochs during the training. We selected the best model

in all experiments based on the epoch with the highest validation accuracy. Table 5.2 details

the obtained results in the test set.

It is possible to observe significant improvements through the experiments I to III for

most ICAO requisites ending below 10% EER threshold: Eyes Closed, Close, Flash Lenses,

Light, Veil, Shadow Head and Hair Eyes, and a special group of ICAO tasks that were even

better with a mean EER of less than 2%: Hat, Dark Glasses, Washed Out, Red Eyes. Com-

paratively to the STL approach, most requisites also had a better result in this MTL approach.

It is important to notice that the great change in the EER result for the Frames Heavy case

- from 0.88% to 50% - was mainly due to the class unbalancing, i.e., we had just two samples

of NOT COMPLAINT images (0.69%) for this requisite in a total of 288 test images. So, in

cases like this, a small change in the output may cause great variations over the final EER.

Consequently, we decided to use the Median EER in addition to the Mean EER once this

statistic is less vulnerable to outliers and better represents the distribution middle value if
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ICAO Requisite 10 epochs 200 epochs Fine-Tuned + 200 epochs

Mouth 30.65% 19.12% 6.0%

Rotation 28.8% 25.24% 27.06%

Looking Away 28.8% 25.58% 11.46%

Eyes Closed 21.86% 18.31% 2.04%

Close 7.17% 2.45% 7.69%

Hat 20.15% 1.82% 0.98%

Dark Glasses 6.53% 1.62% 1.62%

Frames Heavy 0.88% 50.0% 50.0%

Frame Eyes 19.58% 15.58% 3.74%

Flash Lenses 27.15% 8.55% 4.08%

Veil 12.25% 2.38% 2.38%

Reflection 37.47% 18.39% 15.32%

Light 39.94% 12.37% 9.63%

Shadow Face 22.5 % 13.89% 17.96%

Shadow Head 19.44% 7.94% 8.21%

Blurred 17.86% 10.26% 12.39%

Ink Mark - - -

Skin Tone 45.74% 19.82% 19.39%

Washed Out 24.82% 0.7 % 0.35%

Pixelation 47.12% 24.32% 34.86%

Hair Eyes 20.72% 13.94% 2.68%

Background 30.56% 7.3 % 21.54%

Red Eyes 21.42% 18.96% 1.77%

Mean EER 24.16% 14.48% 11.87%

EER std dv. 11.88% 11.25% 12.61%

Median EER 22.18% 13.92% 7.95%

Table 5.2: Mean and Median EER on the test set of Handcrafted 1 MTL trainings. The best

results (below 10%) and the final mean and median results are highlighted in bold.
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outliers are present [Boslaugh, 2008]. We observed this fact in the results of Exp. III where

Median EER is 7.95%, while Mean EER is 11.87%.

Finally, we observed no tendency of overfitting in the training of any ICAO task. Figure

5.5 shows train and validation accuracy curves presented few differences for each dataset

split (train and validation).

5.2.2 Architecture HANDCRAFTED 2

We executed five experiments for the Handcrafted 2 approach: the first and second were

trainings with 10 and 200 epochs, respectively, similar to Experiments I and II of the Hand-

crafted 1 approach.

The last three experiments tested modifications in data augmentation algorithm parame-

ters. In Exp. III, we did no rotations in the images and changed the width and height shift

range from 0.2 to 0.1 simultaneously. In Exp. IV and V, we performed no rotations in the

images and trained the network for 50 and 200 epochs, respectively.

The hypothesis tested in these five experiments are (i) the negative effect of the rotation

operation during data augmentation, which could be harming the validity of samples for the

Rotation (Roll, Pitch, Yaw) requisite, mischaracterizing it; (ii) we also evaluated the effect of

the shifting (translation) operation, whose value could be inadequate and then harming the

training general efficacy; (iii) the effect of the number of training epochs, for this we checked

the results for each requisite and for the general set of requisites in this proposed handcrafted

architecture. Table 5.3 shows the achieved results.

We can observe that Exp. IV had the best results in terms of Median EER (5.07%)

compared to the others. The Rotation requisite had slight improvement and showed the best

result so far, even when compared to the STL training, confirming the hypothesis that image

rotations for data augmentation were prejudicial to the network training because it harmed

the characterization of this specific requisite. Other requisites also presented the lower EERs

so far: Eyes Closed, Light, Background, and Red Eyes.

Following the successful empirical results achieved in the Handcrafted 2 model in Ex-

periment IV, we also decided not to make any rotations and use the same width and height

shifts (0.1) during data augmentation for the subsequent experiments.
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ICAO Requisite Exp. I Exp. II Exp. III Exp. IV Exp. V

Mouth 4.11% 6.92% 6.22% 5.06% 3.45%

Rotation 24.52% 22.79% 20.10% 18.27% 18.27%

Looking Away 8.96% 9.58% 6.86% 8.83% 12.79%

Eyes Closed 2.58% 3.54% 1.98% 1.98% 2.90%

Close 10.84% 2.62% 2.62% 4.02% 4.02%

Hat 3.92% 4.07% 4.07% 2.88% 1.19%

Dark Glasses 0.00% 0.98% 0.39% 0.20% 0.98%

Frames Heavy 0.00% 50.00% 50.00% 50.00% 50.00%

Frame Eyes 5.95% 7.24% 4.34% 5.08% 3.26%

Flash Lenses 5.00% 6.18% 3.42% 4.70% 2.54%

Veil 0.00% 1.12% 2.38% 2.94% 50.00%

Reflection 10.90% 14.19% 12.15% 13.87% 13.87%

Light 13.04% 9.63% 11.62% 8.03% 12.94%

Shadow Face 8.33% 11.11% 6.76% 11.39% 13.42%

Shadow Head 7.03% 6.38% 8.21% 9.72% 8.97%

Blurred 11.43% 12.63% 9.62% 11.25% 11.05%

Ink Mark - - - - -

Skin Tone 16.52% 17.94% 14.90% 16.64% 14.18%

Washed Out 0.00% 0.18% 50.00% 0.18% 50.00%

Pixelation 20.61% 21.66% 18.20% 22.99% 28.15%

Hair Eyes 8.00% 5.31% 3.05% 4.73% 5.10%

Background 5.84% 4.89% 4.51% 3.87% 6.23%

Red Eyes 3.00% 2.25% 1.98% 1.98% 3.54%

Mean EER 7.75% 10.06% 11.06% 9.48% 14.40%

EER std dv. 6.61% 10.98% 13.69% 10.91% 15.89%

Median EER 6.49% 6.65% 6.49% 5.07% 10.01%

Table 5.3: Handcrafted 2 MTL experiments results. The best results are highlighted in bold.
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5.2.3 Architecture HANDCRAFTED 3

In this last MTL approach, we did three experiments (I, II, and III) varying solely the number

of training epochs (10, 50, and 200, respectively), evaluating the training convergence and

final Mean EER and Median EER. So, we could evaluate the architecture efficacy with three

different numbers of epochs and observe the eventual improvement or decrease in terms of

EER for each ICAO requisite and for the entire set of requisites. The results are available in

Table 5.4.

Through the results evaluation, we are able to see very low EER for the following req-

uisites: Close, Dark Glasses, Frames Heavy, Skin Tone, and Pixelation, which all had 0%

EER in the test set. Skin Tone and Pixelation were two difficult tasks, considering the high

EERs achieved by previous experiments of other approaches (above 10% on average). In

the subsequent phases of this research, we investigated these results in more detail. The next

section discusses the results of the NAS experiments.

5.3 Neural Architecture Search

As explained in Chapter 4 - Section 4.8, we experimented with two different approaches

for Neural Architecture Search: a RANDOM approach to draw a baseline to our primary

approach, which is the REINFORCE approach based on RL. The main goal is to discover the

best config (m1,m2,m3,m4) and (n1,n2,n3,n4); these eight numbers represent the branches

length - in terms of the number of convolutional layers and the number of fully connected

layers, respectively - of each branch for the four predefined groups of tasks.

5.3.1 NATS-Bench Dataset Experiments

The NATS-Bench dataset has two search spaces: Size Search Space (SSS) and Topology

Search Space (TSS), with the purpose of benchmarking different methods of NAS with no

training and evaluation of architectures needed during the searching process, only queries to

the previously recorded NAS dataset. As explained in Chapter 4, we tested three different

methods with this dataset: RANDOM, Regularized Evolution, and our version of Reinforce-

ment Learning. In this section, we report and discuss the results of each method by search
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ICAO Requisite Exp. I Exp. II Exp. III

Mouth 27.00% 9.00% 3.67%

Rotation 28.00% 21.68% 18.75%

Looking Away 18.00% 10.40% 11.96%

Eyes Closed 4.00% 0.00% 3.75%

Close 0.00% 0.00% 0.00%

Hat 12.00% 1.40% 1.61%

Dark Glasses 3.00% 0.00% 0.00%

Frames Heavy 0.00% 0.00% 0.00%

Frame Eyes 15.00% 2.42% 4.83%

Flash Lenses 15.00% 4.70% 3.86%

Veil 0.00% 0.00% 4.82%

Reflection 19.00% 12.15% 13.17%

Light 21.00% 13.69% 8.22%

Shadow Face 18.00% 13.14% 12.13%

Shadow Head 10.00% 8.97% 6.16%

Blurred 18.00% 13.86% 9.67%

Ink Mark - - -

Skin Tone 0.00% 0.00% 0.00%

Washed Out 22.00% 17.65% 19.10%

Pixelation 0.00% 0.00% 0.00%

Hair Eyes 35.00% 26.24% 27.39%

Background 6.00% 6.78% 4.89%

Red Eyes 13.00% 12.46% 10.42%

Mean EER 12.91% 7.93% 7.47%

EER std dv. 10.36% 7.83% 7.32%

Median EER 14.00% 7.88% 4.86%

Table 5.4: Handcrafted 3 MTL experiments results. The best results are highlighted in bold.

space and dataset (CIFAR-10, CIFAR-100, and ImageNet16-120).
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Performance in Terms of Accuracy

First of all, we noticed that all three methods are able to achieve good results if the search

process can occur in enough time. Figures 5.6 and 5.7 show the validation and test accuracies

of the best architectures found by the NAS methods when considering different time budgets

across all datasets in SSS search space, while Figures 5.8 and 5.9 show the results for the

best architectures found in the TSS search space. Note that, in the case of architectures found

with the same validation or test accuracy during a search, we consider the best the one found

first, so the speed of the methods in finding the best architecture earlier is recognized.

Figure 5.6: Validation accuracy of best architecture found by each NAS method in different

time budgets in the SSS search space.

The Size Search Space (SSS) is more restricted and easier for the methods to propose

good architectures; considering that a ResNet-like architecture is the basis for the proposed

ones, all methods, independently of the time budget and dataset, reach nice and similar

results in terms of accuracy, as we observe in Figures 5.6 and 5.7. Previous research demon-

strates how the RANDOM approach can achieve competitive results if compared with NAS

algorithms [Wistuba et al., 2019; Yu et al., 2019; Liashchynskyi and Liashchynskyi, 2019]

especially when running on simple search spaces.

When it comes to searching for the best topology, the Topology Search Space (TSS)

poses a greater challenge, leading to more varied results across different approaches. For

the CIFAR-10 dataset, the proposed RL method struggled to achieve the best results within

50 hours of search time, especially compared to the state-of-the-art method (SOTA) - Reg-
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Figure 5.7: Test accuracy of best architecture found by each NAS method in different time

budgets in the SSS search space.

Figure 5.8: Validation accuracy of best architecture found by each NAS method in different

time budgets in the TSS search space.

ularized Evolution, which delivered acceptable results with only 10 hours of search. This

remained true for all three datasets, even the more difficult ones like ImageNet16-120. How-

ever, the RL method achieved near-SOTA or SOTA results within a time budget of 200 hours

for all cases studied.

While RE is a valuable approach, it can encounter difficulties when it comes to making

precise architectural decisions. Moreover, it may lack flexibility in certain problem domains

due to its heavy reliance on random mutations and selections [Liu et al., 2023], which may
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Figure 5.9: Test accuracy of best architecture found by each NAS method in different time

budgets in the TSS search space.

not efficiently adapt to the complexity and nuances of those domains.

In contrast to RL methods, which can learn from past experiences and adjust their search

strategy based on learned insights, RE methods have a more limited capacity to adjust their

exploration strategy during the search process. This can result in the algorithm getting stuck

in sub-optimal regions of the search space and missing out on potentially better architectures.

Additionally, the method may converge on local optima and may not explore architectural

diversity as effectively as RL-based methods. As a result, RE may require more generations

to discover optimal architectures, particularly in complex search spaces, taking more time to

finish the neural architecture search process.

Performance in Terms of Time

It is possible to confirm our conclusions by examining the time taken by each approach

to find the best architectures on different datasets and time budgets. Figures 5.10 and 5.11

depict this. Despite the validation and test accuracies being very close to each other, different

performances were observed when evaluating time.

In the ImageNet16-120 dataset, our RL approach yielded superior results in the SSS

search space. Regardless of the time budget, our method found the optimal architecture

earlier than the RE and RANDOM approaches. In four out of the five time budgets evaluated,
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our RL approach was able to find the best architecture in less than 10 hours, and even in the

one instance where it took longer, it still outperformed the RE and RANDOM approaches

in the same time budget. Notably, our RL approach was highly efficient in finding the best

architecture in less than 1 hour in three cases. On average, it takes 12.2 hours for the RL

approach to reach the optimal architecture, while the RE approach takes three times longer,

with 37.6 hours.

Figure 5.10: Time spent in hours to find the best architecture by each NAS method in differ-

ent time budgets in the SSS search space.

Our RL method has proven to be effective on the CIFAR-100 dataset, with results com-

parable to other methods. In four out of five scenarios, the RL method identified the best

architecture in less than 20 hours, which is comparable to the RE algorithm. However, it is

worth noting that even the worst time result obtained with the RL method still required half

the time it takes to get the worst result with the RE algorithm. The RL method takes 11.6

hours for this dataset to reach the best architecture, while the RE method takes 19.4 hours.

The CIFAR-10 dataset results show that our method reached the best architecture in less

than 30 hours in four out of five scenarios, which is comparable to other approaches. The

RL approach took an average of 25.4 hours, while the RE method took 25.6 hours to reach

the same outcome.

Similarly, when we look at the TSS search space results, the RL approach took no more

than 32 hours to find the best architectures in the ImageNet16-120 dataset. It took 19.4

hours on average, while the RE approach took 65.8 hours. For the CIFAR-100 dataset, the
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Figure 5.11: Time spent in hours to find the best architecture by each NAS method in differ-

ent time budgets in the TSS search space.

RL approach again reached the best results earlier, with less than 20 hours required to find

the best architecture. On average, the RL technique took 6.2 hours, while the RE took 30

hours.

In relation to the CIFAR-10 dataset within the NATS-Bench dataset, we observed that

the RE approach took, on average, 38.8 hours to find the best architecture, while the RL

approach took 41.4 hours. It is important to note that an outlier value was observed with the

200-hour budget, where the RL method took an exceptionally long time of 190 hours to find

the best architecture.

Tables 5.5 and 5.6 summarize the results regarding the average time taken by each

method to find the best architecture. This set of results highlights the significant advan-

tage of the proposed method over the RE and RANDOM methods in most cases. This is

particularly crucial in the context of NAS, where training and evaluation time are both criti-

cal and expensive. The sooner the method can identify the optimal architecture, the better it

is.

Stability in Agent Training

The graph in Figure 5.12 displays the decreasing loss of the LSTM agent over time. The

loss stays low throughout the neural architecture search, which is essential for the network
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Dataset/Method CIFAR-10 CIFAR-100 ImageNet16-120

RANDOM 45h 28.2h 37.4h

RE 25.6h 19.4h 37.6h

RL 25.4h 11.6h 12.2h

Table 5.5: Average time to find the best architecture by each method in every dataset on

NATS-Bench in the SSS search space. The best results are highlighted in bold.

Dataset/Method CIFAR-10 CIFAR-100 ImageNet16-120

RANDOM 38.6h 18.6h 56h

RE 38.8h 30h 65.8h

RL 41.4h 6.2h 19.4h

Table 5.6: Average time to find the best architecture by each method in every dataset on

NATS-Bench in the TSS search space. The best results are highlighted in bold.

to propose better architectures and find the best one more quickly. The stability and low loss

values were achieved by adding to the LSTM training two types of regularization based on

l2 norm. The kernel and recurrent regularizers were also crucial in achieving this stability.

5.3.2 Traditional Datasets Case Study

This section exposes the results of the neural architecture search executed over the four

traditional datasets we used to execute a complete neural architecture search: CIFAR-10,

MNIST, FASHION-MNIST, and Celeb-A. In the next section, we present the results of the

ICAO-FVC dataset. We searched for the best architecture using our RL-based method on

each dataset, followed by the training and evaluation of the best-found neural network. Table

5.7 details the obtained results.

MNIST The RL-based approach proposed achieved an accuracy of 99.85% in the MNIST

dataset, which is close to the state-of-the-art results obtained by other methods such as

99.84% [An et al., 2020], 99.87% [Byerly et al., 2020], and 99.91% [Hirata and Takahashi,

2020]. It is worth noting that the associated error of about 0.1%-0.2% can be considered

the test data noise and is hard to achieve with existing methods and neural networks [Byerly
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Figure 5.12: Training loss curve of the LSTM agent. The red dashed lines indicate batch ac-

cumulations that define the different training periods. It is worth noting that the first training

session occurs at t1, and subsequent trainings occur at different times (t2 to t7) with distinct

batches.

Dataset Accuracy EER mean EER median EER std. dv. Total time

MNIST 99.85% 0.15% 0.11% 0.11% 12h

CIFAR-10 95.77% 4.24% 3.19% 1.99% 10h

Celeb-A 88.04% 11.97% 11.01% 7.64% 44h

FASH.-MNIST 97.66% 2.36% 1.55% 1.99% 13h

Table 5.7: Results of RL-based method on the traditional datasets. The total time refers to

the time spent by the neural architecture search added to the time required to train for 50

epochs and the final evaluation (inference) of the found network.

et al., 2020]. Also, the best architecture was found in the first ten iterations of the neural

architecture search, which may be considered an early stage of the search process. These

results are summarized in Figure 5.8.

CIFAR-10 In our experiments with the CIFAR-10 dataset, we found that the results we

obtained were not as good as those of other works that also used neural architecture search

methods and networks with a similar number of parameters. Our final network had approx-

imately 6.2 million parameters and achieved an accuracy of 95.77%, using an architecture

discovered in the first ten iterations of our search process.
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Method Accuracy

Sanghyeon An et al. [An et al., 2020] 99.84%

Adam Byerly et al. [Byerly et al., 2020] 99.87%

Daiki Hirata and Norikazu Takahashi [Hirata and Takahashi, 2020] 99.91%

Proposed RL-based Approach 99.85%

Table 5.8: Comparison of results in the MNIST dataset. The best results are highlighted in

bold.

When we compare our results with those in the literature, we see that Zhichao Lu et al.

[Lu et al., 2020] achieved around 98% accuracy on the CIFAR-10 dataset using a method

based on Evolutionary Algorithms and transfer learning. Han Cai et al. [Cai et al., 2019]

also achieved around 98% top-1 accuracy with a method based on Reinforcement Learning

and gradient descent, similar to ours. Additionally, Xiangxiang Chu et al. [Chu and Zhang,

2020] achieved 97.61% accuracy using an implementation derived from the work called

DARTS [Liu et al., 2018c]. They proposed injecting some random noise to address the issue

of performance collapse due to the aggregation of skip-connections.

Although our results are not better than these state-of-the-art results, our proposed ap-

proach is competitive, being around 2.23 percentage points of the top-performing models.

Table 5.9 summarizes these reported results.

Method Accuracy #params

Zhichao Lu et al. [Lu et al., 2020] ∼98% -

Han Cai et al. [Cai et al., 2019] ∼98% 5.7M

Xiangxiang Chu et al. [Chu and Zhang, 2020] 97.61% 4.3M

Proposed RL-based Approach 95.77% 6.2M

Table 5.9: Comparison of results in the CIFAR-10 dataset. The best results are highlighted

in bold. The size of each model is depicted in terms of the number of parameters in the

#params column.

Celeb-A Our performance in relation to the Celeb-A dataset was the lowest results

achieved in terms of accuracy. The best network the NAS method found only reached
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88.04% accuracy and had 7.4M parameters. If we compare this to the state-of-the-art re-

sults in the literature with a similar or smaller number of network parameters, we can see the

scenario in Table 5.10 [Guo et al., 2020].

Method Accuracy #params

Branch-VGG [Lu et al., 2017] 90.79% 2.09M

LearnToBranch-VGG [Guo et al., 2020] 91.55% 1.94M

LearnToBranch-Deep-Wide [Guo et al., 2020] 91.62% 6.33M

GNAS [Huang et al., 2018] 91.36% 6.41M

Proposed RL-based Approach 88.04% 7.42M

Table 5.10: Comparison of results in the Celeb-A dataset. The best result is highlighted in

bold.

FASHION-MNIST Results on the FASHION-MNIST dataset are depicted in Table 5.11.

Our approach achieved better results than state-of-the-art works on the same dataset. In

fact, our discovered network outperformed the Inception-v3 network [Gavrikov and Keuper,

2022]. Other recent works have focused on different forms of data augmentation to improve

network accuracy [Harris et al., 2020; Zhong et al., 2017], while others fine-tune the weakly

supervised DARTS approach [Tanveer et al., 2020]. In another work [Foret et al., 2020], a

technique was developed that simultaneously minimizes the loss value and loss sharpness

during gradient descent to improve model generalizability.

Our RL-based approach found the best architecture on a later search iteration. However,

it’s worth noting that networks with over 97% accuracy emerged since the first iterations of

the search, demonstrating the high capacity of the method to find suitable architectures in a

short period of time.

5.3.3 ICAO Dataset Case Study

In this section, we discuss the results of our experiment with the ICAO dataset and com-

pare them with the results reported in the literature. The general results achieved in the

ICAO-FVC dataset are shown in Table 5.12. Our NAS RL-based model performed promis-

ingly, achieving results just 1.5 percentage points below the best MTL result (Handcrafted
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Method Accuracy

Harris et al. [Harris et al., 2020] 96,36%

Tanveer et al. [Tanveer et al., 2020] 96.91%

Foret et al. [Foret et al., 2020] 96.41%

Zhong et al. [Zhong et al., 2018] 96,35%

Gavrikov and Keuper [Gavrikov and Keuper, 2022] 94.44%

Proposed RL-based approach 97.66%

Table 5.11: Comparison of results in the FASHION-MNIST dataset. The best result is high-

lighted in bold.

Approach 3). The entire search, training, and evaluation process took 19 hours.

Dataset Accuracy EER mean EER median EER std. dv. Total time

ICAO-FVC 91.98% 7.79% 6.4% 7.81% 19h

Table 5.12: Results of the proposed RL-based method on the ICAO-FVC dataset. The total

time refers to the time of neural architecture search added to the following train for 50 epochs

and the final evaluation of the found network.

We cannot compare our results directly with other works reported in the literature as we

have not yet submitted our model to the FVC-Ongoing competition. Once we do that, we

can verify the efficacy of our model on the same test dataset as other solutions developed by

private companies, academic institutes, or independent developers.

However, we need to consider two caveats. First, the FVC-Ongoing test set is different

from ours, however it has a similar distribution to the validation set provided as guaranteed by

the competition organization and that was used as our test set in our experiments. Second, we

could not evaluate the requisite Ink Mark because of the lack of samples of this class in our

test set. Therefore, we decided to assess the performance of our method by comparing it with

some top solutions submitted to the competition platform. We only considered solutions that

evaluate all 23 ICAO requisites so that we can compare more fairly with our model, which

evaluates all 23 requisites simultaneously. Table 5.13 shows the results of BioLab [Ferrara

et al., 2012], BioTest [BioTest, 2017], Biopass Face [Vsoft, 2017], and ICAONet [Gualberto

et al., 2022], along with the best results obtained by us on MTL (Experiment III) and on
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NAS with RL approach.

The IcaoNet method did achieve good results in 9 of 23 ICAO requisites. However, it had

a high EER in other requisites, such as Looking Away, Red Eyes, and Dark Glasses. These

results caused the method to have a high average EER, despite having a relatively low median

EER. When we analyze the results obtained by Biopass Face and BioLab, we see that each

achieves the best result in three different requirements, showing a certain complementarity

between these solutions. The lowest median EER identified was from Biopass Face (3.10%).

In relation to our proposed methods, namely Multi-Task Learning (MTL) and Neural

Architecture Search (NAS), we observed promising results when we compared specific req-

uisites with the existing solutions. In fact, for some requisites highlighted in bold in Table

5.13, these approaches have the lowest Equal Error Rate (EER). For instance, the requisites

Close, Hat, Frames Heavy, Skin Tone, Pixelation, Veil, and Dark Glasses showed zero or

near-zero EER when using the MTL and NAS-based methods, surpassing even the state-of-

the-art methods.

It is worth noting that both networks - handcrafted and automatically generated - achieved

good results in practically the same tasks. This is perhaps because the NAS search space was

modeled considering the Handcrafted Approach 3 network as a reference, resulting in the

networks generated with similar architectures. However, if a different search space embraces

other types of layers, convolutions, network blocks, and operations, the NAS method could

achieve better results in the other tasks.

Furthermore, our solution had competitive results when considering the EER median and

mean as reference metrics. This was in comparison to other solutions that also analyzed the

23 ICAO requisites. In the future, we plan to submit our model to the FVC-Ongoing plat-

form, gather more precise results, and provide a deeper analysis of this topic relative to the

ICAO-FVC dataset and requisites. We have not submitted yet because there are some chal-

lenges that we must overcome, such as: (i) we have to submit a single Windows executable

file; (ii) this executable has a maximum file size, which is very restrictive; (iii) there is a time

limit of execution of the test dataset on the FVC platform that cannot be surpassed.

In the next chapter, we summarize our research steps, the achieved results, and future

research directions.
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Task BioLab BioTest BPFace IcaoNet MTL III NAS RL

Mouth 6.20% 5.00% 3.80% 2.1% 3.67% 9.68%

Rotation 12.70% 12.60% 10.70% 5.4% 18.75% 11.88%

Looking Away 20.60% 24.60% 13.30% 49.0% 11.96% 13.61%

Eyes Closed 4.60% 6.70% 4.60% 1.7% 3.75% 6.16%

Close 21.60% 15.40% 1.20% 1.2% 0.00% 0.00%

Hat 14.00% 16.50% 9.80% 7.3% 1.61% 2.88%

Dark Glasses 1.90% 2.10% 1.80% 29.0% 0.00% 0.00%

Frames Heavy 5.80% 3.30% 2.10% 13.7% 0.00% 0.00%

Frame Eyes 6.30% 4.00% 10.70% 0.8% 4.83% 7.49%

Flash Lenses 2.10% 2.30% 2.70% 8.4% 3.86% 5.57%

Veil 2.50% 3.70% 1.40% 4.6% 4.82% 0.00%

Reflection 0.60% 1.20% 1.40% 1.0% 13.17% 12.15%

Light 4.20% 4.60% 3.10% 8.2% 8.22% 12.74%

Shadow Face 13.10% 15.90% 9.90% 3.3% 12.13% 13.61%

Shadow Head 2.30% 2.40% 5.40% 3.3% 6.16% 6.43%

Blurred 5.20% 30.50% 1.60% 0.4% 9.67% 5.62%

Ink Mark 3.40% 3.60% 4.80% 0.8% - -

Skin Tone 4.00% 5.10% 1.90% 9.5% 0.00% 0.00%

Washed Out 9.60% 9.20% 0.00% 2.3% 19.10% 15.63%

Pixelation 1.30% 32.40% 1.30% 5.7% 0.00% 0.00%

Hair Eyes 12.80% 12.40% 13.00% 0.0% 27.39% 35.06%

Background 5.20% 3.70% 5.20% 2.3% 4.89% 6.36%

Red Eyes 7.40% 10.30% 1.70% 41.4% 10.42% 6.60%

Mean EER 7.28% 9.89% 4.84% 8.75% 7.47% 7.79%

EER std dev. 5.90% 9.05% 4.18% 12.83% 7.32% 7.81%

Median EER 5.20% 5.10% 3.10% 3.3% 4.86% 6.4%

Table 5.13: Comparison between submitted solutions to FVC-Ongoing competition and our

approaches results. Note the platform uses its own test set, different from ours. The best

results are highlighted in bold.



Chapter 6

Concluding Remarks

This chapter summarizes the research with the achieved results, shows some conclusions,

describes how we answered the research questions and depicts future research steps.

6.1 Research Summary and Conclusions

This thesis proposed and experimentally evaluated a new NAS approach to speed up the

process of finding new architectures suitable to address various problems, with a special

interest in MTL scenarios. The key and most difficult problem investigated was to find an

architecture to check the compliance of face images with respect to ICAO requirements. Our

investigation also included the following additional scenarios to show the generality of the

proposed approach: MNIST, FASHION-MNIST, Celeb-A, and CIFAR-10.

We conducted comprehensive experiments to compare and analyze NAS, MTL, and STL

approaches, with the goal of combining NAS and MTL to create multi-task learning neural

networks with the same problem-solving capability as a handcrafted network. The experi-

ments showed the advantages of using MTL networks over STL ones through an explainabil-

ity technique called Grad-CAM. Besides that, the experiments demonstrated how the shared

network branches and the division of tasks into related groups may be beneficial in a MTL

network. The knowledge acquired on the handcrafted design of MTL networks was used to

create a basic architectural setup and a search space that was used by the NAS technique.

As a result of our analyses, we proposed a NAS method that uses Reinforcement Learning

and the REINFORCE algorithm to train a Network Controller (LSTM) to identify the most

84
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effective neural network architecture, which is then evaluated for its ability to solve multiple

tasks simultaneously on a particular dataset. We fine-tuned the proposed approach on the

NATS-Bench NAS dataset/benchmark and found that the method can find architectures with

the same accuracy as a state-of-the-art method in NAS (Regularized Evolution) but with an

exceptional search speed.

We evaluated the RL-based NAS method on the FVC-ICAO dataset and traditional

datasets (MNIST, Fashion-MNIST, Celeb-A, and CIFAR-10), comparing it to STL and MTL

methods and related methods found in the literature. The results of the NAS REINFORCE

approach are competitive, with a median EER of 6.4% in the FVC-ICAO dataset. Ad-

ditionally, we obtained competitive results for all traditional datasets, comparable to the

state-of-the-art works. In special, our method presented above SOTA results in the dataset

FASHION-MNIST.

Finally, we published the research, including the methodology, the experiments, and the

results achieved, in a conference paper in 2023 [Gadelha et al., 2023].

6.2 Revisiting our Research Questions

The proposed Neural Architecture Search (NAS) approach demonstrates a high degree of

generalization to different tasks and efficacy across multiple datasets, even surpassing the

state-of-the-art in some cases. The NAS approach can find good architectures faster than the

Regularized Evolution technique, which is currently considered state-of-the-art while main-

taining similar efficiency in terms of accuracy. The technique we developed showcases the

potential of NAS to automatically design Multi-Task Learning (MTL) architectures, includ-

ing a base network and transfer learning. Our experimental methodology gave us insights by

comparing manually designed architectures using the STL and MTL approaches to networks

generated automatically using NAS. The development of this technique and the experimental

evaluation provide answers to the research questions raised in Chapter 1:

• RQ 1: How to apply NAS to design MTL architectures automatically for image clas-

sification tasks?

• RQ 2: How do the architectures discovered through NAS differ from handcrafted ar-
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chitectures designed using the STL and MTL paradigms, and what insights can be

gained from this comparison?

We successfully answered our first research question by demonstrating the effectiveness

of our NAS technique, which is based on RL. We proposed a task branching schema using

a pre-trained network as the foundation to create a search space for our NAS approach.

Our approach allowed us to use a Long Short-Term Memory (LSTM) neural network as the

learning agent to identify efficient MTL architectures through RL.

Our study found that the architectures discovered using NAS are not significantly dif-

ferent from the MTL Handcrafted III architecture, as the search space was designed based

on it. Therefore, the networks found by NAS do not differ much from the best architecture

manually designed. However, it is important to note that although the handcrafted architec-

ture has shown a final result that was better in the ICAO-FVC dataset, the achieved results

in individual tasks were equally the best possible (0% EER) in the MTL and in the NAS

approaches.

There are some criticisms that can be made about using NAS for designing MTL net-

works. Firstly, the final discovered architecture may be difficult to interpret due to the partic-

ular search space used, thereby making it hard to understand the network design in the same

way that a human expert can on handcrafted networks. Secondly, NAS-based architectures

are highly dependent on the quality of the training data used, and the use of poor-quality

data may lead to the discovery of low-performance networks. Therefore, even though NAS

can be used to automate network discovery, it should be used with caution and under the

supervision of a human expert. It should not be seen as a replacement for the entire process

of network discovery.

6.3 Future Research

In the experiments presented in this thesis, the architectures resulting from the proposed

NAS approach did not produce better results than the handcrafted architecture in relation to

accuracy and equal error rate. However, we believe there is potential to uncover new and

better architectures by adding new types of layers, operations, attention mechanisms, and

hyperparameters into the search space. These new architectures could surpass the best ones
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found for each multi-task dataset evaluated in this thesis. This represents a key area for future

research and could even involve the newer transformer-based architectures, being necessary

only to produce an appropriate search space.

In addition, further research can expand the method’s degrees of freedom by allowing it

to determine the task grouping into branches within the discovered networks. This has the

potential to improve the final results by evaluating relative tasks together in the same task

branches, enabling them to share common knowledge within the networks. As discussed in

the previous chapter about the MTL experimental results, this could significantly improve

the overall performance.

Another future work is to improve interpretability techniques like Grad-CAM but adapted

to the MTL context so we can better evaluate the network classification when solving mul-

tiple tasks simultaneously. This would help us better understand the network’s decision

process and improve the choices of new architectures made by our NAS method based on

this analysis.

One last idea is to replace the LSTM model with a newer transformer-based network that

is faster to train and may have lower computational costs.
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Appendix A

Complementary results

This appendix presents intermediary experimental data, plots, and results obtained during

the experiments performed and used to corroborate the discussions presented previously in

Chapters 4 and 5.

A.1 Grad-CAM

Figures A.1 and A.2 show the single false negative (FN) and false positive (FP) images,

respectively, for the Dark Glasses requisite in the STL experiment. Observe that in both cases

we may have labelling issues or a lack of objective thresholds on the requisite definition, once

in the first case we have a person using glasses with transparent lenses that may not cover

the eyes region; and in the other case, the ground truth label is positive, however the person

is using dark tinted lenses glasses.

Figure A.1: Grad-CAM with the single false negative of STL network training of Dark

Glasses requisite next to the original image on the right side.
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Figure A.2: Grad-CAM with false positive of STL network training of Dark Glasses requisite

next to the original image on the right side.

Following, Figures A.4 and A.3 show grids of images with the true negatives (TN) and

true positives (TP), respectively.

Figure A.3: Grad-CAM with true positives of STL network training of Dark Glasses requi-

site.

A.2 Training Curves

Figure A.5 and A.6 show the training curves (accuracy vs epochs and loss vs epochs) for the

MTL Handcrafted Experiment III and MTL Handcrafted Experiment II.
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Figure A.4: Grad-CAM with true negatives of STL network training of Dark Glasses requi-

site.
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Figure A.5: Training curves of MTL Handcrafted 3 approach in experiment III with 200

epochs. The red line is the weighted value between all ICAO requisites. The metrics scores

are presented in the range 0.0 to 1.0.
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Figure A.6: Training curves of MTL Handcrafted 2 approach in experiment II with 50

epochs. The red line is the weighted value between all ICAO requisites. The metrics scores

are presented in the range 0.0 to 1.0.


