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Abstract

We exhibit a general static spherically symmetric solution of the

Brans-Dicke vacuum field equations, which is valid in the weak field ap-

proximation. From this solution, we investigated the Newtonian limit

obtaining general expressions for gravitational force and the correspond-

ing potential. In addition, we obtain the metric solution for a ”Yukawa”

radial coordinate.
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1 Introduction

The General Relativity is the standard theory of gravity, and if one con-
siders the limit of weak field and low velocity the Newtonian gravitational
force between two pointlike particles is obtained. Generally, in this case, the
Schwarzschild radial coordinate is utilized in the spherical symmetry solution
to the Einstein vacuum field equations. However, for convenience, different
radial coordinates can be used [7]; the Fock radial coordinate is an example
[6].

On the other hand, there are 4-dimensional alternative theories of gravity
[10], such as the scalar-tensor theories, that are the simplest generalization of
the General Relativity. In these theories, a scalar field φ joins to the metric
of the space-time gµν to describe the gravitational effects of the matter. The
scalar-tensor theories of the gravity admit a coupling parameter ω of the scalar
field with the geometry, which is a function of the scalar field: ω = ω(φ). The
Brans-Dicke theory corresponds to the case in that ω = constant, being your
value fixed from experimental observations [3]. More recently, scalar-tensor
theories are investigated in several aspects, as for instance: they may be the
limit of low-energy theories of unification, as string theory, since exhibit a
dilaton-like gravitational scalar field [9]; also, they can be studied in order to
quantization of gravity [11], as well as in the cosmological dark sector [1].

In this paper, we investigate the Newtonian limit in the context of the
Brans-Dicke theory of gravity, obtaining expressions for gravitational force
and the corresponding potential in terms of a general radial coordinate. In
this way, the paper is organized as follows: in section 2, we exhibit a gen-
eral spherical symmetry solution to the Brans-Dicke vacuum field equations
considering a weak field regime; in the following section, we utilize low veloc-
ity approximation in order to obtain a formula for gravitational force. It is
also shown that an appropriate selection of the radial coordinate leads to a
”Yukawa” radial coordinate, because of the formal Yukawa-type term that ap-
pears in the resultant potential. Finally, we present our conclusion in section
4.

2 General Spherical Symmetry Solution to the

Brans-Dicke Equations

The field equations of the Brans-Dicke theory are [3]:

Gµν =
8π

φc4
Tµν +

ω

φ2

(

φ,µφ,ν −
1

2
gµνφ,αφ

,α

)

+
1

φ
(φ;µ;ν − gµν�φ) , (1)
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�φ =
8πT

(2ω + 3) c4
, (2)

where c is the light velocity, Gµν is the Einstein tensor and �φ = φ;σ
;σ =

gσγφ;γ;σ. The energy-momentum tensor associated with the material content
is Tµν and T = T µ

µ.
In the weak field approximation of the Brans-Dicke theory, it is considered

that the metric is given by

gµν = ηµν + hµν , (3)

with ηµν the metric of the plan and hµν is a small perturbation, such that only
first-order terms in hµν are maintained. Also, in this approximation, the scalar
field is

φ = φ0 + ε = φ0

(

1 +
ε

φ0

)

, (4)

where φ0 is a constant and ε a first-order term in the density of matter, so
that |ε/φ0| ≪ 1. Thus, we keep only the terms of first order in ε/φ0. Then,
we rewrite Eq. (2) as

�ε =
8πT

(2ω + 3) c4
. (5)

In the weak field regime, the solutions of the Brans-Dicke equations are
related to the solutions of the General Relativity equations with the same Tµν

[2]. To understand this result, let us make the transformation

g∗µν = G0φgµν , (6)

T ∗

µν = G−1
0 φ−1Tµν , (7)

where G0 = 1/φ0 =
(

2ω+3
2ω+4

)

G and G is the Newton’s gravitational constant, so
that the Brans-Dicke field equations can be written alternatively as [4]

G∗

µν =
8πG0

c4

[

T ∗

µν +
(2ω + 3) c4

16πG0φ2
(φ,µφ,ν −

1

2
g∗µνg

∗αβφ,αφ,β)

]

, (8)

�
∗(lnG0φ) =

8πG0T

(2ω + 3) c4
, (9)

being the quantities �
∗ and G∗

µν calculated with the metric g∗µν . Now, using
the weak field conditions (3) and (4), the expressions (6), (7) and (8) will be
approximated by

g∗µν = ηµν + hµν +G0εηµν , (10)

T ∗

µν = (1−G0ε)Tµν = Tµν , (11)



96 Walter Paulo, A. Barros and Edmundo M. Monte

G∗

µν =
8πG0

c4
Tµν . (12)

As a consequence, it follows that the equations (12) are formally identical
to the field equations of General Relativity, with G0 replacing the Newton’s
gravitational constant G. Therefore, if the metric g∗µν(G, x) is a known solution
of Einstein’s equations in the weak field approximation for a given Tµν , then
the Brans-Dicke solution in the weak field approximation, corresponding to
the same Tµν , is given by

gµν(x) = [1−G0ε(x)] g
∗

µν(G0, x), (13)

in agreement with equations (4), (6) and (12).

Thus, according to (13), the general static spherically symmetric solution
of the Brans-Dicke vacuum field equations must be

ds2 = [1−G0ε(r)] [ds
∗(G0, x)]

2. (14)

Here, due to the spherical symmetry, ε(x) = ε(r). The factor [ds∗(G0, x)]
2

represents the corresponding solution in the context of the General Relativity,
but with replacement of G by G0. The exact solution obtained in the General
Relativity case can be presented in the form [5]

[ds∗(G, x)]2 =

(

1 +
α0p (r)

r

)

c2dt2 −
P ′

2

1 + α0p(r)
r

dr2

−

[

r

p(r)

]2
(

dθ2 + sen2θdϕ2
)

, (15)

where P =
r

p(r)
and α0 is an arbitrary constant. The prime denotes the deriva-

tive with respect to r. In this solution, for r → ∞, the following conditions
are satisfied: p (r) −→ 1, p′ (r) −→ 0, P −→ r and P ′ −→ 1. Therefore, the
metric (15) asymptotically becomes the metric of flat space-time. However,
the function p(r) is not fixed by the field equations, since that in the General
Relativity the choice of the coordinates is arbitrary; as a consequence, four
components of the metric gµν are arbitrarily fixed [8]. In this sense, if we
choose for example P (r) = 1 and α0 = −2GM

c2
, where M is the mass of the

central body, we obtain the metric in the Schwarzschild coordinates.

Now, let us consider that α0 = −2GM
c2

, so that the weak field condition (3)

for the metric (15) is satisfied assuming that
GM

c2r
≪ 1. Then, (14) can be

written explicitly as



Newtonian limit and general radial coordinate 97

ds2 = [1−G0ε(r)]

[

(

1−
2G0M

c2r
p (r)

)

c2dt2 −
P ′

2

1− 2G0M
c2r

p (r)
dr2

−

[

r

p(r)

]2
(

dθ2 + sen2θdϕ2
)

]

. (16)

Using (16), Eq. (5) becomes equal to

1

P ′2
ε′′ +

(

2

PP ′
−

P ′′

P ′3

)

ε′ = 0, (17)

since T = 0. The solution is

ε(r) =
A

P
+B = A

p(r)

r
+B, (18)

where A and B are arbitrary constants. Making the choices A =
2M

(2ω + 3)c2

and B = 0, we can retrieve from (16) the solution for a central body in the
context of the Brans-Dicke theory, written in the Schwarzschild coordinates
(p(r) = 1) [3]. Thus, with

ε(r) =
2Mp(r)

(2ω + 3)c2r
, (19)

the Eq. (16) is the general spherical symmetry solution to the Brans-Dicke
vacuum field equations.

3 The Newtonian Limit

Let us obtain the equation of motion for a particle of mass m in the field given
by (16). If the velocity of the particle is small compared with the velocity of
light, the geodesic equation is

d2xi

dt2
+ Γi

00c
2 = 0. (20)

For , x1 = r we obtain

d2r

dt2
=

c2

2
η11h′

00. (21)

From (16) with (19), we have η11 = − 1

P ′
2 and

h00 = −G0ε(r)−
2G0M

c2r
p (r) = −

2GM

c2r
p (r) . (22)
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Therefore, the Eq. (21) takes the form

d2r

dt2
= −

GM

r2

(

p (r)4

p (r)− rp′ (r)

)

. (23)

Hence, the gravitational force on the particle of mass m is

FG = m
d2r

dt2
= −

GMm

r2

(

p (r)4

p (r)− rp′ (r)

)

, (24)

while the gravitational potential is given by

VG ≡ −

∫

[−F idxi] = −

∫

FGP
′
2

dr = −
GMmp (r)

r
. (25)

It is interesting to note that the choice p (r) = 1 means that the Schwarzschild
radial coordinate is used, and then the newtonian expressions of force and
potential are recovered.

However, new choices for p (r) imply different radial coordinates. If one
considers, for example, that

p (r) = 1 + αe−
r

λ , (26)

where α and λ are constants, we get from (25) the potential with a formal
Yukawa-type term

VG = −
GMm

r
(1 + αe−

r

λ ). (27)

Thus, the metric (16), with (19) and (26), represents a solution of the Brans-
Dicke theory for a ”Yukawa” radial coordinate.

4 Conclusion

We found, in the context of the Brans-Dicke theory, a general spherical symme-
try solution to vacuum field equations considering a weak field regime. After,
in additional low velocity approximation, we obtain expressions for gravita-
tional force and potential depending on a general radial coordinate. As an
application, we exhibit the metric solution written in terms of a ”Yukawa”
radial coordinate.
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