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Resumo

O presente trabalho é soerguido em duas diregoes principais: primeiro,
desenvolvem-se mnovos teoremas abstratos para uma classe de funcionais semi-
continuos inferiormente da seguinte forma: dado X um espaco de Banach,
I =®+7¥: X — (—00,00] é uma soma de um funcional ® de classe C' com
um funcional convexo e semicontinuo inferiormente ¥ : X — (—o0,00] (¥ # o0).
Nossos resultados sao referentes a Teoria dos Pontos Criticos para funcionais nao-
diferencidveis construida por Szulkin em [81]; é-se provada uma generalizagdo do
teorema da fonte de Bartsch [23] e também de um teorema devido a Heinz em [61]
relacionado com a nogao do género de conjuntos fechados e simétricos com respeito a
origem. Uma versao do teorema do passo da montanha simétrico é também provada.
Como aplicagao dos resultados abstratos mencionados, mostra-se a existéncia de uma
infinidade de solugoes para uma ampla classe de problemas elipticos. Os problemas
envolvem nao-linearidades logaritmicas, nao-lineradades descontinuas e o operador
1-Laplaciano.

Posteriormente, como uma consequéncia natural de nossos estudos, introduzimos
uma nova abordagem para o estudo das equagoes logaritmicas que nos possibilita
aplicar métodos variacionais cldssicos para funcionais de classe C!' no intuito de
obter solucoes para diferentes classes de equagoes logaritmicas de Schrodinger. Essa
nova ideia é introduzida utilizando-se técnicas exploradas no estudo dos espacos
de Orlicz.  Os resultados obtidos garantem desde resultados de multiplicidade
de solugoes para equacgoes logaritmicas de Schrodinger envolvendo a categoria de
Lusternik-Schnirelmann, a existéncia de solugoes positiva para uma classe de equacoes

logaritmicas sobre um dominio exterior, considerando diferentes condi¢oes de contorno.

Palavras-chave: funcionais semicontinuos inferiormente, teoria dos tontos criticos
para funcionais nao-diferenciaveis, teorema da fonte, equacgoes logaritmicas de

Schrodinger.



Abstract

The current text has been constructed in two main directions: first one, we have
established new abstracts theorems for a class of semicontinuous functionals of the
following form: let X be a Banch space, I = & + ¥ : X — (—00, 0] is a sum of a
C'-functional ® with a convex lower semicontinuous functional ¥ : X — (—o0, 00|
(U # 00). Our results are referring to the nonsmooth critical point theory developed by
Szulkin in [81]; it is proved a generalization of the Bartsch’s fountain theorem [23] and
also a theorem due to Heinz in [61] related with the genus of Zs-symmetric closed sets.
A version of the symmetric mountain pass theorem it is also proved. As application of
the mentioned abstract result, we have showed the existence of many infinitely solutions
for large classes of elliptical problems. The problems involve logarithmic nonlinearities,
discontinuous nonlinearities and the 1-Laplacian operator.

After that, as a byproduct of our study, we have introduced a new approach in
order to study logarithmic equations which allow us to apply C''-variational methods
to get solutions for several classes of logarithmic Schrodinger equations. We have
established this new approach through the Orlicz space’s techniques. The produced
results include the multiplicity of solutions for logarithmic Schrédinger equations
involving the Lusternik-Schnirelmann category, and also they include the existence
of positive solutions for a class of logarithmic equations on a exterior domain, by
considering different boundary conditions.

Keywords: lower semicontinuous functionals, nonsmooth critical point theory,

fountain theorem, logarithmic Schrodinger equations.
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Introducao

No estudo das Equacoes Diferenciais Parciais, os denominados métodos
variacionais e calculo das variacoes figuram como um tépico de notavel relevancia,
em virtude de sua ampla aplicabilidade. Em linhas gerais, tal método consiste em

associar a um problema, digamos por exemplo da forma
() —Au+V(x)u = f(u), em Q
u=0, em 0f),

com 2 C RY um conjunto aberto, um funcional do tipo J : X — R, com X um espaco
de Banach adequado que nos permita assegurar que J € C'(X,R). E esperado que
os pontos criticos de tal funcional coincidam com soluc¢oes do problema. Um funcional
J nestes termos é dito o funcional energia ou funcional de FEiler-Lagrange associado
ao problema. Esse método é amplamente difundido e bem consolidado no estudos das
Equacoes Diferenciais, em especial no estudo de problemas elipticos. Aqui, apenas a
titulo de exemplo, citamos os classicos trabalhos de Rabinowitz [75,76] e del Pino e
Felmer [51].

Esse método tem intrinseco um dificuldade natural: as condicoes sobre a funcao
f : R — R devem ser convenientes de modo a permitir a regularidade do funcional
J. Isso inviabiliza, em um primeiro momento, o tratameto, via métodos variacionais
classicos, de equagdes do tipo (E7) nas quais a funcao f nao contenha as propriedades
desejadas, a exemplo dos casos nos quais a funcao apresente descontinuidades.

No intento de abranger um maior niimero de casos, propostas de generalizagoes da

cognominada Teoria dos Pontos Criticos tem sido idealizadas. Utilizando as técnicas
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da Andlise convexa, os pioneiros trabalhos devidos a Clarke [41] e o de Chang [36]
em 1981, permitiram a extensao da nocao de ponto critico para funcionais localmente
Lipschitz. Isso possibilitou o estudo de equagoes com a estrutura dada em (F;) nas
quais a func¢do f apresenta uma descontinuidade; veja, e.g., [16, 36, 45].
Posteriormente, em 1986, Szulkin [81] generalizou a Teoria dos Pontos Criticos
para uma classe de funcionais semicontinuos inferiormente (s.c.i.) que é objeto de
estudo do presente texto. A saber, Szulkin considerou funcionais I : X — (—00, 00},

X um espaco de Banach, satisfazendo a seguinte condigao:

(H): I =®+V : X — (—o00,00], com ® € CH{X,R) e ¥ : X — (—00, 00
um funcional s.c.i. convexo e préprio (i.e., ndo ocorre ¥ = 00).
Dado um ponto u € X, diz-se que u é um ponto critico para para um funcional

I = ® + ¥ satisfazendo a condi¢ao (H) descrita acima se I(u) < 0o e
(D' (u),v —u) + U(v) — ¥(u) >0, Vv e X.

Nota-se que, caso ¥ = 0, temos [ = ® € C'(X,R) e a condigao de ponto critico acima
fornece, pela arbitrariedade de v, que ®'(u) = 0. Assim, o estudo de Szulkin é, de fato,
uma generalizacao do caso cldssico. Os trabalhos [10,12,13,62,69, 79] ilustram como
a teoria desenvolvida por Szulkin fornece uma ferramento ttil e abrangente no estudo
das Equacoes Diferenciais.

A Teoria de Pontos Criticos para funcionais que satisfazem (H) proposta em [81]
ainda nos fornece uma ferramenta para o estudo de desigualdades variacionais, isto
possibilita sua utilizacao para o estudo de algumas aplicacoes fisicas que recaem em

desigualdades variacionais. Em [52, p. XVIII] podemos encontrar o seguinte exemplo.

Problema 1: Suponha que u(x,t) represente a pressio no ponto x no, instante t, em
um fluido contido numa regico Q C R3 delimitado por uma membrana, representada
por 0S) que € semipermedvel, i.e., permite que o fluido penetre em §2 mas evita que ele

vaze completamente. Entdao, u satisfaz

/ (%(v —u) 4 VuVo + g(v — u)) dx > 0,Yv € H'(Q),
Q

onde g € uma func¢ao previamente prescita, satisfazendo uma condi¢cao de fronteira.
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Em [34,71] o leitor interessado poder encontrar mais resultados e aplicagoes da
teoria apresentada em [81].

Os comentarios acima atestam a relevancia, tanto em perspectiva tedricas quanto
no contexto de aplicagoes, da teoria proposta por Szulkin. Diante do exposto, como
um dos alvos da presente tese, nos propusemos a complementar o trabalho feito
em [81]. Com maior acurdcia, revisando com detalhe os resultados desenvolvidos
em [81], encontra-se uma extensa lista de resultados do tipo minimaz vélidos para
funcionais verificando (H). Em verdade, as versoes classicas do Teoerma do Passo
da Montanha de Ambrosetti-Rabinowitz [75, Theorem 2.2], do Teorema do Ponto de
Sela [75, Theorem 4.6] e também do Teorema de Clark, que envolve a teoria do género,
sao generalizadas para a classe dos funcionais satisfazendo (H ).

Atentando a literatura da Teoria dos Pontos Criticos, pudemos perceber que
alguns resultados do tipo minimax nao foram ainda estendidos para os funcionais
verificando (H). Um exemplo importante é o do famoso Teorema da Fonte devido
a Bartsch (see [23,83]). O Teorema da Fonte tem sido explorado em muitos trabalhos
no sentido de estabelecer a existéncia e multiplicidade de solugoes para problemas
elipticos; aqui referenciamos [23,25,26,60,68, 78, 85].

Em seu formato original, o Teorema da Fonte pode ser enunciado como segue:

fixe X um espaco de Banach e, para cada k € N, fixe as notacoes abaixo.

k &)
i): Yy = @Xj e Zy = @Xj;
j=1 j=k

i1): By :={u €Yy |lu|l| <pr} e Np:={u€ Zy; ||ul| =rp}, com py > ry > 0.

Considere agora GG um grupo topoldgico compacto agindo isometricamente em X e
suponha a seguinte condicao verificada:

(Gp) : O grupo G age isometricamente em X e X = m, com X; =Y subespacos
de dimensao finita invariantes pela acao de G e a acao de G em Y é admissivel no

sentido da Defini¢ao 1.2 no Capitulo 1.

Teorema 0.0.0.1 (Teorema da Fonte de Bartsch) Seja I € C*(X,R) um fin-
cional G-invariante (i.e. 1(g-) = I(-),Yg € G) que satisfaz a condi¢io (PS). para
todo ¢ € R. Assuma que

i) ap:= sup I(u) <O0;

uE Yy, |lull=pk



Introducao 4

it): b= inf  I(u) = oo.
UEZy,||ul|=rk

Entao, definindo ¢j, := inf sup I(vy(u)), com
'Y€®k uEBy,

Or :=={y € L'c(Bk); 7lon, = Id|op,}- (1)

O funcional I tem uma sequéncia de pontos criticos (ux) tal que I(ug) = ¢ — o0.

Em [45], Dai estabeleceu uma versao do resultado acima para funcionais I que
sao localmente Lipschitz e utilizou o resultado para estabelecer a existéncia de uma
infinidade de solugdes para um problema eliptico do tipo (E) no qual a fungao f possui
descontinuidades. E portanto natural indagar se uma versao do Teorema da Fonte, nos
termos acima e em [45], seria valida para funcionais I do tipo Szulkin, i.e., funcionais
s.c.i satisfazendo a condicdo em (H).

Afirmamos, precipuamente, que a resposta a indagacao suscitada no pardgrafo
anterior é afirmativa. Como um dos nossos principais resultados abstratos neste texto,
no Capitulo 1, generalizamos o Teorema da Fonte devido a Bartsch para funcionais do
tipo Szulkin (veja o Theorem 1.4).

Em [25] e [83, Chapter 3] podemos encontrar uma versao dual do Teorema
da Fonte. Tal resultado pode ser interpretado como uma complemento - ou como
um corolario de fato; veja a prova de tal resultado em [83, Theorem 3.18] - do
classico Teorema da Fonte de Bartsch. A versao dual do Teorema da Fonte fornece
condigoes para que um funcional G-invariante possua uma sequéncia negativa de pontos
criticos (¢y) satifazendo ¢ — 0. E natural perguntarmos-nos se uma versio dual do
Teorema da Fonte nao seria possivel para funcionais verificando (H). Nao obstante,
uma vez que a principal ideia em [83, Theorem 3.18] consiste em aplicar o Teorema
da Fonte ao funcional —/I para obtermos uma sequéncia de valores criticos para o
funcional I, concluimos que a replicacao imediata deste resultado nao é possivel para
funcionais do tipo Szulkin. De fato, se quando I verifica (H) nao é imediato que
o funcional —7 também verifique, assim nao podemos aplicar a teoria desenvolvida
em [81] concomitantemente aos funcionais I e —1.

Visando complementar nosso estudo, ante a auséncia de uma versao dual Para
o Teorema da Fonte no contexto dos funcionais do tipo Szulkin, debrucamos-nos a

investigar a possibilidade de estabelecer um resultado que nos desse o mesmo tipo de
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informacao do Teorema da Fonte dual: encontrar uma sequéncia de valores criticos
negatios (cg) para um funcional G-invariante I com ¢, — 0. Nessa caracteristica,
provamos ser vélida uma versdo do Teorema de Heinz [61, Proposition 2.2], que em
sua versao classica complementa o famoso Teorema de Clark envolvendo teoria de
género (see [39] para tépicos correlatos). Pudemos notar que em [81], embora uma
versao do Teorema de Clark seja estebelecida, nao é provada uma versao do resultado
devido a Heinz em [61]. Em nosso resultado (Teorema 1.5 na sequéncia), além de
generalizar o resultado devido a Heinz para os funcionais com a estrutura posta em
(H), nés consideramos um tipo de agao mais geral do que cléssica acao antipoda de
Ly ={Id,—Id}.

Com a técnica introduzida para provarmos o Teorema 1.5 no Capitulo 1,
percebemos ser possivel complementar um dos resultados densenvolvidos por Szulkin
em [81]. Mais precisamente, nossos argumentos permitem provar que a sequéncia de

valores criticos (dy) dada em [81, Corollary 4.8] é tal que
dk — OQ.

Esse o contetiddo do Teorema 1.6 do Capitulo 1.

Uma vez que os resultado apresentados no Capitulo 1 (os quais também constam
em [8]) estabelecem novos teoremas minimax para funcionais do tipo Szulkin e que
alguns resultados em [81] sao melhoradas, nosso estudo pode se configurar como um
complemento a teoria proposta por Szulkin em [81].

Como consequéncia dos teoremas abstratos desenvolvidos, no Capitulo 1
garantimos a existéncia de uma infinidade de problemas elipticos com simetria e que
possuem o funcional energia associado com a forma dada em (H).

Utilizando nossa versao generalizada do Teorema da Fonte, provamos a existéncia

de infinitas solucoes para o seguinte problema de inclusao variacional:
—Au+u+ 0F(x,u) > ulogu®, qt.p. em RY,

u € H'(RY),

t
com f:RY x R — R uma fungao N-mensurdvel e tal que F(z,t) := / flz,t)ds >0
0
seja localmente Lipschitz. Como usual, 0F(z,t) denota o gradiente generalizado de
F com respeito a varidvel ¢ € R no ponto x € RY (veja [36,41] para mais detalhes

envolvendo a nocao de gradiente generalizado).
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Tal problema foi inspirado no resultado devido a Ji e Szulkin em [62], no qual,
explorando propriedades particulares da nao-lineraidade f(t) = tlogt?, estabeleceram

a existéncia de uma infinidade de solucoes para o problema
—Au+V(z)u =ulogu?, xcRY, (2)

com V € C(RY R) satisfazendo | |lim V(z) = +oo.
r|—+00

A segunda classe de problemas que estudamos é um tipo de perturbacao de

equagoes logaritmicas de Schrodinger da forma:
—Au+u = ulogu® + Mh(2)|u|?*u em RY
u € HY(RY),

Nesse caso, utilizamos nossa versao generalizada do Teorema de Heinz para assegurar
a existéncia de uma infinidade de solucbes para o problema acima. A necessidade de
recorrer a Teoria de Ponto Critico proposta em [81] dé-se pelo fato de que a condigao
de crescimento sobre f(t) = tlogt? nao assegura a boa definicio do funcional energia
associado ao problema sobre o espaco H'(RY) (veja, e.g., [6,7,10-13,62,69, 79] para
mais comentdrios envolvendo tal sutileza).

Por fim, como aplicagdo de nosso ultimo teorema do tipo minimax provado
no Capitulo 1, mostramos a existéncia de uma infinidade solugoes para a classe de

problemas a seguir envolvendo o operador 1-Laplaciano.
~Ayu = |ulP"*u, em €,
ulg =0, em 00
Aqui Q@ C RY, N > 2, é um dominio limitado com fronteira suave e p € (1,1*) é uma
poténcia subcritica. Em um sentido formal, o operador 1-Laplaciano é definido por
Aju = div (‘E—Z) (veja [15,17,37,49,63,70,73] e referéncias relacionadas para uma
introdugao ao estudo do operador 1-Laplaciano).

Retornando & equacao (E)), considerando f(t) = tlogt?> e V = 1, conforme ji

comentado, dependendo da escolha de Q C R¥, a equacao de Schrodinger
(E») —Au+u = ulogu®, em Q

pode nao ter aplicabilidade imediata do cldssico método variacional para funcionais
C; veja por exemplo as ja citadas refréncias [6,7,10,12,13,62,79] nas quais o caso )

ilimitado é abordado.
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Quando, por exemplo, tem-se 2 = RY, o candidato a funcional energia associado

a (Ey) é dado por

1 1
Bu) = -/ (IVuf? + 2Juf2)dz — -/ W2 log [uldz,
2 RN 2 RN
para u € H*(RY). Na expressio dada a E estd sendo utilizado implicitamente o fato
de que

t 1 t2
/o slogs®ds = §t210gt2 — 3

Ocorre que nao podemos assegurar que F € CYH'Y(RY),R). Em verdade, no
trabalho [80], encontramos registrado um exemplo de uma funcio u; € HY(RY) tal
que / ulog |uy|*dr = —oco. Consequentemente, E(u;) = oo, mostrando que E nao
esta, fgquer, bem definido sobre H'(RY). Isso faz com que, além da permeabilidade
em aplicagoes (vide [84]), o estudo das equagoes logaritmicas torne-se atrativo do ponto
de vista matematico.

No sentido de vencer tal dificuldade, a estratégia utilizada nos trabalhos
[10-13,62,79] - veja também os Capitulos 1, 2 e 3 na sequéncia - é considerar uma

decomposicao de tlogt? da forma:
1
Fy(t) — Fi(t) = §t2 logt? Vt € R, (3)

com Fy, F € C*YR). Sendo F, uma fungao com crescimento subcritico e F; uma
fungao convexa e par e com F;(0) = 0 (veja o corpo da tese para defini¢ao explicita de

F) e F,). Vale registrar que a fungdo F} satisfaz a seguinte condigao de crescimento.
[F O] < [t]"+ 7, teR,

comr € (1,2) e p € [2,2%).

Isso nos possibilita escrever £ = & + ¥, com

O (u) := 1/RN(|VU|2 + (V(2)|u* + 1)dz —/ Fy(u) dx

2 BN
U(u) = /RN Fi(u) da.

As condigbes sobre Fj e Fy nos permitem concluir que F verifica (H). Nesse caso um
ponto critico para E é um ponto u € H'(RY) tal que E(u) < co e
/ (Vu- V(v —u)+2u(v — u))de + / (Fi(v) — Fi(u))dz —
RN

RN (4)
- /N Fy(u)(v—u) >0, Yo e H'(RY).
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Em virtude das mencionadas propriedades de F; e Fy sabemos que E(v) < 0o equivale

a Fi(v) € LYRY). Assim, tem-se
Ce(RY) € D(E) = {v; E(v) < oo} = {v; ¥(v) < oo}.

Com isso, fixada ¢ € Cg°(RY), escolhendo v = u+t¢, t ~ 07, em (4), depois dividindo
por t e fazendo ¢t — 0 obtemos

/ (Vu-V¢+2u¢)dx+/ Fl’(u)qbdx—/ Fy(u)pdx > 0.
RN RN R

N

Substituindo ¢ por —¢ concluimos que um ponto critico u de E verifica
/ (Vu-Vo+up)dr = / ulogu’¢ dr, Yo € C3°(RY).
RN RN
A identidade acima, junto a teoria de regularidade para equacoes elipticas, permite-nos
concluir que pontos criticos para E no sentido dos funcionais do tipo Szulkin fornecem
solugdes classicas de (F3). Essa técnica tem sido amplamente explorada no estudo das
equagoes logaritmicas de Schrodinger, no sentindo de reparar a falta de suavidade do
funcional, a exemplo dos ja supracitados trabalhos [10-13,62,79].
Atentando ao procedimento indicado, podemos perceber que os pontos criticos

do funcional E devem residir no espaco

{u c H'(RY); /RN Fi(u)dx < oo} .

Desde que a fungao Fj é convexa e inspirado em Cazenave [42], nos perguntamos se
existiria um espago de Banach (um espago de Orlicz) contido na cole¢ao acima e sobre
o qual o funcional E seja de classe C*.

Com essa questao em mente, no Capitulo 2, estabelecemos, em verdade, que a
fungdo Fy é uma N-fungdo satisfazendo a denominada condi¢io (Az). Com isso o

conjunto da forma

20) = {ue Lo [ Rt <oof,

com  um aberto qualquer de RV, constitui um espaco de Banach separdvel e
reflexivo; veja o Apéndice C para uma sucinta revisao sobre espagos de Orlicz.
Esse resultado envolvendo a func¢do F) nos permite atacar a equagao do tipo (FEs)

via métodos variacionais classicos, por considerar o funcional E restrito ao espaco
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X = HY(RY) N Z(RY). Como exposto no Capftulo 2, essa restri¢do permite concluir
que E € CY(X,R).

Embora as equacgoes logaritmicas tenham sido amplamente estudadas nos iltimos
anos e varios resultados sobre existéncia e multiplicidade tenham sido estabelecidos,
alguns fatos intrinsecos ao estudo dos problemas elipticos, que recaem em a aplicagao
do teoria cléssica de pontos criticos, nao tinham ainda sido estabelecidos para equacoes
logaritmicas de Schrodinger. Citamos aqui, e.g., resultados de multiplicidade a luz do
que é feito em [14,43] utilizando a teoria de categoria de Lusternik-Schnirelmann.

No Capitulo 2, introduzindo o novo espago de funcoes associado com F; (espago
Z acima), provamos a existéncia e multiplicidade de solugbes para seguinte classe de

problemas.

—e?Au+ V(z)u = ulogu?, em RY,
u e H'(RY),
com V : RY — R uma funcdo continua satisfazendo
Vi): =1 < inf V(z);
(V1) nf V(z)

(V5): Existem um conjunto aberto e limitado A C RY verificando

Vo := inf V(z) < min V(x).

TEA z€IA

O resultado de multiplicidade de solugcao que provamos ser valido para o problema
acima estima inferiormente o niumero de solugoes pela categoria de Lusternik-

Schnirelmann do conjunto
M:={xe\;V(z)=Vy}

€11

Ms = {z € RY; d(z, M) <6}, §~07.

O teorema abstrato que fundamenta nosso resultado de multiplicidade pode ser
enunciado como se segue; veja [83, Chapter 5| para uma prova do resultado abaixo

e mais detalhes envolvendo a categoria de Lusternik-Schnirelmann.

Teorema 0.0.0.2 Fize V = ¢~Y0) uma variedade classe C* dada como imagem
inversa de um valor regular do funcional ¢ € C*(W,R), com W um espaco de Banach.

Seja I € C*W,R) tal que I|y € limitado inferiormente. Suponha que I satisfaz a
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condigcao (PS). para niveis ¢ € [inf I|y,d], entdo I|y tem ao menos catra(I¢) pontos
criticos em I¢ = {u € V; I(u) < d}.

E facil notar que a aplicacao do teorema acima so faz sentido no contexto dos
funcionais de classe C'!, uma vez que versa sobre pontos criticos para funcionais restrito
a variedades de classe C*. O “approach” por nés introduzido no Capitulo 2 é, portanto,
fundamental no sentido de aplicarmos o teorema anterior, porquanto nos permite
concluir que o funcional energia associado ao problema é de classe C*. E valido ainda
ressaltar que, diante das condigoes (V;) — (V5) acima, nossos resultados melhoram e
estendem os resultados devido a Alves e de Morais [10] e a Alves e Ji [11].

Ainda inspirados pela nova abordagem para estudar equagoes logaritmicas de
Schrodinger introduzida no Capitulo 2, no Capitulo 3 estudamos uma classe de equagoes
logaritmicas sobre dominios exteriores. Mais precisamente, estudamos a existéncia de

solucao positiva para a classe de problemas da forma

—Au+u = Q(r)ulogu?®, em
Bu =0 em 012,

com 2 C RN, N > 3, um dominio exterior (i.e., Q¢ = R \ Q é um dominio limitado
com fronteira suave). Consideraremos os casos Bu = u ¢ Bu = %.

A principal ideia no estudo do ultimo problema é, no caso Dirichlet (Bu = u),
adaptar os resultados do importante trabalho de Benci e Cerami [27] e de Alves
e de Freitas em [9]. Uma vez mais, faz-se crucial a condigdo de que o funcional
energia associado ao problema seja de classe C?, dado que os resultados circunstantes
em [9,27] fazem uso frequente da regularidade do funcional energia estudado, abordando
propriedades e estimativas relacionadas & variedades de classe C' (nesse caso especifico,
a famosa variedade de Nehari associada ao problema). No caso Neumann (Bu = 2%),
inspiramos-nos e adpatamos diferentes técnicas desenvolvidas em [4,18,33]. Em nosso
caso, nos resultados de compacidade substituimos as sequéncias de Palais-Smale por
sequéncias de Cerami (veja maiores detalhe na Segao 3.4). Ainda relacianado ao estudo
de problemas sobre dominios exteriores, citamos os trabalhos em [2,3,18,21,29,66] no
intento de ilustrar o interesse diverso e a relevancia dessa classe de problemas.

Os resultados apresentados nos Capitulos 2 e 3 nos propiciaram como fruto os

trabalhos em [6,7]. Concomitantemente, tais resultados ilustram como a nova técnica
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introduzida nos permite obter inéditos e relevantes resultados concernentes ao estudo
das equacoes logaritmicas de Schrodinger.
Para findar a introducao, uma vez exposto o encadeamento tedrico de nosso

estudo, registramos a seguir alguns aspectos sob os quais o presente texto foi construido.

1°- O texto, naturalmente, pressupoe alguma experiéncia com os resultados
da Analise Funcional e Teoria da Medida e Integracao, de modo que,
recorrentemente, os resultados cldssicos sao utilizados tacitamente, ainda que
com alguma mencao explicita. A experiéncia com alguns resultados usuais da
Teoria das Equagoes Diferenciais Parciais e da Teoria dos Pontos Criticos podem,
e muito, contribuir para o entedimento pleno do texto. No intento de conferir

fluidez a leitura, as provas de alguns resultados sao, as vezes, apenas referenciadas.

29- Os apéndices sao devotados a tépicos tedricos que permeiam os capitulos, mas
que suas respectivas exposi¢oes poderiam atribuir algum grau de prolixidade aos
temas desenvolvidos. Os apéndices sao construidos de modo a apenas listar os
resultados de interesse. Nessa perspectiva, apenas as provas nao tipicas ou as de

carater original sao explicitadas nos apéndices.

3°- Informamos que os resultados e conceitos registrados nessa introducao serao
reenunciados no momento oportuno durante os capitulos, atenuando-se assim
o labor adicional de regressar a introdugao para recordar algum resultado de

interesse.



Notations

Throughout this text we fix the following notations.

Hl

rad

(RY) := {u € HYRY) : u is radial}.
0oad(RY) := {u € Cg°(RY) : w is radial}.

1/p
LP(RY) is the usual Lebesgue space, with norm |ul|, := (/ |u|pdx> :
RN

1 <p<1,and |ulle := esssup,egn|[u(x)|.

If O C RY is a measurable set, we simply write / f instead of / f(x) dx for any
Q Q

measurable real-values function f defined on ).

If X is a Banach space e xg € X, then B,(xy) designates the ball centered in z

of radius r > 0.

supp u designates the support of a measurable function u : RV — R.

int(A) denotes the interior of a set A.

A denotes the closure of a set A.

0A denotes the boundary of a set A.

on(1) denotes a real sequence with o,(1) — 0

0-(1) denotes a real parameter that depends on ¢ satisfying O.(1) — 0, as ¢ — 0.

C(z1, ..., x,) denotes a positive constant that depends on z, ..., z,.



Notations

13

N
o 1*:= it N > 2.

N -1
2N -
02*::N 2,1fN23and2*::<>01feltherN:10r]\7:2.

e i.e.: abbreviation for the Latin expression id est.

e e.g.: abbreviation for the Latin expression exempli gratia.



CHAPTER 1

Minimax theorems for lower semicontinuous functions and their

applications

In 1986, Szulkin [81] generalized the study of Critical Point Theory to a class
of lower semicontinuous (l.s.c) functionals I : X — (—o00,+oc| having the following

structure

(Hy) I := &+ U, with ® € CY(X,R) and ¥ : X — (—o0,+00] is a conver l.s.c.

functional and proper, i.e. ¥ Z oo.

From now on, a functional I : X — (—o0,+0o0] is said to be of Szulkin-type if its
structure is given as in (Hp). In the important work [81], Szulkin has established
a powerful list of minimax results involving the class (Hj). Generalized versions of
the famous Mountain Pass Theorem of Ambrosetti-Rabinowitz [75, Theorem 2.2], the
Saddle Point Theorem [75, Theorem 4.6] and classical results of the genus theory has
been proved in [81].

However, observing the literature on minimax theorems, we could find some
classical results that have not been yet extended for Szulkin-type functionals. For
instance, the classical Bartsch’s Fountain Theorem, which ensures the existence
and multiplicity of critical points for Z,-symmetric C'-functionals (see Bartsch [23,
Theorem 2.5] and Willem [83, Theorem 3.6]). By exploring the Bartsch’s theorem,

many authors were interested in finding critical points of real-valued functional &
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defined on an infinite dimensional Banach space X, which allow to solve wide classes
of ordinary or partial differential equations. Besides of the applications in the study
of differential equations, several works were focused in establishing generalizations of
the Fountain Theorem; see, e.g., [25,26, 45,60, 65,85] for a valuable literature of this
subject.

Accounting this questions, we have aimed to solve the following problem:
(Q1) Is it possible to prove a Fountain-type Theorem for Szulkin-type functionals?

In this chapter a complete and positive answer to (@) is given by proving a
nonsmooth version of Theorem 2.5 in [23] for Szulkin-type functionals (see Theorem
1.4 below).

Considering the literature related with the Fountain Theorem, a second question

that naturally arises in this nonsmooth setting is the following
(Q2) Is it possible to prove a dual Fountain-type Theorem for Szulkin-type functionals?

Indeed, in [25], Bartsch and Willem have proved a dual version of th Fountain Theorem.
A careful analysis of the proof of the classical dual Fountain Theorem can be found
in [83, Theorem 3.18]. The main basic idea due to Bartsch and Willem consists in
applying Theorem 2.5 of [23] to the functional —®, with ® a C' functional on X,
obtaining a real sequence (c;) of negative critical values of I such that ¢; — 0, as
j — oo. However, when I is a Szulkin-type functional it is easily seen that this
procedure cannot be used in general as in the smooth case, because when [ is a Szulkin-
type functional we do not know, in general, if the functional —1 also verifies (Hy).

In order to overcome this difficulty and to give an answer for (()2), we have proved
a nonsmooth version of a Heinz’s Theorem (see [61, Proposition 2.2]) for Szulkin-type
functionals. As in the dual Fountain Theorem, this result ensures the existence of a
negative sequence (c;) of critical values converging to 0, as j — oo.

Finally, we would like to emphasize that, by adapting the arguments used along
the proof of the main Theorem 1.5, we are able to show a more precise version of [81,
Corollary 4.8]. On the contrary of [81, Corollary 4.8], the conclusion of our result in

Theorem 1.6 ensures that the obtained critical levels ¢, satisfy ¢, — oo as k — oo.
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From a theoretical point of view, the results obtained here complete the study made
by Szulkin in the seminal paper [81], since new minimax theorems are established.
We would like to register that the results developed in the present chapter are

referring to the article [8] due to Alves, da Silva and Molica Bisci.

1.1 Abstract theorems

Throughout this chapter, let I := ® 4+ ¥ be a Szulkin-type functional defined on
a Banach space X = (X, || - ||). The effective domain of I is defined by

D(I):={ue X : I(u) < o0},

and so, for a Szulkin-type functional I one has that D(I) = D(V). For each v € D(I),

we say that the subdifferential of I at u is the set
Ol(u) :={p e X*: (P(u),v—u)+¥(v)—V¥(u) > {(p,v—u), VoeX}. (11)

For our goals, we will need of the following definition.
Definition 1.1 Suppose that I is a Szulkin-type functional. Then

i) a point w € X s called a critical point of I if 0 € 0I(u), or more precisely,
ue D(I) and

(' (u),v —u) + VU(v) —¥(u) >0, YveX,

i1) a sequence (uy) is called a Palais-Smale sequence (briefly (PS) sequence) for I at
level c € R if I(u,) — ¢ and

(D (up), v — up) + U(v) — U(u,) > —epllv —u,l|, Voe X,
with e, — 07, or equivalently (see [81, Proposition 1.2])

(D (up), v — up) + VU (v) — U(uy) > (wp,v —uy), YveX,
where w, € X* with w, — 0 in X*;

iii) I satisfies the Palais-Smale condition (briefly (PS) condition) at level ¢ € R when
each (PS) sequence (uy,) at level ¢ has a convergent subsequence. If I verifies the

(PS) condition for all level ¢, we say simply that I satisfies the (PS) condition.
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Let us denote by ¢, K and K, respectively, the following sets
I¢:= I"'((—00,d]) for every c € R,

K :={u € X : uis a critical point of I},

and

K.:={ue K: I(u) =c}.

In order to prove the main variant of the classical Fountain Theorem given in
Theorem 1.4 below, at the beginning of this section, we recall a suitable version of the
standard deformation lemma valid for Szulkin-type functionals; see [81, Proposition
2.3]. In addition, in Lemma 1.2 an equivariant version of the aforementioned result has
been established. Finally, in the last subsection two abstract results have been proved.
More precisely, [61, Proposition 2.2] due to Heinz has been extended to Szulkin-type

functionals as well as a new version of [81, Corollary 4.8] is given in Theorem 1.6.

1.1.1 Deformation lemmas and Fountain Theorem

Hereafter, we fix G a compact group that acts isometrically on X; see the
Appendix B for a brief of group actions on Banach spaces. The subspace of invariant

elements of X is defined by

Fiz(G) :={ue X : gu=u Vg € G}.

Example 1.1 Let Id : X — X be the identity map on X and consider the usual repre-
sentation

Zs = {Id,—Id}. Standard computations ensure that the group Z, acts isometri-
cally on X.

A subset A of X is said to be G-invariant if gA = A for every g € G, where
gA = {gx : x € A}. Also, when A C X is a G-invariant set, a map v : A — X is

called equivariant map if
v(gx) = gy(x) Vr € A, Vgeq.

If a functional (not necessarily linear) ¢ defined on X satisfies p(gz) = p(z) for any

x € X and g € G, we say that ¢ is a G-invariant functional.
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Notation: I'¢(A) := {y € C(A4, X) : vis equivariant}.
By following [83, Section 3.2] and [25], the notion of admissible action is given

below.

Definition 1.2 Let Y be a finite dimensional vector space. Moreover, let us assume

that G is a compact topological group that acts diagonally on Y*, that is

gv = g(vy, ..., v) = (U1, ..., gUg),

for every v = (vy,...,vx) € Y* and each g € G. The action of G on'Y is said to
be admissible if, for each equivariant map v : OU — Y =1 where k > 2 and U is a
bounded G-invariant open set of Y* with 0 € U, there is u € OU such that y(u) = 0.

For our goals, we will consider a special condition on a decomposition of space X

with respect to action of G on X as follows:

(Go) G is a compact group that acts isometrically on
X=X
jEN

where every X; is a G-invariant subspace of X such that X; =Y, being Y a finite

dimensional vector space for which the action of G is admissible.

In our theoretical results, we need to deal with the abstract notion of Haar’s
integral on a compact group G whose the details and related notions can be found
in [72]; see the Appendix B for a short review on this subject. Fix f: G — R an
integrable function with respect to a measure u. We say that p is a left invariant

measure if
/ Flg™ y)du = / f(y)du, Vg € G, (1.2)
G G

for every f € L(G, u).

Remark 1.1 When G is a compact group, there is a left invariant positive measure |
such that u(G) = 1. Such measure is called the Normalized Haar measure. The integral
associated with p is the so called Haar’s integral. We also notice that the left invariant

Haar measure j1 can be extended for X-valued functions (see Appendiz B for further
details).
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Let 6 : X — X be a continuous map on X. By the left invariance property of p,
if n: X — X is the map given by

n(u) = /G 9B(g ™ u)dp, u € X, (1.3)

then n € I'¢(X). This fact will be useful later on.

As usual, by a deformation we mean a family of maps of the form
as:=a(s,) W CX =X, s€|0,s]

such that o = Id|w, with o € C([0, so] x W, X) and Id|y denotes the restriction of
the identity map Id on X to W.

The next result has been proved by Szulkin in [81, Proposition 2.3].

Lemma 1.1 Let I = &+ V¥ be a Szulkin-type functional for which the (PS) condition
holds and let N be a neighbourhood of K.. Then, fized ¢g > 0, there is € € (0,¢) such
that, for each compact set A C X \ N with

c <supl(u) <c+e,
ucA

there exist a closed set W, with A C int(W), and a deformation o : W — X, with
0<s<sy~0", such that

i) los() — ul <, VueW;
it) There is a number § = 6. ~ 0 such that
Ias(u) —I(u) < s+ds YueW,

and
Iag(u)) —I(u) < —3es+ds YueW, I(u) >c—e.

Moreover, by ii) it follows that
iii) I(as(u)) — I(u) <2s, Yue W,
i) I(as(u)) — I(u) < —2es, Yue W, I(u) > c—c¢;

v) supl(as(u)) — supl(u) < —2es.
ucA ucA

vi) I(as(u)) — I(u) <0, Yu € WNC, for each closed set verifying C N K = {).
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We would like to point out that i) is not contained in the statement of [81,
Proposition 2.3]. However, the sufficiently small constant 6 > 0 in i) explicitly appears

along the proof of the cited proposition.

Now, we are able to prove an equivariant version of Lemma 1.1 making use of the
next notion that involves a functional ¥ : X — (—o00,400] as well as the action of a

compact topological group G on X.

Definition 1.3 Let ¥ : X — (—o0,+00] be a functional and let G be a compact
topological group that acts on X. We say that ¥V is compatible with the action of G on
X (briefly G-compatible) if the following inequality holds

v (/Gg‘lﬁ(gwdu> S/G‘I’(g_lﬁ(gu))d% (1.4)

for every fixed u € X, f € C(Gu,X), where Gu := {gu; g € G} and p denotes the

normalized Haar measure on G.
The inequality in (1.4) is verified in some meaningful cases and some of them are
briefly discussed in the next example.

Example 1.2 By using the usual notations, let us restrict our attention to the

following cases:

1) Let ¥ = || - || : X — R be the norm defined on X. Fixed u € X and a map
B € C(Gu, X), let n € C(G, X) be given by n(g) := g~'B(gu). Next, let (3,) be

a sequence of simple functions with

/G Bulg)ds — /G n(g)dp and / 1a(9)lldp — /G In@)llde.  (15)

Each function 3, can be written as a finite sum:

B = ZXAiUi where A; :=3,'({v;}) and v € X.

Since 1 is the normalized Haar measure on G' (11(G) = 1), we have Z,u(A

a

nd
| [ o] - H?Ww < S ualal = [ 1A

for every n € N. Consequently, by using (1.5) it follows that

] = [
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H/Gglﬁ(g“WH S/GHufllﬁ(gu)H dy

So || - || is compatible with the action of G on X. In general, the result is still

that is,

true for an arbitrary convex continuous function ¥ : X — R.

2) Let us assume that G := {¢1, ..., gx} is a finite group and let ¥ : X — (—o0, 00|

be a convex functional. Since
k
> u{g}) =1,
i=1

for each u € X and € C(Gu, X) the integral /g_lﬁ(gu)du can be written as

a
a finite convex combination of vectors of X. More precisely, one has

| 8@ =3 nldab

where v; 1= g; ' B(g;u).

Then, since V¥ is convex,

k
v (/Gg '6(gu) du) (Zu {9:}) ) Z ({g:}) = /G\If(g‘lﬁ(QU))du,
i.e. ¥ is compatible with the action of G on X.

The next result (Equivariant Deformation Lemma) is a more general form of
Corollary 2.4 in [81]. This preparatory property can be also viewed as a complement

of Lemma 5.1 proved by Bereanu and Jebelean in [28].

Lemma 1.2 Let [ = ® + ¥ be a Szulkin-type functional for which the (PS) condition
holds. Assume that ® and ¥ are G-invariant functionals and ¥ is compatible with
the action of the compact topological group G on X. Moreover, suppose that G acts
isometrically on X. Under the hypothesis of Lemma 1.1, the same conclusions hold

with ag : W — X equivariant in A, whenever A is a G-invariant set.
Proof. Denote by s the deformation of Lemma 1.1 and set

as(u) ::/Gglﬂs(gu)du. (1.6)

Thanks to (1.3), we observe that o, € I'¢(A). Now, let us prove that the function as

verifies all the assumptions of Lemma 1.1. More precisely, since #ii), iv) and v) are a
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direct consequence of i), it is enough to show i) and ¢i). By Lemma 1.1, Part - ), it
follows that

ot =l = | [ a6t~ [ (o gpua
< [ Nla™ Glow = g | (17)
dp =s fi W,
S/Gsu s for every u €

i.e. ay verifies ) as claimed.
In order to prove ii) let us write Ss(u) = u + hg(u), so that as(u) = u + wy(u), where

wg(u) = / g 'hy(gu)dp. Consequently, the Taylor’s formula immediately yields
G
Ios(u)) = {®(u) + (' (u), ws(u)) + r(s)} + V(as(u), —— =os(1). (1.8)

Now, the compatibility condition of ¥ gives

(@) + (@) halgwdu+ [ Vg Bt 3. (19

o) < [

G

for s ~ 0". Moreover, since

(@' (u), g~ hs(gu)) = (P'(gu), hs(gu)),

the G-invariance of ® and the Taylor’s expansion applied to I(fs(gu)) give

Has(w) < [ (@) + (@ (gu).hulgu))dn-+ [ V(5. (g + s
¢ 5 ¢ (1.10)
— [Gutgw) = ptsdn+ 55 < [ 16,0+ 6.
G G

Here, we have used p as being the rest in the Taylor’s expansion. Finally, by Lemma

1.1, Part - i) and (1.10), it follows that

I{as(u)) < /C;I(gu)du+s+25s < I(u) + s + 24s, (1.11)

for every u € W. Similarly

I(as(u)) < I(u) — 3es + 20s, forevery weW and I(u)>c—e. (1.12)

Inequalities (1.11) and (1.12) ensure that oy satisfies i) provided that § is sufficiently

small. m
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For the sake of completeness, let us recall now the notion of homotopy. Let B be
a subset of X and f,g € C(B, X). As usual, we say that f is homotopic to g if there
is h € C(]0,1] x B, X) satisfying

h(0,) = f and h(1,:)=g. (1.13)

The map h is called a homotopy between f and g. We will write f ~ g to designate that
f is homotopic to g by an equivariant homotopy, i.e., there exists h € C([0, 1] x B, X)
satisfying (1.13) with A(t,-) € T'g(B) for any ¢t € [0,1]. It easily seen that ~ is an
equivalence relation in C'(B, X).

In what follows, for each k£ € N, we set
i) Vi =@, X; and Z; = D, X
it) By :={u€Yy; ||u|| < pr} and Ny, :={u € Zy; ||u|| = &}, with pg > r, > 0.

Finally, let us recall the Intersection Lemma proved in [83, Lemma 3.4]; see
also [25, Theorem 2| for additional comments and remarks.

Lemma 1.3 Assume that (Gy) holds. If v € C(Bg, X) NT'¢(By) and v|0By = Id|sp,,
then v(By) N Ny # 0.

We recall in the next result the classical Ekeland’s Variational Principle [53, Theorem

1] that will be useful in the sequel.

Theorem 1.3 Let (Y,d) be a complete metric space. Suppose that ¢ : Y — (—00, 0]
18 a proper lower semicontinuous functional bounded from below. Given §, T > 0 and
ug € Y such that

. _ _
info(u) < p(u) < imfp(u) +9, (1.14)

then, there exists vg € Y werifying
i) ¢(vo) < p(ug), d(vo,ug) <1/7;

it) @(v) — p(vg) > —d7d(v,v9), Vv €Y.

Now, we are ready to show a version of the classical Fountain Theorem due to

Bartsch [23] that is valid for Szulkin-type functionals.

Theorem 1.4 Let [ = &+ be a Szulkin-type functional for which the (PS) condition
holds with I(0) = 0. Assume that ® and V are G-invariant functionals with ¥
compatible with respect to the action of a compact topological group G on X. Moreover,

assume that (Gg) holds as well as
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i) ap = sup I(u) <0;
u€Yy,||lull=px
ii) by = inf  I(u) = oo,

u€Zy, |lull=rs

for every k > 2. Finally, set ¢y := inf supI(vy(u)) < oo, where
Y€O u€ By,

Ok :={y € Ta(Bk); Ylos, = Id|as,}- (1.15)

Then, the functional [ has infinitely many critical points (uy) such that
I(ug) = ¢ — 0.

Proof. Let us argue by contradiction. In such a case, we may assume that K, = ()
for some k > 2. Now, if k£ is large enough, by Lemma 1.3, one has ¢, > b, > 0. Thus,
we are in position to apply Lemma 1.1 with N = () and ey = ¢;. By fixing € € (0, ¢)

given in Lemma 1.1, we will get a contradiction. Indeed, let us define

= . cp—€ €

O = {7 € I'c(Bk); 7lon, = Id|os, in I*7 and (I o y)|op, < <C’f B §>} (1.16)
Thanks to conditions i) and i), if v € ©4 and u € 0By, we derive

I(y(w)) = I(u) §0<ck—g<ck—z

Hence O, C 6}, and

¢g = inf supI(vy(u)) < ¢. (1.17)
YEOL uEBy

If ¢ < ¢, it easily seen that there exists vy € (:)k such that

mo = sup I (7o(u)) < .
u€ By,

Moreover, by (1.16), there exists a homotopy H € C ([0, 1] x 0Bk, ]C’@_i) such that
H(0,-) =lop, and H(1,-) = Id|sp,, (1.18)

with H(t,-) equivariant for every ¢t € [0,1]. Since By is a ball of radius py each point
u € By can be represented as u = (s,4), s € [0, px], @ € OBy; polar coordinates of w.
Hence, if u € OBy then u = (pg, u). Now, define v, : B — X by

Yo(s,v) s € [0, %}

7 (s,v) = 9 (1.19)
H(—s—l,v> s € [&,pk]
Pk 2
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According to (1.18), when s = p;/2 it holds H(2s/pr — 1,-) = H(0,-) = 7, which
assures that v; is well defined and ~; € I'g(By), since vy and H (¢, ) are equivariants.

By using again (1.18), if u € 9By one has
n(u) = H(L u) = Id|yp, (u),
so that v, € Oy, and

sup I (71 (u)) < max {mo,ck — E} < ¢,
u€E By 4

against the definition of ¢;. This contradiction assures that ¢ = ¢, in (1.17).
Consequently, we can work with O, instead ©Oy.
Now, let us observe that the collection © is a (complete) metric subspace of the

complete metric space C(By, X) endowed by d(f,g) = su}g | f(w) — g(u)]|. Indeed,
uc by

suppose that v, — v in C(Bg, X) with v, € ©y. The semicontinuity of I yields

I(y(w)) < lminf I(y,(u)) < ¢ — %, u € 0By,

Moreover, the action properties give
Y(gu) = limv,(gu) = glimy,(u) Vu € By, Vg € G,

so that 4 € T'g(By). On the other hand, thanks to the continuity of ®, it is possible

to find a sequence of positive numbers 7,, = 0,(1) such that
O (ty,(u)+(1—t)y(u)) < tP(yu(w)+(1—t)P(y(u))+7, Yu € 0By, Vt € [0,1]. (1.20)

More precisely 7, := 2max{7,., 72} with

m= s (8 + (1= () - 20 w)

and

7, o= sup [ (v (u)) — P(y(u))|-

u€ By

Inequality (1.20) associated to the convexity of ¥ implies

It (u) + (1= t)y(u)) <t (ya(u)) + (1= O 1(y(w)) + 7

{ : (1.21)
SCk_§+Tn<Ck_Z VUGﬁBk, th[O,l],
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for n sufficiently large.

Thus Yulop, =~ 7|ep, via the equivariant homotopy F(t,-) = ty,(-) + (1 — t)7v(-).
Consequently v|sp, ~ Id|sp,, so that O}, is a complete metric subspace of C(By, X) as
claimed. Hence, the conclusion follows arguing as in [81, Theorem 3.2].

Now, since [ is a lower semicontinuous functional, by using [81, Lemma 3.1] and the
definition of ¢, we have that the functional ¢ : ©, — (—o0, +-00] defined by

p(7) = sup I(v(u))

u€ By,

is lower semicontinuous and bounded from below. Since Oy, is a complete metric space,
we can apply the classical Ekeland’s Variational Principle recalled in Theorem 1.3,
to the functional ¢ with § = ¢ and 7 = 1. Then, we may take v € O, such that
o(7) < ¢ + ¢, and

p(n) — p(v) > —ed(n,7) Vn € 6. (1.22)

It follows that A := ~(Bj) is a compact equivariant set with

sup I(v) = sup I(vy(u)) < ¢ + ¢,
vEA UGBk

so that A verifies all the assumptions of the equivariant deformation lemma given in
Lemma 1.2. Hence, let n := a, o v, where a4 is the equivariant deformation given
in Lemma 1.2 and let us prove that n € O, for s ~ 0*. Indeed n € I'g(By) and if
u € OBy, by #ii) and iv) in Lemma 1.1, it follows that

1(1(w)) = Hes(r (@) < 10(w) S e =5, 1) € (= e~ 5]
. (1.23)
1) < T6W) +25<a- 5, W) <a--

so that

g
(Ion)los, <k — 3

Now, since as oy can be viewed as an equivariant homotopy such that (o, o v)|on, ~

Y|op, in I3 it follows that

Mon, = (o5 07)|op, ~ Id|op, in %77,

taking into account that v|op, ~ Id|ss, -
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Finally, since n € Oy, by using i) and v) of Lemma 1.1 and (1.22), one has

—es < p(n) —»(7)

= sup [{os(y(u))) — sup I(y(u)) < —2es,

(1.24)

which is an absurd. Hence, there exists a positive integer ko such that K. # 0 for

k > ko. The proof is complete since, by construction, one clearly has ¢, > b,. =

1.1.2 Minimax results involving the G-index theory

Preceding the main results of this subsection, we introduce the notion of the
G-index that will be required in our abstract results. The reader can consult [23] for a
discussion in a more general situation. Let X be the class of subsets of (X — {0}) that
are G-invariant and closed in X. Let us assume that the condition (Gg) holds and let

Y be the vector space fixed in that condition.
Definition 1.4 The G-index of A € ¥\ {0} is defined as
v6(A) = min{k € N\ {0} : 3¢: A = Y\ {0}, ¢ € [o(A)}
if such integer exists and yg(A) := +o0 otherwise. Finally, we also set vg(0) := 0.

Remark 1.2 Note that when G = Zy the G-index introduced above coincides with
the genus of symmetric subset of (X —{0}); details and useful remarks on genus theory
can be found in [75].

Denote by C the collection of all nonempty closed and bounded subsets of X. In
C we put the Hausdorff metric dy given by

dy(A, B) = max{supd(x,B), supd(y,A)} , A,BeC(C,

z€A yEB
where d denotes the usual distance on X. It is well known that (C,dp) is a complete
metric space. Denote by D¢ the subcollection of C of all nonempty compact G-invariant
subset of X. By following the ideas in [81, Section 4] the reader is invited to note that
(D¢, dp) is a complete metric space; see also [46, Apéndice A] for related computations.

By a similar way, we notice that, setting

~dH
Ij:={A€Dg 0¢ A 1a(A) > 35},
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the reasoning made in [81] can be adapted to show that the space (I';, dg) is a complete
metric space. The next properties can be proved by using an analogous reasoning as

made in [75].
Proposition 1.1 For every A, B € X the following facts hold:
i) If there exists ¢ : A — B, ¢ € I'¢(A), then v¢(A) < va(B);
it) A C B implies that va(A) < vq(B);
iii) v6(AU B) < v6(A) +va(B);
iv) 16(A\ B) 2 16(A) = 16(B). since 16(B) < oo;
v) If G is a finite group and A is a compact set, then yg(A) < co.

vi) If A is a compact set, then we have

Y6(Ns(A)) = 16(A),

0~ 0", where
Ns(A):={zr e X : d(z,A) <d}.

Proof. The proof of i) —iv) and vi) follows using the same type of argument as made
in [75]. To see that v) holds, write G = {g1, ..., 9, } and for each x € A consider the
G-orbit Gz = {gz; g € G} = {q1z,...,gnr}. We may fix ¢ = ¢, : Gz — Y \ {0} an
equivariant continuous map (e.g., fix vo # 0 in Y and set ¢(g;z) = g;vo). Since G is
a closed and finite subset of A, we can extend ¢ to ¢ : U — Y \ {0}, with U = U,
an equivariant neighborhood of Gx, and = ['¢(U). By repeating this procedure
for each x € A, by the compactness of A it is possible to find Uy, ..., U a finite list
of equivariant closed sets and equivariant maps ¢; : U; — Y \ {0}, j € {1,....k},
A C U U;. Arguing as in [24, §2.3-§2.4], by considering an G-invariant partition of

j
unity subordinate to {U;}1<j<x, one can obtain v : A — Y*\ {0}, v € T'¢(A). So,
the item v) holds and the proof is now complete. m

Finally, in view of the preceding proposition, by following the same idea in

[81, Proposition 4.2], we can prove the property below.

Proposition 1.2 If A € T'; is such that 0 ¢ A, then vo(A) > j.
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Let A be a compact set of a real Banach space X and 6 > 0. Let us recall the
notation

Ns(A) :={zr e X : d(z,A) <d}.
The next technical result will be useful in the sequel.

Lemma 1.4 Let [ = ® + V¥ be a Szulkin-type functional for which the (PS) condition
holds. Moreover, let (cj) be a real sequence such that ¢; — ¢ € R. Then, given § > 0,
there exists jo € N such that

K., C Ny(K.),

for every 5 > 70.

Proof. Arguing by contradiction, assume that there exist a subsequence (c;,) of (¢;),

a number Jdy > 0, and a sequence (uy) with uy € K.; such that
d(uy, K.) > 69, Yk € N, (1.25)
The definition of chk immediately yields
(' (ug), v — ug) + ¥(v) — W(uy) >0, YoeX, (1.26)

as well as

I(ug) = ¢, — ¢,

so that (ug) is a (PS). sequence for the functional /. Now, the (PS) condition ensures
the existence of ug € X and a subsequence of (uy), still denoted again by (ug), such
that

up — ug in - X.

Now, taking v = ug in (1.26), we get limsup V(ug) < W(ug). The last inequality in
addition to the semicontinuity property of W gives lim W (uy) = W(ug), so that uy € K..
Hence d(ug, K.) — 0 as k — oo, against (1.25). =

The next result extends [61, Proposition 2.2] to Szulkin-type functionals.

Theorem 1.5 Let [ = &+ be a Szulkin-type functional for which the (PS) condition
holds and such that 1(0) = 0. Assume that ® and VU are G-invariant functionals with ¥
compatible with respect to the action of a compact topological group G on X . Moreover,

suppose that (Go) holds and require that the G-index satisfies the following property:

(G,) va(A) < 0o for every compact set A € 3.
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Finally, for every j € N, set

¢; = inf sup I(u)
] )
Aely yea

and assume that the following conditions are verified:
i) —oo < ¢j for every j € N;
it) Given j € N, there ezists A € ¥ such that

va(A) >3 and supl(u) <0,
u€A

where A # () is a compact set.

Then, the numbers c; are negative critical values of I and c; — 0 as j — 00.

Proof. We first notice that conditions ¢) and 4i) imply that —oco < ¢; < 0. Now, a
careful analysis of the arguments in [81, Theorem 4.3] ensures that the sequence (c;)
consists of critical values of I. In fact, the proof of [81, Theorem 4.3] only depends on
the properties i) — vi) in Proposition 1.1 with G = Z, and where v coincides with the
genus of a symmetric set as in Remark 1.2. In view of Proposition 1.1, the argument
used in [81, Theorem 4.3] can be adopted in our case. It remains to show that ¢; — 0

as j — oo. To this aim, let us observe that the definition of ¢; yields
Cj S Cj+1, VJ e N.

Arguing by contradiction, if ¢; - 0 for j — oo, there exists ¢ < 0 such that ¢; — c.
The (PS) condition ensures that K. is compact. Moreover, the assumptions on I yields
that K. is G-invariant and 0 ¢ K.. Thereby, K. € ¥ and, by following the idea of
Lemma 1.4, as ¢; — ¢ and K., # (), one has that K. # (). By vi) of Proposition 1.1
there is § > 0 such that vg(Nas(K.)) = va(K.); note that Ns(K.) # 0. By (G.), we
can assume that yg(K.) =p

A — pj(A) :=supl(u).

u€A

Clearly ¢, is lower semicontinuous functional since [ is too. Set

o := min{1,J, —c}
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and take € € (0,¢9) as in Lemma 1.1. Now, let A; € I';, be such that

2

3
Cirp S Piap(dr) < Gy + 5

Since ¢; — ¢, it follows that, for a convenient jy € N,

g2 g2
on—&—p(Al) <Cj+p+? SC‘}‘? §0j+52 <Cj+€<0,

for j > jo. Hence, by fixing j = jo, we get 0 ¢ A; and v¢(A1) > jo + p by Proposition
1.2. If we set Ag := A; \ Nos(K,) we also have

sup I(u) < sup I(u) < ¢j, + &> <0,

u€As u€Ay
so that 0 ¢ Ay and vg(A2) > (jo +p) — p = jo by Proposition 1.1, Part
- iv). Consequently A, € TI';,. Now, Theorem 1.3 applied to the function
;o © I'jy = (—00,4+00] (note that I';, is complete) yields the existence of A € I’
such that

Cjo < Sug ](u) = (Pjo(A) < Pjo (AQ) < ¢j, t &, dH(Aa A2) <e€
ue

as well as

QOjO(B> — QOjO(A> Z —€dH(A, B) VB € Fjo‘ (127)

Since Lemma 1.4 gives K., C Ns(K,) for jo = oo, by setting N = Ns(K,.) we derive
AN N = (), taking into account that ¢ < §. These informations ensure that A, N and
K., verify the hypothesis of the deformation result given in Lemma 1.1.

Thus by Lemma 1.2 the existence of an equivariant deformation «; is obtained.

In this way, if we set B := «,(A), on account of Proposition 1.1, Part - ¢), one has

B e T';,. Now, combining the properties of c; with (1.27) we derive the contradiction
—2es > p(B) — ¢(A) > —es.
This completes the proof. m

Remark 1.3 We emphasize that if G is finite, condition (G,.) in Theorem 1.5

automatically holds; see Proposition 1.1-v).

The last result can be viewed as a complement of Corollary 4.8 proved by Szulkin

in [81].
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Theorem 1.6 Let [ = &+ be a Szulkin-type functional for which the (PS) condition
holds and such that I(0) = 0. Assume that ® and ¥ are G-invariant functionals with WU
compatible with respect to the action of a compact topological group G on X. Moreover,
suppose that (Gg) holds and require that the G-index satisfies (Gy).

Finally, assume that there exist subspaces Y,Z of X such that X =Y & Z,
dimY < oo, Z s closed and

i) There are numbers r,p > 0 such that I|sp, o)z = p;

i1) For each positive integer k there is a k-dimensional subspace Xy of X such that
I(u) = —o0 as |Ju|| = co with u € Xj.

Then I has infinitely many critical values. Furthermore, if I~ has no critical points
for some ¢y > 0, then there exists a sequence (c;) of critical values of I with ¢; — oo

as j — oo.

In order to prove Theorem 1.6 some notations are introduced. To this aim, let us
fix ¢g > 0 such that =% has no critical points and set M}, := B, (0) N X} with Ry > r

and [|spp, < —co. Now, let us define the following sets
F :={n € Ta(My); nlom, = Id|om, in I~ by an equivariant homotopy},

for each j € N and k > 7,
n(M\U) :n € F, Uis G-invariant and open in My, U N OM,, = 0,
withyg(W) <k —j forW e X, W C U.
and
[\j = U ]\f
k>j
Finally, for each j € N, we fix

Aj:={A C X : Ais compact, G-invariant and for each openU D A, there is A € Aj, Ay C U}

and

cj = Alg/{j 316112 I(u).

By applying the same arguments used in [81, Theorem 4.4, Lemma 4.6] we can
prove that A; verifies the properties i) —v) below (note that, in view of the Proposition

1.1, the arguments in [81, Theorem 4.4] can be applied to the G-index ~¢).

Lemma 1.5 The sets A; defined above satisfy the following claims:
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i) (Aj,dy) is a complete metric space;
it) ¢; > p, for all j > dimY’;
i) Ajyr C Ay

iv) Let A € A; and W be a closed G-invariant set containing A in its interior.

Moreover, if a: W — X is an equivariant mapping such that

alwnr—co & Id|ynr—eo
by an equivariant homotopy, then a(A) € A;;

v) For each compact B with B € ¥, va(B) < p, I|p > —cqy, there ezists a number
do > 0 such that A\ int(Ns(B)) € A;, for A€ Ajip, 0 € (0,6).

Part - v) in Lemma 1.5 is different with respect to the statement of [81, Lemma 4.6].
However, the main assertion is a direct consequence of the arguments proved there.

Proof of Theorem 1.6. The first part of the proof can be derived by using similar
arguments given in [81, Corollary 4.8]. Hence, it remains to show that ¢; — oo as

j — oo. Now, by Lemma 1.5, Part - i), it follows that
@] < Cit+1 VJ e N.

Thus, if ¢; -+ oo, by ii) of last lemma, there exists ¢ > 0 such that ¢; — ¢. Arguing
as in the proof of Theorem 1.5, we deduce that K, is a compact G-invariant set with
0 ¢ K. and K., # (). Hence, for a convenient § > 0, by condition (G,), one has
Yo(Nos(K.)) = va(K.) =: p € N. Now, set o := min{l, 6}, take ¢ € (0,g9) as in

Lemma 1.1 and define

®j A] — (—OO,+OO]
A +— @(A) :=supl(u).

uceA

Clearly ¢; is a lower semicontinuous functional that is bounded from below for every

j € N. Hence, let A; € Aj;, be such that

2

13
%w@ﬁ<%w+§-

Consequently, for some j5 € N,

Soj—i-p(Al) < ¢4 + ¢,
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for j > jo. Now, if Ay := A; \ int(Nays(K,)), by Part - v) of Lemma 1.5 we have
Ay € Ay and @j,(Az) < ¢j,(A1). Moreover, by Theorem 1.3, there exists A € Aj, such
that

Pio(A) < pjo(A2) <¢jo+e du(A Az) <e

as well as

SOjO(B> - Spjo(A) > _gdH(B7A> VB € Aj()‘ (128)

If we set N := Ns(K.), Lemma 1.4 implies that K., C N if jo =~ co. The definition of
g0 vields ANN = () and

cj, <sup(u) < cj, +e.
ucA

Then, we can apply Lemma 1.2 to obtain an equivariant deformation a,. If we set
B := a4(A), by Part - vi) of Lemma 1.1 and Part - iv) of Lemma 1.5, one has B € Aj,.
Finally, a contradiction is achieved by replacing B in (1.28) and arguing as in the proof

of Theorem 1.5. m
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1.2 Some Applications to elliptic problems

In this section we illustrate how the abstract results of the previous section can
be applied to establish the existence of infinitely many solutions for some classes of

elliptic problems.

1.2.1 A logarithmic variational inclusion problem

We start this subsection by recalling some concepts related to the critical point
theory for locally Lipschitz functions required in the sequel. Additional comments and
remarks about this subject can be found in the Appendix A (we also refer the texts
in [34,36,40,41,71]).

Let ¢ € C(X,R) be a locally Lipschitz function (briefly ¢ € Lip,,.(X,R)). The
generalized directional derivative of ¢ at u along the direction v € X is defined by

t _
©°(u;v) == limsup plw + tv) go(w).

w—su, t—0F t

The generalized gradient of the function ¢ € Lip,,.(X,R) in w is the set
Op(u) ={¢ € X" : p°(u;0) = (¢, v), Vv e X}.

By a critical point of ¢ € Lip,,.(X,R), we mean a point u € X is if 0 € dp(u). If, in
addition, the functional ¢ € Lip,.(X,R) is convex, then the generalized gradient of ¢

at u is given by
Oo(u) :={p € X" : p(v) —p(u) > (p,v —u),Yv e X}, (1.29)

i.e., the set dp(u) coincides with the subdifferential of ¢ at u in the sense of the convex
analysis.
In this subsection we study the existence of infinitely many solutions for the

logarithmic inclusion problem

—Au+u+0G(z,u) > ulogu?, in RY
(P1)
u € H'(RY),

t
where G(z,t) = /g(x, s)ds is a convex locally Lipschitz function with G(x,-) > 0

0
for every x € RY. The notation OG(x,t) designates the generalized gradient of G with

respect to the variable ¢.
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We also require that the nonlinear term ¢ is a N-measurable function that satisfies

the following technical conditions:

(f1) There is a nonnegative and radial function h € L'(RY) N L>(RY) such that

|f(z,t)] < h(z)|t|, Vo € RY and VteR.

(f2) glx,—t) = —g(x,t) and f(|z|,t) = g(x,t) for all z € RY and t € R.
(f3) There is C' > 0 such that for any 1, € 0G(z,t) it holds
G(z,u) — %ntt > —Ch(z), ae z€RY VteR.
Example 1.7 (A function satisfying (f1) — (f3)) : Consider
Glat) = h(:z:)/otH(|s| ~ a)sds,
where a > 0, h € L*(RY) N L>=(RY) is nonnegative and radial and H is the Heaviside

function, i.e.,
0, t<0
H(t) =
1, t>0.

In this case, we notice that

({s}  Isl>a

oGty = h(m) 4 0O 5=
0, a] s =a,

{0} Is| < a.

Direct computations ensure that (f;) — (f3) are verified.

Now, consider the energy functional associated to problem (P;) given by

I(u) = %/RN(WuF + ul?) + /RN Gz, u) — /RN L(u), ue HY(RY),

where
2 t?logt?
L{t) = —5+—— Viek

Hereafter, we make use of the approach given in [10,11,62] to decompose I as

a sum of a C! functional and a convex lower semicontinuous functional. To this aim,
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fixed 0 > 0 sufficiently small, we set

(

0 5s=0
1
Fi(s) := 4 —55210g32 0<|s]<d
1, ) 52
—55 (log 6% + 3) + 26|s| — ) |s| > 6
and
0 s=10
Fg(S) = 1 52 3 62
——s%log [ = | + 20]s| — =% — — >
55 log (52) + 24]s| 55~ 3 |s|] >4

for every s € R. Therefore
1
Fy(s) — Fi(s) = 552 logs® Vs € R,

and

1

I(u) = —Hu\|2+/ G(z,u) —i—/ Fi(u) —/ Fy(u) ue HY(RY), (1.30)

2 RN RN RN

where | - || denotes the norm in H'(RY) induced by the inner product given by
(u,v) := / (Vu - Vo + 2uv), Yu,v € H'(RY).
RN

According to [10, Section 2| and [62, Section 2| the functions F} and Fy satisfy the

following conditions:

(A;) Fyis an even function with Fj(s)s > 0 and F; > 0. Moreover F; € C'(R,R) and

convex provided that § ~ 0T;
(Ap) Fy € CY(R,R) and for each p € (2,2*), there exists C' = C}, > 0 such that

|F5(s)] < Cs]P~! Vs € R.

Now, by (A1) and (As), it is easily seen that I is a Szulkin-type functional with

®u) = gl ~ [ Faw

and

U(u) = /RN Fi(u) +/RN G(z,u).

We notice that ¥ = ¥, 4+ ¥y, where

U, (u) = /RNFl(u) and Wy(u) = /RNG@,U).

Direct arguments and [10, Lemma 2.1] ensure the validity of the next result.
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Lemma 1.6 Let U, : HY(RY) — (—o00, +00] be the functional defined above. Then
i) D(I) = D(Wy), that is I(u) < oo if and only if ¥y(u) < oco.

it) Let Q C RY be a bounded domain with reqular boundary. Then the functional

Ty (u) :/QFl(u) (1.31)
belongs to C*(H' (), R).

Moreover, according to [36], the structural conditions on the function G assure

that the functional ¥, : H'(RY) — R is convex and lower semicontinuous as well as
\1/2 € Liploc(‘Hl (RN)J R)

From now on, for each u € H'(R"), let us consider the functional ¥ defined by

(0" 0) = /R Fi(w, Vo€ CF(RN), (1.32)

If

il == sup (¢}, v) < o0,
veCEe (RN, [lv]|<1

then % can be extended to a continuous linear functional on H!(RY).

Moreover, if I : H'(RY) — (—o0, +00] denotes the functional given by

)= ghelP + [ R = [ R

then I is a Szulkin-type functional and I = I + U,.
By [10, Lemma 2.2 and Corollary 2.1] the following lemma holds.

Lemma 1.7 If u € D(I) and ||p}| < oo then there is a unique functional in O1(u),
denoted by I'(u), such that

I'(u)(v) = (@' (u),v) —i—/ Fl(u)v Yv € C°(RY). (1.33)

RN

Furthermore, F}(u)u € L*(RY), and

I'(u)(u) = /RN(|Vu\2 + |ul?) — /RN u? log u?, (1.34)

as well as

I(u) — 1f’(u)(u) = E/RN |u|?. (1.35)
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Remark 1.4 Lemma 1.7 remains valid if we take J := I ] HL (RN)- Indeed, the
arguments used in [10, Lemma 2.2 and of Corollary 2.1] can be adapted to the radial

space H! ,(RY) by taking {©¥*} C H ,(RY) and

rad
(@t v) = / Flwo v € Cgog(RY).
RN

The notion of solution for problem (P;) requires some comments. To this aim, let us

define the functions

g(x,t) = liﬂt)lessinf{g(:c, s):|s—t| <r} (1.36)

and

g(z,t) = lig)lesssup{g(x,s) Ds —t] < r}. (1.37)
t
According to [36, Section 2] if G(x,t) = / g(x,s)ds, then
0

0G(z,t) = [g(x,t),g(x,t)].

The above remark makes sense to the following notion.

Definition 1.5 A function v € H'(RY) is said to be a solution of (Py) if u*logu® €
LY(RY) and there exists p € L*(RY) such that

p(z) € [g(x, u(@)), g(z,u(@)]  aein RY

and

/ (Vu-Vo+up) + / po = / ulogu?p, Yo € C°(RMY). (1.38)
RN RN RN
A proof of the next technical result can be found in [16, Lemma 4.1].

Lemma 1.8 The functions g andg are N-measurable functions, ¥y € Lipy,.(L*(RY), R)

and
OV (u) C 0G (2, u) = [g(z,u(z)), g(x, u(x))], (1.39)

for every u € L*(RN).

The inclusion in (1.39) has the following meaning: for each n € 0Ws(u) there is
a function 77 € L*(RY) such that

) o) = [ v o Y

ii) 7(z) € [g(z,u(x)),g(z,u(x))] a.e. in RY.
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Our next step is to prove that the critical points of I in the sense given in

Definition A.1 are solutions of (P).

Lemma 1.9 Ewvery critical point of the functional I is a solution of (Py).

Proof. Suppose that uw € D([) is a critical point of I, that is

/ (Vu-V(v—u)+2u(v—u))+ / (G(x,v) — G(x,u))
RN Y (1.40)

> [ e =w- [ (Re)-Fw).

for every v € H'(RY). The last sentence means that the functional —®’(u) belongs to

0¥ (u). Hence, by choosing v = u + t¢, t > 0, ¢ € C°(RY), we find

RN

| 1(Gutt0) = Gaa)+ [ R+ 0) = Rw) > (¥w,0). (14

which is equivalent to

%[‘1/2(14 +tg) — Wo(u)] +/ %(Fl(u +tp) — Fi(u)) > (='(u), $). (1.42)

RN
As Uy is convex, when ¢t — 07, the Lemmas A.4 and 1.6 imply that

W0,0)+ [ Fi(wo > (~¥/u).0). (1.43)
Replacing ¢ with —¢ in (C.3) and by using Lemma A.4 it follows that

Wi, ~6) — @').0) = [ Fw (1.44)

Then, according to the notation introduced in (1.32), one has

\Ij;(uv _¢) - <(DI(’U,), ¢> > <8011L7 ¢> (145)
The following claim will be crucial in the rest of the proof.

Claim 1.1 sup U3 (u, ¢) < o0.
PECE (RN), [|¢]<1

Indeed, by Lemma 1.8, for each ¢ € C5°(RY) with ||¢]| < 1, there is 7, € L*(RY) such

that 7y(z) € [g(z, u(2)), g(, u(x))] and

¥i0,0) = [ o
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Now, by (f1), there exists a constant C' := C(u, h) > 0, independent of ¢, such that

/ w\ < Cllg).
RN

The above inequality ensures our assertion.

Now, Claim 1.1 in addition to inequality (1.45) ensures that

sup (g1, ) < 0.
902 (RY), |¢]|<1

Consequently, the classical Hahn-Banach’s extension theorem ensures that the
functional ; admits an extension, still denoted by ¢1, to a continuous linear functional
on H'(RY). Moreover, Lemma A.1, inequality (C.3) and the density of C°(RY) in
HY(RY) yield

(=@ (u) — ¥, v) < VS(u,v) Yo e H' (RY), (1.46)
that is,

—0'(u) — p} € 0Vs(u). (1.47)

Thus, there exists ¢y € 0Ws(u) such that —®'(u) — ¢} = ¢o. Now, by Lemma 1.8,
there exists p € L*(RY) such that p(x) € [g(z, u(z)), gz, u(z))] a.e. in RN and

<S027U> = / P, Vv € Hl(RN)
RN
Hence

(= (u),v) = (p¥,v) —|—/ pv Yo € HY(RY).

RN
Taking v = ¢ € Cg°(RY) in the above equation, one has

/RN po+ /RN F(u)g = (='(u),¢) Vo€ G5 (RY), (1.48)

which completes the proof. m

Next, we cite an important result due to Kobayashi—@tani that generalizes the
Principle of Symmetric Criticality due to Palais (see [83, Theorem 1.28]) and it is a
key point in the arguments used in the sequel.
Theorem 1.8 Let X be a reflexive Banach space and let G be a compact topological
group that acts isometrically on X. If I = & + WV is a Szulkin-type functional with ®

and ¥ being G-invariant, then
0€d(llz)(u) = 0€dl(u), (1.49)

for any u € Z := Fiz(G).



1.2. Some Applications to elliptic problems 42

An exhaustive proof of Theorem 1.8 is given in [64, Theorem 3.16].

The main result of this subsection reads as follows.

Theorem 1.9 The functional I has a sequence of critical points (u,) such that
I(u,) — o0 as n — oo. Hence, the problem (Pi) has infinitely many nontrivial

solutions.

The proof of Theorem 1.9 is divided into several preliminary results. To this goal,
let O(N) be the orthogonal group in RY. So, by using a standard change of variable,
it is easy to check that the functional I is O(N)-invariant. Moreover, the space of
invariant elements of H'(RY) under the natural action of O(N) coincides with the
subspace H! ,(R") of radial functions of H*(RY). The classical Symmetric Criticality
Principle recalled in Theorem 1.8 ensures that the critical points of J := I| HL (RV)
are also critical points of the functional /. We notice that Theorem 1.9 can be proved
by using Theorem 1.4 due to the Zs-invariant of the even functional J; see Example
1.1 for related topics. A key ingredient along the proof of Theorem 1.9 is the Sobolev
compact embedding

Hl

rad

(RY) — LP(RY), Vpe (2,2). (1.50)

See [83, Corollary 1.26] for additional comments and remarks.

Let us prove the following technical result.

Lemma 1.10 Let (u,) be a (PS) sequence for the functional J at a level ¢ and let
o = Q" as in (1.32). Then, Hgogn)H < oo for any n € N and there is a unique
wy, € 0J(uy,), which will be denoted by J'(uy,), such that:

i) For some o 0Vsy(uy,) one has

T (un)(®) = (957, 0) + (", 0) + (¥'(un),v), Vo € H;

rad(RN)‘
1) J (up)ty = 0p(1)||un|| with

I (un) (tn) < U (U, up) —i—/ Fl(up)un + (9 (uy,), u,), ¥n € N.

RN

Proof. Let (u,) be a (PS) for the functional J. Then

\Ifz(v)—\Ifg(un)+/RN(F1(v)—F1(un)) > (= (uy), v—"1up)+(wn, v—1y,), vE H-(RY),
(1.51)
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with w, € (HLq(RY)), and w,, = 0. Set ¢ € C5%,q(RY), and take v := u, + t¢, with
t > 0. By Lemma A .4 it follows that
\I](é(una ¢) + /N Fll(un)¢ Z <—(I)/(Un>, ¢> + <wn7 ¢> v¢ S g,orad<RN)7 (152)
R
as t — 0. Since

() gy = / Fl(un)é & € Coma(RY),
RN

arguing as in the proof of Lemma 1.9, one has

sup (o™ ¢) < 0. (1.53)
PECE,,a(RY), [|0]|<1

Therefore, the functional ¢} can be extended to the whole H. ;(R™). By using (1.52),

again as in Lemma 1.9, we get
—® (u,) — o\ + w, € Oy (uy). (1.54)
Consequently, by setting J'(u,) := w,, one has
T (un) = 05" + 0" + &' (un), (1.55)

for some gogn) € 0Vs(uy). Hence part i) has been proved. In order to show part i), let

us observe that
Jl(“ﬂ)(“ﬂ) = <wnvun> = 0n<1)”unH7

as J'(u,) — 0. Hence, by choosing v := u,, + tu, in (1.51), we have

J (un) (uy) < %[\IJQ(UH + tu,) — Wa(u,)] + /]RN %[Fl(un +tuy) — Fi(up)] + (D (un), up).
(1.56)

Since Fi is convex, the map

Fy(un + tu,) — F
t—s l(u”+u:) l(un), t>0

is monotone and
Fy(uy, + tuy,) — Fi(uy,)
t

as t — 07. Now, Lemma 1.7 and (1.53) yields F}(u,)u, € L'(RY) and

[ At R [,
RN t RN

— F (tp)tn,
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by using the classical Lebesgue’s Dominated Convergence Theorem. In conclusion, as

t — 01in (1.56), by Lemma A 4, it follows that

NwM&S%%ww+/FWMW+@M&w»

RN
This completes the proof. m
A consequence of Lemma 1.10 is the following result that will be useful in order

to prove that any (PS) sequence for the functional J is bounded; see Lemma 1.12.

Lemma 1.11 Let (u,,) be a (PS) sequence for the functional J at level c. Then
/RN un|> < M + 0, (1)||tin]|, m>ng (1.57)
for some M > 0 and ny € N.
Proof. Since J(u,) — ¢, there is ny € N such that
J(u,) <c+1, n>ny. (1.58)
By setting J = lerlad(RN), ie.

T =+ [ R = [ P we BL®Y),

we can write J = J + \IIQIHrlmd(RN). By Lemmas 1.7 and 1.10 Part - i), one has
T () (un) < ' () (1) + W5 (10, 1)

as well as

Hw) = 57w w) 2 5 [

[l + (\pg(un) - %\I’g(un,un)) | (1.59)

Now, gathering J'(u, )u, = 0,(1)||u,| with (1.58) and (1.59), we get
1 , 1.
c+ 1+ o0,(D|un| > = lun|” + | Valuy) — =V (up, uy) |, VY > ny.
2 Jen 2

In order to finish the proof, it is enough to show that there is M > 0 (independent of
n) such that
1
<\I/2(un) - illfg(un,un)) >—-M, VneN. (1.60)

Bearing in mind the above computations, we employ Lemma 1.8 to obtain

1. 1 i
Uy (uy,) — 5\1’2(un,un> = - G(z,u,) — 5 /]RN 7]( )un,
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where n™ € L2(RY) and n™(z) € [g(z,un(2)),g(x, un(x))] a.e. in RY. Finally, the

condition (f3) yields

1
G(z,uy,) — —/ n™u, > —C h(xz) > —M,
RN 2 RN RN

for some M = Mj;, > 0. This completes the proof. m
Let us recall now the so-called logarithmic Sobolev inequality proved in [10, p. 144], as
well as [62, Sentence (2.4)] and the references therein. More precisely, for each b > 0,
one has
’1 2<ﬁv2 1 5 — N(1+logb))|ull3 1.61
ot S —[Vullz + (log [Jullz — N(1 +log b)) ull; (1.61)
for every u € HY(RY).

An immediate consequence of (1.61) is given below.

Corollary 1.1 There is C' > 0 such that
1
[ a1og < IVl + Cllog [ull) + 1)l
for every u € H'(RY).

The following results involve the notion of (PS) condition and will be proved as

consequences of Corollary 1.1.

Lemma 1.12 If (u,) is a (PS) sequence for the functional J at level ¢ € R, then (uy,)

1s bounded.

Proof. By Lemma 1.11 and Corollary 1.1, for each r € (0, 1) there is C; > 0 such that

1 1
5 [ utlogud < Gllul? + Calt + a4
RN

Since J(u,) — ¢, there is ny € N such that

1 1
c—i—lZJ(un)z—HunHQ——/ u?logu?, n > ne.
2 2 Jon

Then
1
C+1ZZWMV—CNLHWN”U,

for every n > ng. The proof is complete. m

Lemma 1.13 The functional J satisfies the (PS) condition.
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Proof. Let (u,) be a (PS) sequence for J at level ¢. By Lemma 1.12, the sequence
(uy) is bounded. Consequently, the embedding (1.50) yields

i) up, — ug in HL (RY);
it) u, — uy € LP(RY) with p € (2,2%);
i11) ||un|| = M and u,(z) — ug(z) a.e. in RV,
As (u,) is a (PS) sequence, we have that

(R™),
(1.62)

with g, — 07. If we take v := ug in (1.62), the boundedness of (u,) and the subcritical

rad

(U, 0 — typ) + U(0) — U(uy,) > —en||v — uy| —i—/ Fy(u,)(v —u,), Yv€ H.
RN

growth of Fy immediately give
(U, g — Up) + VU(ug) — U(u,) > o,(1). (1.63)

Hence, the lower semicontinuity property of ¥ combined with inequality (1.63) leads
to
[ uol* > Tim [Juy|* = M?, (1.64)

on account of 4),4i) and #4). In conclusion u, — ug in HL ;(RY). m
In order to prove that J satisfies the hypotheses of the Fountain Theorem 1.4,

a suitable splitting of the Sobolev space H! (RY) is necessary. To this aim, we first

rad
observe that by [67, Proposition 1.a.9 and Section 1.b, p. 8] and [62, Section 5] the
next property holds.

Lemma 1.14 Let A be a dense subset of HY(RY), then H'(RY) has an orthonormal

hilbertian basis that is constituted by elements of A.

Thanks to Lemma 1.14 the following result holds.

Corollary 1.2 The space H'(RY) has an orthonormal hilbertian basis constituted by
elements of Cg°(RY). Consequently, there exists a sequence (vj) C C°(RY) such that

HY(RY) = @Xj with  X; = span{v,}, (1.65)
jEN
and (v;,v;) =0, for every i # j.
Moreover, the same conclusion holds if we replace H'(RY) and C{°(RY) by
H4(RY) and C§°.,q(RY) respectively.
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From now on, let us consider

H.y(RY) =P X, (1.66)
JEN
and set .
Vi=@X; aswellas Z,:=HX;, (1.67)
j=1 j=k

for every k € N.

Since the action of Zy on H.

(RY) satisfies (Gp) with X; 2 R =: V we only need
to prove that the functional J satisfies the Parts - ) and ) of Theorem 1.4.

To this aim, let us briefly recall the next fact.
Lemma 1.15 Let ), defined by

Boi= sup |ull, (1.68)

’U,EZ]C,H’U/H:l

Then (B, — 0.

See [83, Lemma 3.8] as well as the proof of Proposition 3.7 in [62] for additional
comments and remarks.
Taking into account Lemma 1.15, we are able to prove that the functional J

satisfies the Fountain geometry.
Lemma 1.16 The functional J verifies

i) sup  J(u) <0;

uEYs,|lull=ps

i7) inf  J(u) = 0.
UEZ,||ul|=rs

Proof. We first recall that

J(u) = %HUHZ -+ /RN G(z,u) + /RN Fi(u) — /RN Fy(u), Yu e H. (RY).

Part - 7) By (f1) one has

|G(z,5)] < Bls|*, Vo € RY and Vs € R,

for some constant B > 0. Now, by definition, since Y, C Cg%,q(RY) it follows that
Y, € D(J) for each k € N. Hence

1 1
T < Sl + Blulg - 5 [ log, (169
2 2]RN
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for every u € Y.

If we take v := HU—H for u # 0, it follows that
u
) < P (148~ [ toxte?ul?))
RN

(1.70)

N N~

ol (148~ [ toge? —tos(ul?) [ 12,
RN RN

for every u € Y;. As dimY, < oo, all the norms on Y, are equivalent. Hence, if

|lu|| = pr = oo, one gets

1+ B— / v?logv? — log(||u|\2)/ v? < 0.
RN RN

Then
sup  J(u) <0,

u€Yy,||lull=pr
so that 7) is verified.

Part - i) By (Ag) for every s € R,
|F2<8)| < C|S’p7 pE (272*)7
for some C' > 0. Hence
Lo Lo P p
Jw) 2 gllull® = | Fo(u) 2 gllull® = B Cllull”,
RN
for every u € Zj. Moreover, by Lemma 1.15 one has £, — 0. Then, by choosing
1
Ty = (pC/B]Ig)> 2_p7

it follows that r, — oo and

In conclusion

inf  J(u) >0,

UEZ, [[uf|=ry
for k sufficiently large. m
Conclusion of the proof of Theorem 1.9. First of all, we emphasize that, for every
k € N, the minimax levels

= inf J
Ch %@iﬁ(ﬂW)
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are finite. Indeed, if we take 4 := Id|p,, by using the classical inequality
[t?logt?| < C(|t| + |t|P), p>2 and VteR,
we infer that there exists C; > 0 such that
J(7(w)) < |J(u)] < %HUH2 + Bllullz + Cr(llully + [|ull}), (1.71)

for every u € By C Yj. The equivalence of the norms in Y} in addition to (1.71)
guarantee that

cp = inf sup J(y(u)) < sup J(F(u)) < 0.
Y€OK uE By u€By

Finally, we would like to point out that if u € H'(RY) is a critical point of I, then
there exists p € L*(RY) with

ple) € lgla,u(x)),G(z,u(z))] ae. in RY,

such that

/ (Vu - Vo + ug) +/ p(x)o = / u?logup, Vo € C°(RY).
RN RN RN

Therefore, by elliptic regularity theory, there is r > 1 such that u € H*(RY )ﬂVVli’CT(RN )

and

—Au+u+ p(z) = ulogu® a.e. in RY,
In conclusion

Au —u +ulogu? € [g(z,u(z)),g(x,u(x))] a.e. in RY.

1.2.2 A concave perturbation of logarithmic equation

In this subsection we study the existence of solutions for the following class of

problems

—Au+u = ulogu® + Ma(z)|u|? ?u, in RY,
(£,)
u € H'(RY),
where )\ is a positive parameter, ¢ € (1,2) and h : RY — R is chosen as in the

condition (f;) above. By using the same notations of the previous subsection, the

energy functional associated to (P) is given by

I (u) ::1|yuy|2+/RN Fl(u)—/RN Fg(u)—é/RN h(@)ul?, Yue HYRY). (1.72)

2 q
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Note that I, is a Szulkin-type functional, with I)(u) = ®(u) + ¥(u), where

1 A
o) i= gl = [ R =2 [ bl

and

U(u) = /RN i (u).

In the sequel, we say that a function v € H'(RY) is a solution of (P) if
u?logu® € LY(RY) and

/ (VuVo + ug) = / (ulog u®¢ 4+ Mh(z)|u|"?ug), Vo € C(RY). (1.73)
RN RN

By Part - i) of Lemma 1.6 it is possible to see that any critical point of the
Szulkin-type functional Iy is a solution of (P); see also [10, Lemma 2.1]. Moreover, if
Iy =1, HL (RN again by Theorem 1.8, the critical points of J, are also critical points
of the functional 7.

The main result this subsection reads as follows.

Theorem 1.10 There exists A\g > 0 such that, for X € (0, ), the functional J\ has
infinitely many critical points (uy,) with Jy(u,) — 0 as n — oco. Hence, for XA € (0, \g),

the problem (Py) has infinitely many nontrivial solutions.

In order to prove Theorem 1.10, let us introduce a modified functional J, which
will be crucial in our approach. However, let us start by proving the following technical

result.
Proposition 1.3 If A\ = 0", then there is a function
g(t) :== %ﬁ — BtP — COXtY, t >0,
with p € (2,2%) and B,C > 0, that attains a nonnegative maximum and

Ja(u) > g(lull), Vue H'(RY).
Proof. Since F; > 0, we have that, for every u € H'(RY)

) 23l = [ B =2 [ wiar

R
1
> S llull* = Cullull” = ACaull®

= g([[ul),
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for some C; = C(p) > 0 and Cy = C(h,q) > 0. Here, we have chosen ¢(t) :=

1

2t2 — C1t? — X\Cyt. Moreover, if A ~ 0" it is clearly seen that the function g attains a

nonnegative maximum. =

Now, fix Ry, R; and R, positive constants satisfying:

(91) 9ljo,ro) < 0 and g(Ry) = 0;

(92) 9liRro,Ra) = 0, 9l[Raoo) < 0 and g(Ry) = 0, where Ry < Ry < Ry and Ry is the

point in which ¢ attains its maximum value; note that g(t) — —oo, as t — oc.
Moreover, take n € C*°(]0, 00)) such that the following condition holds:

(m1) m is a nonnegative and non-increasing function such that
Norg =1 and  N|igye0) = 0.

Set p(u) := n(||lu||). Arguing as in [74], let us consider the energy functional
. I A )
D(w) = gllullP + | Fu) =) [ Fyu) == | k)l (1.74)
RN RN q

for every u € H. ,(RY).

Lemma 1.17 Let J, be the functional given in (1.74). Then, the following facts hold:
i) Jx € (Hy) with Jy, = &5 + ¥ and ¥ = Ul @y
i) If Jy(u) < 0 then ||ul| < Ry and Jy(u) = Jy(u);

iii) Let (uy) be a (PS), sequence for Jy with ¢ < 0 then (u,) is a (PS), sequence for
I

iv) Ifu € Br,(0) is a critical point of Jy then u is a critical point of J,.

Proof. Part - i) immediately follows by (1;) and the definition of .J,. Moreover, if
A~ 0T then
1
q(t) == 5752 — AOyt? >0

for every t > Ry and Jy(||u|]) > §(||u|]). Hence, Part - i) holds. The rest of the proof
is an easy consequence of i) and ii). ®

By using the above notations and results we are able to prove Theorem 1.10.



1.2. Some Applications to elliptic problems 52

Proof of Theorem 1.10. - By Lemma 1.17 it is sufficient to show that J, has a
sequence of critical points (u,) with u, € Bg,(0) for every n € N. This will be done by
showing that .J, satisfies the hypotheses of Theorem 1.5. To this aim, we first notice
that .J, is even and J,(0) = 0. Therefore, we can apply Theorem 1.5 with G = Z,. In
this way, 7¢ = v is the genus of a symmetric closed set; see Remark 1.2. Moreover,
Jy is a coercive functional and consequently any (PS)_ sequence for Jy is bounded. If
(u,) is a (PS), sequence for Jy, with ¢ < 0, then Lemma 1.17 ensures that (u,) is
also a (PS), sequence for Jy. Finally, arguing as in Lemma 1.13, it easily seen that J\
satisfies the (PS), condition for ¢ < 0. It remains to show that Jy satisfies i) and i) of
Theorem 1.5.

Part - i) Since J) satisfies
Ja(w) = g(llull)  Vu € H'(RY)

and Jy(u) > 0 for every |lu|| > R,, we conclude that .J, is bounded from below.
Consequently

¢; = inf sup Jy(u) > —oo.
! A€l yeA

Part - i7) For each k € N, let us consider Yj, and Z; as in (1.67). In this case

dimY}, < oo and Yy C C°(RY). Bearing in mind that
Fi(u) < oo, Yu € Yy,

we infer that Y;, C D(j,\) for any k € N. As Jy = Jy in Bg,, one has

- 1 1 A
Taw) = Sl ~ / Julog? =2 / h(@)ulr

Moreover, if § ~ 0"
[t log #*] < CL(t*7° + [¢**°), VteR,
for some C; = C}(9) > 0. Consequently
7 L 2-5 245y A
Sa(u) < Sllull”+C [ (a7 + [ul) = = [ h(z)[ulf,
2 RN q JrN

for every u € Bg,. Now, if u € Y, then u € L"(R") for every r € [1,2). Since all the

norms on Yj are equivalent, one has

~ 1 B
Ia(u) < Sllul® + Colllul*™ + [[ul***) = Clull® (1.75)
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for some constant Cy > 0. Now, for each k € N, fix A := S,(0)NY}, with p ~ 0". Then
A is a closed and symmetric set with v(A) = k. By choosing ¢ such that 2 —§ > ¢, on
account of (1.75), it follows that

sup Jy(u) < 0.

u€A

The proof is now complete. m

1.2.3 A problem involving the 1-Laplacian operator with

subcritical growth

In this subsection we study the existence of infinitely many solutions for the

following problem

—Aju = |[ufP"u, in Q,
(Ps)
ulag =0, on 01,

where Q@ C RY (with N > 2) is a bounded domain with smooth boundary 9 and
p € (1,1*). In order to simplify the notation, we set ¢ :=p/(p — 1).

Several classes of problem involving the 1-Laplacian operator in a similar
configuration of (P3) have been studied in last years. Here we refer [17,57,58].

From now on we denote by M(Q,RY) (briefly M(Q)) the space of the vector
Radon measures on 2 and by BV (2) the space of the functions u : 2 — R of bounded
variation, i.e.,

BV(Q) :={ue L'(Q): Due M)},
where Du denotes the distributional derivative of v € L'(2). It is well known that

u € BV(Q) if, and only if, v € L'(Q) and
/ | Du| = sup {/ udive : ¢ € C5(Q,RY), and [|¢]|e < 1)} < +o00.
) Q
Moreover BV (£2) is a Banach space endowed by the norm

[ull v ZZ/IDUH/ uldHY
Q o0

where, as usual, HV~! denotes the (N — 1)-dimensional Hausdorff measure. We also

recall that the continuous embedding

BV(Q) < L'(Q), 7€ [1,17] (1.76)
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is compact provided that r € [1, 1*); see [20,22,63] for advanced theoretical results on
the subject.

According to Kawohl and Schuricht in [63], as well as Degiovanni in [48], the
notion of solution for problem (P;) can be formulated as follows.

Definition 1.6 We say that a function u € BV (Q) is a solution of (P3) if there exists
z € L(Q,RY) with ||z|| < 1, such that

—/udivz:/ |Du|—|—/ lu|dHN Y, dive € LY(Q),
Q Q o0

—divz = [ulP"%u a.e. in Q,
where ¢ :==p/(p —1).

Remark 1.5 Notice that the vector field z in the preceding definition gives the
Vu

[V
the expression Du/|Dul is undetermined.

formal sense for div More precisely, the map z replaces Du/|Du| when

Now, let us consider the energy functional I : LP(Q) — (—o0, +00] given by

I(u) = ®(u) + ¥(u), (1.77)
where
1 p
®u) =~ [ Ju
and
/ | Du +/ |u|dHN u € BV ()
U(u) =4 Jo o0 :
00 u € LP(Q)\ BV(Q)

for every u € LP(Q2).

It is easily seen that ® € C'(LP(2),R) as well as ¥ is a convex and lower
semicontinuous functional, so that [ is a Szulkin-type functional. Consequently
D(I) = BV(Q) and, for each fixed u € BV (Q2), the subdifferential 0¥ (u) can be
identified as a subset of L7(2).

The next results will be crucial in the sequel.

Lemma 1.18 Ifu € BV(Q) and 0¥ (u) # 0 then u € L=(Q).

Proof. We first notice that L' (Q) < LP(Q), so that L4(Q) — LY (Q). Consequently,
if w € OW(u) C LI(N), one has that w € LY (). The conclusion is achieved by arguing
as in [48, Proposition 3.3]. =
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Lemma 1.19 If u € BV(Q) then, for each w € 0¥ (u), there exists z € L>®(Q,RY)
with ||z]|eo < 1, such that

w = —divz € LY(Q

/udlvz—/|Dul+/ luldHN L.

/ | Dul +/ lu|dHN u € BV (Q)
Q o9

)

Proof. Let us define

ue LV (Q)\ BV(Q)

and take w € OV (u) C LY(Q). Then w € LY () and

T(v) — U(u) = ¥(v) — U(u) > /Qw(v —u), Yve BV(Q)=D(V),

so that w € O¥(u). The conclusion follows by [63, Proposition 4.23]. m
The next result connects critical points of the energy functional I with solutions

of (P3).

Lemma 1.20 If u € BV(Q) is a critical point of the functional I then uw € L>().

Moreover, the function u is a solution of (P3) in the sense of Definition 1.6.
Proof. Let u € BV (Q) be a critical point of I. Then
—®'(u) € 0¥ (u) C LYQ).
Thereby, there exists w € OW(u) such that
—®'(u) =w in LI(Q).

Consequently, Lemma 1.19 and the definition of ® yield the existence of z € L>(Q, RY),
with ||z]|s < 1, such that —divz = w in L%(2) and
- / udivz = / | Dul| —i—/ luldHN !, dive € LYRQ)
Q Q o9

—divz = |[u|P*u a.e. in Q.

Moreover, Lemma 1.18 ensures that u € L>(2). The proof is now complete. =

By Lemmas 1.19 and 1.20 we are able to prove the main result of this subsection.

Theorem 1.11 The functional I has infinitely many critical points (u,) with

I(u,) = 00 as n — oco. Hence, problem (Ps) has infinitely many nontrivial solutions.
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Proof. Hereafter, we are going to prove that I verifies the assumptions of Theorem
1.6 with Y = {0}. We first prove that I satisfies the compactness (PS) condition. To
this end, let (u,) be a (PS) sequence for I. So, let ¢ € R such that

I(u,) — ¢,
and
U(v) — ¥(u,) > /Q |2 [P 200 (0 — ) —{—/an(v —uy,), YvéeE BV(Q),
where w,, € LI(2) and w,, — 0 in L(Q2). The last inequality gives
[ [P0, + w, € 0 (uy,), ¥n € N.

Hence, Lemma 1.19 yields

‘If(un)=/|Dun|+/ |un|dHN‘1:/ |Un|p+/wnun, Vn € N.
Q o0 Q Q

Aluy) = () — /Q funl? + /Q R

the classical Holder’s inequality leads to

If we set

1
c+1>1I(u,) — ;A(un)

1 1 1 1
> (1 — —) U (uy,) + (— —~ —) a7 ) = ~llwnll oy l[unll o)

r rop
> CJunllviay + Co (lunlaoy = lnllisiey )
for some r < p and n large enough. Since the real function h(t) := t* —t, for every t > 0,
is bounded from below, the last inequality clearly implies that sup,,cy ||un| BV Q) < 00.
Therefore the (PS) condition is verified, since the embedding BV (Q2) — LP(Q) is
compact. Now, if u € BV () is a critical point of I then

[ulP~?u € OV (u).

Consequently, by Lemma 1.19, it follows that

/|u|”:/|Du|+/ |1,

Q Q o0

Bw = [ 1Dul+ [ fulan = [ jup.
Q o0 Q

Thereby, by setting
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one has

10 = 160 = 1 50) = (1= 7) lullavea) 2 0.

for every u € LP(§2). Hence, the set I~ has no critical points for any ¢ > 0.

Finally, let us prove that the functional I satisfies conditions 7) and ii) of Theorem 1.6.
Part - ¢) Without loss of generality we can suppose u € BV(2), otherwise

I(u) = oo. Now, if u € BV (Q), the embedding BV () — LP(§2) immediately yields

1
I{w) 2 Cllullze = Jllllzn),
for some constant C' > 0. Since p > 1, if ||u||r(@) = r = 0T, we also have
I(u) = p,

for some p > 0. Thus, condition i) of Theorem 1.6 is proved with Z = LP(Q).
Part - 4i) For each k& € N, let us consider X}, be a k-dimensional subspace of

Cie(£2). Since all the norms are equivalent on Xy, it easily seen that
1 p
I0) < Cillule) = - [ulf) Vo € X,
for a convenient ', > 0. Thus
I(u) = —00, as ||ul|rr) — ccandu € Xj.

The proof is now complete. m



CHAPTER 2

Existence of multiple solutions for a Schrodinger logarithmic

equation via Lusternik-Schnirelman category theory

In the current chapter we are interested in the following problem

—e’Au+V(z)u = ulogu?, in RY,
(F:)
u € HY(RY),

where V : RY — R is a continuous function satisfying
Vi): —1 < inf V(x);
(Vi) —1< inf V()
(V3): There exists an open and bounded set A C RY satisfying

Vo = inf V(z) < min V().

€A rEIA

We emphisize that, without lost of generality, we will assume throughout this
chapter that 0 € A and Vy = V(0).
Before presenting the main results concerning with the study of problem (P.), we

would like to mention some interesting aspects related to the equation

(Ey) —2Au+V(z)u = ulogu?, zeRY,

under different assumptions on V' and e.
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It is natural to apply variatonal methods to look by solutions of (E;). The usual

variational framework lead us to consider the energy functional

P =5 [ (Val+ (Vo) luP)is = [ Flude. (2.1)

2 ]RN
with

2

! 1 t
F(t):/ slogs®ds = ~t*logt* — —.
; 2 2

However, it is well known that the functional E. is not well defined, e.g., on H'(RY)
because there exist functions v € H'(RY) such that / u?logu? = —oo, which gives
the possibility that E.(u) = oco. .

In the literature there is a broad list of works that provide different techniques to
carry out this difficulty referring to the study of equation (£;) via variational methods.
Here we refer the works [10-13,44,62,79]. The main point in those works consists
in to use alternatives critical point theories for nonsmooth functionals. Although
the frameworks introduced in those works allows us to get solutions for (E;), some
questions involving critical points for C*-functionals cannot be explored in those works
(we would like to cite, e.g., the existence of multiple solutions for (E}) via the Lusternik-
Schnirelmann’s category; see [83, Chapater 5]).

Motivated by the above fact, we intent to prove the existence of multiple
solution for (P;) by relating the multiplicity of solution with the category of Lusternik-
Schnirelmann of the set

M:={xe\; V(z)="Vy}

in the set

Ms = {x € RY; d(x, M) <6}, §~0T.

We would like to mention that this type of information is a novelty for logarithmic
Schrodinger equations. In our search, we have not found any article that relates the
multiplicity of solution for equations of (Fj)-type with the Lusternik-Schnirelmann’s
category.

The main result to be proved in this chapter is the following.

Theorem 2.1 [f the conditions (V1) — (Va) hold and 6 > 0 is small enough, then there

is €3 > 0, such that, for e € (0,e3), the following items are valid:

catrrg (M)
2

i) (P:) has at least positive solutions , if caty, (M) is an even number;
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catyrg (M)

i1) (P.) has at least i positive solutions, if catp, (M) is an odd number.

In order to prove the preceding theorem, we will introduce a new reflexive and
separable Banach space in which the functional E. in (2.1) is a C''-functional. Such
technique enable us to adapt some results valid in the classical Critical Point Theory.
We also mention that, in view of conditions (V;) — (V2) above, the results presented
throughout this chapter improve the results of Alves and de Morais Filho [10] and
Alves and Ji [11] on the existence and concentration of positive solutions for (F.).

Note that, by the change of variable u(z) = v(x/¢), the problem (P.) is equivalent
to the problem

—Av + V(ex)v = vlogv?, in RY,
(S)
ve HY(RY),

We will explore this fact in our computations.

We would like to mention that the results developed in the present chapter have

been published in the paper [7].

2.1 Variational framework on the logarithmic

equation

In this section we present the main tools requested to our variational approach.
We start by recalling the decomposition of the nonlinearity f(¢) = tlogt? explored in
Chapter 1, which is an important step in order to overcome the lack of smoothness
of energy functional associated with (S.). Finally, taking into account the conditions
(V1) — (V2) mentioned above and motivated by [11,51], we introduce an auxiliary

problem that is a crucial tool in our study to obtain the existence of solution for (S.).

2.1.1 Basics on the logarithmic equation

Let us start by presenting a convenient decomposition of the function
t 1 t2
F(t) = / slogs®ds = ~t*logt* — —,
0 2 2
which has been explored in Section 1.2, as well as in a lot of works (see, e.g.,

[10-12,62,79)).
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Fixed 0 > 0 sufficiently small, we set

/

0, s=0
1
Fi(s) = —552 log 52, 0<|s|]<d (2.2)
1, ) 52
——s5"(log 6“4+ 3) + 24|s| — —, |s| > ¢
. 2 2
and
07 |5| <0
F2(5> = 1 2 3 62
532 log (%) + 20|s| — 532 — 3 |s| > 6
for every s € R. Hence,
1
Fy(s) — Fi(s) = 532 log s?, Vs €R. (2.3)

By direct computations, one can verifies that Fy and F} verify the properties (P;)—(P)

below:

(Py) Fiis an even function with F](s)s > 0 and F; > 0. Moreover F; € C'(R,R) and

it is also convex if § ~ 0.

(P2) F» € CHR,R)NC?((4,+00),R) and for each p € (2,2*), there exists C = C, > 0

such that
|F5(s)] < CJs|P™, Vs €R.
(Ps) s+— @ is a nondecreasing function for s > 0 and a strictly increasing function
for s > 4.
F/
(P;) lim Bs) _ 00
S§—00 S

We recall below the definition of a N-function, which plays a special role in the

sequel.

Definition 2.1 A continuous function ® : R — [0, +00) is a N-function if:
(i) ® is convex.

(i) ®(t) =0<t=0.
(1i1) lim&t) =0 and lim @ = 400

t—0 ¢ t—00
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(iv) ® is an even function.

Associated with each N-function we have the conjugate function ® that is given

by the Legendre’s transformation of ®, more precisely,

®(t) = max{st — ®(t)} for s >0.

t>0

See the Appendix C for further details involving N-functions.
An important step in our study is the fact that the function Fj is a N-function.

More precisely, the following result is valid.

Proposition 2.1 The function Fy is a N-function. Furthermore, it holds that Fi,
Fy € (A,). Equivalently, there exists | € (1,2) such that

<2, Vs> 0. (2.4)

Proof. See the Proposition C.2 in Appendix C. =

The last proposition allows us to conclude that the space

1) = {ue tho @) [ Rlu)de <400

is a reflexive and separable Banach space. In a more precise description, L1 (RY) is
the Orlicz space associated with the N-function Fy. On L¥'(RY), we will consider the

usual Luxemburg norm

|ul|py :inf{)\>0; /F1 (M) < 1}.
Q A

The study of problem (S.) lead us to work in the space

H. o= {u e H(RY); /RN V(e uPdz < oo} |

In the sequel, in order to avoid the points u € H'(R"Y) that verify F(u) ¢ L*(RY), we
will restrict the functional E. given in (2.1) to the space X, := H. N L (RY), which

will be denoted by I, that is, I. = E.|x.. Hereafter, let us consider on X, the norm

e s= 11 Ml + 11 e

where

me:(égWW+wvw+mwﬁm,uem.
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In view of the Proposition 2.1, (X, || - ||c) is a reflexive and separable Banach

space. In this way, from the conditions on Fy and V, one has I, € C'(X_,R) with

I'(u)v = /RN(VUVU + (V(ex) + 1)uv + /RN Fl(u)v — /]RN Fy(u)v, Yve X..

Note also that, as a natural consequence of the definition of || - ||, the embedding

X, — HYRY) and X, < LF1(RY) are continuous.

2.1.2 The auxiliary problem

From now on, we fix by ~ 0" and ag > ¢ in a such way that (ian V4+1) > 2by and
R

—Féégo) = by. Using these notations, we set

FQI(S)a OSSSCLO;

bos s> ap.

Now, consider t1, t, > 0 with ag € (t1,t2) and h € C([t,1s]) verifying
(h1): h(t) < Fylt), t € [t1,ta)];
(ha): h(t:) = Fy(t;) and B (t;) = Fy(t;), i € {1,2};

(h3): %t) is a nondecreasing function.

Remark 2.1 The existence of a such function h is assured by using the results in [5,
Appendix A].

In the building of the function h, it is considered that, besides of the properties
(P,) — (P,) above, the function F, belongs to C?((§, +0), R).
Define

/!

py o [Tt it
h(t), t € [t,ta].
Denote by ya the characteristic function of the set A and let go : RY x [0,00) — R
given by
g2, 1) = xa (@) F3(t) + (1 = xa(2)) F5(0).
On account that Fj is an odd function, we can extend the definition of g, to RY x R

by setting go(x,t) = —go(z, —t), for each t <0 and z € RY.
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Hereafter, we will study the existence of solution for the following auxiliary

problem

5 —Au+ (V(ex) + u = go(ex,u) — F{(u), in RV,
) u € HY(RY)n L7 (RY).

Setting

A, ={z e RY; ez € A},

we see that if u is a positive solution of (S.) satisfying
0 <u(x) <ty Voe (RY—-A), (2.5)

then u is a solution of (S.). Have this in mind, we will study the existence of positive

solutions for (S.) by looking for solutions of (S.) that satisfy (2.5).
From the definition of gs, it is possible to prove the following properties:
(
i) golw,t) < bolt| + CltP~t, t>0, v €RY;

i)« go(w,t) < Fy(t), x € RY;

(A1)
i) : go(x,t) <bot, t>0,x¢€ (]RN — A) :
1 1 1
iv) : §yt\2 + [Fy(t) — EFZ’(t)t + §G’2(ex,t)t — Gy(ex,t)] >0, Vt e R, z € RY.
Associated with (S.) we have the following functional
1
Jo(u) = -/ (IVul2 + (V(ez) + 1luf?) +/ Fiw) — [ Gaewu), Vuc X,

2 RN RN RN

t
where Ga(x,t) = /gg(a:, s)ds. The conditions on g, ensures that J. € C'(X_,R),
0

and thereby, critical points of J. are weak solutions of (S;).

2.2 Existence of solution for the auxiliary problem

In this section we will establish the existence of solution for (S.). We start by
showing that J. satisfies the geometric configuration of the Mountain Pass Theorem
(see [19]).

Lemma 2.1 Given ¢ > 0, the functional J. satisfies

i) There exist v, p > 0 such that J.(u) > p for any u € X., ||ul|l- = 7.

it) There ezits v € X with ||v||. > 7 satisfying J.(v) < 0= J.(0).
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Proof. i): From (A;), one has that Ga(ex,t) < Fy(t), and so,

L) = 5lll, + [ R - [ .

Gathering (C.3) with (C.6) (note that m can be chosen equal to 2) and using (P),

there is r ~ 07 such that
1
Je(u) > Z|ullf, + l[ull7, — Dllull? > C||ul|2 = DIlull?,

for some C';, D > 0. The last inequality gives the desired condition, because p > 2.
ii): Fix u € O, := {u € X,; |supp(|u|) N A.| > 0}. Note that, for each z € RY we can

write
Fi(t) = xa. (@) Fi(t) + (1 — xa. () Fi(t).

Therefore, from the definition of ¢o,

t? 1 1
Je(tu) < llully, — —/ Xa.|tul* log [tul® + —/ (1 = xa.)ltul* log [tul*+

s )IF) - Fata))
[tu]>t1]
Recalling that X, < L*(RY), there is C' > 0 independent of ¢ such that

/ tu® < C,
[tlul>t1]

and so,

C
[tlu] > ]| < EtQ = Ct*.

By the definition of F},
Fi(t) < AP+ B, t>0,

with A, B > 0. Then,
/ (1 - xa) Fi(tul) < D,
[t|u|>t1]

for a convenient D > 0. Since FQ > 0, we find

1
Jo(tu) < 2 <||ullF. —/ xa.|ul? log [ul”* — logt / xa.|ul? +/ (xa. — 1)|ul®
2 RN RN [tu|<t1]

s [ @ xalulos P+ D)
[tlul<t1]
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By the Lebesgue Dominated Convergence Theorem, we have
/ (xa. — D|ul* — 0, as t — +o0.
[tlul<t1]

Note also that, since u € O, and u € L1 (R), it holds

[ a0
RN

and
1
—/ (1 — xa.)|ul*log |ul* < / Fy(u)dzx < 0.
2 Jitul<t) RN

Combining all of the above information we derive that
J(tu) — —o0, as t — oo,

and the proof is finished by taking v = tu with ¢ large enough. m

For the next lemma, we have adapted the reasoning employed in [12, Lemma 3.1].
However, taking into account that in our case the functional J. is on X, which has a
different topology of H'(RY), it was necessary to develop new estimates that are not
found in [12].

In the sequel, we will need of the following logarithmic inequality (see [50, pg
153])

/ juf? log (l) s0||u||glog(”“”2*), vue ’®Y)N L7 (RY),
RN

[l [[ulf2

for some positive constant C'. As an immediate consequence,

u * *
lu|? log (ﬁ) < Cl|ul|p2a.y log (M> , Yu € L*(A.) N L* (A,).
A- [lullz2a.) [lullz2a.)
(2.6)

Lemma 2.2 Let (vy,) be a (PS). sequence for J.. Then, the sequence (v,) is bounded
m X..

Proof. Let (v,) be a (PS). sequence for J.. Then,
1
Je(vn) = 5Je(wn)vn < (e + 1) + op(D)l|vnll-, (2.7)

for large n.
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On the other hand, observe that

1 1 1
Je(vn) — = JL(vy)vy, = / (Fy(vy) — = F{(vn)vn) +/ (=G5 (ex, vp)v, — Golex, v,)) =
2 RN 2 ]RN 2
1 1 1
= —/ v | + / [Fa(vn) — = Fy(vn)v, + =G (e, vy)v, — Ga(ex, vy,)],
2 RN RN 2 2
(2.8)
because
1 / 1 / 1 2
[(F1(vn) — §F1(Un)vn) + (EFQ(Un)Un — Fy(v,))] = 2 |vn |
RN RN
Consequently,

1 1 1 1
Je(vn) — 5,];(1}”)1)” > B ‘Un‘z +/ (§|Un|2 + Fy(v,) — §F2/(Un>vn) +
Ae {Asn(jon|>t1]}

1
+ / (§G’2(€x, V), — Ga(ex, vy)).
{AeN[Jvn|>t1]}

From (A;) — iv),

and so, from (2.7),
1
(c+ 1)+ o, (D)]|vn]|le > 5/ [Un|?. (2.9)

£

Recall that there are constants A, B > 0 such that
Fi(t) < Ajt]* + B, VteR.
This together with (2.9) leads to

/ Fy(va) < Cs + [[oal (2.10)

€

for some C. > 0. Thanks to (2.6),

1
5/1\ v 10g |vn]? < C||vnl|z2(a.) log ( ) + ||vn||%2(AE) log(||vnllr2an) =

|[vn|]z2(a0)
= (lonl122(a0y = Cllonllz2a0) 10g(l[onll2(as)) + Cllvallz2(an) 108 ([lvnll 2+ as)) -

that combines with the embedding X, — H. to give

log(Cl[val|c)

)

/A [val*og [val* < (2lJval[Z2(a.) =2C [vallz2(a.)) 0g(l[val | 22(a0)) +Cllvnl |-
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for some convenient C' > 0 independent of €. In order to get the last inequality, we
have explored the fact that the function ¢ +— logt, ¢t > 0, is increasing. Now, using the

fact that given r € (0,1) there is A > 0 satisfying
[tlogt| < A(1+ [¢['*7), t >0,

we obtain, by gathering this inequality with (2.9), the inequalities below

[1on]| 2240y og([vnll2(a) < AL+ [val[ Ay )

and

[1oallZ2(a0) Jog(vnl Faa)) < AL+ (Jval[F2(a)) ") < AQ + llvallzzan) ™).

From these information, modifying A if necessary, we arrive at

[ 1o onf? < AL el .11
Ae

As (vy,) is a (PS), sequence for J.,
1
(c+1) 2 Je(va) = llonlli, +/ Fi(vn) = [ |val*logloa|* = | Ga(ew, va)
A¢ Ac Ag

for large n. From (A;),
b
G2<gx,t) < 50752, YV € Ag,

then
(e+ 1)+ A+ [l E7) > Cllwal, + [ Filwn)
Ag
for some C' > 0, and so, by (2.10),
D. + [[oalle + AL+ [Jon]|5*7) > € (||vn||zg - [ Fl(vn)> AT
RN

where D, := (C. + ¢+ 1) > 0 and C' := min{C, 1}. From now on in this proof, we fix
r € (0,1) so that 1 +r < [, where [ is the number obtained in (C.6).
Suppose that |[v,||s, < 1. Employing (C.3) in (2.12), and modifying C if

necessary, one gets

D: + [[valle + AL+ [Joal ) = C(lJvnall. + loallm)* = CllvallZ. (2.13)
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Otherwise, if ||v,||m > 1, we have two possibilities: ||v,||g. > 1 or ||v,]|m. < 1. When

l|on]lm. > 1, in the same way of the preceding case we obtain

D. + |[oalle + AL + [Jva]*7) = Cil[unl . (2.14)
If it occurs ||v,||p, > 1 and ||v,||g. < 1, using the definition || - || in (2.12), we find
D. + |lvallr, + Colloall 5™ = Cllvall, - (2.15)

The proof is completed by combining (2.13)-(2.15). =
Next, we present an important property of the (PS) sequences whose the proof
can be found in [11] and that is a crucial tool in order to prove that .J. satisfies the

(PS) condition in the space X..

Lemma 2.3 Let (v,) be a (PS). sequence for J.. Then, given T > 0 there is R > 0
such that

lirnsup/ (IVoul? + (V(ez) + Do) < 7
n—oo B%(O)
Proof. See [11, Lemma 3.4] or [56, Lemma 3.3] for a similar result. =

Corollary 2.1 The functional J. satisfies the (PS) condition.

Proof. Let (v,) be a (PS). sequence for J.. Without loss of generality we may assume
that v, — v in X, for some v € X.. Moreover, arguing as in [5, Section 2|, we also

have J!(v) =0, and so, J.(v)v =0, i.e.,

HUH?{E + /RN Fl(v)v = /RN GYy(ex, v)v. (2.16)

As the embedding X. < L(Bg(0)) is compact for each R > 0 and p € [2,2*),

the growth condition on GY (see (A;) ) together with the Lemma 2.3 yields

/ Gy(ex, v,)v, — Gy (e, v)v.
RN

RN
Taking into account this information and using the fact that (v,) is (PS) sequence, we

find
loally, + [ Fitenon = [ Ghez va)en +on(D)
RN RN

The last equality combined with (2.16) implies that

loalls, + [ Fitonon = lollt, + [ Fi(o)o+ 0a(2),
RN RN
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from where it follows that

i, = vl

|0 i (2.17)

and

/]RN Fl(v,)v, — Fl(v)v, (2.18)

RN

and so, v, — v in H.. It remains to show that v, — v in L¥*(RY). Note that, since

F{(t)t > 0, the convergence in (2.18) means that
Fl(vy)v, — F{(v)v in L*RY).

This fact associated with (C.6) and Lebesgue’s Dominated Convergence Theorem shows

that, going to a subsequence if necessary,
Fi(v,) = Fy(v) in LYRM).
Finally, using that F; € (Ay), we deduce that

/ Fillon — v]) —> 0.
RN

showing that v, — v in L1 (RY), which finishes the proof. =

The main result of this section reads as follows

Theorem 2.2 For each ¢ > 0 the functional J. has a nontrivial critical point u..

Consequently, (S:) has a nontrivial solution.

Proof. By Lemma 2.1 and Corollary 2.1, we see that the functional .J. satisfies the
assumptions of the Mountain Pass Theorem found in [19, Theorem 2.1], then the
mountain pass level given by

- = inf Jo(y(t
Ce = inf max (v(t))

with
Io:={y € C([0,1], X); 7(0) = 0 and J.(y(1)) <0},
is a critical point of J.. ®

From now on, otherwise mentioned, the notation u. designates the solution of

(5.) given in the preceding theorem.
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2.3 The Nehari manifold and the existence of

positive solution for (P.)
In this section we will prove that the Nehari set associated with J., namely
N = {u € X, —{0}; J.(u)u = 0},

is a C'-manifold and that critical points of J.|x. are critical points of J. in the usual

sense. Furthermore, by studying the behavior of levels ¢, as ¢ — 07, we will prove

some properties related with N that allows us to prove that the solutions wu. of (S;)

are solutions of (S.) for ¢ =~ 07,

2.3.1 Main properties of N.

First of all, set

U (u) := J.(u) — %/RN lu|? — [/RN[FQ(U) — % H(u)u + %G’Q(ex,u)u — Golew, u)]

Accordingly to (2.8),
Nz = w1 ({0}).

We start our study with the following result
Proposition 2.2 There exists 5 > 0, such that
lulle = [lullm. = 8, Vu e N,

for all e > 0.

Proof. For each u € N,

L9+ e+ i)+ [ Fu= [ cyeun

RN RN

Therefore, from (A;),

/ (|Vul® + (ag + 1 — by)|ul?) < C/ |ul?, (2.19)
RN RN

where oy = inj\fV. The number by has been chosen so that ag + 1 — by > 0, then the
R

expression

= [ (Vul+ (o0 + 1= b)luf)
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defines a norm on H'(RY). Setting H = (H'(RY), || ||o), one sees that the embedding
H < [P(RY) is continuous. From (2.19),

M < [Jull5,
for a convenient M > 0 that is independent of €. The last inequality yields

J
0<f:=Me= <|lullo < ||ullm. < [lull.

For the sake of completeness, we would like to mention that repeating the ideas

found in [11, Lemma 3.6 and Remark 3.1], it can be proved the following lemma

Lemma 2.4 For each u € O. = {u € X.; |supp(|u]) N A;| > 0}, there is a unique
ty > 0 such that t,u € N.. Reciprocally, if u € N;, then u € O,.

In the next proposition we prove that N is a C'*-manifold for each £ > 0.

Proposition 2.3 N, is a C'-manifold for each € > 0.

Proof. In the sequel we will prove that for all u € N. we must have ¥L(u)u # 0.

Assume by contradiction that there is v € N with U (u)u = 0, i.e.,

0— —/ fuf2 — URN(%FQ'(U)U _ %Fg(u)@ﬂ) + /RN(%G;’(EI,U)UQ _ %G’Q(ex,u)u)] |

Using that G, = Fj in A, we find

1 1 1 1
0= —/ |u)?— / (|u]® + = Fy(w)u — = Fy (u)u?) —|—/ (=GY (e, u)u® — =Gh(ex,u)u) | .
i Ac 2 2 2 2
(2.20)
By the definition of F3,
0, s €0, 0];
Fi(s) = 2
slog (ﬁ) + 20 — 2s, |s| > 0,
and so,
1 1
t* + 5FQ’(t)t -3 V(R =6t >0, t>,
leading to

1 1
lu|? + §F2’(u)u — §F2”(u)u2 >0, a.e v €Al
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Using this information and the fact that Gh(ex,t) = Fj(t), for x € AS and t < ¢; in

(2.20), we arrive at

1 1 1 1
NS (3GH(em =y Chlen )= [ (GH(emuut— Chlen,uu).
. Acn[ty <|u|<tz2] 2 Agn[lul=t2] 2
As Gh(ex,u) = h(u) for x € AS and u(zx) € (t1,t2), (hs) gives
" 2 1 / 1 ! c
Gh(ex, u)u” — §G2(5x,u)u = §(h (w)u —h(u))u >0, ae x € ASN [t < |u| < ta].
Note also that, by the definition of F’Q,

1
GY(ex, u)u® — §G’2(€x,u)u =0, ae z € AlN[|lu| > ts].

Gathering the above information, we derive that u = 0, a.e. x € A.. Hence, inasmuch

as u € N, we get

Hwaﬁ/mezfawLW@%/|w
RN Ac RN

that leads to u = 0, which is absurd because u € N, showing the desired result. m
In view of the last proposition, we can establish the notion of critical point for

J-|n.. Recall that u € N is a critical point of J. constrained to N, when
| JL(w)]|] == I;lelﬂlg [|J2(u) — AWL(u)]| = 0. (See [83, Proposition 5.2])
By a (PS). sequence associated with J.|y., we mean a sequence (u,) in N; such that
J(u,) — ¢ and || (u,)|]« — 0.

From now on, we say that J.|x. satisfies the (P.S) condition when each (P.S). sequence
for J.|n. has a convergent subsequence, for any ¢ € R.
The next proposition relates critical points of J.|n. with critical points of J. in

Xe.

Proposition 2.4 Let u € N, be a critical point of J. constrained to N.. Then u is a

critical point of J. on X..
Proof. If u € N is a critical point of J.|r., then

J(u) = AV'e(u),
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for some A € R. Consequently,
0= J(u)u = \V.(u)u.

Since u € N, the arguments explored in the proof of Proposition 2.3 yields W’ (u)u # 0.
Hence, the above equality guarantees that A\ = 0 and the proof is over. m

We finish this subsection by proving that J.|x. satisfies the (PS) condition.

Proposition 2.5 J.|x. satisfies the (PS) condition.
Proof. Let (u,) be an arbitrary (PS). sequence for J.|r.. Then,
Je(up) = ¢ and  J(up) = A\ VL(u,) + 0,(1),

for some sequence of real numbers ()\,). Taking into account that J.(u,) — ¢ and
J(un)u, = 0, repeating the same reasoning of the proof of Lemma 2.2, one has that
(uy,) is a bounded sequence. By Corollary 2.1, it suffices to show that (u,) is a (PS),

sequence for J.. Aiming this fact, we will prove that
An — 0. (2.21)
Note that (u,) satisfies
0= Jl(up)tn = M VL(uy)uy + 0n(1).

Arguing as in the proof of Proposition 2.3, it is possible to show that if |V, (u,)u,| =

on(1), then
/ |un|2 <o,(l) = / |un|2 = 0,(1

This combined with the boundedness of (u,,) leads to

[ P = o.(0)
Consequently,

lually, + [ Fwun= [ Fwun+ [ Gl <o+ [l
RN c Ag R

N

which combines with (C.6) to give

[ 90 4+ Vi) 4 D)+ [ i) < on()

The above inequality implies that u,, — 0 in X., which contradicts Proposition 2.3.

Thereby, (2.21) is true and the proof is completed. =
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2.3.2 Existence of positive solution for (P.)
For the goals of this section, we will consider the following autonomous problem

—Au+ Vyu = ulogu?, in RV,
(Fo)
u € H'(RY)n LM (RY).

The energy functional related to the (Fp) is given by

By =5 [ (9uP+0a+ D)+ [ R = [ P

It is well known (see [10,11,79]) that (F) has a positive ground state solution wuy,
which satisfies

co 1= ir}\ff Jo(u) = Jo(uo),

ueNo

where N is the Nehari set associated with Jy, i.e.,
1
No = {u c H'RY)n LFY(RY); Jo(u) = —/ |u|2} :
2 RN
Hereafter, we fix
X = (H'®Y) AL RY), (] ey +11- o gs) (2.22)

where || - || 1wy denotes the usual norm in H*(RY).
The level ¢y can be characterized by

0 ulen./\/b O(U) ue(}(n—{O})I?ZaOX 0< U)

In the next lemma we prove that the solution u. obtained in Theorem 2.2 is a

ground state solution of (S.), and we study the behavior of levels ¢, as ¢ — 0. By

a ground state solution we mean a solution of least energy of (ga), that is, a solution
verifying

ulen/\ffe Je(u) = Jo(ue).

Lemma 2.5 The following properties hold:
i) There is o > 0 such that c. > ~yo for all e > 0.

i) e = ulen/\ffsJE(u) for all e > 0.

iii) limsup c. < ¢p.
e—0
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Proof. i) Note that

Je(u) > %/RN(\Vu\Z + (oo + 1)|ul?) +/RN Fi(u) — /RN Fy(u),

with ap = ian V. Arguing as Lemma 2.1-7), we find 79 ~ 0% and 7, > 0 independent of
R
¢ such that
Jo(u) > po, Yu € X, ||u||le = ro.

By the definition of c., we derive c. > 7.
i1) By Lemma 2.4 we know that u € O, for each u € N_.. In this way, using the same
ideas of Theorem 2.1-ii), there is ty such that J.(tpu) < 0. Setting n : [0,1] — X.

given by n(t) := t(tou), it follows that n € I, and so,

< < <
c. < gl{guj}lc} J-(n(t)) < rilzagc J:(su) < Jo(u).

The above inequality shows that
c. < inf J.(u).
The reverse inequality follows by observing that

. < e
ulen/\ffsjs<u>_JE(UE) Ce

i11): Let up € Ny be a positive ground state solution of (Fp), i.e,

J()(U(]) = (g and Jé(Uo) = 0.

For each R > 0, set ¢p(z) := ¢(Fx), where ¢ € C5°(RY) is such that ¢(z) = 1,
for z € B1(0), and ¢(z) = 0, for x € BS(0). Then, putting ug := ¢gruo, it is easy to
check that

up — ug in H'(RY) as R — ooc.
Since 0 < ugr < ug, the Lebesgue Dominated Convergence Theorem ensures that
/ Fi(un) — | Fi(uo), as R— oo.
RN RN

By the last two limits we can infer that ug — up in X.
Given R > 0, from the definition of ug, one can see that ur € O, for each £ > 0,

since ug > 0 and 0 € A.. So, thanks to preceding item, we find ¢. > 0 in such way that

. < ntlg%x J(tug) = J:(teug).
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Our next step is to show that, for some gy > 0, the family (f.)p<c<s, is bounded. In

fact, as t.ug € N,

1 1 ~ 1
| 9wV lunl) = 3 [ Fteumynt [ Pt [ Fitamn

€ € >

Considering that ugp = 0 in BS(0) and V(ex) — V(0) = Vj, we have

[ 90 (V(e) 4 D) — [ (TRl + 06+ Dluel),

as € — 0, for each R > 0. On the other hand, if . — oo as € — 0, the following claim

holds:

Claim 2.1
1 / 1 nl 1 /
— Fi(teug)ug + — Fi(t-ug)ugr — — F(t-ug)ur | — 0.
ta Ac ta Ag ta RN

First of all, the limit x_(z) — 1 as e — 0T together with (A;) guarantees that

1 .
— Fé(tEUR)U,R = 05(1).

tE Ag
Thereby, in order to get the Claim 2.1, it suffices to show that

1 1
A = —/ Fy(t-ug)ug — — Fl(teug)ur | — oo.
to Ju te Jan
Observe that, by (2.3),
1
A :/ lug|? —|—/ lur|*log(t|ug|)? — —/ Fy(toug)ug =

£

1
~ log(t.)? / fugl? -+ / Fitur)un + Cr,
RN t Ag

S

with Cg = / (Jur|* + |ug|*log |ug|?). From the definition of F},
RN

26
t—Fé(tauR)uR = u% log(t.|ug|)? — log 6%u% + JUR— 2u%,

and so,
1 y 9 5 20
— Fy(t-ug)ur < uy, log(te|ugl)® + — ug + Bp,
tE Ag Ag té‘ RN
with Br := —log (52/ u%. From this and using that ¢, — oo as € — 0, one finds
RN

A, > log(tE)Q/

unf? = [ u1og(t.fur] +0.(1) + D,
RN A

c
€
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where Dr = Cr — Bg. Therefore,

A > log(L.)? / ugf? - / w2, log [un|? + 0.(1) + D,
Ae Ac

from where it follows that

A, — 00 as € — 01,

showing the Claim 2.1.
As a byproduct of the Claim 2.1, we get that (.)o<c<e, is bounded, for some
g0 > 0. Now, take tg > 0 such that Jy(tgpur) = max;>o Jo(tur). Note that

t2 _
Jg(tEUJR> - Jo(teuR) = 56 /N(V(éfl') - VE))‘URF —|—/ (Fg(tsuR) — Fg(teuR».
R Ag
Using that ur has compact support, ug — ug in X as R — oo and the Lebesgue’s

Dominated Convergence Theorem, we arrive at

J(teug) — Jo(teur) = o-(1),

limsup ¢, < limsup J.(t-ug) < Jo(trug). (2.23)

e—0 e—0

The choose of tg gives tg — 1 (see [11, Lemma 3.7]), and then,
Jo(trur) — Jo(ug) = cp, as R — 0.

The result is a direct consequence of the limit above and (2.23). =

Now, we are ready to prove the existence of positive ground state solution for
(5¢).

Proposition 2.6 Given € > 0 the problem (5’5) has a positive ground state solution.

Proof. Let u. be the solution of (S.) given in Theorem 2.2. For v € X, set
vt :=max{v,0} and v~ := max{0, —v}. Therefore, either uX = 0 or u_ = 0, otherwise
we would have v}, uZ € N and J.(u.) = Jo(ul) + Jo(uZ) > 2¢., which contradicts

e
J:(uz) = c.. Thereby, since g is odd, we may assume that wu. is a nonnegative solution
of (S.). By an analogous reasoning as used in the proof of [11, Theorem 3.1] and [44,
Section 3.1], using a suitable version of maximum principle ( [82, Theorem 1]), we
deduce that wu,. is positive in whole RY. m

Our next result improves [11, Lemma 3.9] and it is an essential step in order to

get a solution for (S;).
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Lemma 2.6 Let (u,) be a nonnegative sequence with u, € X. , Jo, (u,) = c,,
J. (u,) = 0 and &, — 0. Then, there exits a sequence (y,) C RN such that

Wi () := up (T + yn) has a convergent subsequence, SUp,,cy ||wn||eo < 00 and
wy(z) =0 as |x| = oo wuniformly in n € N. (2.24)

Furthermore, for some yo € A, the following limit holds lim (£,y,) = yo.

n——+oo

Proof. To begin with, note that (u,) is a bounded sequence in the space X given in

(2.22). Indeed, by the assumptions and employing Lemma 2.5-ii7), (u,,) must satisfy
Je, (up) < My and J. (un)u, =0, Vn €N,

for some positive M;. By following closely the arguments of Lemma 2.2, we find,

instead of (2.9),
1
Ml Z —/ ]un]2
2 Ja

&n

Hence, by the same ideas explored in the proof of Lemma 2.2, there are a My, My > 0

such that
/ | |* Tog [un]? < Mo (1 + [Jon]|5")

n

and,

My + My (1 + [Joall5) = Cllunl 7., +/ Fi(up) > Cllun|lf., . VneN,

for some C' > 0 and 0 < r < 1, which shows the boundedness of (||u,||#., ) in R. Now,

the conditions on V ensure that (u,) is bounded in H*(RY). Since

1
[ Bt = L) = Gl + [ Gaeuiua)
RN RN

we infer that

sup / Fi(un) < oo,
]RN

neN

proving the boundedness of (u,) in X. For some r, A > 0 and a sequence (y,) it holds

limsup/ lun|> > A > 0. (2.25)
Br(yn)

n——+oo
Otherwise, using a concentration-compactness principle due to Lions ( [83, Lemma
1.21]), we would have

u, — 0 in LP(RY) Vp € (2,2%),
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then

Gy (e, up)u, = 0,(1) and Ga(ent, uy) = 0,(1).
RN RN

From the assumptions in the statement we get J. (u,)u, = 0. This associated with

the last equality give
on(1) = ||un||%[En +/ Fl(tn)ty,.
RN

The above limit together with (C.6) ensures that

lunlf, + [ Filun) =0

which permits to conclude that J., (u,) = c., — 0, contradicting Lemma 2.5-7).

From now on, set w,, := u,(-+y,). The boundedness of (u,) and (2.25) yield that
(wy,) is a bounded sequence in X, and so, we may assume that there is w € X — {0}
such that

w, —~w in X.

Our next step is proving that (£,%,) is a bounded sequence in RY. This fact is a direct

consequence of the claim below.

Claim 2.2 It holds lim d(e,yn, A) =0, with d being the usual distance between e,yy,

n—-4o00
and A in RY.

The proof of the claim follows the same ideas of [11, Claim 3.1], however for the
reader’s convenience we will write its proof. Arguing by contradiction, if the claim is
not true, there exist some subsequence of (£,y,), still denoted by itself, and v > 0
satisfying

d(enyn, A) >, ¥n € N,

Then, for some r > 0,

B (enyn) C A, ¥n € N.
Now, for each j € N, we fix v; = ¢;w, with ¢; defined as in Lemma 2.5-747). So,
we know that v; = w in X. For each j fixed, a simple change of variable leads to

/RN(anij + (V(enx + €nyn))wnv;) + /

Fl’(wn)vj:/ Gy(enx, wy)vy.  (2.26)
RN RN

Writing

/RN Gy (ene, wy)v; = /B ( )G’Q(enx,wn)vj —|—/ ( )G’Q(anx,wn)vj
r (0 ‘- (0

&n En
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and using (A4;), we find

/ Gy (enw, wy)v; < bo/ W U; —I—/ Fy(wy,)v;,
RN B_r (0) B¢, (0)

and so
/ (Vw, Vv; + Cw,v;) +/ Fl(wp)v; < / Fy(wy,)v;, (2.27)
RN RN B, (0)

&n

for a convenient C' > 0. Since v; has compact support, one can sees that

/ Fy(w,)v; — 0 as n — oo.
B¢ (0)

€n

By using that w, — w in X, we firstly take the limit of n — co and after the limit of
j — o0 in the inequality (2.27) to get
/ ([Vw]? + Clw|?) +/ Fl(w)w <0,
RN RN

which yields w = 0. This contradiction proves the claim.

The preceding claim ensures that, going to a subsequence if necessary,
Entn — Yo € A for some yo. Actually, we will prove that yy € A. To this aim,
note that for each R > 0 the sequence x,(x) := xa(en + £,¥,) is a bounded sequence
in LY(Bg(0)), for any ¢ € [2,00). Since LI(Bg(0)) is a reflexive space for all g € [2, 00),
then there exists a function xyg € LY(Bg(0)) such that

Xn — Xr in LY(Bg(0)).

The reader is invited to note that, given positive numbers 0 < R; < R,, the functions

Xr, and xpg, obtained in the same way of xp satisfy

XRi = XRs|Bg, (0)-

Therefore, there is a measurable function x € L{ (R") satisfying

Xn — x in LY(Bg(0)), (2.28)

for each R > 0. Note also that 0 < y < 1.
In the same way of (2.26), for each ¢ € Cg°(RY) we have

/ (Vw,Vo + (V(enx + enyn) + Dwyod) + / Fl(w,)¢p = Gy (en® + EnYn, Wn)O.
RN

RN RN
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By Claim 2.2 and (2.28),

[ (Vuvo Vi) + vwo)+ [ Fiwio= [ Gawo,

RN

where

Gy(z,1) = X(2) B (1) + (1 = x(2)) B3 (t).

It is easy to check that G satisfies

Gy(z,t) < O(|t] + |t),

GY(z,t)

+— for t > 0, is an nondecreasing

where p € (2,2*). Moreover, the map t —

function.
The above arguments guarantee that .J'(w) = 0, where J : X — R is the
functional given by

Tw)i=5 [ (Va4 V) + D) +

R

Fl(u)_/ GQ(IL',U),
N RN
~ t ~
and Gy(z,u) := / GYy(x, s)ds. Next, we set
0

I = [ (V0P + (Vi) + D)+ [ R = [ R vaex

M = {ue X —{0}; Jy(p(u)u=0}

and

iy = Inf Jyge(u) = inf {maxJ(tw)}'

uEMo ueX—{0} | t=0
Define also ¥y := suppy and Oy := {u € X,; [supp(|u|) N Xg| > 0}. Using the same
ideas explored in the proof of Lemma 2.1, the conditions on G, allows us to conclude

that

J(tv) = —o0, as t — oo,

for each v € Oy. Since w # 0 and j’(w) =0, we get w € Oy. Therefore, by standard

arguments,

J(w) = max J(tw) > max J(tw) > cy(yy)-
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In the same way of (2.8), we find by a change of variable,
1 !
CETL = Jan (un) - EJ@,L (un)un -

1 1 1
= B} /N(’wn|2 + [FQ(wn) - §F2/<wn)wn + §Gl2(€nx + Enln, wn)wn - G2(5nx + Enln, wn)])
R
(

From (A4;) —iv),

1 1 1
Csn 2 5 / (lwn’2+[F2<wn)_QFQI(wn)wn_FﬁGIQ(gnx"i_gnym wn)wn_GZ(gnx"i_gnym wn)])
Br(0)

for each R > 0. Now, fix p € (2,2*). Since w,, — w in LP(Bg(0)), the growth conditions

on Fy and F2’ assures that, for some ¢ € (p,2*), it holds

Fl(w,)w, = Fi(w)w, in Lr(Br(0));
Fl(wp)w, — F(w)w, in Lr(Bg(0)).

The convergence in (2.28) implies that x, — x in L"(Bg(0)), where r is the conjugate
exponent of ¢/p. Gathering these information,

XnF3(wn) + (1= xa) Fy(wn) — xFy(w) + (1 = x) Fy(w) in L'(BR(0)).
Now, employing the fact that
Gy(en + Entins W) = Xa () Fy(wn) + (1 = Xa(2)) E(wn),
we conclude that
Gl (en® + Enln, wy) — Gz, w) in LY(Bg(0)).
Using an analogous reasoning we also derive

Ga(ent + Enin, wy) — Gao(x,w) in LY(Bg(0)).

Consequently, by Fatou’s Lemma (recall the inequality in (A;) — iv)) and Lemma 2.5,

w2 | (1|w|2 + [Fa(w) — LE)(w)w + 28 (e, wyw - é2<x,w>1) VR0,
BR(0) 2 2 2

Letting R — oo, one gets
1 2 1 / 1 1 e
w2 [ (Gl + [Fw) = SFiw)w + 3Gy, v - Colw,w)] ) =
RN

= J(w) — 57 (whw = Jw) > evie.
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By the definitions of levels ¢y and cy(y,), the above inequality ensures that

Vi(yo) < V(0) = in/f\V(x). Indeed, note that, if \; < Ag, then
Te
max Iy, (tu) < max Iy, (tw),

so that c), < cy,, where J) is the energy functional associated with the problem

() —Au+ M =ulogu?, in RY,
Py

u € H'(RY)n LM (RY).
and

cx:= inf maxJy(tu).
ueX\{0} t>0

Thus, by (V2), we must have V(yo) = V(0) =V and yo € A.

In order to finish the proof, it remains to prove that
w, —w in X as n — +oo.

Aiming this goal, we will prove the following result

Claim 2.3 lim |wn|2:/ lw]?.
Note first that, since €,y, — yo € A, there exists a number r > 0 such that

B, (g,yn) C A, for all n large enough. Thereby,

BL(O) C Agn — Yn,

&n

for all n large enough, and so,
X(Ae, —y) (@) — 1, ae. z € RY. (2.29)

Now, note that, by using Gy < Fj and that J'(w)w = 0 we get Ty (o) (W)w < 0, so that
Ji(w)w < 0, because V(yo) = Vp. Therefore, for some t, € (0,1] it holds tow € Np.
Then, from (2.29) and Lemma 2.5-iii),

t t t
co < Jo(tow) = 50/ lw|* < Eoliminf/ lw, |* < Eolimsup/ lw,|* <
(A€ (AEn_y”)

n_yn) n—-+o0o
2
< 2limsupe., < c,
n—-+o0o

(2.30)
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where we have used that

1 1 1
3l =g [l S ) = G =
en —Yn &

n

The above computations prove the claim.
Observe that the sentence in (2.30) also ensures that ¢y = 1, and so, w € Nj.

Using that J. (uy)u, = 0, by a change of variable, we find

/ (Vawnl? + (V(enz + engn) + Dlwnl?) + / Fl(wn)w, =
RN RN

/ F(w,)wn + / F(wn)wn.
(Aer, —yn) (Aey,—yn)©

By applying Claim 2.3 and interpolation,

(2.31)

X(Ae, —y)Wn —> W in Lp(]RN)

and

/ Fy(wy)w, = / Fy(w)w + 0,(1).
(Aey, —yn) RN
As w € Ny and

(V(en® + ntn) + 1)) |wn)?® = Fy(wp)w,) >0 in (As, — yn)S,
the equality (2.31) yields that

/RN(|VU)|2 + (V(yo) + D[wl]?) +/ Fl(w)w <

RN

gnminf/ (!an\2+/ (V(anx+5nyn)+1)|wn\2)+/ F{(wn)wn> <
RN (Aen_yn) RN

< [ (90l + o+ D)+ [ Fitwpw.

N

Taking into account V' (yo) = Vi, we derive that
ey = llollipgery and | Fiwnun— [ Fwy
The above limit together with (C.6) ensure that w, — w in X. Finally the boundedness
of (wy,) in L>°(2) and the limit (2.24) follow as in [11, Lemma 3.10] =
As a direct consequence of the computations made above, see the sentence (2.30),

we have the following result

Corollary 2.2 The levels c. satisfies lir% c. = Cg.
e—
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Finally, we are ready to prove that (P.) has a positive solution for all ¢ small
enough.

Theorem 2.3 There ezists g > 0 such that (S.) (and so (P:)) has a positive solution
ue € X, for all € € (0,g9).

Proof. In what follows, we will prove that
u(r) < ty, Yo € RY — A, (2.32)

for e € (0,e9). Indeed, consider a sequence €, — 0 and (u.,) such that J., (u.,) = c.,
and J! (u.,) = 0. By Lemma 2.6, going to a subsequence if necessary, there exists a
sequence (y,) in RY satisfying e,y, — vo, with V(y9) = V. Thus, for some r > 0 it

holds B, (enys) C A, and so, Bx (y») C A.,. The last inclusion is equivalent to

RY — A, CRY — B (y,).

On the other hand, the sequence (y,) can be chosen such that w,(x) = u., (z + yn)
satisfies (2.24). Therefore, for R > 0 large enough,

w, (1) < t;, Vo € RY — Bg(0),
which implies
ue, (x) < ty, Vo € RY — Bgr(y,).

Since for n € N large enough r/e,, > R, we have

RY — A., CRY — Bx (yn) CRY — Bg(yn),
for all n large enough, showing that

ue, (z) < t, Vo € RN — A,

Since €,, — 0 is arbitrary, the proof is over. m

Remark 2.2 A natural question related with the problem (P.) it is about the
concentration of positive solutions. Using (2.24), the same arguments employed in [11,

Section 4] guarantee that the below result holds.

Corollary 2.3 (Concentration phenomena) Let v.(x) = u.(x/e). Then, v. is a
solution of (P.) for e € (0,e¢). Moreover, if z. € RY is a global mazimum point of v.,
we have

lim V(z.) = V.

e—0t
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2.4 Multiplicity of solution for (P.)

In this section we will show the existence of multiple solution for (P.) by using

the Lusternik-Schnirelmann category theory. More precisely, setting
M :={zcA;V(z) =V} and M;:= {x € RY; d(x, M) < §}, (2.33)

where 6 > 0 is small enough of such way that Ms; C A, our arguments will prove
that (S:) has at least catys (M) solutions. To begin with, we start by recalling some
notions related with the Lusternik-Schnirelmann category theory, for further details

see [83, Chapter 5, and references therein].

Definition 2.2 Let Y be a closed subset of a topological space Z. We say that the
(Lusternik-Schnirelmann) category of Y in Z is n, catz(Y) = n for short, if n is the

least number of closed and contractible sets in Z which cover'Y .

Suppose that W is a Banach space and V is a C!- manifold of the form
V = ¥~1({0}), where ¥ € C'(W,R) and 0 is a regular value of ¥. For a functional
I : W — R denote
I":={ueV; I(u) <d}.

The following result can be found in [83, Chapter 5| and it is our main abstract

tool to get the existence of multiple solution for (P.).

Theorem 2.4 Let I € C*(W,R) be such that I|y is bounded from below. Suppose that
I satisfies the (PS), condition for ¢ € [inf I|y,d], then I|y has at least catpa(I?) critical
points in 1%

In the sequel, let us introduce some notations that will be used later on. Hereafter,

we denote by ug a positive ground state solution of (F). Furthermore, for each § > 0,
we fix ¢ € C*°([0,00) such that 0 < ¢ <1 and

)

1, 0<t< =

) —_ —_ 27

0, t>0.

Using the above notation, for each y € M we also set

Wey(2) = ¢(lex — y[)uo (55’7 — y)

£
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and let t.,, > 0 be such that t.,w., € N.. Note that [supp(w.,) N A.| > 0, then we
know that t., verifies J.(t. ywe,) = max;>g J-(twe ).

For each € > 0, we define the map
O, M — N,
Yy — (I)E,y = teyWe y-

Now, fix p > 0 such that Ms C B,(0) and ¢ : RY — R" given by

z, lz| < p;

((z) = T
P |zl =p
||

Finally, we set 3 : N. — R given by

| geolutr
O T

Lemma 2.7 The following limit holds

lim J.(®.,) = co, uniformly in y e M.

e—0

Proof. Arguing by contradiction, we get sequences (g,) and (y,), with €, — 0 and
(yn) C M, such that

for some &y > 0. Setting ¢, = t.,,, and using that ., € N, , we find

Jeu (D) = t—”/ (IV(enz)uo(2)]* + (V(enz +ya) + De(en2)uo(2)[*)+
2 Jex (2.35)

+ /RN Fi(tho(enz)uo(z)) — /RN Go(enz + Yn, tad(enz)uo(2))
and
th /RN(\Vcﬁ(&zz)uo(z)l2 + (V(ent + enyn) + 1]d(enz)uo(2)]?) =

= /]RN GY(nz + Yn, tad(En2)uo(2) ) tnd(en2)uo(2) — /RN F(tng(enz)uo(2))tnd(enz)uo(2).
(2.36)

Note that, if z € B, (0), then €,z + v, € Bs(y,) C Ms. By (2.33), we derive that
enz+yn € A. Hence, for z € Bs (0) one has G, = F}. This information together with
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(2.36) yields
[ 99z ) + (Ve + 1) + Dllenz)ual=)) =
= [ 190z o) ol s)ua(2) ) =
= [ 1900z o) og(lotens o)) + 1os(16) [ lotenz)unl)

RN
Our next step is proving that, going to a subsequence, t, — 1. Since y, € M, we can

assume y, — Yo € M. In this way, the above equality ensures that (¢,) is a bounded
sequence. Otherwise, going to a subsequence if necessary, we would have ¢, — o0
and thus log(|t,|?) — oo. Gathering this information with the Lebesgue Dominated
Convergence Theorem in the above equality we arrive at a contradiction.

We may assume that ¢, — t; > 0. Using the same ideas of preceding paragraph,
one can see that ¢ty > 0. Finally, by combining the Lebesgue’s Theorem with the last

equality we find

& [ (19wl + Valuol') = [ ftouol* ogtoluof?),
RN RN

which shows that ty = 1, because ug is a ground state solution of (Fp). Ast, — 1, the
sentence in (2.35) implies that J., (®.,,.) = Jo(ug) = ¢, contradicting (2.34). The
proof is now complete. m

Let us introduce the following set
N {u e N2y Jo(u) < e+ or(e)}.

Note that the last lemma assures that ®., € ./\76
Lemma 2.8 The map (8 satisfies

ling B(®.,) =y, wuniformly in y e M.
e—

Proof. The idea is the same found in [14, Lemma 4.2]. If the result is false, there are

sequences £, — 0 and (y,,) C M such that

|/6(¢)5nayn> - yn| Z 517

for some d; > 0. By using the definition of 5 and setting z = ===, we find
[ ¢z ) = wlonzhun(aP
R

[ Jotenzbuatr

RN

5(q)€n,yn) = Yn +
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Without loss of generality, we may assume that y, — yo € M C B,(0). Thus, the
definition of ¢ together with the Lebesgue Dominated Convergence Theorem implies

that
|B((I>£n,yn) - yn| = On(1)>

which is absurd. =

In the next lemma we prove a version of result of Cingolani-Lazzo in [43, Claim
4.2]. In that paper the authors have considered a homogenous type nonlinearity while
in our case we are working with a logarithmic nonlinearity.

Lemma 2.9 Let u,, € N.,. Suppose that J., (u,) — co, where e, — 0. Then, there
exists a sequence (y,) in RY such that w, () == u,(x+y,) has a convergent subsequence
in X. Furthermore,

lim (€,yn) = Yo,

n—-+o0o

for some yg € M.

Proof. As made in the proof of Lemma 2.6, we have that sup||u,|l., < oo, and
neN
so, (u,) is a bounded sequence in X. By Lemmas 2.5-i7) and 2.34, we know that
Ce,, = irﬁff Je, (u) and J., (u,) = c., + 0,(1). Therefore, by a slight variant of Eke-
uENey,

land’s Variational Principle, there is v, € M. such that

Z) J5n (Un) - Can + On(1)7
i) |[vn — unlle, < on(1);

iti) |[JZ, (vn)l]+ = on(1).

The reasoning employed in the proof of the Proposition 2.5 shows that
|[J2, (vn)l|xz, — 0, where X[ designates the topological dual space of X.,. From
the condition i) above,

J., (Un) vy = 0, (1).
Now, by following the steps in the proof of Lemma 2.6, we get a sequence (y,) C RY
such that

lim_(gnyn) = yo,
n—-+00
for some yo € M. Moreover, the sequence W, = v,(-+y,) has a convergent subsequence
in X and thus, using i) above, w, := u,(- + y,) has a convergent subsequence in X.

This finishes the proof. m



2.4. Multiplicity of solution for (P) 91

The below result relates the number of solutions of (S.) with catyy, (M).

Proposition 2.7 Assume that (V1) — (Va) hold and that § is small enough. Then,

problem (S:) has at least caty, (M) solutions, with € € (0,¢1), for some 1 > 0.

Proof. In this proof we will employ the Theorem 2.4 with I = J., V = N, and
d = ¢, + 01(¢). In this case, we have Jg = /\75 On account of Proposition 2.5, the
functional J|u. verifies the (PS) condition, and so, the Theorem 2.4 guarantees that
Je|n. has at least cat g (N.) critical points in N, = J4. Thereby, by Proposition 2.4,
J: has cat g (M) critical points, from where it follows that (P.) has at least cat e (N2)

solutions.

In order to finish the proof, we will prove

cat g (NZ) > caty, (M).

Our argument follows the ideas of [43, Section 6]. It suffices to consider the case

cat g (NV:) < oco. Let n = cat (N2) and take Ay, ...A, closed and contractible sets in
N satisfying N, = UAi‘ In this way, it is possible to find h; € C([0, 1] x Ai,/\~/;), with

=1

hi(0,u) = w and h;(1,u) = hi(1,v), for some fixed v§ € A;, i € {1,...,n}. Note that,
by Lemma 2.7, we have ®.(M) C N. for € ~ 0t. Also, the map

Bod.: M — Ms
is well defined for € ~ 0". Set
ﬁ:[O,l]XM—}M(;
(t,y) —n(ty) =t8(Pey) + (1 — 1)y
By using the properties related with 3, one can see that n is well defined and (5 o ®,

is homotopic to inclusion map ¢ : M — Mjy. Since ®. is a continuous map, the sets

B; := ®_'(A;) are closed subsets of M. In addition,
M =B (2.37)

Now we are able to show that n > caty, (M). Indeed, it remains to prove that,

for each i € {1,...,n}, the set B; is contractible in M. To this aim, let

Hil[o,]_]XBiHM(;
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be given by
n(2t,u), 0<t<

I

N | —

<t

IN

1

Y

| —

with g;(t,u) := S(hi(t, P.y)). The above conditions on 1 and h; ensure that H; is well

defined. Furthermore,

Hi(ovy> = U(an) =Y and Hi(Ly) = B<hi(1vvé))7 \V’y € Bi:

which shows that B; is contractible in M;. From (2.37) we get the desired inequality.
|
The result below points out an important property of the solutions of (S‘E)

obtained in the last theorem.

Proposition 2.8 (Positive solutions counting) There exists €5 > 0 such that, for
e € (0,e2), it holds

(M)

i) (S.) has at least cotuts U7

2 positive solutions, if caty, (M) is an even number;

i) (S.) has at least w positive solutions, if catyr, (M) is an odd number.

Proof. Take g5 = 07 and fix € € (0,&5). If v. is a critical point of J.(v.) < ¢ + 0-(1),

we must have v = 0 or v7 = 0. Otherwise, we would have v, v- € N, and so,
2c. < J.(vH) + J.(v7) = Jo(v.) < o+ 0.(1),

which is a contradiction for €5 & 07. Therefore, using the same arguments of Lemma
2.6, we deduce that either v. > 0 or v. < 0.
Now, suppose that k := caty; (M) is an even number and let vy, ...,v; be the

solutions of (P.) given in the preceding proposition. If at least % of the solutions
v1, ..., U are positive solutions, the item i) is proved. Otherwise, we know that at least
g of the solutions vy, ..., v are negative. Denote by wy, ..., w k such negative solutions.
Since gs(x, ) — FY is an odd function, the functions —wy, ..., —wy are positive solutions

of the problem

&) —Au+ (V(ex) + Du = golex,u) — Fj(u), in RY,
) u € H'(RY)n LM (RY).

and thus 7) is proved. The proof of iz) follows by a similar reasoning. m
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2.4.1 Proof of Theorem 2.1

The proof is as follows.
Proof of Theorem 2.1. Let v, be a critical point of J.(v:) < ¢g + 0-(1). It suffices

to show that there exists 3 & 07 such that, for ¢ € (0, ¢3),

0<w.(z)<t, Vo e RN — A, (2.38)

for each solution v, of (S;) given in the items i) —ii) of the last proposition. Arguing by
contradiction, we get a sequence (v,, ) of solutions of (S.,) where &, — 0 and v, := v,,
does not satisfy (2.38). Note that the obtained sequence (v,,) satisfies the hypothesis of
Lemma 2.9 and that the sequence (w,) given in the lemma must satisfy (2.24). Thus,
a contradiction is obtained by following closely the same ideas used in the proof of
Theorem 2.3. This argument ensures that (S.) verifies i) — i) in the statement of the
Theorem 2.1. Now, the result follows by a change of variable. m

We finish this chapter by pointing out an important question related with the

number of positive solutions obtained in our previous results.

Remark 2.3 In [14,43] the result of multiplicity of solution involving the Lusternik-
Schnirelmann category assures the existence of at least caty, (M) positive solutions. In
[14], for example, the key point is the fact that the nonlinearity f was assumed such that
f(t) =0,t <0. In our case, this framework lead us to consider f(t) = |[t7|*log [¢tT]?,

as well as,

Je(u) == %/RN(\VU\Q + (V(ex) + 1)|ul?) —i—/

Fi(u™) —/ Gy(ex,ut), Yu e X..
RN RN

However, we were not able to reproduce some estimates made throughout this work
by considering J. given as above. For example, in the Lemma 2.2, we were not able
to show the boundedness of the (PS) sequences when J. is chosen in this way. In

fact, since the norm on X, involves the norm || - ||p, of Orlicz space L1 (RY), we need
of the information of term Fi(u) in our computations. This justifies because our
N

R
number of positive solutions by using the Lusternik-Schnirelmann category is a little
bit different from that given in [14,43].



CHAPTER 3

Existence of positive solution for a class of Schrodinger

logarithmic equations on exterior domains

In the study developed in Chapter 2, the new function space introduced in the
Section 2.1 allowed us to apply Cl-variational methods to find solutions for a class of
elliptical problems with logarithmic nonlinearity. Inspired in such ideas, in the present
chapter we intent to treat on the existence of positive solution for the following class

of logarithmic equations.

—Au+u = Q(r)ulogu?®, in €,
Bu =0 on 02,

with Q € RN, N > 3, an esterior domain (i.e., Q¢ = RY \ Q is a bounded smooth
domain) and Bu = u or Bu = %%

As in the problem (P.) in Chapter 2, if one tries to apply variational methods
to the above problem, it is required to deal with the lack of smoothness of the natural
candidate to energy functional associated to the problem.

In order to overcome such difficulty, we borrow the ideas of the preceding chapter
and we consider a decomposition of the nonlinearity f(t) = tlog t?, as well as a function

space on which we will can to use the classical variational methods.

Our study is divided into two cases.
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Case 1. Dirichlet case: In this case we will assume (Q = 1 and Bu = u. These

conditions lead us to consider the problem:

—Au+u=ulogu? in Q,

(Fo)
u € Hy(S2).

The main result associated with (P,) to be proved in this chapter is the following:

Theorem 3.1 There exists py = 07 such that, if Q° C B,(0), then the problem (P)
has a positive solution for each p € (0, po).

U
Case 2. Neumann case: this case corresponds to the choosing Bu := —. On the

function @), we will assume in this case that

(@Q1) lim Q(x) = Qo and ¢ := i%f Q(z) > 0 for all z € RY;
zeRN

|z| =00

(@Q2) Qo > Q(x) > Qy — Ce Molal* for z > Ry,

with Qo, C, My, Ry > 0.
In Case 2 our problem takes the following form:

—Au+u = Q(z)ulogu?, in

(5S0)
% =0, on 0f),
on

The main result on the problem (Sy) is the following.

Theorem 3.2 If the conditions (Q1) — (Q2) hold, then for some My large enough, the

problem (Sp) has a positive ground state solution.

It is important to mention that the conditions (Q1) — (Q2) are inspired in the works
[4,33].

The new approach introduced in Chapter 2 and used in this chapter plays a crucial
role in order to study the problems (Fy) and (Sp), because it permits to adapt several
arguments explored in the literature about problems in exterior domains related with
C!-functionals to the problems (Pp) and (Sp); here, we have adapted and modified a
lot of arguments present in the papers [3,4,9,18,27,33,54].

We would like to emphasize the results in the sequel can be found in the work

due to Alves and da Silva in [6].
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3.1 The variational framework

This section is devoted to show some technical results that will be used later on.
We start by recalling an important result involving the uniqueness of positive solution
for the logarithmic equation on the whole RY. After that, we recall some notions
studied in Chapter 2 and we introduce the convenient function space that allows us to
apply the C'-variational methods in order to get solutions for our problem. Next, a
result of nonexistence of ground state solution for (F) is also established. Finally, we
prove a compactness lemma analogous to the result of Benci and Cerami in [27, Lemma
3.1] that plays a crucial role in our study.

Our first result in this section can be found in [44, Section 1] (see also [30]) and
it concerns with the uniqueness of solution for the following class of problems

—Au+ ku=ulogu?, in RY,

(3.1)
u € HY(RY),

where k > 0.

Theorem 3.3 The problem (3.1) has a unique positive solution u € C*(RN R), up to

translations, such that u(z) — 0 as |z| — oco. More precisely, the solution wu is given

by

The theorem above ensures that any positive solution of (3.1) has an exponential

decaying.

3.1.1 The energy functional

In the same way of Chapter 2 (see also [6,10,11,62]), we will explore a suitable
decomposition of the function

82

s 1
F(s):/ tlogt®dt = —s’logs* — —, scR,
; 2 2

which allows us to introduce an energy functional associated with (/). For each § > 0

sufficiently small, let Fy, I, € C1(R) be given as in the Section 2.1.1 verifying

1
Fy(s) — Fi(s) = 532 log s®, Vs €R. (3.2)
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Recall that F and F; satisfy the properties (P) — (P,) below:

(Py) Fi is an even function with Fj(s)s > 0 and Fi(s) > 0 for all s € R. Moreover
Fy € CY(R,R) and it is also convex if § ~ 07;

(P2) F» € C*(R,R) and for each p € (2,2*), there exists C' = C, > 0 such that
|Fy(s)] < Cs|P~t Vs € R.
As in Subsection 2.1.1, it will be explored the fact that F} is a N-function verifying

the (Ay) condition (see the Appendix C for the proof). This fact ensures that the Orlicz

space

2@ = {u e 2@ [ Fiulds < 400}

i, =mf{x>o; [ (M) < 1}
Q A

is a reflexive and separable Banach space.

with the norm

From now on, we will set X := H}(Q) N L1 () endowed with the norm

[ =11 g + 1 A

Here, L'1(€)) designates the Orlicz space associated with F; and || - ||, denotes the
usual norm associated with L1(Q). In view of the last proposition, the space X is a
separable and reflexive Banach space. Furthermore, the embeddings X — H'(Q) and
X — L¥1(Q) are continuous.

The natural candidate for the energy functional associated with (F) is given by

I(u) ::%/Q(|VU\2+2\U|2>+/QF1(U)—/QFg(m, Vu € X,

It will be convenient to take the norm of H}(f2) as being

2
lullger = ( [ (9 +20))
which is equivalent to the usual norm of HJ(f2). Moreover, it is associated with the

inner product

(U, V) () = /Q(VUVU +2uv), Yu,v € Hy ().
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Similarly, we will consider

lullinony = ([ (70 +20uf)) " e 1Y)

as the norm in H*(RY).

From (P,) — (BR), I € C'(X,R) and

I'(u)v = /(VUVU + 2uv) —{—/F{(u)v — / Fy(u)v, Yve X.
Q Q Q
In our approach, we will use some properties of the limit problem below

—Au+u=ulogu? in RY,
(Po)
u e HY(RY).

Associated with (P ), we have the functional

Io(u) ::%/RN(|VU|2+21L2)+/RN Fl(u)—/RN Fy(u), Yu €Y,

where Y := (H{(RY) N LF(RY), || - [ly) and || ||y == || ||z + || - || 17 vy Related

to the functionals I and I, we also have the Nehari sets
N :={ue X —{0}; I'(u)u =0}

and

No i ={ueY —{0}; I_(uw)u =0},

which can be characterized by
N = U;1(0) and N, = ¥ 1(0),

with
1

Uo(u) = I(u) — %/Q|u|2 and Vo (u) = Io(u) — 5 /RN |u|?. (3.3)

A direct computation shows that ¥y € C'(X,R) and ¥, € C'(Y,R). Furthermore,

associated with N and N, we consider the levels dy and d., given by

dy := Jgj{[](u) and dy = ug}\ﬁm Io(u).

The next result presents an important property of the sets N and N, that is

crucial in our approach
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Proposition 3.1 The sets N and N, are C'-manifolds with the topology of (X,||-||x)
and (Y, || - ||y) respectively,. Furthermore, the critical points of I|x and Is|n,, are

critical points of I and I, respectively

Proof. For the first part, from (3.3), it is sufficient to show that 0 is a regular value

for Uy and V.. Indeed, if u € ¥y'({0}), then

Ui (u)u = I'(u)u — / lu|® = —/ lul* <0,
0 Q

since u # 0. Consequently, Ui(u) # 0 and 0 is a regular value of W,. A similar
reasoning shows that 0 is also a regular value of ¥ ..

Now, note that if w € N is a critical point of I|x;, then it holds
I'(u) = AWq(u),

for some A € R. So, one can see that 0 = AV{(u)u, which implies that A = 0 and

I'(u) = 0, because V(u)u < 0 for u € N. In a similar way, the result follows for

Ioo‘/\/oo' ]

The last proposition yields that a critical point of I|y is a point u € X such that
I (w)]]s == r/{li%g [[I'(u) — A¥g(u)|| = 0. (See [83, Section 5.3])
€
Analogously, we define a critical point of I |,

Remark 3.1 Note that in the preceding proposition, it is crucial the fact that in
our approach, in view of the topology induced by the spaces X and Y, the energy
functionals I and I, are of C! class. This fact is not verified if we consider, for
example, I and I, with the usual topology of H} () and H'(RY).

In the next result, we point out an important property related with the sets N

and N, that will be explored later on.
Proposition 3.2 There exist p1, p2 > 0 such that
p1 <|lullx, VueN

and
p2 < |lully, Vu e N.
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Proof. In fact, for v € N it holds
0 < lulEyyey < el + | Fitwhu= [ Fitwyu < ol
with p € (2,2*]. Using the embedding X — H}(Q), one gets
2 2
0 <1<l < CllllE?,

for a convenient C' = C(p) > 0. Thus, the first part of the result follows by setting
p1 = (C *1)17%2. The second part of the lemma is proved with a similar argument. =
From now on, let us designate by u, a positive ground state solution of (Py)

that can be assumed radial, that is,
Io(to) =do >0 and I (us) = 0.(See Theorem 3.3)
The next result relates the levels dy and d.

Lemma 3.1 It holds dy = d.

Proof. Fix p > 0 the smallest positive number such that RV \ © C B,(0). Now, let
¢ € C*(RY) satisfying
¢(.%’) = 07 T BP(O)

gb([L‘) =1, T e ng(O)c,

with 0 < ¢ < 1. Take (y,) C RY with |y,| — oo and set
On () := G(2) oo (2 — Yn).
For each n € N, fix t, > 0 of a such way that t,¢,, € N. Thereby,
do < I(thén) = Io(tndn), Vn €N. (3.4)
Note that, from the Lebesgue’s Dominated Convergence Theorem,
A+ + Yn) oo — Uso. (3.5)

Our next step is proving that ¢, — 1. To see why, firstly we recall that ¢,¢, € N leads
to

[ 900+ (00)P) = [ (66 0100 ) (36)
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This combined with (3.2) gives

[ A9@IE+160R) =2 [ (R0 = Rl +logts [ 6t @)

Using (3.5) and the invariance by translation of RY, one finds

/Fi(¢n)—> Fi(us) for i € {1,2} and / y¢n\2—>/ o 2.
RN RN RN RN

Gathering the limits above with (3.5), one sees that (¢,) is a bounded. So, we may
assume that t, — to > 0. If ¢y = 0, the equality (3.7) gives a contradiction. Therefore,

it holds tg > 0 and, from the Lebesgue’s Theorem,

/ (19 (totoc) P + |(tots)[2) = / ot [ log(fotin ),
RN RN

showing that ¢ty = 1, that is, ¢, — 1 as n — +o00. Using this limit together (3.4), we

arrive at

do < UHm I (tndn) = Too(Uoo) = doo-

As X C Y, the reverse inequality follows directly of the definition of I, by noting
that the condition I’(u)u = 0 also implies I/ (u)u =0. m
Next, we establish the nonexistence of ground state solution for (Fp), i.e., we are

going to prove that it does not exist a positive solution ug of (FP) such that I(ug) = dp.

Theorem 3.4 The problem (Py) has no ground state solution.

Proof. Seeking for a contradiction, assume that (F,) has a positive ground state
solution w € X. Then,
I'(w) =0 and I(w) = d.

Let v be the null extension of w, i.e., v(x) = w(x) for z € Q and v(x) = 0 otherwise.
It follows that I/ (v)v = I'(w)w = 0, and by Lemma 3.1, I.(v) = [(w) = dy = dwo.
Therefore, v € N is a critical point for I|n.., and so, v is a critical point of I,. As
made in [44, Section 3.1], by using a suitable version of the maximum principle found
in [82], one deduces that v > 0 in whole RY, which is absurd because v = 0 in RV \ Q,
finishing the proof. =

In order to prove our next proposition, we recall the inequality in (1.61):

b2
/N [uf* log [uf* dz < —[[Vull; + (log [Jull; = N (1 +log b)) [[ull3, Vu € H'(RY), (3.8)
R
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where b > 0 is a fixed positive constant.

Let us recall that a (PS). sequence for |y is a sequence (u,) C N such that

11" (un)||+ = 0 and I(u,)— c.

Lemma 3.2 [If (u,) is a (PS). sequence for I|xr, then (uy) is bounded in X .

Proof. Let (u,) be a (PS). sequence for I|y. Since I'(u,)u, = 0, one has

e+ on(1) = I(uy) — -1’ / fun?, (3.9)

and so,

/ lu,|* < C, V¥neN,
0

for a convenient C' > 0. Applying the logarithmic inequality for some b ~ 07, we derive

that
1
/RN [v[*log Ju|* < §HVU||§ + C(log|[v]l5+ 1)||v]l5, v e H'(RY),

which leads to
1
[l g unf? < 5190, + €
Q

for some C' > 0 independent of n. Therefore, by (3.8), there are C;, Cy > 0 such that

1 1
Cr = §Hun||12q;(m - §/Q|Un|210g|un\2 > Col|unll71 @)

showing that

sup ||unHH1 < 00. (3.10)
neN

The definition of I gives

[ Futw) = 10) = ol gy + [ Faun)

Hence, by (3.9) and (3.10),
sup / Fi(u,) < c0. (3.11)
Q

neN

The sentences (3.10) and (3.11) guarantee that (u,) is a bounded sequence in X. m
By using the definition of the functions F; and F; and a Brezis-Lieb type result
(Proposition C.1), it is possible to prove the lemma below whose the idea for the proof

can be found in [80, Lemma 3.1].
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Lemma 3.3 Let (uy,) be a bounded sequence in X such that u, — u a.e. in Q. Then,

/ |y, — u|*log [u, — ul” = / u? log u? — / u?log u® + 0, (1).
Q 0 Q

Proof. The proof could be made following the reasoning in [80, Lemma 3.1]. However,
for the reader’s comfort, we will present the idea of the proof. The argument consists

in a suitable application of a Brezis-Lieb type result: By (3.2), one gets
2(Fy(ty — u) — Fi(u, —u)) = |u, — ul*log |u, — u]2,
from where we derive that

/ |, — u|210g |t — u]2 = 2/(F2(un —u) — Fi(u, —u)).
Q Q

Now, the proof follows by noting that, since F, has subcritical growth, the Lemma 3.1

in [4] assures that

/S;F2<un—u):/S;FQ(UTL)—/S;FQ(U)"—O”(:[).

In a similar way,

/QFl(un—u) :/QFl(un)—/QFl(u)%—on(l),

by the Brezis-Lieb type result valid for N-functions in Proposition C.1. m
Our next result is an important compactness lemma that describes the behavior

of (PS),. sequences for I|y.

Lemma 3.4 Let (u,) be a (PS). sequence for I|y with u, — uo. Then, going to a

subsequence if necessary, either
i) u, = ug in X, or
ii) There exist k € N and k sequences (ul)nen, ul, € Y, with
ul — uj
and w; nontrivial solutions of (Px), j € {1,...,k}. Furthermore, it holds

k k
a3y = ol ey + D Ml [Fa gy and I(wa) = I(uo) + ) Ioo(uy).

j=1 j=1
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Proof. Initially, for a convenient sequence of real numbers (),), we must have
I'(uy) = N5 (uy) + 0,(1). (3.12)
As I'(uy)u, = 0, one gets
AU (U )ty = 0,(1).

From this information, we claim that A\, = 0,(1). Indeed, notice that |¥{(u,)u,| - 0,

otherwise we would have

W)t = |l = 0(1),

Q

and so, since (u,,) is a bounded sequence in X, by interpolation, it follows that
]|, = 0n(1), Vp € (2,2%).

This combines with (P,) to give

| Fitua)a = ou 1)

Now, the limit above together with the fact that I’(u,)u, = 0 leads to

/Q(|Vun| + 9l )—I—/QF{(un)un —on(1).

Since F is convex with F3(0) = 0, we know that Fj(s)s > Fi(s) for all s € R. Then,
we can infer that
[ 9w+ 24y + [ Fiw) = ou(0).
RN Q

Using the fact that F} € (Ag), the last limit yields w,, — 0 in X, which contradicts the
fact that u, € N in view of the Proposition 3.2. So, it follows that [W}(u,)u,| - 0
and A, = 0,(1). By (3.12), since (u,) is a bounded sequence, it holds I'(u,) — 0, that
is, the sequence (u,) is a (PYS). sequence for I. In addition, accounting that wu, — ug
and the growth conditions on F} and Fy, we deduce that I'(ug)v = 0, for any v € X,
implying that ug is a solution of (F).

From now on, inspired in the ideas of [27], we set

Uy — U, x € Q
Uy (@) =
0, reRV\ Q.



3.1. The variational framework 105

A direct verification shows that ¢! — 0 in X. In [4,27], it was proved that (¢}]q) is a

(PS) sequence for Io|p1(q) with
Is(¥y) = I(un) = I(uo) + 0n(1). (3.13)

However, since we are working with a logarithmic nonlinearity, we are not able to show
that (¥}|q) is also a (P.S) sequence. In our case we will prove that a weaker condition
occurs. More precisely, the following properties hold:
i) Lo(®) = I(ua) = I(u0) + 0 (1):
ii) Let ¢ € C5°(Q) with ||¢]ly < 1 and, for each y € RY, define ¢ (x) = ¢(x + y) for
all z € RV. Then,

sup |1 () 116@ [y = 0a(1).

yeRN

Verification of i) By simplicity, in what follows . also denotes 1} |o. The definition
of ¥} gives I, (¢}) = I(x}), then by a simple computation, the Lemma 3.3 guarantees
that 7) holds.

Verification of ii) First of all, note that

Lo = [ (Veive +206) + [ Fwhet - [ e, @
Q Q Q
In order to prove the item iz), we will need to show the following claim

Claim 3.1

Sup/QIF{(un—uO)—(E'(un)—ﬂ'(u()))l|¢(y)|=0n(1), for 1 e{1,2}.

yeRN
In the proof of the claim above, we adapt some ideas presented in [12, Proof of
(3.39)]. In what follows, we will only show that the claim for function Fi, because the
proof for F; follows by using similar arguments (see also [4, Lemma 3.1]).
Given € > 0 and r € (1,2), the definition of F; guarantees that there is ¢y > 0
small enough such that

[FI()] < elt|™, Jt] < 2to. (3.15)
On the other hand, note that it is possible to get t; > to large enough such that

[FI()] <elt* 7 [t >t —1, (3.16)
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as well as
|F{(t) — F|(s)| <elto]™, |t —s| <50, and [t|,|s] <t + 1, (3.17)
for some sy > 0 small enough. Therefore,

Fl)| < Ot Y +e|t| L, teR, 3.18
1

for some C. > 0. Now, fixing R > 0 of such way B%(0) C €2 and using then fact that

F has a subcritical growth, it is easy to prove that

/ | F{(up —ug) — (F{(un) — F(ug)) || oW |=0,(1), uniformly in y € R"Y.
Br(0)NQ

Our next step is to estimate the integral below
[ 1B = o) = ()~ Fifuo) [ |
B%(0)n0

Fix ¢ > 0. From (3.18), since R > 0 can be chosen large enough, one has

/ | Fl(uo) || 6¥ | < C. / g ] 6 | 4 / g 1] 6|
B, (0)nQ2 B, (0)NQ B, (0)nQ2

< Clfuoll5~H 6] 2 + [uol[5- 1™ ||2-)
< eCllo™]ly,
(3.19)
where C' does not depend on y € RY. Setting
An = A{z € BR(0); |un(z)| < to}
and
By = {a € B3(0): lun(a)| = 1},
we have by (3.15),
[ I F =) - Fiw) [ <
AnN|uo|<d]
= 8/ (|t =g "7 W |+ | uy 7Y 6@ | < (3.20)
AnN[luo|<3]

<ed|olly,

where C' does not depend on y € RYM. Here, we have explored the fact that

|supp ¢¥)| = |supp ¢| for any y € RY. In a similar way, by using (3.16),

[ I F = )~ Fiw) [ 69 < Clelly (321
BnNlluo|<4]
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Next, let us consider C,, := {z € B%(0); to < |u,(x)| < t1}. Accounting that (u,) is a
bounded sequence in X, we derive that
M :=sup|C,| < occ.
neN

Thereby, by (3.17),
/ | F(un = uo) = Fi(un) [| o |< 57 | Cul 2|02 < eCllglly,  (3.22)
CrnN[luo|<d]
for a convenient C' independent of € and y € RY. From (3.20), (3.21) and (3.22),

/ | Fl(u = ) = Fi(w) | 67 [<<Cllolly. (323)
B (0)N[luol<d]

Now, we are going to analyze the case that |ug| > . The boundedness of (u,) in X

together with the inequality (3.18) give
/ | F(un — o) — Fiun) | 6 | <
B (0)N[luo|>4]

<c. | (1 em =0 1] 690+ Lty 7] 69 | 42y,
B (0)N[Juol>9]
where C is independent of € and y. Since ug € X C H}(Q), one has
|B5(0) N [|ug] > 6] — 0, as R — +oc.
Thereby,

C: (| tn = o [ 6P |+ [un 7] 0¥ |<
Bg(0)N[|uo[>9]

S Cs(”(“n — U (2=n)/z S

5 lo

;*_1 + ||un

Br(0)* N [luo| > ]

ge
< eCll¢lly,

for R > 0 large enough and C' independent of ¢ and y. Using the last information

together with (3.19) and (3.23), one finds

yeRN

sup [ Fn— w) ~ (Fi(un) ~ F(wa)) || 69 |< Cllo].
BS,(0)n

Since € is an arbitrary positive number, the last inequality with ||¢||y < 1 ensures that
the Claim 3.1 is valid for the function F} and this finishes the proof of the claim.
Now, we are ready to show the item 7). In fact, fix ¢ € C5°(Q2). So, by (3.14),

[&wm—wwm—wmmwm=[yﬂ%—ww%ﬂwm—ﬂwmw@+
féwwwww—wwm—ﬂwmww
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Hence, by Claim 3.1,

sup |10, (¥y) — (I'(un) = I'(u0))[[|6"[ly = 0a(1),

yeRN

from where it follows that

sup || 15 (@)l ||y = oa(1),

yeRN

and the item 4i) is proved. If 1! — 0, then the proof would be finished. Thereby, in

order to get the desired result, let us consider that

W0 in V. (3.24)

n

In this way, we can prove that the following claim holds

Claim 3.2 There exist A\g > 0 and ng € N such that
Io(thy) = Ao, Y > my.

1

Otherwise, considering a subsequence of (1,

) if necessary, we would have

Lo(¥y) < on(1).

Now, recalling that

Ey(t)t — Fl(t)t = t*logt®> +t*, t€R
the same arguments explored in the proof of item i) ensure that
L () = I'(tn)un — I'(uo)uo = 0a(1),

and so,

1

1
Ta0) = Tu(wd) = 5 Tlb0h + on() = 5 [ 03P + 0.

Consequently, one finds / |42|? = 0,(1), and by interpolation, / [LP = 0,(1). So,
RN RN

the growth condition on F3 allows us to conclude that

/RN Fy (), = 0a(1).

From the computations above, one has

1Al + [ 00 = 0a(1),
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which contradicts (3.24). Then, the claim is proved.
Now, lets us consider a decomposition of RY into unit hypercubes B; with vertices

having integer coordinates and set
d, = L .
n = max ||y [y,
for a fixed p € (2,2").
Claim 3.3 There exist A\ > 0 and n, € N such that

dn Z Al, Vn Z ny.
Arguing as in the last claim,

Iéo(%)% = I'"(un)up — I'(uo)uo = on(1),

and so
WA By + [ FDh = [ e+ o),
By (2.4),
¢ (I8 B + [ Fi0) < [ Bt + o)

for some constant C' > 0. Combining this inequality with (2,), one finds

1
Tu0h) = 31V + [ R0~ [ Fa(wd) <
<C [ P +0u(1) = € 3 A1y +0n(1)

€N

Since each B; is a unit hypercube of RV, there is a constant C' > 0 independent of
such that
1nllesy < Clldpllm sy, Vi€N. (3.25)

Hence, modifying C' > 0 if necessary, it holds

Lo(y) + 0a(1) S Cd72 Y [l s,y < Mdy 7,
ieN
for some M > 0. Now, we apply Claim 3.2 to get the desired result.

Hereafter, for our goals, let us consider ! the center of B; in such way that

dn = ||ton] Lo (5,)-
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In this way, one can see that, by taking a subsequence, |y!| — co. Otherwise, for some

R > 0 large enough we must have

[ ez [ —azxso
Br(0) B;

which is a contradiction, because the weak limit 1)} — 0 in ¥ implies that

| i —o
Br(0)

Thereby, we may assume that |y!| — oo.
Notice that, by the invariance of translations of RY, we conclude that (2 (-+yl))

is bounded in Y. Then, for some u; € Y,
V4 yl) = u in Y. (3.26)
Our next step is to prove that u; is a nontrivial solution of (Px,).
Claim 3.4 The function uy is a nontrivial solution of (Ps).

Initially, let us prove that u; # 0. To see why, let us denote by By the unit hypercube
of RY centered at the origin. Then, by the Claim 3.3,

a4l = [ e == x>0
BO Bi
Observe that, by (3.26), ¥} (- +y}) — u; in LP(By). Hence,
w[” = A7 >0,
Bo
showing that u; # 0.

Set
Q, ={z eRY; 2 +y! €Q}.

Note that, for each v € C$°(RY), we have that supptv C Q, for n large enough.
Setting v (z) := v(x — yl), it follows that

suppto™ c Q and o™ € HL(Q).
Taking v € C°(RY) with ||v|ly < 1, we see that |[v™]||x = 1 and

L (n (- + yn)Jv = Lo (0™
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Thus, by item i), I’ (¥1(- +yl))v = 0,(1). On the other hand, standard arguments

involving the weak convergence of (¢} (- + yl)) yield

Lo (Un (- + ) v = Lo (ur)v.

By gathering these information, we derive that I’ (u;)v = 0, then w; is a nontrivial
critical point of I, and so, u; is a solution of (Ps,).

Define ¥?2 := (¢} (- +yl) —uy). If ¢ — 0, then the proof is finished. Otherwise,
we use the fact that 12 — 0 and the ideas explored above to find a unbounded sequence
(y?) of RY and to produce uy € Y a nontrivial solution of (P,,). Continuing with this

procedure, for each 7 > 2 it is possible to define
A O A R Y
with
yfl_l — 00

Ui = g,
and w;_; a nontrivial solution of (Px). By exploring the same type of argument used

in the prove of item i), one can prove that

i) [l ey = [tnl I o) = ol 0y — Zl\uillél(w) +on(1);

w): Lo(3) = I(u,) — I(ug) 2:[1%+0n)
v): liminf I (?) > 0 for each ] 6 N.
n—oo
We finish the proof by proving that the following claim holds.

Claim 3.5 There is a number k € N such that % — 0 in Y.

In fact, otherwise it would be possible to get by the preceding procedure a nontrivial

solution u; of (Py) for each j € N, and so,

Io(uj) > ds = inf Io(u) >0, VjeN.

uEN o

Thus, from iv),

Lo (W) < I(un) = I(uo) = (j = 1)dos + 0n(1).
As (I(uy)) is a bounded sequence, for j large enough the last inequality implies that
liminf I, (¥) < 0, which contradicts v). From this, the Claim 3.5 is proved and the

n—oo

proof is over. m
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3.2 Technical Results

In this section we prove some technical results that are crucial in the proof of
Theorem 3.1. The main goal is to prove that I|y satisfies the (PS). condition for all
¢ € (deo + €,2dy — €), for some € > 0 small enough.

In the sequel,

where R > 0 is such that Q¢ C Bg(0). Next, let 7: Y — R be given by

rtw) = [ luPx(laDa

and set

P:={ueX;u>0} and Ty:={ueNNP;7(u)=0}

Employing the above notations, let us define the level

= inf [
co = inf I(u),
which satisfies
doo = d() S Co. (327)

Our first result is the following

Lemma 3.5 The number ¢y satisfies do < co.

Proof. Arguing by contradiction, in view of (3.27), if the lemma does not hold, then
it occurs

doo:d():C(].

Thus, it is possible to take a sequence (v,) in N/ N P such that
7(v,) =0 and I(v,) — dy = inj{’/ I(u).
UE,

By applying the Ekeland’s Variational Principle, there is a sequence (u,,) in A satisfying
I(uy) < I(vy), ||un — vnllx = 0,(1) and (u,) is also a (PS)y, sequence for I|y (see
e.g. [83, Theorem 8.5]). Thanks to Lemma 3.4, there are k£ € N and nontrivial solutions
Uy, ..., U Of (Ps) with

k

N O N [T | e (3.28)
j=1
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and
k

I(un) — I(ug) + Y Ino(u;), (3.29)

j=1
where uy has been chosen in a such way that w, — ug and wug is a solution of (F).

Using the fact that d., = dp, it holds

I(ug) + Y Ino(uz) > I(ug) + kdy.

j=1
Since I(u,) — dy and I(ug) > 0, from (3.29) one has k = 0 or k = 1. If & = 0,
accounting (3.28), we find

U, — ug in HJ(Q).

Now, as (u,) is a (PS)g, sequence for I|y (and also for I') and wy is a solution of (F),

one gets
lualEygi + [ Frlanyin = [ Fitunyu =
Q Q
— [ Fitunuo + 0u(1) =
Q
~Iluallyey + | Filua)uo -+ 0u(0)
that is,

ol + [ Filun)n — llualEiyen + [ Fitaoyun

In particular, one has

By — NoolFsyy and [ Fiunun — [ Fiun)uo

which yields that u, — uy in H}(Q) and u, — ugy in LT (Q), since F; € (Az). From
this, u,, = up in X, and so,

I(u,) — I(ug) = dy,

showing that ug is a ground state solution for (F), which contradicts Theorem 3.4. So,
k =1 and ug = 0. Otherwise, if ug # 0, the function uy would be a nonzero solution
of (Fy), and so,

do = lim I (u,,) > 2dy,

giving a new contradiction. By following the notation in the proof of Lemma 3.4, one

finds
Un(z +yp) = V(x4 yp) — wi;

Yl — 0.
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Note also that ||u,]| — Huleq&(Q) and I (u1) = do. Thus, uy is a ground state

2
Hg(Q)
solution of (Px).

Now, on accounting of Theorem 3.3 one can gets a contradiction by following

the same ideas in [27, Lemma 4.3]. For the sake of completeness, we recall some steps

made in [27, Lemma 4.3]. Denote, by simplicity, y, := y.,
(RY) = {z € RY; (2, yn)rv > 0},
(RY); :=RY — (RY)F,
and
Wp () 1= up(z) — ur(x — yYp).

The above information gives w,, — 0 in H(RY).
By Theorem 3.3, without loss of generality we may assume that u; is a radially
symmetric solution of (Ps). In the same way as [27, Lemma 4.3] (see also [2, Lemma

4.3]), we derive that
1
u (T — Yn) > §u1(0) >0, © € B.(yn);
wo—p) >0, ac e ®), ad [ o) Px(lolld] = ou(1),
RN
for some r > 0, as well as
<T(’LL1(Z' - yn))a yn/|yn‘>RN > C > 07 n > no, (330)

for some C' > 0. On the other hand, taking into accounting that 7(ui(- — y,)) =

7(u, — wy,), and that |7(u,)|, |7(w,)| = 0,(1), we derive that
[T (ur(z = yn))| = 0n(1). (3.31)

From (3.30)-(3.31), we find a contradiction, finishing the proof. m

Hereafter we will fix p > 0 as the smallest positive number such that Q¢ C B,(0).
Let ¢(z) := go(lip‘), where ¢ € C§°(]0,00)) is an increasing function such that ¢(t) = 0,
0<t<1,and ¢(t) =1,t> 2. Now, for each y € RY, we set

Vyp(7) = d(1)uce(z — y),
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where us, € N is a ground state solution of (P, ), which is assumed to be a decreasing

and radially symmetric at the origin. Finally, fix ¢, , > 0 satisfying

(bp(y) = ty,pwy,p € Noo

Next, we prove an important property related to the mappings ¢,(y).
Lemma 3.6 The family of mappings (¢,(y)) satisfies the following limits:
i): ,l)i_r}(l)foo((bp(y)) = doo, uniformly in y € RY;
it): For each fized p > 0, it holds ‘ylligloofoo(¢p(|y|)) =dy-

Proof. Verification of ¢): From the definition of 1, , and the properties of us (see

Theorem 3.3 above), for each fixed p € [2,2*], one has

||¢y,p—uoo<-—y>||f;sc/ ool — )P

B2p(0)

c / e (0)]7
B2p(0)
CpN =o0,(1), VyeR".

IA

IN

Similarly, since N > 3,

1V (g — tiool- — )13 < C /

B2p(0)

|V¢|2|uoo(-—y)l2+0/ [6(z) = 1| Vuee(- — y)I?

B3y (0)

< CipN + CopN 2 Wy € RY.
Hence,
[y pllp — [luce(- = y)ll, as p =0,
as well as
[y ol 1 @y — |[toe (- = Y| @Yy, as p— 0,

uniformly in y € RY. From this,

/ Fy(y,) — Fy(us), as p— 0,
RN RN
uniformly in y € RY. Now, using the definition of 1, ,, one gets

L) = Bl =)l = [ R = AlimC =)l (32

B,(0)
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By the mean value theorem,

[ 1R = BluC =)l = [ IR0~ sl — o)l (339
By (0) Bp(0)

where |0, ,| < |y |+ |t (- —y)|. Then, since (,,) C R is a bounded and F; € C*(R),

we derive that

/ [FY(0y0)l|0(2) = 1[use(- — y))| < C/ |6(2) = 1[use (0)] = 05(1).
Bp(0)

Bp(0)

From (3.32)-(3.33),

[ Rt — [ R —u), wer™

RN
Adapting the ideas used in the proof of Lemma 3.1, we can show that ¢,, — 1 as

p — 0, and so,

||¢p(y)||H1(RN) = ||ty,p¢y,p||H1(RN) — ||uoo||H1(JRN) as p— 0,

and

[ B — [ B, e 12

RN

The last convergences yield that

lim ]m(¢p(y)) — IOO(UOO) = doo,

p—0

uniformly in y € RY, proving the part i) of lemma.
Verification of ii): The proof follows as in the proof Lemma 3.1 and it will be omitted.
]

A byproduct of the last lemma is the following corollary.

Corollary 3.1 Given € ~ 0", there exists py > 0 such that

sup Ioo(9,(y)) < 2ds —e,  ¥p € (0, po).

yeRN

Next, we establish more two important properties of the mappings ¢,(y).
Lemma 3.7 Fixed p > 0, there exists Ry > p such that
Z) deo < [(¢p(y)) < %’ ‘y| > Ro;

ii): (T(0p(y)),¥)s |yl = Ro.
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Proof. Verification of i): By the definition of ¢,(y),

oo < Ioo(9p(y)) = 1(9p(y))-

On the other hand, as d., = dy (see Lemma 3.1) and (Fp) has no ground state solution,
it follows that

doo < I(¢,(y)), forany p>0 and yeR"Y.

Finally, note that, by part i) of Lemma 3.6,

CO+doo

[(dp(y)) < —

) ‘y’ Z R07

for some Ry > 0 large enough, because ¢y > do,. This completes the proof of item 7).
Verification of ii): The proof follows as in [27, Lemma 4.3 (b)]. =

We finish this section by showing that I|y satisfies the (PS). for some levels
ceR.

Proposition 3.3 For each fized ¢ =~ 0%, the functional I|n satisfies the (PS).
condition for ¢ € (doo + €,2d — €).

Proof. Let (u,) be a (PS). sequence for I|y. By Lemma 3.2, we know that (u,) is a

bounded sequence in X. Since X is a reflexive space, we may assume that
Uy, — ug in X.

If w,, - ug, by Lemma 3.4 there are uy, ..., u) solutions of (P,,) such that

k
a0y — Mol ey + D il [ ey
j=1

and
k

I(un) — I(ug) + Y Tno(uy).

Jj=1

Supposing that uy # 0, we arrive at
I(up) > (k+ 1)do + 0,(1).

Since k > 1, it follows that
c> (k+1)dy > 2dy,
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which is absurd, because ¢ < 2d,,. This contradiction allows us to infer that uy = 0.

Moreover, we must have k = 1, because if k£ > 1, then
I(up) > kds > 2dy,

obtaining again a contradiction. From this, the unique possibility is ug = 0 and u; > 0,
and so,

c+o0,(1) = I(uy) = Ino(ug) + 0p(1) = do + 0,(1).

The last equality implies that ¢ = d.,, which is absurd. This reasoning shows that

u, — ug and the proof is finished. m

3.3 Existence of positive solution for (F,) (Dirichlet

case)

Along this section we show how the technical results of the preceding section
imply in the existence of positive solution for (Fy). The key point is to show that
the functional I possesses a (PS). sequence in a suitable level ¢ € (dy + €,2dy — €),

e ~ 0. Bearing this in mind, set

G = {0,(y); |yl < Ro}

and

H = {UGC(NOP,NOP); n(u) =u, if I(u) < CO+d°°}.

2

Hereafter, we are using the same notations introduced in Section 4. Now, fix
I':={n(G); n e H}

and

= inf I(u).
¢ R

In view of Lemma 3.7-ii), as made in [9,27], we can prove the lemma below.

Lemma 3.8 It holds
AﬂTo;’é@, VA eT.

Our second result in this section ensures that, for some convenient € > 0, we must

have



3.3. Existence of positive solution for (F) (Dirichlet case) 119

¢ € (do + €,2ds, — €), which is a key step to show the (PS). condition of I re-
stricted to N

Lemma 3.9 There exists € > 0 such that ¢ € (doo + €,2doe — €).

Proof. Using the preceding lemma, for each A € T there exists ug € ANTy. Therefore,

co = inf I(u) < I(ug) < supl(u),
u€To ucA

and so,

Take € € (0,%2), e &~ 0, such that
oo + € <y < C, (334)
which is possible in view of Lemma 3.5. On the other hand, since

c <supl(u), VAeT,

u€A

we know that,

c< sup I(n(é,(y))), Vne H.
op(y)EG

Choosing 7 := Idynp) and applying the Corollary 3.1, one finds
c<2dy — €,
for € and p small enough. This combines with (3.34) to give

¢ € (deo +6,2ds —€).

Now we are able to prove that the problem (P,) has a positive solution.

Proof of Theorem 3.1: Combining the preceding lemma with the Proposition
3.3, it suffices to show that I|y has a (PS). sequence in P. More precisely, we will

prove that the following condition holds:

(D): For each A € (0,c— «td=) there exists uy € I"'([c— A\, c+ A]) with uy e N NP
and

17 (ux) ] < A
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Arguing by contradiction, we find Ay € (0, c — ©£%=) such that
A
11" (wp)]], > ?0 Yu € I([c — Ao, ¢+ o)) N (N N P).

By applying the version of quantitative deformation lemma in [83], we get
n e C([0,1] x N N P, N N P) satisfying
i) :n(t,u) =u, Yu e I ([c— Ao+ N));
i) (1, 103 € I<F, with [9:= {u e NN P; I(u) < d}.
By the definition of ¢, it holds

A
sup I(u) < e+ 22,
u€Ag 2

for some Ay € I', that is,
Ag € IC+)\7O.
Then, by item i),
(1, Ag) € I % (3.35)
Note that Ag = no(G) for some ny € H. Setting v; := n(1,-) o ny we derive that
71 € C(INNP,N N P) and, if I(u) < @tk

n(u) =n(Lno(u)) = u

(Note that ¢ — \g > @td=) Thus, v; € H and

nl, Ao) = n(1,m0(G)) = n(G) €T.

Consequently, by (3.35),

c< sup I(u) <c— M.
UGT)(LA())

This contradiction completes the proof. O

3.4 Existence of positive solution for (S;) (Neu-

mann case)

In this section, we study the existence of solution for the following class of

problems

—Au+u = Q(x)ulogu? in Q

(So)
@ =0, in 09,
on
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where (2 is an exterior domain as in the problem (P), and @ : RY — R is a continu-

ous function satisfying the following conditions:

(Q1) lim Q(x) = Qo and ¢ := il]}gf Q(z) > 0 for all z € RY;
zeRN

|z| =00

(Q2) Qo> Q(z) > Qo — CeMEP for & > Ry, M > M,

with Qo, C, My, Ry > 0.
The reader will see in this section that different of the Dirichlet case, we will prove
that if My > 0 is large enough, then the Problem (S5;) has a ground state solution.
Let (E,|| - ||g) be a Banach space and d € R. We recall that a Cerami sequence
for a functional J € C'(E,R) at level d (shortly (C)4-sequence), is a sequence (u,) C E
satisfying
J(up,) — d and (1 + ||u||)||J (un)]| e — O.

We say that J verifies the Cerami condition at level d, or (C')4-condition for short, if
each (C')4-sequence for J admits a convergent subsequence. Note that a (C')4-sequence
for J is also a (PS)4-sequence. Therefore, if u,, — ug and (u,) is a (C')4-sequence, then
up is a critical point of J. See [35] for further details.

Hereafter, we will need of the auxiliary problem below

—Au+u = Qoulogu?, in RY
(5o0)
u e H'Y(RY).
Note that, in view of the condition (@), the problem (S.) is the limit problem of (.Sp).
Applying the Theorem 3.3, by a change of variable, we get the uniqueness

of positive solution for (S.). In fact, if u; is a solution for (3.1), by defining

v1(z) := wy (Vk~1z), by a direct computation, we find

1
—Avy = —v; + —vp log v% in RV,

k

So, we get the existence and uniqueness of positive solution for (S.,) by choosing

k=Qy"
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From now on, we may assume that, up to translations, the problem (S.,) has a

unique positive solution of the form
Voo (z) = Cre~ @1 vz e RV, (3.36)

for convenient C, Cy > 0.

Related with the problems (Sy) and (S ) we have the energy functionals

Iy =5 [(Val+ 1+ Q@) + [ Q)R - [ Qw)Rw, wez,

and
1
Joo(u) = 5/ (IVul® + (1 + Qo)lul?) ‘*’/ QoF1(u) — QolFz(u), Vuey,
RN RN RN
with Z .= (H'(Q) N L™ Q) || - [12), | - Iz = [I - [l + || - |7 ), and Y is chosen

as in the previous sections. Thus, J € C'(Z,R), J,, € C*(Y,R) and critical points of
J and J,, correspond respectively to solutions of (S) and (S ).
The Nehari sets associated with the functionals J and J, respectively are given
by
M :={ueZ—-{0}; J(u)u=0}

and

My ={ueY —{0}; J. (u)u = 0}.

Arguing as in the proof of Proposition 3.1, we also derive that the sets M and M,
are C''-manifolds. Indeed, it suffices to replace ¥y and ¥, in the proof of Proposition

3.1 by
1 2 - 1 2
Uo(u) = J(u) — 5 | Q@)ul" and Veo(u) = Jos(u) — 5 [ Qolul’,
2 Q 2 RN
respectively. From now on, we will denote by [y and [, the levels
ly :== ulélj\f/l J(u) and Iy = uelg\ljoo Joo(0).
It is not difficulty to prove that the function v, given in (3.36) satisfies

Joo (Vo) = Luc. (3.37)

The next result is a version of Lemma 3.4 for the (C')4-sequences of the functional J.
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Lemma 3.10 Let (v,) be a (C)g-sequence for J. Assume that v, — vo. Then, going

to a subsequence if necessary, either
i) vy — Vg in Z, or
it) There exists k € N and k nontrivial solutions v; of (Ss), j € {1,...,k}, satisfying

k
Uy, — Vo — E vl
=1

=o0,(1) and J(u,) — J(vo) + Z Joo (1),

H(Q) j=1

with v = v;(- —y2), and (y3) C RY with |y2| — oo for each j € {1,...,k}.

Proof. The proof is a slight variant of the argument made in Lemma 3.4 (see also
the ideas in [4, Lemma 3.3] and [27, Lemma 3.1]). In fact, since (v,) is (C')4-sequence
for J, it holds J'(v,)v, = 0,(1). So, it is possible to prove that (v,) is bounded in
the same way of the proof of Lemma 3.4. From this, it follows that (v,) is a bounded
(PS)q sequence for J. Accounting that v, — vy, we derive that J'(vy) = 0, and so, vy

is a solution of (Sy). Following the ideas in the proof of Lemma 3.4, setting
& (x) == v,(z) — vo(w), in Q;

we find that
£ —0in Z
Then, if £& — 0 in Z, the proof would be finished. Otherwise, if £! 4 0 in Z, arguing
as in the proof of Lemma 3.4, see items ) — ¢7), we find
J(E) = J(vn) — J(vg) + on(1) (3.38)
and
Jl(fé)fﬁ = J'(vn)vn — J'(vo)vo + 0n(1). (3.39)

In the same line of Lemma 3.4, let us consider (y!),exn in RY, with y! the centers

of unit N-dimensional hypercubes B;, RV = UB“ and verify
ieN

1yp _ 1yp .
||€7’L||LP(BZ.) - I?ea[\?{ ||€n||Lp(éj) T 57’“
where B; = (B; N Q). Next, we are going to guarantee that

0p > 1 >0, n>ny,
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for some ng € N, and

lyn| = .

In the sequel, we set
En(r) =&a(r+yy), Q={y -y yeQ}, Xp=H(Q,)NL" ()

and the functional J, : X,, — R given by

Jn(u) = ;/Q (IVul+(1+Qa-+y)lul?) / Qa+i)Fw- | Qu+i)Rw. ue X,
The following claim holds.
Claim 3.6 The sequence én 15 such that

Jn(En) > 1 > 0, (3.40)

for some 7 € R.

It suffices to show that

inf G/Q%(Wén‘z (14 Q(z + v} ))& / Q(z +yp) Fi(én) —

neN

O +y,£>F2<én>)

Qn
is a positive number.

Arguing as in the Claim 3.2, by considering (3.39) and the condition (@), we
find

@) = [ Qe+ aP o)z a0 [ Il +oulb)
QL Q7
Now, if for some subsequence it holds J,(£,) < o0,(1), then it would have

||(X%én)||%2(RN) = 0,(1), and so / |X%§n|p = o,(1), for a fixed p € (2,2*], by
RN
an interpolation argument. From this, by the properties on F» (vide (P,) above), it

follows that
| Fés= | Ftoéixaé = o).
QL RN

Therefore,

JVEE + (4 @+ i)IER + [ QG+ i Fi(E)E = (1)

Equivalently, by a change of variable,

JO96E + 1+ QuNieR) + [ Q)Fi(€ )6 = on)

contradicting the fact that &, - 0. The proof of the claim is completed.

In the same line of Lemma 3.4, we are able to show that the next claim holds.
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Claim 3.7 There exist o > 0 and ng € N such that

0p > To, N> Ny

Take into accounting the inequality in (3.40), the proof of the claim follows by
reasoning as made in Claim 3.2. However, we would like point out an important fact
related with the proof of the Claim 3.2. The inequality in (3.25) plays a crucial role in
the proof of Claim 3.2. Such inequality is based in the fact that the constant associated
with the embedding

HY(B;) — L*(B;)
are independent of 7. In the current proof a similar property also holds, more precisely

HI(BZ) — LP(BZ),

since the sets B; = (B; N Q) verify the uniform cone property (see [1]).

The preceding claim assures that
[Yn| — oo

In fact, otherwise, it would be possible to find R > 0, such that

/ e > / €l = 67 > 77 > 0.
(Br(0)NQ) B;

This contradicts the convergence

/ I
(Br(0)NQ)

which is valid in view of the weak convergence ! — 0 in Z. Thus, hereafter we will
assume that |yl| — oo.

Now, since y} — oo, we know that Q) — RY asn — oo, (in the sense of the
characteristic functions yo1 — 1 a.e. in RY) for each R > 0, there exists my € N such
that Br(0) C QL n > myg. Considering that (£!) is a bounded sequence, it is possible

to find v; € Y\ {0} satisfying

& — v in HY(Bg(0)) N L™ (Bg(0)),

for each R > 0 fixed. Fixed ¢ € C§°(f2), inasmuch as |yl| — oo, we know that, for
some my € N, it holds

supp ¢(- — y) C Q, n > my.
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Hence, ¢ln) = o(-—yl) € C5°(Q) for n > my.
By exploring the ideas in the proof of Lemma 3.4-ii), we derive
sup (17'(€)] - 16 = 9n)ll2) = on(1).

By combining these information with the properties (@) and (3.25) above, we

derive that v; is a nontrivial solution of (S.). Set

& =& —u(-—y), in Q.

Hence, we can repeat the preceding steps made with £!. Following this procedure,
the reasoning made in final of Lemma 3.4 allows us to get a £ € N and unbounded

sequences (y1), ..., (y¥) in RY in such way that
&= "(+y ) —v1 =0, inY,

with v;_; a nontrivial solution of (S,), &' — 0, as n — oo, j € {2,...,k}. Setting
v; :=vj(- — y2), these facts assure that

2

vn—vo—ivﬂb = o,(1)
=t @)
as well as .
J(tn) — J(vo) + Y Joo(uy).
=1
. J

An immediate consequence of the preceding lemma is following corollary.

Corollary 3.2 The functional J verifies the (C')q4-condition for d € (0,l).
Proof. Let (v,) be a (C)4-sequence, with d € (0,1). In particular,
J (00, = 0,(1),

and so, using the same ideas explored in the begin of the proof of Lemma 3.3, we derive
that (v,) is a bounded sequence in Z and, going to a subsequence if necessary, it holds
v, — Yy, for some vy € Z. Since (v,) is a (C')g-sequence, we have J'(vg) = 0. Now, it
is sufficient to observe that the hypothesis d € (0,l,) combined with the items i) — i7)

of the preceding lemma gives the required result. =
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We are going to show that J has a ground state solution, i.e., a positive solution vg
satisfying J(vg) = lp. We start by showing that the functional J satisfies the mountain
geometric (see e.g [83, Section 2.3]).

Lemma 3.11 The functional J verifies the Mountain Pass geometry, i.e.,
i) J(0) =0 and there exist r, pg > 0 such that Jap, ) > po;

it) There ezits v, ||v||z > r, and J(v) < J(0) = 0.

Proof. i): From the conditions (1) — (Q)2) it follows that, for some constant C' > 0,
it holds

) = Cllulfyey + € [ Fitw) = Qo | Fa(w)

Q
By using (2.4) and (P), modifying the constant C' if necessary, we can find r ~ 0"

such that, for ||u||z = r, is valid that
J(u) = Cllullf ) + Cllullpr ) — Cillully = Callull — Cullully

with C1, Cy > 0 and p > 2. The property required in the item ) follows as a direct
consequence of the last inequality.
it): Fix u € Z — {0}. So,
J(tu) = r [/(|Vu|2 + [ul?) — 1/ Q(z)u?logu® — logt/ Q(x)uﬂ — —00,
2 Lo 2 Ja Q

as t — 0o. So, the item i) holds by taking v = tu, for some t =~ co. m

We are going to show that the problem (S5p) has a ground state solution. To begin
with, we will show the existence of a (C')4-sequence at mountain pass level. Namely,

we have the following corollary.

Corollary 3.3 The functional J has a sequence (C)[O -sequence, where ly is the level

lo := inf sup J(v(t)),

€L ¢ef0,1]

and
[':={y € C([0,1], Z); v(0) = 0, 7(1) < 0}.

Proof. The result follows by a variant of the classical Mountain Pass Theorem of
Ambrosetti-Rabinowitz (see, e.g., [83, Section 2]). Note that the reasoning made in [83]
can be adapted when the (PS)4-sequences are replaced by (C')4-sequences (see the
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Proposition 1.1 in [38] for a statement of a variant Mountain Pass Theorem involving
the Cerami sequences). m
Exploring the ideas in [10, Lemma 3.3], in view of (Q);), we can show that the

level [ in the above corollary coincides with the level [y, namely, it holds

lo=1y:= ulenja J(u). (3.41)

Thereby, the last corollary assures the existence of a (C');,-sequence for J. The next
lemma is our main technical result in the present section, and it relates the levels [

and [.
Lemma 3.12 Assume the conditions (Q1) —(Q2). Then the following inequality holds.

lo <lso.

Proof. Set

U () 1= Voo ( — T3,),

with z,, := (n,0,...,0) € RY and v, the solution of (S,) satisfying (3.37). By (3.41),

< e
lh < r?gaox J(tv,) =: J(t,vn),

and t,, € (0,00). In this way, we derive that t,v, € M, which yields

ﬁ/mwf+mm=/ﬁmm%m%ﬂ
(9] Q

Therefore, since |z,,| — 0o, the same ideas employed in the proof of Lemma 3.1 enable
us to show that, going to a subsequence if necessary, it holds ¢,, — 1.

Now, it follows that

lo < J(tyv,) = %/Q(IthvnIQ + (1 + Q(2)) [twvnl?) +/QQ(:C)F1(tnvn) —/QQ($)F2(tnvn) —
2

QOF2(tnvn) - /

Ly, th
= Joo(tnvn) — §An + Qo |:F1(tnvn> + Evn:| +
2
+ [ Qo= Q) | Fatao) — Futtan) - 22

c

Qc

with A, := / (V) + [va]?). From (Q),

2

Qc
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Taking into account that ¢, — 1 as |z,| — oo, the condition (@) and the invariance

by translations of RY, one finds
oo (tntn) = Joo(Voo) + 0n(1) = oo + 0,(1).

This information together with the last inequality give

t2
lo <lew+o0,(1)— 5”,4“ + B, (3.42)

with By = | QoBa(tvn) + / (Qo — Q(2)) Batuv).
Qe 0

T 0. Having this in mind, since |Q¢| < oo, the
n

Our next step is proving that

equality in (3.36) implies
A, > ; va]> > Ce 2 ¥p e N, (3.43)
for a convenient C' > 0. From the condition (F2), for some p € (2,2*], it holds
|Fa(t)] < Cplt)P, Vvt eR.
Therefore, using again |Q2°| < oo, one has

QO/ FZ(tnvn) S C@ipanQ, (344)

for some C. Now, take R,, € (0,n). So,

/Q (Qo — O(2)) Faltyvn) = /Q o (@ =B + / Fy(tyvn).

QN[lz|<Rx]

By invoking the assumption (Qs), it follows that

/ (Qo — Q@) Fa(tyv,) < Ce M, (3.45)
QN[|z|>Ry]

for some C' > 0, as well as,

/ (Qo — Q(x)) Fa(tnvn) < CynNe pCn1n)”, (3.46)
QN(z]< o)

for some constant Cy > 0. The estimates in (3.43)-(3.46) combined produce, for some

2 2 2
” 620271 620277, CNnN€QCQTL
<C + :

constant C' > 0,

Sy

6p02n2 eMR% + eng(n—Rn)2

=
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Setting R, := %, k € N, we find

CNTL
epCQ(n_Rn)2

2 2
N6202n CNnNeQan

e55)2pCan?

k—1)°
Since (T) converges to 1, as k — oo, and p > 2, we may fix ky = oo such that

2
p( k ) > 2. Hence

ko—1
CNTLN 6202712

(T )2pCan?

— 0.

Then, choosing M large enough in the condition (Q2), we derive that

6202712 62027'12

= — 0.
eMR;  o(M/k§)n?

These convergences assure that
B — 0
A, '
Recalling that t,, — 1 for some ng € N,
t2 —t2 B
— A+ B,=—=2+-"L)A,<0, n>n
g T ( 3 " An) =T
Using this information in (3.42), we derive that

lo < lom

proving the desired result. m

Now we can prove our main result.
Proof of Theorem 3.2. The proof is essentially established. In fact, by combining
the Corollary 3.3 with (3.41), there exists a (C');,-sequence for J, which will be denotes
by (v,). Since (v,) is bounded, it follows that

J(v,) — lp and J'(v,) — 0.
Invoking together the Corollary 3.2 and the Lemma3.12, we may assume that
UV, — Vg in Z,
for some vy. In this way, we derive that

J(Uo) = lo and J,(Uo) = O,
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and so vy is a ground state solution for (Sp). Now, we would like to point out
that vy can be chosen as a positive solution. Indeed, writing vy = vy — vy, with
vy = max{vy,0} and vy, := max{—wvg,0}, we find J'(vd)vy = J'(vy)v, = 0 and
lo = J(vg) = J(vg) + J(vy). These facts combined assure that either vj = 0 or
vy = 0. Hence, since f(t) = tlogt is an odd function, we may assume that vy > 0, so
that vy > 0 by a variant of maximum principle presented in [82] (see [7,10,11] for a

similar reasoning) m



APPENDIX A

A brief on nonsmooth critical point theory

Next, we present, in general lines, some notions of the generalized critical point
theory required in our study. We subdivide the list of abstract concepts and results
into two parts: firstly, we present the notions related with locally Lipschitz functionals.
Secondly, we introduce the concepts referring to l.s.c. functionals. For further details
and proofs, we refer Chang [36], Clarke [40,41], Carl, Le and Motreanu [34], Motreanu
and Panagiotopoulos [71, Chapters 1-2], and Szulkin [81].

A.1 The locally Lipschitz case

A real-valued functional ¢ : X — R is called locally Lipschitz continuous (briefly
¢ € Lip,.(X,R)) when to every u € X there correspond a neighbourhood V' :=V,, of

u and a constant K := K, > 0 such that
lp(v) — p(w)| < Kljv —wl|[, Yo,weV.

The generalized directional derivative of ¢ € Lip,.(X,R) at u along the direction
v € X is defined by

©°(u;v) := limsup plw +tv) - go(w).

w—u, t—07F t

The generalized gradient of the function ¢ € Lip,,.(X,R) in u is the set

do(u) ={p € X" : ¢°(u;v) > (¢,v), Vv e X}
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Proposition 2.1.2 of [41] ensures that dy(u) turns out nonempty, convex, in addition

to weak* compact, and that

©°(u;v) = max{(n,v) : n € dp(u)}.

In the sequel we say that a point u € X is a critical point of ¢ € Lip,.(X,R)
if 0 € Jdp(u). We also recall that, when a functional n : X — R is convex, the

subdifferential of n at u is the set
Osn(u) :={p € X*: n(w) —nu) > (p,v —u) ,Yv € X}. (A1)

If n € Lip,o(X,R) then Osn(u) = In(u).
Some usual properties of the generalized directional derivative as well of the

generalized gradient are listed below.

Lemma A.1 Let p € Lip,,.(X,R), then

i) the map (u,v) — ¢°(u,v) is an upper semicontinuous functional, i.e. if
(uj,vj) = (u,v) then
lim sup (po(ujvvj) S Spo(uav);

i) ¢°(u, —v) = (=¢)°(u, ).

Lemma A.2 If v is continuously Fréchet differentiable in an open neighborhood of
u € X, then Op(u) = {¢'(u)}.

Lemma A.3 If ¢, ¢ € Lip,,.(X,R), then for each u € X one has
i) (e +¥)(u) C Ip(u) + Y (u);
ii) O(o + ) (u) = {¢'(u)} + O(u), provided that ¢ € C*(X,R).
In the next lemma we report an important property between ¢°(u,v) and the

Gateaux derivatives of ¢ at u € X along v € X i.e.

dp . plutitv) —p(u)
%(U) = tli%}r ; . (A.2)

0
Lemma A.4 If ¢ € Lip,,.(X,R) is convez, then a_tp(u) exists for any u,v € X and
v

22 ) = (o 0)
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A.2 The lower semicontinuous case

From now on, we say that a functional I : X — (—o0,400] is a Szulkin-type functional
if
(Hy) I == ®+ U, with® € CY(X,R) and ¥ : X — (—o0,+00] is a convexr lower

semicontinuous functional and proper, i.e. W Z co.

The effective domain of I is defined by
D(I):={ue X : I(u) < o0},

and so, for a Szulkin-type functional I one has that D(I) = D(WV). For each u € D([),

we say that the subdifferential of I at u is the set

Il(u) :=={p e X*: (P'(u),v—u)+V(w)—¥(u) > {p,v—u), Vvoe X}. (A.3)
Definition A.1 Suppose that I is a Szulkin-type functional Then

i) a point uw € X is called a critical point of I if 0 € JI(u), or more precisely,
ue D(I) and

(@' (u),v —u) + V(v) —V(u) >0, YveX,
i1) a sequence (uy) is called a Palais-Smale sequence (briefly (PS) sequence) for I at
level c € R if I(u,) — ¢ and
(D (up), v — up) + V(v) — W(u,) > —epllv —uy,ll, VoeX,
with €, — 07, or equivalently (see [81, Proposition 1.2])
(D (up), v — Up) + (V) — U(up) > (W, v —uy), YveX,
where w,, € X* with w,, — 0 in X*;

iii) I satisfies the Palais-Smale condition (briefly (PS) condition) at level ¢ € R when
each (PS) sequence (u,) at level ¢ has a convergent subsequence. If I verifies the

(PS) condition for all level ¢, we say simply that I satisfies the (PS) condition.

For a fixed Szulkin-type functional I, denote by K and K. respectively, the
following sets

K :={u € X : uis a critical point of I},

and

K.:={ue K : I(u) =c}.

The following result holds
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Proposition A.1 Suppose that I verifies (Hy) and the (PS) condition at level ¢ € R.

Then, K. is a compact set.
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Group actions on Banach spaces

This appendix is focused in discussing the main notions associated with group
actions on Banach spaces. The notions described in this subsection follow closely the
presentation in [83, Sections 1.6 and 3.2]; see also Bartsch [24] for additional comments
and remarks. We also give a short review about the building of the Haar’s integral on

a compact group G; see Nachbin [72] for a abstract preview on this subject.

B.1 General settings

Let G be a topological group with neutral element e and X a Banach space. An

action of G on X is a continuous function

6:GxX —X

(g,v)  =d(g,v) =gv
such that

(G1) ev =0, Vx € X;

(G2) (gh)v = g(hv), Vv € X, Vg, h € G;
(G3) For each g € G the map
Py X — X

v gy(v) = g
1s linear.
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If in addition to the above condition, the following relation holds
(Ga) llgvll = lv]l, Vv e X, Vg€ G,

then the map ¢ is said to be an isometric action. According to the above definitions,
we say that G acts isometrically on X when (G;) — (G4) hold.

The subspace of invariant elements of X is defined by

Fiz(G) :={ue X : gu=u Vg € G}.

Example B.1 1°) Let Id : X — X be the identity map on X and consider the usual
representation Zs = {Id, —Id}. Standard computations ensure that the group Zs acts
isometrically on X.

22) Consider G = O(N) the group of orthogonal maps on RY. We define the action
of G on HY(RY) in the following way

gu=uog ', geG,uc H(RY).

Note that, in this case, Fiz(G) = H}

rad

(RY) and that G acts isometrically on H*(RY)

(see [83, Section 1.5] for additional comments).

A subset A of X is said to be G-invariant if gA = A for every g € G, where
gA = {gx : x € A}. Also, when A C X is a G-invariant set, a map v : A — X is

called equivariant map if
v(gz) = gv(z) VYo € A, VgeG.

If a functional (not necessarily linear) ¢ defined on X satisfies p(gx) = ¢(z) for any

x € X and g € G, we say that ¢ is a G-invariant functional.
Notation: I'¢(A) := {y € C(A, X) : vis equivariant}.

B.2 The Haar’s Integral

The proofs e more detailed comments about the results and concepts in the sequel

can be found in [72, Chapter II].
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B.2.1 The normalized Haar measure

Suppose that G is a locally compact group and p a positive measure on G.
According to the classical literature on the subject, £(G, 1) denotes here the space of
the integrable functions f : G — R with respect to the measure u, and p is a left

mvariant measure when

/f(g‘ly)du= / f(y)du, Vg € G, (B.1)
G G

for every f € L(G, ).
The next result assures the existence of a left invariant measure on a locally

compact topological group G.

Theorem B.2 (Haar) Let G be a locally compact group. Then, there exists at least
one left invariant positive measure py # 0. Moreover, the measure py(G) is unique
except for a strictly positive factor of proportionality, i.e. if py is a left invariant

positive measure on G, there exists ¢ > 0 such that py = cuo(G). Finally

wo(G) < 0o < G is compact.

See [72, Chapter II, Sections 4 and 5] for a detailed proof.

Corollary B.1 (Normalized Haar measure) Let G be a compact group. Then,

there exists a left invariant positive measure p on G such that u(G) = 1.

1
Proof. Take p:= m,uo, with po given in the Theorem B.2. m
Ho

Remark B.1 The integral associated to p in the Theorem B.2 is the so called Haar’s
integral.

B.2.2 A wector-valued version of the Haar’s integral

The Haar’s integral as defined above can be extended for
X-valued measurable functions, that is, for functions f : G — X. In the sequel
we show how this construction can be established. The steps and arguments follow
the ideas in [55, Apenddix E] and [31, Chapter 9.].

Fix G a compact group that acting isometrically in a Banach space X and let u
be the Normalized Haar’s measure given in Corallary B.1. Denote by > a o-algebra of

G such that p is well defined on X.
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Definition B.1 A function ¢ : G — X is said to be a measurable simple function if
there exist Ay, ..., Ay € 3, AiNA; =0,i%# j, and vy, ...,vx € X such that

k
¢ = Z XA; V5,
j=1

with X a; the characteristic function of A;, j € {1,...,k}.

An arbitrary function f : G — X is called a measurable function if there exists

a sequence of measurable functions (¢, )nen such that
bn(z) — f(z), ae. in G.

By following the same ideas in the building of the Bochner’s integral (see, e.g., [31,
Chapter 9]) we have the following definition.

k

Definition B.2 Consider a measurable simple function of the form f = ZXAjvj. We
j=1
define the (vector) integral of f as follows:

[ran=[ (z) ” z(A)

Given a measurable function f : G — X, we say that f is an integrable function

if there exists a sequence (f,)nen of measurable simple functions satisfying

i [ 11fa— flldie—> 0. (5.2)
n—o0 el
The convergence in (B.2) enable us to define the integral of a measurable function in

the following way.

Definition B.3 Given a measurable function f : G — X and B € ¥ we define the
integral of f on B by the equality below:

/ Jdp = lim / o d

with (fn)nen @ sequence of measurable simple functions verifying (B.2).

The following propositions, whose the proofs can be found in [31, Section 9.7],
assure that last definition is well posed. In addition, some technical properties involving

vector integrals are pointed out in the next results.
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Proposition B.1 Let f : G — X be a function. The following items are valid:

i): The function f is a measurable function if, and only if, the function

l|f]] : G — R is a real-valued measurable function.

it): The function f is an integrable function if, and only if, the function

171l € £(G, ).

iii): If f: G — X is an integrable function (in the sense of (B.2)), then there exists

(fu)nen a sequence of measurable simple functions such that
folz) — f(z), a.ein G

and

| fu = FIl = 0 in LYG).
The next result present some properties of the vector integrals which have been

used in Chapter 1.

Proposition B.2 Let f : G — X be an integrable function and consider B € Y. So,
it holds:

i) \ /deuH < [l du

i1): Let Y a Banach space and T : X — Y a continuous linear map. Then, the

function T o f : G — Y is an integrable function with

/GTofdM:T(/Gfd,u).

Next, we prove that the left invariance property of p in (B.1) still holds for
integrable X-valued functions f: G — X.

Theorem B.3 For all integrable function f: G — X it holds

/Gf(g‘lrv) d#z/Gf(x) dy.

Proof. Initially, consider the case that

k
= Z XA;Uj
j=1

is a measurable simple function. So, given g € GG, we have

flg~'a) =vj,
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for any x € gA; = {gy; y € A;}. Since G acts isometrically in X, it holds gA; N gA,,
i# 7,1, €{1,...,k}, so that

k
Flo7'e) = Xga, ()v;.
j=1
Since p is a left-invariant for real function ¢ € L(G, ), we get

u(gAj)Z/Gngj(x) du=/g><Aj(g‘1x) duz/GxAj(x) dp = p(4A;),

para todo j € {1, ..., k}. Hence
k

| 1) dn =3 o) =

1

Jj=

> Ay = [ @)

J
showing that the result it is true for measurable simple functions.

The general case is a direct consequence of the first case. To see why, given
a integrable function f : G — X, take (f,).en a sequence of measurable simple
functions verifying the Part iii) of Proposition B.1. Note that, for each g € G, using

the properties of convergence, we derive that

/G flg™w)dp = lim /G fulg™"2) dp.

The conclusion is now an application of the first part. m

We will finish this subsection by presenting the useful example below.

Example B.4 Define n: X — X as follows:

n(u) = /Ggﬂ(g‘lw dps,

with f € C(X,X). From the properties of the integral, we know that n € C'(X, X).

Furthermore, given gy € G, we get

77(90U)=90/Gg(7196((9619) u) .

By the preceding theorem, we derive that

n(gou) = gon(u),

proving that 7 is an equivariant map on X, i.e., n € I'g(X).
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A short review on Orlicz spaces

This appendix is a primer of Orlicz spaces, in which we present some notions
and properties related to the Orlicz spaces needed in our work; for further details

see [1,59,77].

C.1 On N-functions and Orlicz spaces

We start by recalling the definition of a N-function.

Definition C.1 A continuous function ® : R — [0, +00) is a N-function if:
(i) @ is conver.
(ii) ®(t) =0 &t = 0.

®(t) o(t)

(i1i) 1%7 =0 and tlggoT = +o0

(iv) ® is an even function.

We say that a N-function ® verifies the Aj-condition, denoted by ® € (A,), if
O(2t) < kP(t) Vit > ty,

for some constants k£ > 0 and tq > 0.
The conjugate function ® associated with @ is given by the Legendre’s

transformation, more precisely,

® = max{st — ®(¢)} for s> 0.

>0
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It is possible to prove that ® is also a N-function. The functions ® and ® are
complementary to each other, that is, o = .
Given an open set A C RY, we define the Orlicz space associated with the

N-function ® as

L*(A) = {u €L, (A); / o <%> < 400, for some X\ > O} :
A

The space L*(A) is a Banach space endowed with Luxemburg norm given by

||u||q>:inf{/\>0; /@(M)Sl}.
A A

We would like to point out that in Orlicz spaces we also have a Hélder and Young

type inequalities, namely
st < O(t) + d(s), Vs, t >0,
and

< 2||ulle|v||ls, Yue€ L*(A) and u€ L&’(A).

/uv
A

Moreover, for each € > 0, it holds

st < B(C.t) + ed(s), Vs, t >0, (C.1)

for some positive C. > 0. When ®, ® € (A,), the space L*(A) is reflexive and

separable. Furthermore, the As-condition yields that

1) = {ue 2 () [ @) < oo}
" 4o = u in Lq’(A)(:)/ACD(]un—u\) 0.

We would like to mention an important relation involving N-functions related with
the (Aj) condition. Let ® be a N-function of C' class and ® its conjugate function.

Suppose that

1<i< <m< N, t#0, (C.2)

then @, ® € (Ag). It is very important to point out that, when @, e (Ay), it holds

CeA) " = L),
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for any open set A C RY.

Finally, setting the functions
&(t) := min{t', ™} and &(¢) : max{t', t™}, ¢t >0,
it is well known that under the condition (C.2) one has

(| ulls) < / B(u) < &u(][ulle). (C3)

We finish this section by recalling a Brezis-Lieb type result involving N-functions found

in [32, Theorem 2]

Proposition C.1 (A Brezis-Lieb type result) Suppose ® is a N-function with
® € (Ay). Let (g,) be a sequence in L®(A) satisfying:

i) (gn) is a bounded sequence in L*(Q);
i1) gn(xz) = 0 a.e. in A.

Then, for each w € L*(A),

/A 1B(go + 1) — D(gs) — B(uw)| = 0,(1).

C.2 A special example of N-function
Here we prove that the function Fj in (2.2), used in the decomposition
L, 2
Fy(t) ~ Fi(t) = 5 log 1

is a N-function such that Fy, F} € (Ay).

Fix a small § > 0 and recall the definition of F}.

¢

0, s=0
1
Fi(s) := —552 log 5%, 0<[s| <0 (C.4)
1 52
—552(10g52+3)+25|3\ X |s| > 6
\

The following proposition is the main result of this section.

Proposition C.2 The function Fy is a N-function. Furthermore, it holds that Fy,
F e (Ag)
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Proof. A direct computation shows that Fj verifies i) —iv) of the Definition C.1. Now,
in order to finish the proof we will show that Fj satisfies the relation (C.2). First of

all, notice that

— (log 8% + 1)s, 0<s<§é,
Fi(s) =
— s(log 6* + 3) + 20 s> 0.

Next, we will analyze separately the cases 0 < s < § and s > §.
Case 1: 0 <s<d=~0F.

In this case,
Fi(s)s 1

Fi(s) i log s’

which implies the existence of [; > 1 satisfying

Fi(s)s ( 1 )
1<l <= <mqp:= su 24— | <2, C.5
b Fi(s) — ! 0<sI<)5 logs/ — (C5)
for 6 small enough.
Case 2: s > 6.
In this case,
Fi(s)s  —(logd*+3)s* + 20s
Fi(s)  —1(logd? + 3)s? + 26s — 162
From this,
/ _ 2 2 _ 82
sup Fl(s)s < ( (10%5 +3)s” + 20s + (2551 ) )) <o
s>s F1(s) 50 —5(log 62 + 3)s? 4 265 — 502
Since
F| F|
T (GO B R (C) L B T 7}
s—+00 Fl(S) Fl(S)
one gets
/
| < g 1083
s>0 FI(S>
The last inequalities ensure the existence of [ € (1,2) such that
F/
1<1< 1(5)s <2, Vs>0. (C.6)
Fl(S)

As Fj is an even function, the sentence above holds for any s # 0 and the proof is
finished. m

Given an open set 0 C RY, by the remarks in the previous section, the last
proposition assures that

Cr(@) e = phyq),

as well as that the Orlicz space LI1(Q) is a reflexive and separable Banach space.
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