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Resumo

O presente trabalho é soerguido em duas direções principais: primeiro,

desenvolvem-se novos teoremas abstratos para uma classe de funcionais semi-

cont́ınuos inferiormente da seguinte forma: dado X um espaço de Banach,

I = Φ + Ψ : X −→ (−∞,∞] é uma soma de um funcional Φ de classe C1 com

um funcional convexo e semicont́ınuo inferiormente Ψ : X −→ (−∞,∞] (Ψ ̸≡ ∞).

Nossos resultados são referentes à Teoria dos Pontos Cŕıticos para funcionais não-

diferenciáveis constrúıda por Szulkin em [81]; é-se provada uma generalização do

teorema da fonte de Bartsch [23] e também de um teorema devido a Heinz em [61]

relacionado com a noção do gênero de conjuntos fechados e simétricos com respeito à

origem. Uma versão do teorema do passo da montanha simétrico é também provada.

Como aplicação dos resultados abstratos mencionados, mostra-se a existência de uma

infinidade de soluções para uma ampla classe de problemas eĺıpticos. Os problemas

envolvem não-linearidades logaŕıtmicas, não-lineradades descont́ınuas e o operador

1-Laplaciano.

Posteriormente, como uma consequência natural de nossos estudos, introduzimos

uma nova abordagem para o estudo das equações logaŕıtmicas que nos possibilita

aplicar métodos variacionais clássicos para funcionais de classe C1 no intuito de

obter soluções para diferentes classes de equações logaŕıtmicas de Schrödinger. Essa

nova ideia é introduzida utilizando-se técnicas exploradas no estudo dos espaços

de Orlicz. Os resultados obtidos garantem desde resultados de multiplicidade

de soluções para equações logaŕıtmicas de Schrödinger envolvendo a categoria de

Lusternik-Schnirelmann, à existência de soluções positiva para uma classe de equações

logaŕıtmicas sobre um domı́nio exterior, considerando diferentes condições de contorno.

Palavras-chave: funcionais semicont́ınuos inferiormente, teoria dos tontos cŕıticos

para funcionais não-diferenciáveis, teorema da fonte, equações logaŕıtmicas de

Schrödinger.
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Abstract

The current text has been constructed in two main directions: first one, we have

established new abstracts theorems for a class of semicontinuous functionals of the

following form: let X be a Banch space, I = Φ + Ψ : X −→ (−∞,∞] is a sum of a

C1-functional Φ with a convex lower semicontinuous functional Ψ : X −→ (−∞,∞]

(Ψ ̸≡ ∞). Our results are referring to the nonsmooth critical point theory developed by

Szulkin in [81]; it is proved a generalization of the Bartsch’s fountain theorem [23] and

also a theorem due to Heinz in [61] related with the genus of Z2-symmetric closed sets.

A version of the symmetric mountain pass theorem it is also proved. As application of

the mentioned abstract result, we have showed the existence of many infinitely solutions

for large classes of elliptical problems. The problems involve logarithmic nonlinearities,

discontinuous nonlinearities and the 1-Laplacian operator.

After that, as a byproduct of our study, we have introduced a new approach in

order to study logarithmic equations which allow us to apply C1-variational methods

to get solutions for several classes of logarithmic Schrödinger equations. We have

established this new approach through the Orlicz space’s techniques. The produced

results include the multiplicity of solutions for logarithmic Schrödinger equations

involving the Lusternik-Schnirelmann category, and also they include the existence

of positive solutions for a class of logarithmic equations on a exterior domain, by

considering different boundary conditions.

Keywords: lower semicontinuous functionals, nonsmooth critical point theory,

fountain theorem, logarithmic Schrödinger equations.
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Este parágrafo, certamente atribui a esses votos uma tez mais especial. Há alguns
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Matemática (PET), traria ao texto uma delonga quase indirimı́vel. Mas ressalto que

a conjuntura de todo o corpo da UAMat tem participação efetiva no profissional que

me torno e sigo forjando.

Cedo, não obstante, a algumas menções expĺıcitas de amigos e experiências

constrúıdas ao longo de minha formação. Insisto: caso destque alguma ausência

ou omissão, isso vestigia o apreço que o tenho. Ademais, é provável que esteja em
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Muito Obrigado!!!

viii



“In the beginning was the Word, and the Word was with

God, and the Word was God”.

Holy Bible, Jhon 1:1 (King James Version)

ix



Dedication

To the most enchanting Flower (Yngrid

M. A. S. da Silva), to my Parents

and Brother, and, of course, to

Mathematics.

x



Contents

Introdução 1

Notations 12

1 Minimax theorems for lower semicontinuous functions and their

applications 14

1.1 Abstract theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.1 Deformation lemmas and Fountain Theorem . . . . . . . . . . . 17

1.1.2 Minimax results involving the G-index theory . . . . . . . . . . 27

1.2 Some Applications to elliptic problems . . . . . . . . . . . . . . . . . . 35

1.2.1 A logarithmic variational inclusion problem . . . . . . . . . . . 35

1.2.2 A concave perturbation of logarithmic equation . . . . . . . . . 49

1.2.3 A problem involving the 1-Laplacian operator with subcritical

growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2 Existence of multiple solutions for a Schrödinger logarithmic equation

via Lusternik-Schnirelman category theory 58

2.1 Variational framework on the logarithmic equation . . . . . . . . . . . 60

2.1.1 Basics on the logarithmic equation . . . . . . . . . . . . . . . . 60

2.1.2 The auxiliary problem . . . . . . . . . . . . . . . . . . . . . . . 63

2.2 Existence of solution for the auxiliary problem . . . . . . . . . . . . . . 64

2.3 The Nehari manifold and the existence of positive solution for (Pε) . . 71

2.3.1 Main properties of Nε . . . . . . . . . . . . . . . . . . . . . . . 71



2.3.2 Existence of positive solution for (Pε) . . . . . . . . . . . . . . . 75

2.4 Multiplicity of solution for (Pε) . . . . . . . . . . . . . . . . . . . . . . 87

2.4.1 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . 93

3 Existence of positive solution for a class of Schrödinger logarithmic

equations on exterior domains 94

3.1 The variational framework . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.1.1 The energy functional . . . . . . . . . . . . . . . . . . . . . . . 96

3.2 Technical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.3 Existence of positive solution for (P0) (Dirichlet case) . . . . . . . . . . 118

3.4 Existence of positive solution for (S0) (Neumann case) . . . . . . . . . 120

Appendix

A A brief on nonsmooth critical point theory 132

A.1 The locally Lipschitz case . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.2 The lower semicontinuous case . . . . . . . . . . . . . . . . . . . . . . . 134

B Group actions on Banach spaces 136

B.1 General settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.2 The Haar’s Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.2.1 The normalized Haar measure . . . . . . . . . . . . . . . . . . . 138

B.2.2 A vector-valued version of the Haar’s integral . . . . . . . . . . 138

C A short review on Orlicz spaces 142

C.1 On N-functions and Orlicz spaces . . . . . . . . . . . . . . . . . . . . . 142

C.2 A special example of N-function . . . . . . . . . . . . . . . . . . . . . . 144

Bibliography 146

xii



Introdução

No estudo das Equações Diferenciais Parciais, os denominados métodos

variacionais e cálculo das variações figuram como um tópico de notável relevância,

em virtude de sua ampla aplicabilidade. Em linhas gerais, tal método consiste em

associar a um problema, digamos por exemplo da forma

(E1)







−∆u+ V (x)u = f(u), em Ω

u ≡ 0, em ∂Ω,

com Ω ⊂ R
N um conjunto aberto, um funcional do tipo J : X −→ R, com X um espaço

de Banach adequado que nos permita assegurar que J ∈ C1(X,R). É esperado que

os pontos cŕıticos de tal funcional coincidam com soluções do problema. Um funcional

J nestes termos é dito o funcional energia ou funcional de Eüler-Lagrange associado

ao problema. Esse método é amplamente difundido e bem consolidado no estudos das

Equações Diferenciais, em especial no estudo de problemas eĺıpticos. Aqui, apenas a

t́ıtulo de exemplo, citamos os clássicos trabalhos de Rabinowitz [75, 76] e del Pino e

Felmer [51].

Esse método tem intŕınseco um dificuldade natural: as condicões sobre a função

f : R −→ R devem ser convenientes de modo a permitir a regularidade do funcional

J . Isso inviabiliza, em um primeiro momento, o tratameto, via métodos variacionais

clássicos, de equações do tipo (E1) nas quais a função f não contenha as propriedades

desejadas, a exemplo dos casos nos quais a função apresente descontinuidades.

No intento de abranger um maior número de casos, propostas de generalizações da

cognominada Teoria dos Pontos Cŕıticos tem sido idealizadas. Utilizando as técnicas
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da Análise convexa, os pioneiros trabalhos devidos a Clarke [41] e o de Chang [36]

em 1981, permitiram a extensão da noção de ponto cŕıtico para funcionais localmente

Lipschitz. Isso possibilitou o estudo de equações com a estrutura dada em (E1) nas

quais a função f apresenta uma descontinuidade; veja, e.g., [16, 36, 45].

Posteriormente, em 1986, Szulkin [81] generalizou a Teoria dos Pontos Cŕıticos

para uma classe de funcionais semicont́ınuos inferiormente (s.c.i.) que é objeto de

estudo do presente texto. A saber, Szulkin considerou funcionais I : X −→ (−∞,∞],

X um espaço de Banach, satisfazendo a seguinte condição:

(H) : I = Φ + Ψ : X −→ (−∞,∞], com Φ ∈ C1(X,R) e Ψ : X −→ (−∞,∞]

um funcional s.c.i. convexo e próprio (i.e., não ocorre Ψ ≡ ∞).

Dado um ponto u ∈ X, diz-se que u é um ponto cŕıtico para para um funcional

I = Φ+Ψ satisfazendo a condição (H) descrita acima se I(u) <∞ e

⟨Φ′(u), v − u⟩+Ψ(v)−Ψ(u) ≥ 0, ∀v ∈ X.

Nota-se que, caso Ψ ≡ 0, temos I = Φ ∈ C1(X,R) e a condição de ponto cŕıtico acima

fornece, pela arbitrariedade de v, que Φ′(u) ≡ 0. Assim, o estudo de Szulkin é, de fato,

uma generalização do caso clássico. Os trabalhos [10, 12, 13, 62, 69, 79] ilustram como

a teoria desenvolvida por Szulkin fornece uma ferramento útil e abrangente no estudo

das Equações Diferenciais.

A Teoria de Pontos Cŕıticos para funcionais que satisfazem (H) proposta em [81]

ainda nos fornece uma ferramenta para o estudo de desigualdades variacionais, isto

possibilita sua utilização para o estudo de algumas aplicações f́ısicas que recaem em

desigualdades variacionais. Em [52, p. XVIII] podemos encontrar o seguinte exemplo.

Problema 1: Suponha que u(x, t) represente a pressão no ponto x no, instante t, em

um fluido contido numa região Ω ⊂ R
3 delimitado por uma membrana, representada

por ∂Ω que é semipermeável, i.e., permite que o fluido penetre em Ω mas evita que ele

vaze completamente. Então, u satisfaz

∫

Ω

(

∂u

∂t
(v − u) +∇xu∇v + g(v − u)

)

dx ≥ 0, ∀v ∈ H1(Ω),

onde g é uma função previamente prescita, satisfazendo uma condição de fronteira.
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Em [34, 71] o leitor interessado poder encontrar mais resultados e aplicações da

teoria apresentada em [81].

Os comentários acima atestam a relevância, tanto em perspectiva teóricas quanto

no contexto de aplicações, da teoria proposta por Szulkin. Diante do exposto, como

um dos alvos da presente tese, nos propusemos a complementar o trabalho feito

em [81]. Com maior acurácia, revisando com detalhe os resultados desenvolvidos

em [81], encontra-se uma extensa lista de resultados do tipo minimax válidos para

funcionais verificando (H). Em verdade, as versões clássicas do Teoerma do Passo

da Montanha de Ambrosetti-Rabinowitz [75, Theorem 2.2], do Teorema do Ponto de

Sela [75, Theorem 4.6] e também do Teorema de Clark, que envolve a teoria do gênero,

são generalizadas para a classe dos funcionais satisfazendo (H).

Atentando à literatura da Teoria dos Pontos Cŕıticos, pudemos perceber que

alguns resultados do tipo minimax não foram ainda estendidos para os funcionais

verificando (H). Um exemplo importante é o do famoso Teorema da Fonte devido

a Bartsch (see [23, 83]). O Teorema da Fonte tem sido explorado em muitos trabalhos

no sentido de estabelecer a existência e multiplicidade de soluções para problemas

eĺıpticos; aqui referenciamos [23,25, 26, 60,68,78,85].

Em seu formato original, o Teorema da Fonte pode ser enunciado como segue:

fixe X um espaço de Banach e, para cada k ∈ N, fixe as notações abaixo.

i): Yk :=
k
⊕

j=1

Xj e Zk :=
∞
⊕

j=k

Xj;

ii): Bk := {u ∈ Yk; ∥u∥ ≤ ρk} e Nk := {u ∈ Zk; ∥u∥ = rk}, com ρk > rk > 0.

Considere agora G um grupo topológico compacto agindo isometricamente em X e

suponha a seguinte condição verificada:

(G0) : O grupo G age isometricamente em X e X =
⊕

j∈NXj, com Xj
∼= Y subespaços

de dimensão finita invariantes pela ação de G e a ação de G em Y é admisśıvel no

sentido da Definição 1.2 no Caṕıtulo 1.

Teorema 0.0.0.1 (Teorema da Fonte de Bartsch) Seja I ∈ C1(X,R) um fin-

cional G-invariante (i.e. I(g ·) = I(·), ∀g ∈ G) que satisfaz a condição (PS)c para

todo c ∈ R. Assuma que

i): ak := sup
u∈Yk,∥u∥=ρk

I(u) ≤ 0;
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ii): bk := inf
u∈Zk,∥u∥=rk

I(u) → ∞.

Então, definindo ck := inf
γ∈Θk

sup
u∈Bk

I(γ(u)), com

Θk := {γ ∈ ΓG(Bk); γ|∂Bk
≡ Id|∂Bk

}. (1)

O funcional I tem uma sequência de pontos cŕıticos (uk) tal que I(uk) = ck → ∞.

Em [45], Dai estabeleceu uma versão do resultado acima para funcionais I que

são localmente Lipschitz e utilizou o resultado para estabelecer a existência de uma

infinidade de soluções para um problema eĺıptico do tipo (E) no qual a função f possui

descontinuidades. É portanto natural indagar se uma versão do Teorema da Fonte, nos

termos acima e em [45], seria válida para funcionais I do tipo Szulkin, i.e., funcionais

s.c.i satisfazendo a condição em (H).

Afirmamos, precipuamente, que a resposta à indagação suscitada no parágrafo

anterior é afirmativa. Como um dos nossos principais resultados abstratos neste texto,

no Caṕıtulo 1, generalizamos o Teorema da Fonte devido a Bartsch para funcionais do

tipo Szulkin (veja o Theorem 1.4).

Em [25] e [83, Chapter 3] podemos encontrar uma versão dual do Teorema

da Fonte. Tal resultado pode ser interpretado como uma complemento - ou como

um corolário de fato; veja a prova de tal resultado em [83, Theorem 3.18] - do

clássico Teorema da Fonte de Bartsch. A versão dual do Teorema da Fonte fornece

condições para que um funcional G-invariante possua uma sequência negativa de pontos

cŕıticos (ck) satifazendo ck → 0. É natural perguntarmos-nos se uma versão dual do

Teorema da Fonte não seria posśıvel para funcionais verificando (H). Não obstante,

uma vez que a principal ideia em [83, Theorem 3.18] consiste em aplicar o Teorema

da Fonte ao funcional −I para obtermos uma sequência de valores cŕıticos para o

funcional I, conclúımos que a replicação imediata deste resultado não é posśıvel para

funcionais do tipo Szulkin. De fato, se quando I verifica (H) não é imediato que

o funcional −I também verifique, assim não podemos aplicar a teoria desenvolvida

em [81] concomitantemente aos funcionais I e −I.
Visando complementar nosso estudo, ante à ausência de uma versão dual Para

o Teorema da Fonte no contexto dos funcionais do tipo Szulkin, debruçamos-nos à

investigar a possibilidade de estabelecer um resultado que nos desse o mesmo tipo de
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informação do Teorema da Fonte dual: encontrar uma sequência de valores cŕıticos

negatios (ck) para um funcional G-invariante I com ck → 0. Nessa caracteŕıstica,

provamos ser válida uma versão do Teorema de Heinz [61, Proposition 2.2], que em

sua versão clássica complementa o famoso Teorema de Clark envolvendo teoria de

gênero (see [39] para tópicos correlatos). Pudemos notar que em [81], embora uma

versão do Teorema de Clark seja estebelecida, não é provada uma versão do resultado

devido a Heinz em [61]. Em nosso resultado (Teorema 1.5 na sequência), além de

generalizar o resultado devido a Heinz para os funcionais com a estrutura posta em

(H), nós consideramos um tipo de ação mais geral do que clássica ação ant́ıpoda de

Z2 = {Id,−Id}.
Com a técnica introduzida para provarmos o Teorema 1.5 no Caṕıtulo 1,

percebemos ser posśıvel complementar um dos resultados densenvolvidos por Szulkin

em [81]. Mais precisamente, nossos argumentos permitem provar que a sequência de

valores cŕıticos (dk) dada em [81, Corollary 4.8] é tal que

dk −→ ∞.

Esse o conteúdo do Teorema 1.6 do Caṕıtulo 1.

Uma vez que os resultado apresentados no Caṕıtulo 1 (os quais também constam

em [8]) estabelecem novos teoremas minimax para funcionais do tipo Szulkin e que

alguns resultados em [81] são melhoradas, nosso estudo pode se configurar como um

complemento à teoria proposta por Szulkin em [81].

Como consequência dos teoremas abstratos desenvolvidos, no Caṕıtulo 1

garantimos a existência de uma infinidade de problemas eĺıpticos com simetria e que

possuem o funcional energia associado com a forma dada em (H).

Utilizando nossa versão generalizada do Teorema da Fonte, provamos a existência

de infinitas soluções para o seguinte problema de inclusão variacional:






−∆u+ u+ ∂F (x, u) ∋ u log u2, q.t.p. em R
N ,

u ∈ H1(RN),

com f : RN × R → R uma função N -mensurável e tal que F (x, t) :=

∫ t

0

f(x, t) ds ≥ 0

seja localmente Lipschitz. Como usual, ∂F (x, t) denota o gradiente generalizado de

F com respeito à variável t ∈ R no ponto x ∈ R
N (veja [36, 41] para mais detalhes

envolvendo a noção de gradiente generalizado).
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Tal problema foi inspirado no resultado devido a Ji e Szulkin em [62], no qual,

explorando propriedades particulares da não-lineraidade f(t) = t log t2, estabeleceram

a existência de uma infinidade de soluções para o problema

−∆u+ V (x)u = u log u2, x ∈ R
N , (2)

com V ∈ C(RN ,R) satisfazendo lim
|x|→+∞

V (x) = +∞.

A segunda classe de problemas que estudamos é um tipo de perturbação de

equações logaŕıtmicas de Schrödinger da forma:






−∆u+ u = u log u2 + λh(x)|u|q−2u em R
N

u ∈ H1(RN),

Nesse caso, utilizamos nossa versão generalizada do Teorema de Heinz para assegurar

a existência de uma infinidade de soluções para o problema acima. A necessidade de

recorrer à Teoria de Ponto Cŕıtico proposta em [81] dá-se pelo fato de que a condição

de crescimento sobre f(t) = t log t2 não assegura a boa definição do funcional energia

associado ao problema sobre o espaço H1(RN) (veja, e.g., [6, 7, 10–13, 62, 69, 79] para

mais comentários envolvendo tal sutileza).

Por fim, como aplicação de nosso último teorema do tipo minimax provado

no Caṕıtulo 1, mostramos a existência de uma infinidade soluções para a classe de

problemas a seguir envolvendo o operador 1-Laplaciano.






−∆1u = |u|p−2u, em Ω,

u|Ω = 0, em ∂Ω

Aqui Ω ⊂ R
N , N ≥ 2, é um domı́nio limitado com fronteira suave e p ∈ (1, 1∗) é uma

potência subcŕıtica. Em um sentido formal, o operador 1-Laplaciano é definido por

∆1u := div

( ∇u
|∇u|

)

(veja [15, 17, 37, 49, 63, 70, 73] e referências relacionadas para uma

introdução ao estudo do operador 1-Laplaciano).

Retornando à equação (E1), considerando f(t) = t log t2 e V ≡ 1, conforme já

comentado, dependendo da escolha de Ω ⊂ R
N , a equação de Schrödinger

(E2) −∆u+ u = u log u2, em Ω

pode não ter aplicabilidade imediata do clássico método variacional para funcionais

C1; veja por exemplo as já citadas refrências [6, 7, 10, 12, 13, 62, 79] nas quais o caso Ω

ilimitado é abordado.
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Quando, por exemplo, tem-se Ω = R
N , o candidato a funcional energia associado

a (E2) é dado por

E(u) =
1

2

∫

RN

(|∇u|2 + 2|u|2)dx− 1

2

∫

RN

u2 log |u|2dx,

para u ∈ H1(RN). Na expressão dada a E está sendo utilizado implicitamente o fato

de que
∫ t

0

s log s2 ds =
1

2
t2 log t2 − t2

2
.

Ocorre que não podemos assegurar que E ∈ C1(H1(RN),R). Em verdade, no

trabalho [80], encontramos registrado um exemplo de uma função u1 ∈ H1(RN) tal

que

∫

RN

u21 log |u1|2dx = −∞. Consequentemente, E(u1) = ∞, mostrando que E não

está, sequer, bem definido sobre H1(RN). Isso faz com que, além da permeabilidade

em aplicações (vide [84]), o estudo das equações logaŕıtmicas torne-se atrativo do ponto

de vista matemático.

No sentido de vencer tal dificuldade, a estratégia utilizada nos trabalhos

[10–13, 62, 79] - veja também os Caṕıtulos 1, 2 e 3 na sequência - é considerar uma

decomposição de t log t2 da forma:

F2(t)− F1(t) =
1

2
t2 log t2 ∀t ∈ R, (3)

com F1, F2 ∈ C1(R). Sendo F2 uma função com crescimento subcŕıtico e F1 uma

função convexa e par e com F1(0) = 0 (veja o corpo da tese para definição expĺıcita de

F1 e F2). Vale registrar que a função F1 satisfaz à seguinte condição de crescimento.

|F1(t)| ≤ |t|r + |t|p, t ∈ R,

com r ∈ (1, 2) e p ∈ [2, 2∗).

Isso nos possibilita escrever E = Φ+Ψ, com

Φ(u) :=
1

2

∫

RN

(|∇u|2 + (V (x))|u|2 + 1)dx−
∫

RN

F2(u) dx

e

Ψ(u) :=

∫

RN

F1(u) dx.

As condições sobre F1 e F2 nos permitem concluir que E verifica (H). Nesse caso um

ponto cŕıtico para E é um ponto u ∈ H1(RN) tal que E(u) <∞ e
∫

RN

(∇u · ∇(v − u)+2u(v − u))dx+

∫

RN

(F1(v)− F1(u))dx−

−
∫

RN

F ′
2(u)(v − u) ≥ 0, ∀v ∈ H1(RN).

(4)
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Em virtude das mencionadas propriedades de F1 e F2 sabemos que E(v) <∞ equivale

a F1(v) ∈ L1(RN). Assim, tem-se

C∞
0 (RN) ⊂ D(E) = {v; E(v) <∞} = {v; Ψ(v) <∞}.

Com isso, fixada ϕ ∈ C∞
0 (RN), escolhendo v = u+ tϕ, t ≈ 0+, em (4), depois dividindo

por t e fazendo t→ 0 obtemos

∫

RN

(∇u · ∇ϕ+ 2uϕ) dx+

∫

RN

F ′
1(u)ϕ dx−

∫

RN

F ′
2(u)ϕ dx ≥ 0.

Substituindo ϕ por −ϕ conclúımos que um ponto cŕıtico u de E verifica

∫

RN

(∇u · ∇ϕ+ uϕ) dx =

∫

RN

u log u2ϕ dx, ∀ϕ ∈ C∞
0 (RN).

A identidade acima, junto à teoria de regularidade para equações eĺıpticas, permite-nos

concluir que pontos cŕıticos para E no sentido dos funcionais do tipo Szulkin fornecem

soluções clássicas de (E2). Essa técnica tem sido amplamente explorada no estudo das

equações logaŕıtmicas de Schrödinger, no sentindo de reparar a falta de suavidade do

funcional, a exemplo dos já supracitados trabalhos [10–13,62, 79].

Atentando ao procedimento indicado, podemos perceber que os pontos cŕıticos

do funcional E devem residir no espaço

{

u ∈ H1(RN);

∫

RN

F1(u) dx <∞
}

.

Desde que a função F1 é convexa e inspirado em Cazenave [42], nos perguntamos se

existiria um espaço de Banach (um espaço de Orlicz) contido na coleção acima e sobre

o qual o funcional E seja de classe C1.

Com essa questão em mente, no Caṕıtulo 2, estabelecemos, em verdade, que a

função F1 é uma N-função satisfazendo a denominada condição (∆2). Com isso o

conjunto da forma

Z(Ω) :=

{

u ∈ L1
loc(Ω);

∫

Ω

F1(u) dx <∞
}

,

com Ω um aberto qualquer de R
N , constitui um espaço de Banach separável e

reflexivo; veja o Apêndice C para uma sucinta revisão sobre espaços de Orlicz.

Esse resultado envolvendo a função F1 nos permite atacar a equação do tipo (E2)

via métodos variacionais clássicos, por considerar o funcional E restrito ao espaço
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X = H1(RN) ∩ Z(RN). Como exposto no Caṕıtulo 2, essa restrição permite concluir

que E ∈ C1(X,R).

Embora as equações logaŕıtmicas tenham sido amplamente estudadas nos últimos

anos e vários resultados sobre existência e multiplicidade tenham sido estabelecidos,

alguns fatos intŕınsecos ao estudo dos problemas eĺıpticos, que recaem em a aplicação

do teoria clássica de pontos cŕıticos, não tinham ainda sido estabelecidos para equações

logaŕıtmicas de Schrödinger. Citamos aqui, e.g., resultados de multiplicidade à luz do

que é feito em [14,43] utilizando a teoria de categoria de Lusternik-Schnirelmann.

No Caṕıtulo 2, introduzindo o novo espaço de funcões associado com F1 (espaço

Z acima), provamos a existência e multiplicidade de soluções para seguinte classe de

problemas.







−ε2∆u+ V (x)u = u log u2, em R
N ,

u ∈ H1(RN),

com V : RN −→ R uma função cont́ınua satisfazendo

(V1): −1 < inf
x∈RN

V (x);

(V2): Existem um conjunto aberto e limitado Λ ⊂ R
N verificando

V0 := inf
x∈Λ

V (x) < min
x∈∂Λ

V (x).

O resultado de multiplicidade de solução que provamos ser válido para o problema

acima estima inferiormente o número de soluções pela categoria de Lusternik-

Schnirelmann do conjunto

M := {x ∈ Λ; V (x) = V0}

em

Mδ := {x ∈ R
N ; d(x,M) ≤ δ}, δ ≈ 0+.

O teorema abstrato que fundamenta nosso resultado de multiplicidade pode ser

enunciado como se segue; veja [83, Chapter 5] para uma prova do resultado abaixo

e mais detalhes envolvendo a categoria de Lusternik-Schnirelmann.

Teorema 0.0.0.2 Fixe V = ψ−1(0) uma variedade classe C1 dada como imagem

inversa de um valor regular do funcional ψ ∈ C1(W,R), com W um espaço de Banach.

Seja I ∈ C1(W,R) tal que I|V é limitado inferiormente. Suponha que I satisfaz a
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condição (PS)c para ńıveis c ∈ [inf I|V , d], então I|V tem ao menos catId(I
d) pontos

cŕıticos em Id = {u ∈ V ; I(u) ≤ d}.

É fácil notar que a aplicação do teorema acima só faz sentido no contexto dos

funcionais de classe C1, uma vez que versa sobre pontos cŕıticos para funcionais restrito

a variedades de classe C1. O “approach” por nós introduzido no Caṕıtulo 2 é, portanto,

fundamental no sentido de aplicarmos o teorema anterior, porquanto nos permite

concluir que o funcional energia associado ao problema é de classe C1. É válido ainda

ressaltar que, diante das condições (V1) − (V2) acima, nossos resultados melhoram e

estendem os resultados devido a Alves e de Morais [10] e a Alves e Ji [11].

Ainda inspirados pela nova abordagem para estudar equações logaŕıtmicas de

Schrödinger introduzida no Caṕıtulo 2, no Caṕıtulo 3 estudamos uma classe de equações

logaŕıtmicas sobre domı́nios exteriores. Mais precisamente, estudamos a existência de

solução positiva para a classe de problemas da forma







−∆u+ u = Q(x)u log u2, em Ω,

Bu = 0 em ∂Ω,

com Ω ⊂ R
N , N ≥ 3, um domı́nio exterior (i.e., Ωc = R

N \ Ω é um domı́nio limitado

com fronteira suave). Consideraremos os casos Bu = u e Bu = ∂u
∂ν
.

A principal ideia no estudo do último problema é, no caso Dirichlet (Bu = u),

adaptar os resultados do importante trabalho de Benci e Cerami [27] e de Alves

e de Freitas em [9]. Uma vez mais, faz-se crucial a condição de que o funcional

energia associado ao problema seja de classe C1, dado que os resultados circunstantes

em [9,27] fazem uso frequente da regularidade do funcional energia estudado, abordando

propriedades e estimativas relacionadas à variedades de classe C1 (nesse caso espećıfico,

à famosa variedade de Nehari associada ao problema). No caso Neumann (Bu = ∂u
∂ν
),

inspiramos-nos e adpatamos diferentes técnicas desenvolvidas em [4,18,33]. Em nosso

caso, nos resultados de compacidade substituimos as sequências de Palais-Smale por

sequências de Cerami (veja maiores detalhe na Seção 3.4). Ainda relacianado ao estudo

de problemas sobre domı́nios exteriores, citamos os trabalhos em [2,3,18,21,29,66] no

intento de ilustrar o interesse diverso e a relevância dessa classe de problemas.

Os resultados apresentados nos Caṕıtulos 2 e 3 nos propiciaram como fruto os

trabalhos em [6, 7]. Concomitantemente, tais resultados ilustram como a nova técnica
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introduzida nos permite obter inéditos e relevantes resultados concernentes ao estudo

das equações logaŕıtmicas de Schrödinger.

Para findar a introdução, uma vez exposto o encadeamento teórico de nosso

estudo, registramos a seguir alguns aspectos sob os quais o presente texto foi constrúıdo.

1º- O texto, naturalmente, pressupõe alguma experiência com os resultados

da Análise Funcional e Teoria da Medida e Integração, de modo que,

recorrentemente, os resultados clássicos são utilizados tacitamente, ainda que

com alguma menção expĺıcita. A experiência com alguns resultados usuais da

Teoria das Equações Diferenciais Parciais e da Teoria dos Pontos Cŕıticos podem,

e muito, contribuir para o entedimento pleno do texto. No intento de conferir

fluidez à leitura, as provas de alguns resultados são, às vezes, apenas referenciadas.

2º- Os apêndices são devotados a tópicos teóricos que permeiam os caṕıtulos, mas

que suas respectivas exposições poderiam atribuir algum grau de prolixidade aos

temas desenvolvidos. Os apêndices são constrúıdos de modo a apenas listar os

resultados de interesse. Nessa perspectiva, apenas as provas não t́ıpicas ou as de

caráter original são explicitadas nos apêndices.

3º- Informamos que os resultados e conceitos registrados nessa introdução serão

reenunciados no momento oportuno durante os caṕıtulos, atenuando-se assim

o labor adicional de regressar à introdução para recordar algum resultado de

interesse.



Notations

Throughout this text we fix the following notations.

• H1
rad(R

N) := {u ∈ H1(RN) : u is radial}.

• C∞
0, rad(R

N) := {u ∈ C∞
0 (RN) : u is radial}.

• Lp(RN) is the usual Lebesgue space, with norm ∥u∥p :=

(
∫

RN

|u|pdx
)1/p

,

1 ≤ p < 1, and ∥u∥∞ := esssupx∈RN |u(x)|.

• If Ω ⊂ R
N is a measurable set, we simply write

∫

Ω

f instead of

∫

Ω

f(x) dx for any

measurable real-values function f defined on Ω.

• If X is a Banach space e x0 ∈ X, then Br(x0) designates the ball centered in x0

of radius r > 0.

• supp u designates the support of a measurable function u : RN −→ R.

• int(A) denotes the interior of a set A.

• A denotes the closure of a set A.

• ∂A denotes the boundary of a set A.

• on(1) denotes a real sequence with on(1) → 0

• oε(1) denotes a real parameter that depends on ε satisfying Oε(1) → 0, as ε→ 0.

• C(x1, ..., xn) denotes a positive constant that depends on x1, ..., xn.
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• 1∗ :=
N

N − 1
, if N ≥ 2.

• 2∗ :=
2N

N − 2
, if N ≥ 3 and 2∗ := ∞ if either N = 1 or N = 2.

• i.e.: abbreviation for the Latin expression id est.

• e.g.: abbreviation for the Latin expression exempli gratia.



CHAPTER 1

Minimax theorems for lower semicontinuous functions and their

applications

In 1986, Szulkin [81] generalized the study of Critical Point Theory to a class

of lower semicontinuous (l.s.c) functionals I : X → (−∞,+∞] having the following

structure

(H0) I := Φ + Ψ, with Φ ∈ C1(X,R) and Ψ : X → (−∞,+∞] is a convex l.s.c.

functional and proper, i.e. Ψ ̸≡ ∞.

From now on, a functional I : X → (−∞,+∞] is said to be of Szulkin-type if its

structure is given as in (H0). In the important work [81], Szulkin has established

a powerful list of minimax results involving the class (H0). Generalized versions of

the famous Mountain Pass Theorem of Ambrosetti-Rabinowitz [75, Theorem 2.2], the

Saddle Point Theorem [75, Theorem 4.6] and classical results of the genus theory has

been proved in [81].

However, observing the literature on minimax theorems, we could find some

classical results that have not been yet extended for Szulkin-type functionals. For

instance, the classical Bartsch’s Fountain Theorem, which ensures the existence

and multiplicity of critical points for Z2-symmetric C1-functionals (see Bartsch [23,

Theorem 2.5] and Willem [83, Theorem 3.6]). By exploring the Bartsch’s theorem,

many authors were interested in finding critical points of real-valued functional Φ
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defined on an infinite dimensional Banach space X, which allow to solve wide classes

of ordinary or partial differential equations. Besides of the applications in the study

of differential equations, several works were focused in establishing generalizations of

the Fountain Theorem; see, e.g., [25, 26, 45, 60, 65, 85] for a valuable literature of this

subject.

Accounting this questions, we have aimed to solve the following problem:

(Q1) Is it possible to prove a Fountain-type Theorem for Szulkin-type functionals?

In this chapter a complete and positive answer to (Q1) is given by proving a

nonsmooth version of Theorem 2.5 in [23] for Szulkin-type functionals (see Theorem

1.4 below).

Considering the literature related with the Fountain Theorem, a second question

that naturally arises in this nonsmooth setting is the following

(Q2) Is it possible to prove a dual Fountain-type Theorem for Szulkin-type functionals?

Indeed, in [25], Bartsch and Willem have proved a dual version of th Fountain Theorem.

A careful analysis of the proof of the classical dual Fountain Theorem can be found

in [83, Theorem 3.18]. The main basic idea due to Bartsch and Willem consists in

applying Theorem 2.5 of [23] to the functional −Φ, with Φ a C1 functional on X,

obtaining a real sequence (cj) of negative critical values of I such that cj → 0, as

j → ∞. However, when I is a Szulkin-type functional it is easily seen that this

procedure cannot be used in general as in the smooth case, because when I is a Szulkin-

type functional we do not know, in general, if the functional −I also verifies (H0).

In order to overcome this difficulty and to give an answer for (Q2), we have proved

a nonsmooth version of a Heinz’s Theorem (see [61, Proposition 2.2]) for Szulkin-type

functionals. As in the dual Fountain Theorem, this result ensures the existence of a

negative sequence (cj) of critical values converging to 0, as j → ∞.

Finally, we would like to emphasize that, by adapting the arguments used along

the proof of the main Theorem 1.5, we are able to show a more precise version of [81,

Corollary 4.8]. On the contrary of [81, Corollary 4.8], the conclusion of our result in

Theorem 1.6 ensures that the obtained critical levels ck satisfy ck → ∞ as k → ∞.
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From a theoretical point of view, the results obtained here complete the study made

by Szulkin in the seminal paper [81], since new minimax theorems are established.

We would like to register that the results developed in the present chapter are

referring to the article [8] due to Alves, da Silva and Molica Bisci.

1.1 Abstract theorems

Throughout this chapter, let I := Φ +Ψ be a Szulkin-type functional defined on

a Banach space X = (X, ∥ · ∥). The effective domain of I is defined by

D(I) := {u ∈ X : I(u) < +∞},

and so, for a Szulkin-type functional I one has that D(I) = D(Ψ). For each u ∈ D(I),

we say that the subdifferential of I at u is the set

∂I(u) := {φ ∈ X∗ : ⟨Φ′(u), v − u⟩+Ψ(v)−Ψ(u) ≥ ⟨φ, v − u⟩ , ∀v ∈ X}. (1.1)

For our goals, we will need of the following definition.

Definition 1.1 Suppose that I is a Szulkin-type functional. Then

i) a point u ∈ X is called a critical point of I if 0 ∈ ∂I(u), or more precisely,

u ∈ D(I) and

⟨Φ′(u), v − u⟩+Ψ(v)−Ψ(u) ≥ 0, ∀v ∈ X,

ii) a sequence (un) is called a Palais-Smale sequence (briefly (PS) sequence) for I at

level c ∈ R if I(un) → c and

⟨Φ′(un), v − un⟩+Ψ(v)−Ψ(un) ≥ −εn∥v − un∥, ∀v ∈ X,

with εn → 0+, or equivalently (see [81, Proposition 1.2])

⟨Φ′(un), v − un⟩+Ψ(v)−Ψ(un) ≥ ⟨wn, v − un⟩, ∀v ∈ X,

where wn ∈ X∗ with wn → 0 in X∗;

iii) I satisfies the Palais-Smale condition (briefly (PS) condition) at level c ∈ R when

each (PS) sequence (un) at level c has a convergent subsequence. If I verifies the

(PS) condition for all level c, we say simply that I satisfies the (PS) condition.
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Let us denote by Ic, K and Kc respectively, the following sets

Ic := I−1((−∞, c]) for every c ∈ R,

K := {u ∈ X : u is a critical point of I},

and

Kc := {u ∈ K : I(u) = c}.

In order to prove the main variant of the classical Fountain Theorem given in

Theorem 1.4 below, at the beginning of this section, we recall a suitable version of the

standard deformation lemma valid for Szulkin-type functionals; see [81, Proposition

2.3]. In addition, in Lemma 1.2 an equivariant version of the aforementioned result has

been established. Finally, in the last subsection two abstract results have been proved.

More precisely, [61, Proposition 2.2] due to Heinz has been extended to Szulkin-type

functionals as well as a new version of [81, Corollary 4.8] is given in Theorem 1.6.

1.1.1 Deformation lemmas and Fountain Theorem

Hereafter, we fix G a compact group that acts isometrically on X; see the

Appendix B for a brief of group actions on Banach spaces. The subspace of invariant

elements of X is defined by

Fix(G) := {u ∈ X : gu = u ∀g ∈ G}.

Example 1.1 Let Id : X → X be the identity map on X and consider the usual repre-

sentation

Z2 = {Id,−Id}. Standard computations ensure that the group Z2 acts isometri-

cally on X.

A subset A of X is said to be G-invariant if gA = A for every g ∈ G, where

gA := {gx : x ∈ A}. Also, when A ⊂ X is a G-invariant set, a map γ : A → X is

called equivariant map if

γ(gx) = gγ(x) ∀x ∈ A, ∀g ∈ G.

If a functional (not necessarily linear) φ defined on X satisfies φ(gx) = φ(x) for any

x ∈ X and g ∈ G, we say that φ is a G-invariant functional.
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Notation: ΓG(A) := {γ ∈ C(A,X) : γ is equivariant}.
By following [83, Section 3.2] and [25], the notion of admissible action is given

below.

Definition 1.2 Let Y be a finite dimensional vector space. Moreover, let us assume

that G is a compact topological group that acts diagonally on Y k, that is

gv = g(v1, ..., vk) = (gv1, ..., gvk),

for every v = (v1, ..., vk) ∈ Y k and each g ∈ G. The action of G on Y is said to

be admissible if, for each equivariant map γ : ∂U → Y k−1, where k ≥ 2 and U is a

bounded G-invariant open set of Y k with 0 ∈ U, there is u ∈ ∂U such that γ(u) = 0.

For our goals, we will consider a special condition on a decomposition of space X

with respect to action of G on X as follows:

(G0) G is a compact group that acts isometrically on

X =
⊕

j∈N

Xj,

where every Xj is a G-invariant subspace of X such that Xj
∼= Y, being Y a finite

dimensional vector space for which the action of G is admissible.

In our theoretical results, we need to deal with the abstract notion of Haar’s

integral on a compact group G whose the details and related notions can be found

in [72]; see the Appendix B for a short review on this subject. Fix f : G −→ R an

integrable function with respect to a measure µ. We say that µ is a left invariant

measure if
∫

G

f(g−1y)dµ =

∫

G

f(y)dµ, ∀g ∈ G, (1.2)

for every f ∈ L(G, µ).

Remark 1.1 When G is a compact group, there is a left invariant positive measure µ

such that µ(G) = 1. Such measure is called the Normalized Haar measure. The integral

associated with µ is the so called Haar’s integral. We also notice that the left invariant

Haar measure µ can be extended for X-valued functions (see Appendix B for further

details).
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Let β : X → X be a continuous map on X. By the left invariance property of µ,

if η : X → X is the map given by

η(u) :=

∫

G

gβ(g−1u)dµ, u ∈ X, (1.3)

then η ∈ ΓG(X). This fact will be useful later on.

As usual, by a deformation we mean a family of maps of the form

αs := α(s, ·) : W ⊂ X → X, s ∈ [0, s0]

such that α0 ≡ Id|W , with α ∈ C([0, s0] ×W,X) and Id|W denotes the restriction of

the identity map Id on X to W .

The next result has been proved by Szulkin in [81, Proposition 2.3].

Lemma 1.1 Let I = Φ+Ψ be a Szulkin-type functional for which the (PS) condition

holds and let N be a neighbourhood of Kc. Then, fixed ε0 > 0, there is ε ∈ (0, ε0) such

that, for each compact set A ⊂ X \N with

c ≤ sup
u∈A

I(u) ≤ c+ ε,

there exist a closed set W, with A ⊂ int(W ), and a deformation αs : W → X, with

0 ≤ s ≤ s0 ≈ 0+, such that

i) ∥αs(u)− u∥ ≤ s, ∀u ∈ W ;

ii) There is a number δ = δε ≈ 0+ such that

I(αs(u))− I(u) ≤ s+ δs ∀u ∈ W,

and

I(αs(u))− I(u) ≤ −3εs+ δs ∀u ∈ W, I(u) ≥ c− ε.

Moreover, by ii) it follows that

iii) I(αs(u))− I(u) ≤ 2s, ∀u ∈ W ;

iv) I(αs(u))− I(u) ≤ −2εs, ∀u ∈ W, I(u) ≥ c− ε;

v) sup
u∈A

I(αs(u))− sup
u∈A

I(u) ≤ −2εs.

vi) I(αs(u))− I(u) ≤ 0, ∀u ∈ W ∩ C, for each closed set verifying C ∩K = ∅.
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We would like to point out that ii) is not contained in the statement of [81,

Proposition 2.3]. However, the sufficiently small constant δ > 0 in ii) explicitly appears

along the proof of the cited proposition.

Now, we are able to prove an equivariant version of Lemma 1.1 making use of the

next notion that involves a functional Ψ : X → (−∞,+∞] as well as the action of a

compact topological group G on X.

Definition 1.3 Let Ψ : X → (−∞,+∞] be a functional and let G be a compact

topological group that acts on X. We say that Ψ is compatible with the action of G on

X (briefly G-compatible) if the following inequality holds

Ψ

(
∫

G

g−1β(gu)dµ

)

≤
∫

G

Ψ(g−1β(gu))dµ, (1.4)

for every fixed u ∈ X, β ∈ C(Gu,X), where Gu := {gu; g ∈ G} and µ denotes the

normalized Haar measure on G.

The inequality in (1.4) is verified in some meaningful cases and some of them are

briefly discussed in the next example.

Example 1.2 By using the usual notations, let us restrict our attention to the

following cases:

1) Let Ψ ≡ ∥ · ∥ : X → R be the norm defined on X. Fixed u ∈ X and a map

β ∈ C(Gu,X), let η ∈ C(G,X) be given by η(g) := g−1β(gu). Next, let (βn) be

a sequence of simple functions with
∫

G

βn(g)dµ→
∫

G

η(g)dµ and

∫

G

∥βn(g)∥dµ→
∫

G

∥η(g)∥dµ. (1.5)

Each function βn can be written as a finite sum:

βn =
∑

i

χAi
vi where Ai := β−1

n ({vi}) and vi ∈ X.

Since µ is the normalized Haar measure on G (µ(G) = 1), we have
∑

i

µ(Ai) = 1

and
w

w

w

w

∫

G

βn(g)dµ

w

w

w

w

=

w

w

w

w

w

∑

i

µ(Ai)vi

w

w

w

w

w

≤
∑

i

µ(Ai)∥vi∥ =

∫

G

∥βn(g)∥dµ,

for every n ∈ N. Consequently, by using (1.5) it follows that
w

w

w

w

∫

G

η(g)dµ

w

w

w

w

≤
∫

G

∥η(g)∥dµ,
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that is,
w

w

w

w

∫

G

g−1β(gu)dµ

w

w

w

w

≤
∫

G

w

wg−1β(gu)
w

w dµ

So ∥ · ∥ is compatible with the action of G on X. In general, the result is still

true for an arbitrary convex continuous function Ψ : X → R.

2) Let us assume that G := {g1, ..., gk} is a finite group and let Ψ : X → (−∞,+∞]

be a convex functional. Since

k
∑

i=1

µ({gi}) = 1,

for each u ∈ X and β ∈ C(Gu,X) the integral

∫

G

g−1β(gu)dµ can be written as

a finite convex combination of vectors of X. More precisely, one has

∫

G

β(g)dµ =
k
∑

i=1

µ({gi})vi,

where vi := g−1
i β(giu).

Then, since Ψ is convex,

Ψ

(
∫

G

g−1β(gu)dµ

)

= Ψ

(

k
∑

i=1

µ({gi})vi
)

≤
k
∑

i=1

µ({gi})Ψ(vi) =

∫

G

Ψ(g−1β(gu))dµ,

i.e. Ψ is compatible with the action of G on X.

The next result (Equivariant Deformation Lemma) is a more general form of

Corollary 2.4 in [81]. This preparatory property can be also viewed as a complement

of Lemma 5.1 proved by Bereanu and Jebelean in [28].

Lemma 1.2 Let I = Φ+Ψ be a Szulkin-type functional for which the (PS) condition

holds. Assume that Φ and Ψ are G-invariant functionals and Ψ is compatible with

the action of the compact topological group G on X. Moreover, suppose that G acts

isometrically on X. Under the hypothesis of Lemma 1.1, the same conclusions hold

with αs : W → X equivariant in A, whenever A is a G-invariant set.

Proof. Denote by βs the deformation of Lemma 1.1 and set

αs(u) :=

∫

G

g−1βs(gu)dµ. (1.6)

Thanks to (1.3), we observe that αs ∈ ΓG(A). Now, let us prove that the function αs

verifies all the assumptions of Lemma 1.1. More precisely, since iii), iv) and v) are a
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direct consequence of ii), it is enough to show i) and ii). By Lemma 1.1, Part - i), it

follows that

∥αs(u)− u∥ =

w

w

w

w

∫

G

g−1βs(gu)dµ−
∫

G

(g−1g)udµ

w

w

w

w

≤
∫

G

w

wg−1(βs(gu)− gu)
w

w dµ

≤
∫

G

sdµ = s for every u ∈ W,

(1.7)

i.e. αs verifies i) as claimed.

In order to prove ii) let us write βs(u) = u + hs(u), so that αs(u) = u + ws(u), where

ws(u) =

∫

G

g−1hs(gu)dµ. Consequently, the Taylor’s formula immediately yields

I(αs(u)) = {Φ(u) + ⟨Φ′(u), ws(u)⟩+ r(s)}+Ψ(αs(u)),
r(s)

s
= os(1). (1.8)

Now, the compatibility condition of Ψ gives

I(αs(u)) ≤
∫

G

(Φ(u) + ⟨Φ′(u), g−1hs(gu)⟩)dµ+

∫

G

Ψ(g−1βs(gu))dµ+
δ

2
s, (1.9)

for s ≈ 0+. Moreover, since

⟨Φ′(u), g−1hs(gu)⟩ = ⟨Φ′(gu), hs(gu)⟩,

the G-invariance of Φ and the Taylor’s expansion applied to I(βs(gu)) give

I(αs(u)) ≤
∫

G

(Φ(gu) + ⟨Φ′(gu), hs(gu)⟩)dµ+

∫

G

Ψ(βs(gu))dµ+
δ

2
s

=

∫

G

(I(βs(gu))− ρ(s))dµ+
δ

2
s ≤

∫

G

I(βs(gu))dµ+ δs.

(1.10)

Here, we have used ρ as being the rest in the Taylor’s expansion. Finally, by Lemma

1.1, Part - ii) and (1.10), it follows that

I(αs(u)) ≤
∫

G

I(gu)dµ+ s+ 2δs ≤ I(u) + s+ 2δs, (1.11)

for every u ∈ W . Similarly

I(αs(u)) ≤ I(u)− 3εs+ 2δs, for every u ∈ W and I(u) ≥ c− ε. (1.12)

Inequalities (1.11) and (1.12) ensure that αs satisfies ii) provided that δ is sufficiently

small.
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For the sake of completeness, let us recall now the notion of homotopy. Let B be

a subset of X and f, g ∈ C(B,X). As usual, we say that f is homotopic to g if there

is h ∈ C([0, 1]× B,X) satisfying

h(0, ·) ≡ f and h(1, ·) ≡ g. (1.13)

The map h is called a homotopy between f and g. We will write f ≈ g to designate that

f is homotopic to g by an equivariant homotopy, i.e., there exists h ∈ C([0, 1]×B,X)

satisfying (1.13) with h(t, ·) ∈ ΓG(B) for any t ∈ [0, 1]. It easily seen that ≈ is an

equivalence relation in C(B,X).

In what follows, for each k ∈ N, we set

i) Yk :=
⊕k

j=1Xj and Zk :=
⊕∞

j=kXj;

ii) Bk := {u ∈ Yk; ∥u∥ ≤ ρk} and Nk := {u ∈ Zk; ∥u∥ = rk}, with ρk > rk > 0.

Finally, let us recall the Intersection Lemma proved in [83, Lemma 3.4]; see

also [25, Theorem 2] for additional comments and remarks.

Lemma 1.3 Assume that (G0) holds. If γ ∈ C(Bk, X)∩ΓG(Bk) and γ|∂Bk ≡ Id|∂Bk
,

then γ(Bk) ∩Nk ̸= ∅.

We recall in the next result the classical Ekeland’s Variational Principle [53, Theorem

1] that will be useful in the sequel.

Theorem 1.3 Let (Y, d) be a complete metric space. Suppose that φ : Y → (−∞,∞]

is a proper lower semicontinuous functional bounded from below. Given δ, τ > 0 and

u0 ∈ Y such that

inf
u∈Y

φ(u) ≤ φ(u0) ≤ inf
u∈Y

φ(u) + δ, (1.14)

then, there exists v0 ∈ Y verifying

i) φ(v0) ≤ φ(u0), d(v0, u0) ≤ 1/τ ;

ii) φ(v)− φ(v0) ≥ −δτd(v, v0), ∀v ∈ Y .

Now, we are ready to show a version of the classical Fountain Theorem due to

Bartsch [23] that is valid for Szulkin-type functionals.

Theorem 1.4 Let I = Φ+Ψ be a Szulkin-type functional for which the (PS) condition

holds with I(0) = 0. Assume that Φ and Ψ are G-invariant functionals with Ψ

compatible with respect to the action of a compact topological group G on X. Moreover,

assume that (G0) holds as well as
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i) ak := sup
u∈Yk,∥u∥=ρk

I(u) ≤ 0;

ii) bk := inf
u∈Zk,∥u∥=rk

I(u) → ∞,

for every k ≥ 2. Finally, set ck := inf
γ∈Θk

sup
u∈Bk

I(γ(u)) <∞, where

Θk := {γ ∈ ΓG(Bk); γ|∂Bk
≡ Id|∂Bk

}. (1.15)

Then, the functional I has infinitely many critical points (uk) such that

I(uk) = ck → ∞.

Proof. Let us argue by contradiction. In such a case, we may assume that Kck = ∅
for some k ≥ 2. Now, if k is large enough, by Lemma 1.3, one has ck ≥ bk > 0. Thus,

we are in position to apply Lemma 1.1 with N = ∅ and ε0 = ck. By fixing ε ∈ (0, ck)

given in Lemma 1.1, we will get a contradiction. Indeed, let us define

Θ̃k :=
{

γ ∈ ΓG(Bk); γ|∂Bk
≈ Id|∂Bk

in Ick−
ε
4 and (I ◦ γ)|∂Bk

≤
(

ck −
ε

2

)}

. (1.16)

Thanks to conditions i) and ii), if γ ∈ Θk and u ∈ ∂Bk, we derive

I(γ(u)) = I(u) ≤ 0 < ck −
ε

2
< ck −

ε

4
.

Hence Θk ⊂ Θ̃k and

c̃k := inf
γ∈Θ̃k

sup
u∈Bk

I(γ(u)) ≤ ck. (1.17)

If c̃k < ck, it easily seen that there exists γ0 ∈ Θ̃k such that

m0 := sup
u∈Bk

I(γ0(u)) < ck.

Moreover, by (1.16), there exists a homotopy H ∈ C
(

[0, 1]× ∂Bk, I
ck−

ε
4

)

such that

H(0, ·) ≡ γ0|∂Bk
and H(1, ·) ≡ Id|∂Bk

, (1.18)

with H(t, ·) equivariant for every t ∈ [0, 1]. Since Bk is a ball of radius ρk each point

u ∈ Bk can be represented as u ≡ (s, ũ), s ∈ [0, ρk], ũ ∈ ∂Bk; polar coordinates of u.

Hence, if u ∈ ∂Bk then u ≡ (ρk, u). Now, define γ1 : BK → X by

γ1(s, v) :=















γ0(s, v) s ∈
[

0,
ρk
2

]

H

(

2

ρk
s− 1, v

)

s ∈
[ρk
2
, ρk

]

.
(1.19)
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According to (1.18), when s = ρk/2 it holds H(2s/ρk − 1, ·) = H(0, ·) ≡ γ0, which

assures that γ1 is well defined and γ1 ∈ ΓG(Bk), since γ0 and H(t, ·) are equivariants.

By using again (1.18), if u ∈ ∂Bk one has

γ1(u) = H(1, u) = Id|∂Bk
(u),

so that γ1 ∈ Θk, and

sup
u∈Bk

I(γ1(u)) ≤ max
{

m0, ck −
ε

4

}

< ck,

against the definition of ck. This contradiction assures that c̃k = ck in (1.17).

Consequently, we can work with Θ̃k instead Θk.

Now, let us observe that the collection Θ̃k is a (complete) metric subspace of the

complete metric space C(Bk, X) endowed by d(f, g) := sup
u∈Bk

∥f(u) − g(u)∥. Indeed,

suppose that γn → γ in C(Bk, X) with γn ∈ Θ̃k. The semicontinuity of I yields

I(γ(u)) ≤ lim inf I(γn(u)) ≤ ck −
ε

2
, u ∈ ∂Bk.

Moreover, the action properties give

γ(gu) = lim γn(gu) = g lim γn(u) ∀u ∈ Bk, ∀g ∈ G,

so that γ ∈ ΓG(Bk). On the other hand, thanks to the continuity of Φ, it is possible

to find a sequence of positive numbers τn = on(1) such that

Φ(tγn(u)+(1−t)γ(u)) ≤ tΦ(γn(u))+(1−t)Φ(γ(u))+τn ∀u ∈ ∂Bk, ∀t ∈ [0, 1]. (1.20)

More precisely τn := 2max{τ 1n, τ 2n} with

τ 1n := sup
u∈Bk, t∈[0,1]

|Φ(tγn(u) + (1− t)γ(u))− Φ(γ(u))|

and

τ 2n := sup
u∈Bk

|Φ(γn(u))− Φ(γ(u))|.

Inequality (1.20) associated to the convexity of Ψ implies

I(tγn(u) + (1− t)γ(u)) ≤ tI(γn(u)) + (1− t)I(γ(u)) + τn

≤ ck −
ε

2
+ τn ≤ ck −

ε

4
∀u ∈ ∂Bk, ∀t ∈ [0, 1],

(1.21)
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for n sufficiently large.

Thus γn|∂Bk
≈ γ|∂Bk

via the equivariant homotopy F (t, ·) := tγn(·) + (1 − t)γ(·).
Consequently γ|∂Bk

≈ Id|∂Bk
, so that Θ̃k is a complete metric subspace of C(Bk, X) as

claimed. Hence, the conclusion follows arguing as in [81, Theorem 3.2].

Now, since I is a lower semicontinuous functional, by using [81, Lemma 3.1] and the

definition of ck, we have that the functional φ : Θ̃k → (−∞,+∞] defined by

φ(γ) := sup
u∈Bk

I(γ(u))

is lower semicontinuous and bounded from below. Since Θ̃k is a complete metric space,

we can apply the classical Ekeland’s Variational Principle recalled in Theorem 1.3,

to the functional φ with δ = ε and τ = 1. Then, we may take γ ∈ Θ̃k such that

φ(γ) ≤ ck + ε, and

φ(η)− φ(γ) ≥ −εd(η, γ) ∀η ∈ Θ̃k. (1.22)

It follows that A := γ(Bk) is a compact equivariant set with

sup
v∈A

I(v) = sup
u∈Bk

I(γ(u)) ≤ ck + ε,

so that A verifies all the assumptions of the equivariant deformation lemma given in

Lemma 1.2. Hence, let η := αs ◦ γ, where αs is the equivariant deformation given

in Lemma 1.2 and let us prove that η ∈ Θ̃k for s ≈ 0+. Indeed η ∈ ΓG(Bk) and if

u ∈ ∂Bk, by iii) and iv) in Lemma 1.1, it follows that











I(η(u)) = I(αs(γ(u))) ≤ I(γ(u)) ≤ ck −
ε

2
, I(γ(u)) ∈

(

ck − ε, ck −
ε

2

]

I(η(u)) ≤ I(γ(u)) + 2s ≤ ck −
ε

2
, I(u) ≤ ck − ε,

(1.23)

so that

(I ◦ η)|∂Bk
≤ ck −

ε

2
.

Now, since αs ◦ γ can be viewed as an equivariant homotopy such that (αs ◦ γ)|∂Bk
≈

γ|∂Bk
in Ick−

ε
2 , it follows that

η|∂Bk
≈ (αs ◦ γ)|∂Bk

≈ Id|∂Bk
in Ick−

ε
4 ,

taking into account that γ|∂Bk
≈ Id|∂Bk

.
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Finally, since η ∈ Θ̃k, by using i) and v) of Lemma 1.1 and (1.22), one has

−εs ≤ φ(η)− φ(γ)

= sup
u∈Bk

I(αs(γ(u)))− sup
u∈Bk

I(γ(u)) ≤ −2εs,
(1.24)

which is an absurd. Hence, there exists a positive integer k0 such that Kck ̸= ∅ for

k ≥ k0. The proof is complete since, by construction, one clearly has ck ≥ bk.

1.1.2 Minimax results involving the G-index theory

Preceding the main results of this subsection, we introduce the notion of the

G-index that will be required in our abstract results. The reader can consult [23] for a

discussion in a more general situation. Let Σ be the class of subsets of (X −{0}) that
are G-invariant and closed in X. Let us assume that the condition (G0) holds and let

Y be the vector space fixed in that condition.

Definition 1.4 The G-index of A ∈ Σ \ {∅} is defined as

γG(A) := min{k ∈ N \ {0} : ∃ϕ : A→ Y k \ {0}, ϕ ∈ ΓG(A)}

if such integer exists and γG(A) := +∞ otherwise. Finally, we also set γG(∅) := 0.

Remark 1.2 Note that when G = Z2 the G-index introduced above coincides with

the genus of symmetric subset of (X−{0}); details and useful remarks on genus theory

can be found in [75].

Denote by C the collection of all nonempty closed and bounded subsets of X. In

C we put the Hausdorff metric dH given by

dH(A,B) := max

{

sup
x∈A

d(x,B), sup
y∈B

d(y, A)

}

, A,B ∈ C,

where d denotes the usual distance on X. It is well known that (C, dH) is a complete

metric space. Denote by DG the subcollection of C of all nonempty compact G-invariant

subset of X. By following the ideas in [81, Section 4] the reader is invited to note that

(DG, dH) is a complete metric space; see also [46, Apêndice A] for related computations.

By a similar way, we notice that, setting

Γj := {A ∈ DG; 0 /∈ A, γG(A) ≥ j}dH ,
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the reasoning made in [81] can be adapted to show that the space (Γj, dH) is a complete

metric space. The next properties can be proved by using an analogous reasoning as

made in [75].

Proposition 1.1 For every A,B ∈ Σ the following facts hold:

i) If there exists ϕ : A→ B, ϕ ∈ ΓG(A), then γG(A) ≤ γG(B);

ii) A ⊂ B implies that γG(A) ≤ γG(B);

iii) γG(A ∪ B) ≤ γG(A) + γG(B);

iv) γG(A \B) ≥ γG(A)− γG(B), since γG(B) <∞;

v) If G is a finite group and A is a compact set, then γG(A) <∞.

vi) If A is a compact set, then we have

γG(Nδ(A)) = γG(A),

δ ≈ 0+, where

Nδ(A) := {x ∈ X : d(x,A) ≤ δ}.

Proof. The proof of i)− iv) and vi) follows using the same type of argument as made

in [75]. To see that v) holds, write G = {g1, ..., gn} and for each x ∈ A consider the

G-orbit Gx := {gx; g ∈ G} = {g1x, ..., gnx}. We may fix ϕ = ϕx : Gx −→ Y \ {0} an

equivariant continuous map (e.g., fix v0 ̸= 0 in Y and set ϕ(gjx) = gjv0). Since Gx is

a closed and finite subset of A, we can extend ϕ to ϕ̃ : U −→ Y \ {0}, with U = Ux

an equivariant neighborhood of Gx, and ϕ̃ ∈ ΓG(U). By repeating this procedure

for each x ∈ A, by the compactness of A it is possible to find U1, ..., Uk a finite list

of equivariant closed sets and equivariant maps ϕ̃j : Uj −→ Y \ {0}, j ∈ {1, ..., k},
A ⊂

⋃

j

Uj. Arguing as in [24, §2.3-§2.4], by considering an G-invariant partition of

unity subordinate to {Uj}1≤j≤k, one can obtain γ : A −→ Y k \ {0}, γ ∈ ΓG(A). So,

the item v) holds and the proof is now complete.

Finally, in view of the preceding proposition, by following the same idea in

[81, Proposition 4.2], we can prove the property below.

Proposition 1.2 If A ∈ Γj is such that 0 /∈ A, then γG(A) ≥ j.
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Let A be a compact set of a real Banach space X and δ > 0. Let us recall the

notation

Nδ(A) := {x ∈ X : d(x,A) ≤ δ}.

The next technical result will be useful in the sequel.

Lemma 1.4 Let I = Φ+Ψ be a Szulkin-type functional for which the (PS) condition

holds. Moreover, let (cj) be a real sequence such that cj → c ∈ R. Then, given δ > 0,

there exists j0 ∈ N such that

Kcj ⊂ Nδ(Kc),

for every j ≥ j0.

Proof. Arguing by contradiction, assume that there exist a subsequence (cjk) of (cj),

a number δ0 > 0, and a sequence (uk) with uk ∈ Kcjk
such that

d(uk, Kc) > δ0, ∀k ∈ N. (1.25)

The definition of Kcjk
immediately yields

⟨Φ′(uk), v − uk⟩+Ψ(v)−Ψ(uk) ≥ 0, ∀v ∈ X, (1.26)

as well as

I(uk) = cjk → c,

so that (uk) is a (PS)c sequence for the functional I. Now, the (PS) condition ensures

the existence of u0 ∈ X and a subsequence of (uk), still denoted again by (uk), such

that

uk → u0 in X.

Now, taking v = u0 in (1.26), we get lim supΨ(uk) ≤ Ψ(u0). The last inequality in

addition to the semicontinuity property of Ψ gives limΨ(uk) = Ψ(u0), so that u0 ∈ Kc.

Hence d(uk, Kc) → 0 as k → ∞, against (1.25).

The next result extends [61, Proposition 2.2] to Szulkin-type functionals.

Theorem 1.5 Let I = Φ+Ψ be a Szulkin-type functional for which the (PS) condition

holds and such that I(0) = 0. Assume that Φ and Ψ are G-invariant functionals with Ψ

compatible with respect to the action of a compact topological group G on X. Moreover,

suppose that (G0) holds and require that the G-index satisfies the following property:

(G∗) γG(A) <∞ for every compact set A ∈ Σ.
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Finally, for every j ∈ N, set

cj := inf
A∈Γj

sup
u∈A

I(u),

and assume that the following conditions are verified:

i) −∞ < cj for every j ∈ N;

ii) Given j ∈ N, there exists A ∈ Σ such that

γG(A) ≥ j and sup
u∈A

I(u) < 0,

where A ̸= ∅ is a compact set.

Then, the numbers cj are negative critical values of I and cj → 0 as j → ∞.

Proof. We first notice that conditions i) and ii) imply that −∞ < cj < 0. Now, a

careful analysis of the arguments in [81, Theorem 4.3] ensures that the sequence (cj)

consists of critical values of I. In fact, the proof of [81, Theorem 4.3] only depends on

the properties i)− vi) in Proposition 1.1 with G = Z2 and where γG coincides with the

genus of a symmetric set as in Remark 1.2. In view of Proposition 1.1, the argument

used in [81, Theorem 4.3] can be adopted in our case. It remains to show that cj → 0

as j → ∞. To this aim, let us observe that the definition of cj yields

cj ≤ cj+1, ∀j ∈ N.

Arguing by contradiction, if cj ↛ 0 for j → ∞, there exists c < 0 such that cj → c.

The (PS) condition ensures that Kc is compact. Moreover, the assumptions on I yields

that Kc is G-invariant and 0 /∈ Kc. Thereby, Kc ∈ Σ and, by following the idea of

Lemma 1.4, as cj → c and Kcj ̸= ∅, one has that Kc ̸= ∅. By vi) of Proposition 1.1

there is δ > 0 such that γG(N2δ(Kc)) = γG(Kc); note that Nδ(Kc) ̸= ∅. By (G∗), we

can assume that γG(Kc) = p

φj : Γj → (−∞,+∞]

A 7−→ φj(A) := sup
u∈A

I(u).

Clearly φj is lower semicontinuous functional since I is too. Set

ε0 := min{1, δ,−c}
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and take ε ∈ (0, ε0) as in Lemma 1.1. Now, let A1 ∈ Γj+p be such that

cj+p ≤ φj+p(A1) < cj+p +
ε2

2
.

Since cj → c, it follows that, for a convenient j0 ∈ N,

φj+p(A1) < cj+p +
ε2

2
≤ c+

ε2

2
≤ cj + ε2 < cj + ε < 0,

for j ≥ j0. Hence, by fixing j = j0, we get 0 /∈ A1 and γG(A1) ≥ j0 + p by Proposition

1.2. If we set A2 := A1 \N2δ(Kc) we also have

sup
u∈A2

I(u) ≤ sup
u∈A1

I(u) < cj0 + ε2 < 0,

so that 0 /∈ A2 and γG(A2) ≥ (j0 + p) − p = j0 by Proposition 1.1, Part

- iv). Consequently A2 ∈ Γj0 . Now, Theorem 1.3 applied to the function

φj0 : Γj0 → (−∞,+∞] (note that Γj0 is complete) yields the existence of A ∈ Γj0

such that

cj0 ≤ sup
u∈A

I(u) = φj0(A) ≤ φj0(A2) < cj0 + ε, dH(A,A2) ≤ ε

as well as

φj0(B)− φj0(A) ≥ −εdH(A,B) ∀B ∈ Γj0 . (1.27)

Since Lemma 1.4 gives Kcj0
⊂ Nδ(Kc) for j0 ≈ ∞, by setting N = Nδ(Kc) we derive

A ∩N = ∅, taking into account that ε < δ. These informations ensure that A, N and

Kcj0
verify the hypothesis of the deformation result given in Lemma 1.1.

Thus by Lemma 1.2 the existence of an equivariant deformation αs is obtained.

In this way, if we set B := αs(A), on account of Proposition 1.1, Part - i), one has

B ∈ Γj0 . Now, combining the properties of αs with (1.27) we derive the contradiction

−2εs ≥ φ(B)− φ(A) ≥ −εs.

This completes the proof.

Remark 1.3 We emphasize that if G is finite, condition (G∗) in Theorem 1.5

automatically holds; see Proposition 1.1-v).

The last result can be viewed as a complement of Corollary 4.8 proved by Szulkin

in [81].
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Theorem 1.6 Let I = Φ+Ψ be a Szulkin-type functional for which the (PS) condition

holds and such that I(0) = 0. Assume that Φ and Ψ are G-invariant functionals with Ψ

compatible with respect to the action of a compact topological group G on X. Moreover,

suppose that (G0) holds and require that the G-index satisfies (G∗).

Finally, assume that there exist subspaces Y, Z of X such that X = Y ⊕ Z,

dimY <∞, Z is closed and

i) There are numbers r, ρ > 0 such that I|∂Br(0)∩Z ≥ ρ;

ii) For each positive integer k there is a k-dimensional subspace Xk of X such that

I(u) → −∞ as ∥u∥ → ∞ with u ∈ Xk.

Then I has infinitely many critical values. Furthermore, if I−c0 has no critical points

for some c0 > 0, then there exists a sequence (cj) of critical values of I with cj → ∞
as j → ∞.

In order to prove Theorem 1.6 some notations are introduced. To this aim, let us

fix c0 > 0 such that I−c0 has no critical points and set Mk := BRk
(0)∩Xk with Rk > r

and I|∂Mk
≤ −c0. Now, let us define the following sets

F := {η ∈ ΓG(Mk); η|∂Mk
≈ Id|∂Mk

in I−c0 by an equivariant homotopy},

for each j ∈ N and k ≥ j,

Λ̃k
j :=







η(Mk \ U) : η ∈ F , U is G-invariant and open inMk, U ∩ ∂Mk = ∅,

with γG(W ) ≤ k − j, forW ∈ Σ, W ⊂ U.







and

Λ̃j :=
⋃

k≥j

Λ̃k
j .

Finally, for each j ∈ N, we fix

Λj := {A ⊂ X : A is compact, G-invariant and for each openU ⊃ A, there isA0 ∈ Λ̃j, A0 ⊂ U}.

and

cj := inf
A∈Λj

sup
u∈A

I(u).

By applying the same arguments used in [81, Theorem 4.4, Lemma 4.6] we can

prove that Λj verifies the properties i)−v) below (note that, in view of the Proposition

1.1, the arguments in [81, Theorem 4.4] can be applied to the G-index γG).

Lemma 1.5 The sets Λj defined above satisfy the following claims:
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i) (Λj, dH) is a complete metric space;

ii) cj ≥ ρ, for all j > dimY ;

iii) Λj+1 ⊂ Λj;

iv) Let A ∈ Λj and W be a closed G-invariant set containing A in its interior.

Moreover, if α : W → X is an equivariant mapping such that

α|W∩I−c0 ≈ Id|W∩I−c0

by an equivariant homotopy, then α(A) ∈ Λj;

v) For each compact B with B ∈ Σ, γG(B) ≤ p, I|B > −c0, there exists a number

δ0 > 0 such that A \ int(Nδ(B)) ∈ Λj, for A ∈ Λj+p, δ ∈ (0, δ0).

Part - v) in Lemma 1.5 is different with respect to the statement of [81, Lemma 4.6].

However, the main assertion is a direct consequence of the arguments proved there.

Proof of Theorem 1.6. The first part of the proof can be derived by using similar

arguments given in [81, Corollary 4.8]. Hence, it remains to show that cj → ∞ as

j → ∞. Now, by Lemma 1.5, Part - iii), it follows that

cj ≤ cj+1 ∀j ∈ N.

Thus, if cj ↛ ∞, by ii) of last lemma, there exists c > 0 such that cj → c. Arguing

as in the proof of Theorem 1.5, we deduce that Kc is a compact G-invariant set with

0 /∈ Kc and Kc ̸= ∅. Hence, for a convenient δ > 0, by condition (G∗), one has

γG(N2δ(Kc)) = γG(Kc) =: p ∈ N. Now, set ε0 := min{1, δ}, take ε ∈ (0, ε0) as in

Lemma 1.1 and define

φj : Λj → (−∞,+∞]

A 7−→ φ(A) := sup
u∈A

I(u).

Clearly φj is a lower semicontinuous functional that is bounded from below for every

j ∈ N. Hence, let A1 ∈ Λj+p be such that

φj+p(A1) < cj+p +
ε2

2
.

Consequently, for some j0 ∈ N,

φj+p(A1) < cj + ε,



1.1. Abstract theorems 34

for j ≥ j0. Now, if A2 := A1 \ int(N2δ(Kc)), by Part - v) of Lemma 1.5 we have

A2 ∈ Λj0 and φj0(A2) ≤ φj0(A1). Moreover, by Theorem 1.3, there exists A ∈ Λj0 such

that

φj0(A) ≤ φj0(A2) < cj0 + ε dH(A,A2) ≤ ε

as well as

φj0(B)− φj0(A) ≥ −εdH(B,A) ∀B ∈ Λj0 . (1.28)

If we set N := Nδ(Kc), Lemma 1.4 implies that Kcj0
⊂ N if j0 ≈ ∞. The definition of

ε0 yields A ∩N = ∅ and

cj0 ≤ sup
u∈A

I(u) < cj0 + ε.

Then, we can apply Lemma 1.2 to obtain an equivariant deformation αs. If we set

B := αs(A), by Part - vi) of Lemma 1.1 and Part - iv) of Lemma 1.5, one has B ∈ Λj0 .

Finally, a contradiction is achieved by replacing B in (1.28) and arguing as in the proof

of Theorem 1.5.
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1.2 Some Applications to elliptic problems

In this section we illustrate how the abstract results of the previous section can

be applied to establish the existence of infinitely many solutions for some classes of

elliptic problems.

1.2.1 A logarithmic variational inclusion problem

We start this subsection by recalling some concepts related to the critical point

theory for locally Lipschitz functions required in the sequel. Additional comments and

remarks about this subject can be found in the Appendix A (we also refer the texts

in [34, 36, 40, 41, 71]).

Let φ ∈ C(X,R) be a locally Lipschitz function (briefly φ ∈ Liploc(X,R)). The

generalized directional derivative of φ at u along the direction v ∈ X is defined by

φ◦(u; v) := lim sup
w→u, t→0+

φ(w + tv)− φ(w)

t
.

The generalized gradient of the function φ ∈ Liploc(X,R) in u is the set

∂φ(u) = {ϕ ∈ X∗ : φ◦(u; v) ≥ ⟨ϕ, v⟩ , ∀ v ∈ X}.

By a critical point of φ ∈ Liploc(X,R), we mean a point u ∈ X is if 0 ∈ ∂φ(u). If, in

addition, the functional φ ∈ Liploc(X,R) is convex, then the generalized gradient of φ

at u is given by

∂φ(u) := {ϕ ∈ X∗ : φ(v)− φ(u) ≥ ⟨ϕ, v − u⟩ , ∀ v ∈ X}, (1.29)

i.e., the set ∂φ(u) coincides with the subdifferential of φ at u in the sense of the convex

analysis.

In this subsection we study the existence of infinitely many solutions for the

logarithmic inclusion problem

(P1)







−∆u+ u+ ∂G(x, u) ∋ u log u2, in R
N

u ∈ H1(RN),

where G(x, t) :=

∫ t

0

g(x, s)ds is a convex locally Lipschitz function with G(x, ·) ≥ 0

for every x ∈ R
N . The notation ∂G(x, t) designates the generalized gradient of G with

respect to the variable t.
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We also require that the nonlinear term g is aN -measurable function that satisfies

the following technical conditions:

(f1) There is a nonnegative and radial function h ∈ L1(RN) ∩ L∞(RN) such that

|f(x, t)| ≤ h(x)|t|, ∀x ∈ R
N and ∀t ∈ R.

(f2) g(x,−t) = −g(x, t) and f(|x|, t) = g(x, t) for all x ∈ R
N and t ∈ R.

(f3) There is C > 0 such that for any ηt ∈ ∂G(x, t) it holds

G(x, u)− 1

2
ηtt ≥ −Ch(x), a.e x ∈ R

N , ∀ t ∈ R.

Example 1.7 (A function satisfying (f1)− (f3)) : Consider

G(x, t) := h(x)

∫ t

0

H(|s| − a)s ds,

where a > 0, h ∈ L1(RN) ∩ L∞(RN) is nonnegative and radial and H is the Heaviside

function, i.e.,

H(t) :=

{

0, t ≤ 0

1, t > 0.

In this case, we notice that

∂G(x, t) = h(x)



























{s} |s| > a,

[−a, 0] s = −a,
[0, a] s = a,

{0} |s| < a.

Direct computations ensure that (f1)− (f3) are verified.

Now, consider the energy functional associated to problem (P1) given by

I(u) :=
1

2

∫

RN

(|∇u|2 + |u|2) +
∫

RN

G(x, u)−
∫

RN

L(u), u ∈ H1(RN),

where

L(t) := −t
2

2
+
t2 log t2

2
, ∀ t ∈ R.

Hereafter, we make use of the approach given in [10, 11, 62] to decompose I as

a sum of a C1 functional and a convex lower semicontinuous functional. To this aim,
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fixed δ > 0 sufficiently small, we set

F1(s) :=



























0 s = 0

−1

2
s2 log s2 0 < |s| < δ

−1

2
s2(log δ2 + 3) + 2δ|s| − δ2

2
|s| ≥ δ

and

F2(s) :=











0 s = 0

−1

2
s2 log

(

s2

δ2

)

+ 2δ|s| − 3

2
s2 − δ2

2
|s| ≥ δ

for every s ∈ R. Therefore

F2(s)− F1(s) =
1

2
s2 log s2 ∀s ∈ R,

and

I(u) =
1

2
∥u∥2 +

∫

RN

G(x, u) +

∫

RN

F1(u)−
∫

RN

F2(u) u ∈ H1(RN), (1.30)

where ∥ · ∥ denotes the norm in H1(RN) induced by the inner product given by

⟨u, v⟩ :=
∫

RN

(∇u · ∇v + 2uv), ∀u, v ∈ H1(RN).

According to [10, Section 2] and [62, Section 2] the functions F1 and F2 satisfy the

following conditions:

(A1) F1 is an even function with F ′
1(s)s ≥ 0 and F1 ≥ 0. Moreover F1 ∈ C1(R,R) and

convex provided that δ ≈ 0+;

(A2) F2 ∈ C1(R,R) and for each p ∈ (2, 2∗), there exists C = Cp > 0 such that

|F ′
2(s)| ≤ C|s|p−1 ∀s ∈ R.

Now, by (A1) and (A2), it is easily seen that I is a Szulkin-type functional with

Φ(u) :=
1

2
∥u∥2 −

∫

RN

F2(u)

and

Ψ(u) :=

∫

RN

F1(u) +

∫

RN

G(x, u).

We notice that Ψ = Ψ1 +Ψ2, where

Ψ1(u) :=

∫

RN

F1(u) and Ψ2(u) :=

∫

RN

G(x, u).

Direct arguments and [10, Lemma 2.1] ensure the validity of the next result.
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Lemma 1.6 Let Ψ1 : H
1(RN) → (−∞,+∞] be the functional defined above. Then

i) D(I) = D(Ψ1), that is I(u) <∞ if and only if Ψ1(u) <∞.

ii) Let Ω ⊂ R
N be a bounded domain with regular boundary. Then the functional

Ψ̃1(u) =

∫

Ω

F1(u) (1.31)

belongs to C1(H1(Ω),R).

Moreover, according to [36], the structural conditions on the function G assure

that the functional Ψ2 : H1(RN) → R is convex and lower semicontinuous as well as

Ψ2 ∈ Liploc(H
1(RN),R).

From now on, for each u ∈ H1(RN), let us consider the functional φu
1 defined by

⟨φu
1 , v⟩ :=

∫

RN

F ′
1(u)v, ∀v ∈ C∞

0 (RN). (1.32)

If

∥φu
1∥ := sup

v∈C∞
0 (RN ), ∥v∥≤1

⟨φu
1 , v⟩ <∞,

then φu
1 can be extended to a continuous linear functional on H1(RN).

Moreover, if Ĩ : H1(RN) → (−∞,+∞] denotes the functional given by

Ĩ(u) :=
1

2
∥u∥2 +

∫

RN

F1(u)−
∫

RN

F2(u),

then Ĩ is a Szulkin-type functional and I = Ĩ +Ψ2.

By [10, Lemma 2.2 and Corollary 2.1] the following lemma holds.

Lemma 1.7 If u ∈ D(Ĩ) and ∥φu
1∥ < ∞ then there is a unique functional in ∂Ĩ(u),

denoted by Ĩ ′(u), such that

Ĩ ′(u)(v) = ⟨Φ′(u), v⟩+
∫

RN

F ′
1(u)v ∀v ∈ C∞

0 (RN). (1.33)

Furthermore, F ′
1(u)u ∈ L1(RN), and

Ĩ ′(u)(u) =

∫

RN

(|∇u|2 + |u|2)−
∫

RN

u2 log u2, (1.34)

as well as

Ĩ(u)− 1

2
Ĩ ′(u)(u) =

1

2

∫

RN

|u|2. (1.35)
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Remark 1.4 Lemma 1.7 remains valid if we take J̃ := Ĩ|H1
rad(R

N ). Indeed, the

arguments used in [10, Lemma 2.2 and of Corollary 2.1] can be adapted to the radial

space H1
rad(R

N) by taking {φu
1} ⊂ H1

rad(R
N) and

⟨φu
1 , v⟩ =

∫

RN

F ′
1(u)v v ∈ C∞

0, rad(R
N).

The notion of solution for problem (P1) requires some comments. To this aim, let us

define the functions

g(x, t) := lim
r↓0

essinf{g(x, s) : |s− t| < r} (1.36)

and

g(x, t) := lim
r↓0

esssup{g(x, s) : |s− t| < r}. (1.37)

According to [36, Section 2] if G(x, t) =

∫ t

0

g(x, s) ds, then

∂G(x, t) = [g(x, t), g(x, t)].

The above remark makes sense to the following notion.

Definition 1.5 A function u ∈ H1(RN) is said to be a solution of (P1) if u2 log u2 ∈
L1(RN) and there exists ρ ∈ L2(RN) such that

ρ(x) ∈ [g(x, u(x)), g(x, u(x))] a.e in R
N

and
∫

RN

(∇u · ∇ϕ+ uϕ) +

∫

RN

ρϕ =

∫

RN

u log u2ϕ, ∀ϕ ∈ C∞
0 (RN). (1.38)

A proof of the next technical result can be found in [16, Lemma 4.1].

Lemma 1.8 The functions g and g are N-measurable functions, Ψ2 ∈ Liploc(L
2(RN),R)

and

∂Ψ2(u) ⊆ ∂G(x, u) = [g(x, u(x)), g(x, u(x))], (1.39)

for every u ∈ L2(RN).

The inclusion in (1.39) has the following meaning: for each η ∈ ∂Ψ2(u) there is

a function η̃ ∈ L2(RN) such that

i) η(v) =

∫

RN

η̃v ∀v ∈ L2(RN);

ii) η̃(x) ∈ [g(x, u(x)), g(x, u(x))] a.e. in R
N .
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Our next step is to prove that the critical points of I in the sense given in

Definition A.1 are solutions of (P1).

Lemma 1.9 Every critical point of the functional I is a solution of (P1).

Proof. Suppose that u ∈ D(I) is a critical point of I, that is

∫

RN

(∇u · ∇(v − u) + 2u(v − u)) +

∫

RN

(G(x, v)−G(x, u))

≥
∫

RN

F ′
2(u)(v − u)−

∫

RN

(F1(v)− F1(u)),

(1.40)

for every v ∈ H1(RN). The last sentence means that the functional −Φ′(u) belongs to

∂Ψ(u). Hence, by choosing v = u+ tϕ, t > 0, ϕ ∈ C∞
0 (RN), we find

∫

RN

1

t
(G(x, u+ tϕ)−G(x, u)) +

∫

RN

1

t
(F1(u+ tϕ)− F1(u)) ≥ ⟨−Φ′(u), ϕ⟩, (1.41)

which is equivalent to

1

t
[Ψ2(u+ tϕ)−Ψ2(u)] +

∫

RN

1

t
(F1(u+ tϕ)− F1(u)) ≥ ⟨−Φ′(u), ϕ⟩. (1.42)

As Ψ2 is convex, when t→ 0+, the Lemmas A.4 and 1.6 imply that

Ψ◦
2(u, ϕ) +

∫

RN

F ′
1(u)ϕ ≥ ⟨−Φ′(u), ϕ⟩. (1.43)

Replacing ϕ with −ϕ in (C.3) and by using Lemma A.4 it follows that

Ψ◦
2(u,−ϕ)− ⟨Φ′(u), ϕ⟩ ≥

∫

RN

F ′
1(u)ϕ. (1.44)

Then, according to the notation introduced in (1.32), one has

Ψ◦
2(u,−ϕ)− ⟨Φ′(u), ϕ⟩ ≥ ⟨φu

1 , ϕ⟩. (1.45)

The following claim will be crucial in the rest of the proof.

Claim 1.1 sup
φ∈C∞

0 (RN ), ∥φ∥≤1

Ψ◦
2(u, ϕ) <∞.

Indeed, by Lemma 1.8, for each ϕ ∈ C∞
0 (RN) with ∥ϕ∥ ≤ 1, there is η̃φ ∈ L2(RN) such

that η̃φ(x) ∈ [g(x, u(x)), g(x, u(x))] and

Ψ◦
2(u, ϕ) =

∫

RN

η̃φϕ.
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Now, by (f1), there exists a constant C := C(u, h) > 0, independent of ϕ, such that
∣

∣

∣

∣

∫

RN

η̃φϕ

∣

∣

∣

∣

≤ C∥ϕ∥.

The above inequality ensures our assertion.

Now, Claim 1.1 in addition to inequality (1.45) ensures that

sup
φ∈C∞

0 (RN ), ∥φ∥≤1

⟨φu
1 , ϕ⟩ <∞.

Consequently, the classical Hahn-Banach’s extension theorem ensures that the

functional φ1 admits an extension, still denoted by φ1, to a continuous linear functional

on H1(RN). Moreover, Lemma A.1, inequality (C.3) and the density of C∞
0 (RN) in

H1(RN) yield

⟨−Φ′(u)− φu
1 , v⟩ ≤ Ψ◦

2(u, v) ∀v ∈ H1(RN), (1.46)

that is,

−Φ′(u)− φu
1 ∈ ∂Ψ2(u). (1.47)

Thus, there exists φ2 ∈ ∂Ψ2(u) such that −Φ′(u) − φu
1 = φ2. Now, by Lemma 1.8,

there exists ρ ∈ L2(RN) such that ρ(x) ∈ [g(x, u(x)), g(x, u(x))] a.e. in R
N and

⟨φ2, v⟩ =
∫

RN

ρv, ∀v ∈ H1(RN).

Hence

⟨−Φ′(u), v⟩ = ⟨φu
1 , v⟩+

∫

RN

ρv ∀v ∈ H1(RN).

Taking v = ϕ ∈ C∞
0 (RN) in the above equation, one has
∫

RN

ρϕ+

∫

RN

F ′
1(u)ϕ = ⟨−Φ′(u), ϕ⟩ ∀ϕ ∈ C∞

0 (RN), (1.48)

which completes the proof.

Next, we cite an important result due to Kobayashi-Ôtani that generalizes the

Principle of Symmetric Criticality due to Palais (see [83, Theorem 1.28]) and it is a

key point in the arguments used in the sequel.

Theorem 1.8 Let X be a reflexive Banach space and let G be a compact topological

group that acts isometrically on X. If I = Φ + Ψ is a Szulkin-type functional with Φ

and Ψ being G-invariant, then

0 ∈ ∂(I|Z)(u) =⇒ 0 ∈ ∂I(u), (1.49)

for any u ∈ Z := Fix(G).
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An exhaustive proof of Theorem 1.8 is given in [64, Theorem 3.16].

The main result of this subsection reads as follows.

Theorem 1.9 The functional I has a sequence of critical points (un) such that

I(un) → ∞ as n → ∞. Hence, the problem (P1) has infinitely many nontrivial

solutions.

The proof of Theorem 1.9 is divided into several preliminary results. To this goal,

let O(N) be the orthogonal group in R
N . So, by using a standard change of variable,

it is easy to check that the functional I is O(N)-invariant. Moreover, the space of

invariant elements of H1(RN) under the natural action of O(N) coincides with the

subspace H1
rad(R

N) of radial functions of H1(RN). The classical Symmetric Criticality

Principle recalled in Theorem 1.8 ensures that the critical points of J := I|H1
rad(R

N )

are also critical points of the functional I. We notice that Theorem 1.9 can be proved

by using Theorem 1.4 due to the Z2-invariant of the even functional J ; see Example

1.1 for related topics. A key ingredient along the proof of Theorem 1.9 is the Sobolev

compact embedding

H1
rad(R

N) →֒ Lp(RN), ∀p ∈ (2, 2∗). (1.50)

See [83, Corollary 1.26] for additional comments and remarks.

Let us prove the following technical result.

Lemma 1.10 Let (un) be a (PS) sequence for the functional J at a level c and let

φ
(n)
1 := φun

1 as in (1.32). Then, ∥φ(n)
1 ∥ < ∞ for any n ∈ N and there is a unique

wn ∈ ∂J(un), which will be denoted by J ′(un), such that:

i) For some φ
(n)
2 ∈ ∂Ψ2(un) one has

J ′(un)(v) = ⟨φ(n)
2 , v⟩+ ⟨φ(n)

1 , v⟩+ ⟨Φ′(un), v⟩, ∀v ∈ H1
rad(R

N).

ii) J ′(un)un = on(1)∥un∥ with

J ′(un)(un) ≤ Ψ◦
2(un, un) +

∫

RN

F ′
1(un)un + ⟨Φ′(un), un⟩, ∀n ∈ N.

Proof. Let (un) be a (PS) for the functional J . Then

Ψ2(v)−Ψ2(un)+

∫

RN

(F1(v)−F1(un)) ≥ ⟨−Φ′(un), v−un⟩+⟨wn, v−un⟩, v ∈ H1
rad(R

N),

(1.51)
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with wn ∈ (H1
rad(R

N))′, and wn → 0. Set ϕ ∈ C∞
0, rad(R

N), and take v := un + tϕ, with

t > 0. By Lemma A.4 it follows that

Ψ◦
2(un, ϕ) +

∫

RN

F ′
1(un)ϕ ≥ ⟨−Φ′(un), ϕ⟩+ ⟨wn, ϕ⟩ ∀ϕ ∈ C∞

0, rad(R
N), (1.52)

as t→ 0+. Since

⟨φ(n)
1 , ϕ⟩ =

∫

RN

F ′
1(un)ϕ ϕ ∈ C∞

0, rad(R
N),

arguing as in the proof of Lemma 1.9, one has

sup
φ∈C∞

0, rad(R
N ), ∥φ∥≤1

⟨φ(n)
1 ϕ⟩ <∞. (1.53)

Therefore, the functional φn
1 can be extended to the whole H1

rad(R
N). By using (1.52),

again as in Lemma 1.9, we get

−Φ′(un)− φ
(n)
1 + wn ∈ ∂Ψ2(un). (1.54)

Consequently, by setting J ′(un) := wn, one has

J ′(un) = φ
(n)
2 + φ

(n)
1 + Φ′(un), (1.55)

for some φ
(n)
2 ∈ ∂Ψ2(un). Hence part i) has been proved. In order to show part ii), let

us observe that

J ′(un)(un) = ⟨wn, un⟩ = on(1)∥un∥,

as J ′(un) → 0. Hence, by choosing v := un + tun in (1.51), we have

J ′(un)(un) ≤
1

t
[Ψ2(un + tun)−Ψ2(un)] +

∫

RN

1

t
[F1(un + tun)− F1(un)] + ⟨Φ′(un), un⟩.

(1.56)

Since F1 is convex, the map

t 7−→ F1(un + tun)− F1(un)

t
, t > 0

is monotone and
F1(un + tun)− F1(un)

t
→ F ′

1(un)un,

as t→ 0+. Now, Lemma 1.7 and (1.53) yields F ′
1(un)un ∈ L1(RN) and

∫

RN

F1(un + tun)− F1(un)

t
→
∫

RN

F ′
1(un)un,
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by using the classical Lebesgue’s Dominated Convergence Theorem. In conclusion, as

t→ 0 in (1.56), by Lemma A.4, it follows that

J ′(un)(un) ≤ Ψ◦
2(un, un) +

∫

RN

F ′
1(un)un + ⟨Φ′(un), un⟩.

This completes the proof.

A consequence of Lemma 1.10 is the following result that will be useful in order

to prove that any (PS) sequence for the functional J is bounded; see Lemma 1.12.

Lemma 1.11 Let (un) be a (PS) sequence for the functional J at level c. Then
∫

RN

|un|2 ≤M + on(1)∥un∥, n ≥ n0 (1.57)

for some M > 0 and n0 ∈ N.

Proof. Since J(un) → c, there is n0 ∈ N such that

J(un) ≤ c+ 1, n ≥ n0. (1.58)

By setting J̃ = Ĩ|H1
rad(R

N ), i.e.

J̃(u) =
1

2
∥u∥2 +

∫

RN

F1(u)−
∫

RN

F2(u) u ∈ H1
rad(R

N),

we can write J = J̃ +Ψ2|H1
rad(R

N ). By Lemmas 1.7 and 1.10 Part - ii), one has

J ′(un)(un) ≤ J̃ ′(un)(un) + Ψ◦
2(un, un)

as well as

J(un)−
1

2
J ′(un)(un) ≥

1

2

∫

RN

|un|2 +
(

Ψ2(un)−
1

2
Ψ◦

2(un, un)

)

. (1.59)

Now, gathering J ′(un)un = on(1)∥un∥ with (1.58) and (1.59), we get

c+ 1 + on(1)∥un∥ ≥ 1

2

∫

RN

|un|2 +
(

Ψ2(un)−
1

2
Ψ◦

2(un, un)

)

, ∀n ≥ n0.

In order to finish the proof, it is enough to show that there is M > 0 (independent of

n) such that
(

Ψ2(un)−
1

2
Ψ◦

2(un, un)

)

≥ −M, ∀n ∈ N. (1.60)

Bearing in mind the above computations, we employ Lemma 1.8 to obtain

Ψ2(un)−
1

2
Ψ◦

2(un, un) =

∫

RN

G(x, un)−
1

2

∫

RN

η(n)un,
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where η(n) ∈ L2(RN) and η(n)(x) ∈ [g(x, un(x)), g(x, un(x))] a.e. in R
N . Finally, the

condition (f3) yields

∫

RN

G(x, un)−
1

2

∫

RN

η(n)un ≥ −C
∫

RN

h(x) ≥ −M,

for some M =Mh > 0. This completes the proof.

Let us recall now the so-called logarithmic Sobolev inequality proved in [10, p. 144], as

well as [62, Sentence (2.4)] and the references therein. More precisely, for each b > 0,

one has
∫

RN

u2 log u2 ≤ b2

π
∥∇u∥22 + (log ∥u∥22 −N(1 + log b))∥u∥22 (1.61)

for every u ∈ H1(RN).

An immediate consequence of (1.61) is given below.

Corollary 1.1 There is C > 0 such that

∫

RN

u2 log u2 ≤ 1

2
∥∇u∥22 + C(log ∥u∥22) + 1)∥u∥22,

for every u ∈ H1(RN).

The following results involve the notion of (PS) condition and will be proved as

consequences of Corollary 1.1.

Lemma 1.12 If (un) is a (PS) sequence for the functional J at level c ∈ R, then (un)

is bounded.

Proof. By Lemma 1.11 and Corollary 1.1, for each r ∈ (0, 1) there is C1 > 0 such that

1

2

∫

RN

u2n log u
2
n ≤ 1

4
∥u∥2 + C1(1 + ∥un∥1+r).

Since J(un) → c, there is n0 ∈ N such that

c+ 1 ≥ J(un) ≥
1

2
∥un∥2 −

1

2

∫

RN

u2n log u
2
n, n ≥ n0.

Then

c+ 1 ≥ 1

4
∥un∥2 − C1(1 + ∥un∥1+r),

for every n ≥ n0. The proof is complete.

Lemma 1.13 The functional J satisfies the (PS) condition.
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Proof. Let (un) be a (PS) sequence for J at level c. By Lemma 1.12, the sequence

(un) is bounded. Consequently, the embedding (1.50) yields

i) un ⇀ u0 in H1
rad(R

N);

ii) un → u0 ∈ Lp(RN) with p ∈ (2, 2∗);

iii) ∥un∥ →M and un(x) → u0(x) a.e. in R
N .

As (un) is a (PS) sequence, we have that

⟨un, v − un⟩+Ψ(v)−Ψ(un) ≥ −εn∥v − un∥+
∫

RN

F ′
2(un)(v − un), ∀v ∈ H1

rad(R
N),

(1.62)

with εn → 0+. If we take v := u0 in (1.62), the boundedness of (un) and the subcritical

growth of F2 immediately give

⟨un, u0 − un⟩+Ψ(u0)−Ψ(un) ≥ on(1). (1.63)

Hence, the lower semicontinuity property of Ψ combined with inequality (1.63) leads

to

∥u0∥2 ≥ lim ∥un∥2 =M2, (1.64)

on account of i), ii) and iii). In conclusion un → u0 in H1
rad(R

N).

In order to prove that J satisfies the hypotheses of the Fountain Theorem 1.4,

a suitable splitting of the Sobolev space H1
rad(R

N) is necessary. To this aim, we first

observe that by [67, Proposition 1.a.9 and Section 1.b, p. 8] and [62, Section 5] the

next property holds.

Lemma 1.14 Let A be a dense subset of H1(RN), then H1(RN) has an orthonormal

hilbertian basis that is constituted by elements of A.

Thanks to Lemma 1.14 the following result holds.

Corollary 1.2 The space H1(RN) has an orthonormal hilbertian basis constituted by

elements of C∞
0 (RN). Consequently, there exists a sequence (vj) ⊂ C∞

0 (RN) such that

H1(RN) =
⊕

j∈N

Xj with Xj = span {vj}, (1.65)

and ⟨vi, vj⟩ = 0, for every i ̸= j.

Moreover, the same conclusion holds if we replace H1(RN) and C∞
0 (RN) by

H1
rad(R

N) and C∞
0, rad(R

N) respectively.
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From now on, let us consider

H1
rad(R

N) =
⊕

j∈N

Xj (1.66)

and set

Yk :=
k
⊕

j=1

Xj as well as Zk :=
∞
⊕

j=k

Xj, (1.67)

for every k ∈ N.

Since the action of Z2 on H
1
rad(R

N) satisfies (G0) with Xj
∼= R =: V we only need

to prove that the functional J satisfies the Parts - i) and ii) of Theorem 1.4.

To this aim, let us briefly recall the next fact.

Lemma 1.15 Let βk defined by

βk := sup
u∈Zk,∥u∥=1

∥u∥p. (1.68)

Then βk → 0.

See [83, Lemma 3.8] as well as the proof of Proposition 3.7 in [62] for additional

comments and remarks.

Taking into account Lemma 1.15, we are able to prove that the functional J

satisfies the Fountain geometry.

Lemma 1.16 The functional J verifies

i) sup
u∈Yk,∥u∥=ρk

J(u) ≤ 0;

ii) inf
u∈Zk,∥u∥=rk

J(u) → ∞.

Proof. We first recall that

J(u) =
1

2
∥u∥2 +

∫

RN

G(x, u) +

∫

RN

F1(u)−
∫

RN

F2(u), ∀ u ∈ H1
rad(R

N).

Part - i) By (f1) one has

|G(x, s)| ≤ B|s|2, ∀x ∈ R
N and ∀s ∈ R,

for some constant B > 0. Now, by definition, since Yk ⊂ C∞
0, rad(R

N) it follows that

Yk ⊂ D(J) for each k ∈ N. Hence

J(u) ≤ 1

2
∥u∥2 +B∥u∥22 −

1

2

∫

RN

u2 log u2, (1.69)
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for every u ∈ Yk.

If we take v :=
u

∥u∥ for u ̸= 0, it follows that

J(u) ≤ 1

2
∥u∥2

(

1 + B −
∫

RN

v2 log(v2∥u∥2)
)

=
1

2
∥u∥2

(

1 + B −
∫

RN

v2 log v2 − log(∥u∥2)
∫

RN

v2
)

,

(1.70)

for every u ∈ Yk. As dimYk < ∞, all the norms on Yk are equivalent. Hence, if

∥u∥ = ρk ≈ ∞, one gets

1 + B −
∫

RN

v2 log v2 − log(∥u∥2)
∫

RN

v2 ≤ 0.

Then

sup
u∈Yk,∥u∥=ρk

J(u) ≤ 0,

so that i) is verified.

Part - ii) By (A2) for every s ∈ R,

|F2(s)| ≤ C|s|p, p ∈ (2, 2∗),

for some C > 0. Hence

J(u) ≥ 1

2
∥u∥2 −

∫

RN

F2(u) ≥
1

2
∥u∥2 − βp

kC∥u∥p,

for every u ∈ Zk. Moreover, by Lemma 1.15 one has βk → 0. Then, by choosing

rk := (pCβp
k)

1
2−p ,

it follows that rk → ∞ and

J(u) ≥
(

1

2
− 1

p

)

r2k.

In conclusion

inf
u∈Zk, ∥u∥=rk

J(u) > 0,

for k sufficiently large.

Conclusion of the proof of Theorem 1.9. First of all, we emphasize that, for every

k ∈ N, the minimax levels

ck := inf
γ∈Θk

sup
u∈Bk

J(γ(u))
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are finite. Indeed, if we take γ̃ := Id|Bk
, by using the classical inequality

|t2 log t2| ≤ C(|t|+ |t|p), p > 2 and ∀t ∈ R,

we infer that there exists C1 > 0 such that

J(γ̃(u)) ≤ |J(u)| ≤ 1

2
∥u∥2 +B∥u∥22 + C1(∥u∥1 + ∥u∥pp), (1.71)

for every u ∈ Bk ⊂ Yk. The equivalence of the norms in Yk in addition to (1.71)

guarantee that

ck = inf
γ∈Θk

sup
u∈Bk

J(γ(u)) ≤ sup
u∈Bk

J(γ̃(u)) <∞.

Finally, we would like to point out that if u ∈ H1(RN) is a critical point of I, then

there exists ρ ∈ L2(RN) with

ρ(x) ∈ [g(x, u(x)), g(x, u(x))] a.e. in R
N ,

such that
∫

RN

(∇u · ∇ϕ+ uϕ) +

∫

RN

ρ(x)ϕ =

∫

RN

u2 log uϕ, ∀ϕ ∈ C∞
0 (RN).

Therefore, by elliptic regularity theory, there is r ≥ 1 such that u ∈ H1(RN)∩W 2,r
loc (R

N)

and

−∆u+ u+ ρ(x) = u log u2 a.e. in R
N .

In conclusion

∆u− u+ u log u2 ∈ [g(x, u(x)), g(x, u(x))] a.e. in R
N .

1.2.2 A concave perturbation of logarithmic equation

In this subsection we study the existence of solutions for the following class of

problems

(P2)







−∆u+ u = u log u2 + λh(x)|u|q−2u, in R
N ,

u ∈ H1(RN),

where λ is a positive parameter, q ∈ (1, 2) and h : R
N → R is chosen as in the

condition (f1) above. By using the same notations of the previous subsection, the

energy functional associated to (P2) is given by

Iλ(u) :=
1

2
∥u∥2 +

∫

RN

F1(u)−
∫

RN

F2(u)−
λ

q

∫

RN

h(x)|u|q, ∀ u ∈ H1(RN). (1.72)
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Note that Iλ is a Szulkin-type functional, with Iλ(u) = Φ(u) + Ψ(u), where

Φ(u) :=
1

2
∥u∥2 −

∫

RN

F2(u)−
λ

q

∫

RN

h|u|q

and

Ψ(u) :=

∫

RN

F1(u).

In the sequel, we say that a function u ∈ H1(RN) is a solution of (P2) if

u2 log u2 ∈ L1(RN) and

∫

RN

(∇u∇ϕ+ uϕ) =

∫

RN

(u log u2ϕ+ λh(x)|u|q−2uϕ), ∀ϕ ∈ C∞
0 (RN). (1.73)

By Part - ii) of Lemma 1.6 it is possible to see that any critical point of the

Szulkin-type functional Iλ is a solution of (P2); see also [10, Lemma 2.1]. Moreover, if

Jλ := Iλ|H1
rad(R

N ), again by Theorem 1.8, the critical points of Jλ are also critical points

of the functional Iλ.

The main result this subsection reads as follows.

Theorem 1.10 There exists λ0 > 0 such that, for λ ∈ (0, λ0), the functional Jλ has

infinitely many critical points (un) with Jλ(un) → 0 as n→ ∞. Hence, for λ ∈ (0, λ0),

the problem (P2) has infinitely many nontrivial solutions.

In order to prove Theorem 1.10, let us introduce a modified functional J̃λ which

will be crucial in our approach. However, let us start by proving the following technical

result.

Proposition 1.3 If λ ≈ 0+, then there is a function

g(t) :=
1

2
t2 − Btp − Cλtq, t > 0,

with p ∈ (2, 2∗) and B,C > 0, that attains a nonnegative maximum and

Jλ(u) ≥ g(∥u∥), ∀u ∈ H1(RN).

Proof. Since F1 ≥ 0, we have that, for every u ∈ H1(RN)

Jλ(u) ≥
1

2
∥u∥2 −

∫

RN

F2(u)−
λ

q

∫

RN

h(x)|u|q

≥ 1

2
∥u∥2 − C1∥u∥p − λC2∥u∥q

=: g(∥u∥),
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for some C1 = C(p) > 0 and C2 = C(h, q) > 0. Here, we have chosen g(t) :=

1
2
t2 −C1t

p − λC2t
q. Moreover, if λ ≈ 0+ it is clearly seen that the function g attains a

nonnegative maximum.

Now, fix R0, R1 and R2 positive constants satisfying:

(g1) g|[0,R0] ≤ 0 and g(R0) = 0;

(g2) g|[R0,R2] ≥ 0, g|[R2,∞) ≤ 0 and g(R2) = 0, where R0 < R1 < R2 and R1 is the

point in which g attains its maximum value; note that g(t) → −∞, as t→ ∞.

Moreover, take η ∈ C∞([0,∞)) such that the following condition holds:

(η1) η is a nonnegative and non-increasing function such that

η|[0,R0] ≡ 1 and η|[R2,∞) ≡ 0.

Set φ(u) := η(∥u∥). Arguing as in [74], let us consider the energy functional

J̃λ(u) :=
1

2
∥u∥2 +

∫

RN

F1(u)− φ(u)

∫

RN

F2(u)−
λ

q

∫

RN

h(x)|u|q, (1.74)

for every u ∈ H1
rad(R

N).

Lemma 1.17 Let J̃λ be the functional given in (1.74). Then, the following facts hold:

i) J̃λ ∈ (H0) with J̃λ = Φ̃λ + Ψ̃ and Ψ̃ = Ψ|H1
rad(R

N );

ii) If J̃λ(u) < 0 then ∥u∥ < R0 and J̃λ(u) = Jλ(u);

iii) Let (un) be a (PS)c sequence for J̃λ with c < 0 then (un) is a (PS)c sequence for

Jλ;

iv) If u ∈ BR0(0) is a critical point of J̃λ then u is a critical point of Jλ.

Proof. Part - i) immediately follows by (η1) and the definition of J̃λ. Moreover, if

λ ≈ 0+ then

g̃(t) :=
1

2
t2 − λC2t

q ≥ 0

for every t ≥ R2 and J̃λ(∥u∥) ≥ g̃(∥u∥). Hence, Part - ii) holds. The rest of the proof

is an easy consequence of i) and ii).

By using the above notations and results we are able to prove Theorem 1.10.
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Proof of Theorem 1.10. - By Lemma 1.17 it is sufficient to show that J̃λ has a

sequence of critical points (un) with un ∈ BR0(0) for every n ∈ N. This will be done by

showing that J̃λ satisfies the hypotheses of Theorem 1.5. To this aim, we first notice

that J̃λ is even and J̃λ(0) = 0. Therefore, we can apply Theorem 1.5 with G = Z2. In

this way, γG = γ is the genus of a symmetric closed set; see Remark 1.2. Moreover,

J̃λ is a coercive functional and consequently any (PS)c sequence for J̃λ is bounded. If

(un) is a (PS)c sequence for J̃λ, with c < 0, then Lemma 1.17 ensures that (un) is

also a (PS)c sequence for Jλ. Finally, arguing as in Lemma 1.13, it easily seen that J̃λ

satisfies the (PS)c condition for c < 0. It remains to show that J̃λ satisfies i) and ii) of

Theorem 1.5.

Part - i) Since J̃λ satisfies

J̃λ(u) ≥ g(∥u∥) ∀u ∈ H1(RN)

and J̃λ(u) ≥ 0 for every ∥u∥ ≥ R2, we conclude that J̃λ is bounded from below.

Consequently

cj := inf
A∈Γj

sup
u∈A

J̃λ(u) > −∞.

Part - ii) For each k ∈ N, let us consider Yk and Zk as in (1.67). In this case

dimYk <∞ and Yk ⊂ C∞
0 (RN). Bearing in mind that

F1(u) <∞, ∀u ∈ Yk,

we infer that Yk ⊂ D(J̃λ) for any k ∈ N. As J̃λ ≡ Jλ in BR0 , one has

J̃λ(u) =
1

2
∥u∥2 − 1

2

∫

RN

u2 log u2 − λ

q

∫

RN

h(x)|u|q.

Moreover, if δ ≈ 0+

|t|2| log t2| ≤ C1(|t|2−δ + |t|2+δ), ∀t ∈ R,

for some C1 = C1(δ) > 0. Consequently

J̃λ(u) ≤
1

2
∥u∥2 + C

∫

RN

(|u|2−δ + |u|2+δ)− λ

q

∫

RN

h(x)|u|q,

for every u ∈ BR0 . Now, if u ∈ Yk then u ∈ Lr(RN) for every r ∈ [1, 2). Since all the

norms on Yk are equivalent, one has

J̃λ(u) ≤
1

2
∥u∥2 + C2(∥u∥2−δ + ∥u∥2+δ)− C∥u∥q, (1.75)
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for some constant C2 > 0. Now, for each k ∈ N, fix A := Sρ(0)∩Yk with ρ ≈ 0+. Then

A is a closed and symmetric set with γ(A) = k. By choosing δ such that 2− δ > q, on

account of (1.75), it follows that

sup
u∈A

J̃λ(u) < 0.

The proof is now complete.

1.2.3 A problem involving the 1-Laplacian operator with

subcritical growth

In this subsection we study the existence of infinitely many solutions for the

following problem

(P3)







−∆1u = |u|p−2u, in Ω,

u|∂Ω = 0, on ∂Ω,

where Ω ⊂ R
N (with N ≥ 2) is a bounded domain with smooth boundary ∂Ω and

p ∈ (1, 1∗). In order to simplify the notation, we set q := p/(p− 1).

Several classes of problem involving the 1-Laplacian operator in a similar

configuration of (P3) have been studied in last years. Here we refer [17, 57, 58].

From now on we denote by M(Ω,RN) (briefly M(Ω)) the space of the vector

Radon measures on Ω and by BV (Ω) the space of the functions u : Ω → R of bounded

variation, i.e.,

BV (Ω) := {u ∈ L1(Ω) : Du ∈ M(Ω)},

where Du denotes the distributional derivative of u ∈ L1(Ω). It is well known that

u ∈ BV (Ω) if, and only if, u ∈ L1(Ω) and
∫

Ω

|Du| = sup

{
∫

Ω

udivϕ : ϕ ∈ C1
0(Ω,R

N), and ∥ϕ∥∞ ≤ 1)

}

< +∞.

Moreover BV (Ω) is a Banach space endowed by the norm

∥u∥BV (Ω) :=

∫

Ω

|Du|+
∫

∂Ω

|u|dHN−1,

where, as usual, HN−1 denotes the (N − 1)-dimensional Hausdorff measure. We also

recall that the continuous embedding

BV (Ω) →֒ Lr(Ω), r ∈ [1, 1∗] (1.76)
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is compact provided that r ∈ [1, 1∗); see [20, 22, 63] for advanced theoretical results on

the subject.

According to Kawohl and Schuricht in [63], as well as Degiovanni in [48], the

notion of solution for problem (P3) can be formulated as follows.

Definition 1.6 We say that a function u ∈ BV (Ω) is a solution of (P3) if there exists

z ∈ L∞(Ω,RN) with ∥z∥∞ ≤ 1, such that










−
∫

Ω

udivz =

∫

Ω

|Du|+
∫

∂Ω

|u|dHN−1, divz ∈ Lq(Ω),

− divz = |u|p−2u a.e. in Ω,

where q := p/(p− 1).

Remark 1.5 Notice that the vector field z in the preceding definition gives the

formal sense for div

( ∇u
|∇u|

)

. More precisely, the map z replaces Du/|Du| when

the expression Du/|Du| is undetermined.

Now, let us consider the energy functional I : Lp(Ω) → (−∞,+∞] given by

I(u) = Φ(u) + Ψ(u), (1.77)

where

Φ(u) := −1

p

∫

Ω

|u|p

and

Ψ(u) :=











∫

Ω

|Du|+
∫

∂Ω

|u|dHN−1 u ∈ BV (Ω)

∞ u ∈ Lp(Ω) \BV (Ω)

,

for every u ∈ Lp(Ω).

It is easily seen that Φ ∈ C1(Lp(Ω),R) as well as Ψ is a convex and lower

semicontinuous functional, so that I is a Szulkin-type functional. Consequently

D(I) = BV (Ω) and, for each fixed u ∈ BV (Ω), the subdifferential ∂Ψ(u) can be

identified as a subset of Lq(Ω).

The next results will be crucial in the sequel.

Lemma 1.18 If u ∈ BV (Ω) and ∂Ψ(u) ̸= ∅ then u ∈ L∞(Ω).

Proof. We first notice that L1∗(Ω) →֒ Lp(Ω), so that Lq(Ω) →֒ LN(Ω). Consequently,

if w ∈ ∂Ψ(u) ⊂ Lq(Ω), one has that w ∈ LN(Ω). The conclusion is achieved by arguing

as in [48, Proposition 3.3].
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Lemma 1.19 If u ∈ BV (Ω) then, for each w ∈ ∂Ψ(u), there exists z ∈ L∞(Ω,RN)

with ∥z∥∞ ≤ 1, such that










w = −divz ∈ Lq(Ω)

−
∫

Ω

udivz =

∫

Ω

|Du|+
∫

∂Ω

|u|dHN−1.

Proof. Let us define

Ψ̃(u) :=











∫

Ω

|Du|+
∫

∂Ω

|u|dHN−1 u ∈ BV (Ω)

∞ u ∈ L1∗(Ω) \BV (Ω)

,

and take w ∈ ∂Ψ(u) ⊂ Lq(Ω). Then w ∈ LN(Ω) and

Ψ̃(v)− Ψ̃(u) = Ψ(v)−Ψ(u) ≥
∫

Ω

w(v − u), ∀v ∈ BV (Ω) = D(Ψ̃),

so that w ∈ ∂Ψ̃(u). The conclusion follows by [63, Proposition 4.23].

The next result connects critical points of the energy functional I with solutions

of (P3).

Lemma 1.20 If u ∈ BV (Ω) is a critical point of the functional I then u ∈ L∞(Ω).

Moreover, the function u is a solution of (P3) in the sense of Definition 1.6.

Proof. Let u ∈ BV (Ω) be a critical point of I. Then

−Φ′(u) ∈ ∂Ψ(u) ⊂ Lq(Ω).

Thereby, there exists w ∈ ∂Ψ(u) such that

−Φ′(u) = w in Lq(Ω).

Consequently, Lemma 1.19 and the definition of Φ yield the existence of z ∈ L∞(Ω,RN),

with ∥z∥∞ ≤ 1, such that −divz = w in Lq(Ω) and











−
∫

Ω

udivz =

∫

Ω

|Du|+
∫

∂Ω

|u|dHN−1, divz ∈ Lq(Ω)

− divz = |u|p−2u a.e. in Ω.

Moreover, Lemma 1.18 ensures that u ∈ L∞(Ω). The proof is now complete.

By Lemmas 1.19 and 1.20 we are able to prove the main result of this subsection.

Theorem 1.11 The functional I has infinitely many critical points (un) with

I(un) → ∞ as n→ ∞. Hence, problem (P3) has infinitely many nontrivial solutions.
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Proof. Hereafter, we are going to prove that I verifies the assumptions of Theorem

1.6 with Y = {0}. We first prove that I satisfies the compactness (PS) condition. To

this end, let (un) be a (PS) sequence for I. So, let c ∈ R such that

I(un) → c,

and

Ψ(v)−Ψ(un) ≥
∫

Ω

|un|p−2un(v − un) +

∫

Ω

wn(v − un), ∀v ∈ BV (Ω),

where wn ∈ Lq(Ω) and wn → 0 in Lq(Ω). The last inequality gives

|un|p−2un + wn ∈ ∂Ψ(un), ∀n ∈ N.

Hence, Lemma 1.19 yields

Ψ(un) =

∫

Ω

|Dun|+
∫

∂Ω

|un|dHN−1 =

∫

Ω

|un|p +
∫

Ω

wnun, ∀n ∈ N.

If we set

A(un) := Ψ(un)−
∫

Ω

|un|p +
∫

Ω

wnun = 0,

the classical Hölder’s inequality leads to

c+ 1 ≥ I(un)−
1

r
A(un)

≥
(

1− 1

r

)

Ψ(un) +

(

1

r
− 1

p

)

∥un∥pLp(Ω) −
1

r
∥wn∥Lq(Ω)∥un∥Lp(Ω)

≥ C1∥un∥BV (Ω) + C2

(

∥un∥pLp(Ω) − ∥un∥Lp(Ω)

)

,

for some r < p and n large enough. Since the real function h(t) := tp−t, for every t ≥ 0,

is bounded from below, the last inequality clearly implies that supn∈N ∥un∥BV (Ω) <∞.

Therefore the (PS) condition is verified, since the embedding BV (Ω) →֒ Lp(Ω) is

compact. Now, if u ∈ BV (Ω) is a critical point of I then

|u|p−2u ∈ ∂Ψ(u).

Consequently, by Lemma 1.19, it follows that
∫

Ω

|u|p =
∫

Ω

|Du|+
∫

∂Ω

|u|dHN−1.

Thereby, by setting

B(u) =

∫

Ω

|Du|+
∫

∂Ω

|u|dHN−1 −
∫

Ω

|u|p,
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one has

I(u) = I(u)− 1

p
B(u) =

(

1− 1

p

)

∥u∥BV (Ω) ≥ 0,

for every u ∈ Lp(Ω). Hence, the set I−c has no critical points for any c > 0.

Finally, let us prove that the functional I satisfies conditions i) and ii) of Theorem 1.6.

Part - i) Without loss of generality we can suppose u ∈ BV (Ω), otherwise

I(u) = ∞. Now, if u ∈ BV (Ω), the embedding BV (Ω) →֒ Lp(Ω) immediately yields

I(u) ≥ C∥u∥Lp(Ω) −
1

p
∥u∥pLp(Ω),

for some constant C > 0. Since p > 1, if ∥u∥Lp(Ω) = r ≈ 0+, we also have

I(u) ≥ ρ,

for some ρ > 0. Thus, condition i) of Theorem 1.6 is proved with Z = Lp(Ω).

Part - ii) For each k ∈ N, let us consider Xk be a k-dimensional subspace of

C∞
0 (Ω). Since all the norms are equivalent on Xk, it easily seen that

I(u) ≤ Ck∥u∥Lp(Ω) −
1

p
∥u∥pLp(Ω) ∀u ∈ Xk,

for a convenient Ck > 0. Thus

I(u) → −∞, as ∥u∥Lp(Ω) → ∞ and u ∈ Xk.

The proof is now complete.



CHAPTER 2

Existence of multiple solutions for a Schrödinger logarithmic

equation via Lusternik-Schnirelman category theory

In the current chapter we are interested in the following problem

(Pε)







−ε2∆u+ V (x)u = u log u2, in R
N ,

u ∈ H1(RN),

where V : RN −→ R is a continuous function satisfying

(V1): −1 < inf
x∈RN

V (x);

(V2): There exists an open and bounded set Λ ⊂ R
N satisfying

V0 := inf
x∈Λ

V (x) < min
x∈∂Λ

V (x).

We emphisize that, without lost of generality, we will assume throughout this

chapter that 0 ∈ Λ and V0 = V (0).

Before presenting the main results concerning with the study of problem (Pε), we

would like to mention some interesting aspects related to the equation

(E1) − ε2∆u+ V (x)u = u log u2, x ∈ R
N ,

under different assumptions on V and ε.
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It is natural to apply variatonal methods to look by solutions of (E1). The usual

variational framework lead us to consider the energy functional

Eε(u) =
1

2

∫

RN

(|∇u|2 + (V (εx))|u|2)dx−
∫

RN

F (u)dx, (2.1)

with

F (t) =

∫ t

0

s log s2 ds =
1

2
t2 log t2 − t2

2
.

However, it is well known that the functional Eε is not well defined, e.g., on H1(RN)

because there exist functions u ∈ H1(RN) such that

∫

RN

u2 log u2 = −∞, which gives

the possibility that Eε(u) = ∞.

In the literature there is a broad list of works that provide different techniques to

carry out this difficulty referring to the study of equation (E1) via variational methods.

Here we refer the works [10–13, 44, 62, 79]. The main point in those works consists

in to use alternatives critical point theories for nonsmooth functionals. Although

the frameworks introduced in those works allows us to get solutions for (E1), some

questions involving critical points for C1-functionals cannot be explored in those works

(we would like to cite, e.g., the existence of multiple solutions for (E1) via the Lusternik-

Schnirelmann’s category; see [83, Chapater 5]).

Motivated by the above fact, we intent to prove the existence of multiple

solution for (Pε) by relating the multiplicity of solution with the category of Lusternik-

Schnirelmann of the set

M := {x ∈ Λ; V (x) = V0}

in the set

Mδ := {x ∈ R
N ; d(x,M) ≤ δ}, δ ≈ 0+.

We would like to mention that this type of information is a novelty for logarithmic

Schrödinger equations. In our search, we have not found any article that relates the

multiplicity of solution for equations of (E1)-type with the Lusternik-Schnirelmann’s

category.

The main result to be proved in this chapter is the following.

Theorem 2.1 If the conditions (V1)− (V2) hold and δ > 0 is small enough, then there

is ε3 > 0, such that, for ε ∈ (0, ε3), the following items are valid:

i) (Pε) has at least
catMδ

(M)

2
positive solutions , if catMδ

(M) is an even number;
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ii) (Pε) has at least
catMδ

(M)+1

2
positive solutions, if catMδ

(M) is an odd number.

In order to prove the preceding theorem, we will introduce a new reflexive and

separable Banach space in which the functional Eε in (2.1) is a C1-functional. Such

technique enable us to adapt some results valid in the classical Critical Point Theory.

We also mention that, in view of conditions (V1) − (V2) above, the results presented

throughout this chapter improve the results of Alves and de Morais Filho [10] and

Alves and Ji [11] on the existence and concentration of positive solutions for (Pε).

Note that, by the change of variable u(x) = v(x/ε), the problem (Pε) is equivalent

to the problem

(Sε)







−∆v + V (εx)v = v log v2, in R
N ,

v ∈ H1(RN),

We will explore this fact in our computations.

We would like to mention that the results developed in the present chapter have

been published in the paper [7].

2.1 Variational framework on the logarithmic

equation

In this section we present the main tools requested to our variational approach.

We start by recalling the decomposition of the nonlinearity f(t) = t log t2 explored in

Chapter 1, which is an important step in order to overcome the lack of smoothness

of energy functional associated with (Sε). Finally, taking into account the conditions

(V1) − (V2) mentioned above and motivated by [11, 51], we introduce an auxiliary

problem that is a crucial tool in our study to obtain the existence of solution for (Sε).

2.1.1 Basics on the logarithmic equation

Let us start by presenting a convenient decomposition of the function

F (t) =

∫ t

0

s log s2 ds =
1

2
t2 log t2 − t2

2
,

which has been explored in Section 1.2, as well as in a lot of works (see, e.g.,

[10–12,62,79]).
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Fixed δ > 0 sufficiently small, we set

F1(s) :=



























0, s = 0

−1

2
s2 log s2, 0 < |s| < δ

−1

2
s2(log δ2 + 3) + 2δ|s| − δ2

2
, |s| ≥ δ

(2.2)

and

F2(s) :=











0, |s| < δ

1

2
s2 log

(

s2

δ2

)

+ 2δ|s| − 3

2
s2 − δ2

2
, |s| ≥ δ

for every s ∈ R. Hence,

F2(s)− F1(s) =
1

2
s2 log s2, ∀s ∈ R. (2.3)

By direct computations, one can verifies that F1 and F2 verify the properties (P1)−(P4)

below:

(P1) F1 is an even function with F ′
1(s)s ≥ 0 and F1 ≥ 0. Moreover F1 ∈ C1(R,R) and

it is also convex if δ ≈ 0+.

(P2) F2 ∈ C1(R,R)∩C2((δ,+∞),R) and for each p ∈ (2, 2∗), there exists C = Cp > 0

such that

|F ′
2(s)| ≤ C|s|p−1, ∀s ∈ R.

(P3) s 7→ F ′
2(s)

s
is a nondecreasing function for s > 0 and a strictly increasing function

for s > δ.

(P4) lim
s→∞

F ′
2(s)

s
= ∞.

We recall below the definition of a N-function, which plays a special role in the

sequel.

Definition 2.1 A continuous function Φ : R → [0,+∞) is a N-function if:

(i) Φ is convex.

(ii) Φ(t) = 0 ⇔ t = 0.

(iii) lim
t→0

Φ(t)

t
= 0 and lim

t→∞

Φ(t)

t
= +∞.
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(iv) Φ is an even function.

Associated with each N-function we have the conjugate function Φ̃ that is given

by the Legendre’s transformation of Φ, more precisely,

Φ̃(t) = max
t≥0

{st− Φ(t)} for s ≥ 0.

See the Appendix C for further details involving N-functions.

An important step in our study is the fact that the function F1 is a N-function.

More precisely, the following result is valid.

Proposition 2.1 The function F1 is a N-function. Furthermore, it holds that F1,

F̃1 ∈ (∆2). Equivalently, there exists l ∈ (1, 2) such that

1 < l ≤ F ′
1(s)s

F1(s)
≤ 2, ∀s > 0. (2.4)

Proof. See the Proposition C.2 in Appendix C.

The last proposition allows us to conclude that the space

LF1(RN) =

{

u ∈ L1
loc(R

N) ;

∫

RN

F1 (|u|) dx < +∞
}

is a reflexive and separable Banach space. In a more precise description, LF1(RN) is

the Orlicz space associated with the N-function F1. On LF1(RN), we will consider the

usual Luxemburg norm

||u||F1 = inf

{

λ > 0 ;

∫

Ω

F1

( |u|
λ

)

≤ 1

}

.

The study of problem (Sε) lead us to work in the space

Hε :=

{

u ∈ H1(RN);

∫

RN

V (εx)|u|2dx <∞
}

.

In the sequel, in order to avoid the points u ∈ H1(RN) that verify F1(u) /∈ L1(RN), we

will restrict the functional Eε given in (2.1) to the space Xε := Hε ∩ LF1(RN), which

will be denoted by Iε, that is, Iε ≡ Eε|Xε
. Hereafter, let us consider on Xε the norm

|| · ||ε := || · ||Hε
+ || · ||F1 ,

where

||u||Hε
:=

(
∫

RN

(|∇u|2 + (V (εx) + 1)|u|2)
)1/2

, u ∈ Hε.
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In view of the Proposition 2.1, (Xε, || · ||ε) is a reflexive and separable Banach

space. In this way, from the conditions on F1 and V , one has Iε ∈ C1(Xε,R) with

I ′ε(u)v =

∫

RN

(∇u∇v + (V (εx) + 1)uv +

∫

RN

F ′
1(u)v −

∫

RN

F ′
2(u)v, ∀v ∈ Xε.

Note also that, as a natural consequence of the definition of || · ||ε, the embedding

Xε →֒ H1(RN) and Xε →֒ LF1(RN) are continuous.

2.1.2 The auxiliary problem

From now on, we fix b0 ≈ 0+ and a0 > δ in a such way that (inf
RN

V +1) > 2b0 and

F ′
2(a0)

a0
= b0. Using these notations, we set

F
′

2(s) :=







F ′
2(s), 0 ≤ s ≤ a0;

b0s s ≥ a0.

Now, consider t1, t2 > 0 with a0 ∈ (t1, t2) and h ∈ C1([t1, t2]) verifying

(h1): h(t) ≤ F
′

2(t), t ∈ [t1, t2];

(h2): h(ti) = F
′

2(ti) and h
′(ti) = F

′′

2(ti), i ∈ {1, 2};
(h3):

h(t)
t

is a nondecreasing function.

Remark 2.1 The existence of a such function h is assured by using the results in [5,

Appendix A].

In the building of the function h, it is considered that, besides of the properties

(P2)− (P4) above, the function F2 belongs to C2((δ,+∞),R).

Define

F̃ ′
2(s) :=







F
′

2(s), t /∈ [t1, t2];

h(t), t ∈ [t1, t2].

Denote by χΛ the characteristic function of the set Λ and let g2 : RN × [0,∞) −→ R

given by

g2(x, t) := χΛ(x)F
′
2(t) + (1− χΛ(x))F̃

′
2(t).

On account that F ′
2 is an odd function, we can extend the definition of g2 to R

N × R

by setting g2(x, t) = −g2(x,−t), for each t ≤ 0 and x ∈ R
N .
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Hereafter, we will study the existence of solution for the following auxiliary

problem

(S̃ε)







−∆u+ (V (εx) + 1)u = g2(εx, u)− F ′
1(u), in R

N ,

u ∈ H1(RN) ∩ LF1(RN).

Setting

Λε := {x ∈ R
N ; εx ∈ Λ},

we see that if u is a positive solution of (S̃ε) satisfying

0 < u(x) < t1, ∀x ∈ (RN − Λε), (2.5)

then u is a solution of (Sε). Have this in mind, we will study the existence of positive

solutions for (Sε) by looking for solutions of (S̃ε) that satisfy (2.5).

From the definition of g2, it is possible to prove the following properties:

(A1) :







































i) : g2(x, t) ≤ b0|t|+ C|t|p−1, t ≥ 0, x ∈ R
N ;

ii) : g2(x, t) ≤ F ′
2(t), x ∈ R

N ;

iii) : g2(x, t) ≤ b0t, t ≥ 0, x ∈
(

R
N − Λ

)

;

iv) :
1

2
|t|2 + [F2(t)−

1

2
F ′
2(t)t+

1

2
G′

2(εx, t)t−G2(εx, t)] ≥ 0, ∀t ∈ R, x ∈ R
N .

Associated with (S̃ε) we have the following functional

Jε(u) :=
1

2

∫

RN

(|∇u|2 + (V (εx) + 1)|u|2) +
∫

RN

F1(u)−
∫

RN

G2(εx, u), ∀u ∈ Xε,

where G2(x, t) :=

∫ t

0

g2(x, s) ds. The conditions on g2 ensures that Jε ∈ C1(Xε,R),

and thereby, critical points of Jε are weak solutions of (S̃ε).

2.2 Existence of solution for the auxiliary problem

In this section we will establish the existence of solution for (S̃ε). We start by

showing that Jε satisfies the geometric configuration of the Mountain Pass Theorem

(see [19]).

Lemma 2.1 Given ε > 0, the functional Jε satisfies

i) There exist r, ρ > 0 such that Jε(u) ≥ ρ for any u ∈ Xε, ||u||ε = r.

ii) There exits v ∈ Xε with ||v||ε > r satisfying Jε(v) < 0 = Jε(0).
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Proof. i): From (A1), one has that G2(εx, t) ≤ F2(t), and so,

Jε(u) ≥
1

2
||u||2Hε

+

∫

RN

F1(u)−
∫

RN

F2(u).

Gathering (C.3) with (C.6) (note that m can be chosen equal to 2) and using (P2),

there is r ≈ 0+ such that

Jε(u) ≥
1

2
||u||2Hε

+ ||u||2F1
−D||u||pε ≥ C||u||2ε −D||u||pε,

for some C, D > 0. The last inequality gives the desired condition, because p > 2.

ii): Fix u ∈ Oε := {u ∈ Xε; |supp(|u|) ∩ Λε| > 0}. Note that, for each x ∈ R
N we can

write

F1(t) = χΛε
(x)F1(t) + (1− χΛε

(x))F1(t).

Therefore, from the definition of g2,

Jε(tu) ≤
t2

2
||u||2Hε

− 1

2

∫

RN

χΛε
|tu|2 log |tu|2 + 1

2

∫

[t|u|≤t1]

(1− χΛε
)|tu|2 log |tu|2+

+

∫

[t|u|>t1]

(1− χΛε
)[F1(tu)− F̃2(tu)].

Recalling that Xε →֒ L2(RN), there is C > 0 independent of t such that

∫

[t|u|>t1]

|tu|2 ≤ C,

and so,

|[t|u| > t1]| ≤
C

t21
t2 =: C1t

2.

By the definition of F1,

F1(t) ≤ At2 +B, t ≥ 0,

with A, B > 0. Then,

∫

[t|u|>t1]

(1− χΛε
)F1(t|u|) ≤ Dt2,

for a convenient D > 0. Since F̃2 ≥ 0, we find

Jε(tu) ≤ t2[
1

2
||u||2Hε

−
∫

RN

χΛε
|u|2 log |u|2 − log t

(
∫

RN

χΛε
|u|2 +

∫

[t|u|≤t1]

(χΛε
− 1)|u|2

)

+

∫

[t|u|≤t1]

(1− χΛε
)|u|2 log |u|2 +D ].
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By the Lebesgue Dominated Convergence Theorem, we have

∫

[t|u|≤t1]

(χΛε
− 1)|u|2 −→ 0, as t→ +∞.

Note also that, since u ∈ Oε and u ∈ LF1(R), it holds

∫

RN

χΛε
|u|2 > 0

and
1

2

∫

[t|u|≤t1]

(1− χΛε
)|u|2 log |u|2 ≤

∫

RN

F2(u) dx <∞.

Combining all of the above information we derive that

Jε(tu) → −∞, as t→ ∞,

and the proof is finished by taking v = tu with t large enough.

For the next lemma, we have adapted the reasoning employed in [12, Lemma 3.1].

However, taking into account that in our case the functional Jε is on Xε, which has a

different topology of H1(RN), it was necessary to develop new estimates that are not

found in [12].

In the sequel, we will need of the following logarithmic inequality (see [50, pg

153])

∫

RN

|u|2 log
( |u|
||u||2

)

≤ C||u||2 log
( ||u||2∗

||u||2

)

, ∀u ∈ L2(RN) ∩ L2∗(RN),

for some positive constant C. As an immediate consequence,

∫

Λε

|u|2 log
( |u|
||u||L2(Λε)

)

≤ C||u||L2(Λε) log

( ||u||L2∗ (Λε)

||u||L2(Λε)

)

, ∀u ∈ L2(Λε) ∩ L2∗(Λε).

(2.6)

Lemma 2.2 Let (vn) be a (PS)c sequence for Jε. Then, the sequence (vn) is bounded

in Xε.

Proof. Let (vn) be a (PS)c sequence for Jε. Then,

Jε(vn)−
1

2
J ′
ε(vn)vn ≤ (c+ 1) + on(1)||vn||ε, (2.7)

for large n.
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On the other hand, observe that

Jε(vn)−
1

2
J ′
ε(vn)vn =

∫

RN

(F1(vn)−
1

2
F ′
1(vn)vn) +

∫

RN

(
1

2
G′

2(εx, vn)vn −G2(εx, vn)) =

=
1

2

∫

RN

|vn|2 +
∫

RN

[F2(vn)−
1

2
F ′
2(vn)vn +

1

2
G′

2(εx, vn)vn −G2(εx, vn)],

(2.8)

because

∫

RN

[(F1(vn)−
1

2
F ′
1(vn)vn) + (

1

2
F ′
2(vn)vn − F2(vn))] =

1

2

∫

RN

|vn|2.

Consequently,

Jε(vn)−
1

2
J ′
ε(vn)vn ≥ 1

2

∫

Λε

|vn|2 +
∫

{Λc
ε∩[|vn|>t1]}

(
1

2
|vn|2 + F2(vn)−

1

2
F ′
2(vn)vn) +

+

∫

{Λc
ε∩[|vn|>t1]}

(
1

2
G′

2(εx, vn)vn −G2(εx, vn)).

From (A1)− iv),

Jε(vn)−
1

2
J ′
ε(vn)vn ≥ 1

2

∫

Λε

|vn|2

and so, from (2.7),

(c+ 1) + on(1)||vn||ε ≥
1

2

∫

Λε

|vn|2. (2.9)

Recall that there are constants A, B > 0 such that

F1(t) ≤ A|t|2 +B, ∀t ∈ R.

This together with (2.9) leads to

∫

Λε

F1(vn) ≤ Cε + ||vn||ε, (2.10)

for some Cε > 0. Thanks to (2.6),

1

2

∫

Λε

|vn|2 log |vn|2 ≤ C||vn||L2(Λε) log

( ||vn||L2∗ (Λε)

||vn||L2(Λε)

)

+ ||vn||2L2(Λε)
log(||vn||L2(Λε)) =

= (||vn||2L2(Λε)
− C||vn||L2(Λε)) log(||vn||L2(Λε)) + C||vn||L2(Λε) log

(

||vn||L2∗ (Λε)

)

.

that combines with the embedding Xε →֒ Hε to give

∫

Λε

|vn|2 log |vn|2 ≤ (2||vn||2L2(Λε)
−2C||vn||L2(Λε)) log(||vn||L2(Λε))+C̃||vn||ε

∣

∣

∣
log(C̃||vn||ε)

∣

∣

∣
,
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for some convenient C̃ > 0 independent of ε. In order to get the last inequality, we

have explored the fact that the function t 7→ log t, t > 0, is increasing. Now, using the

fact that given r ∈ (0, 1) there is A > 0 satisfying

|t log t| ≤ A(1 + |t|1+r), t ≥ 0,

we obtain, by gathering this inequality with (2.9), the inequalities below

||vn||L2(Λε) log(||vn||L2(Λε)) ≤ A(1 + ||vn||1+r
L2(Λε)

)

and

||vn||2L2(Λε)
log(||vn||2L2(Λε)

) ≤ A(1 + (||vn||2L2(Λε)
)1+r) ≤ Ã(1 + ||vn||L2(Λε))

1+r).

From these information, modifying A if necessary, we arrive at

∫

Λε

|vn|2 log |vn|2 ≤ A(1 + ||vn||1+r
ε ). (2.11)

As (vn) is a (PS)c sequence for Jε,

(c+ 1) ≥ Jε(vn) =
1

2
||vn||2Hε

+

∫

Λc
ε

F1(vn)−
∫

Λε

|vn|2 log |vn|2 −
∫

Λc
ε

G2(εx, vn)

for large n. From (A1),

G2(εx, t) ≤
b0
2
t2, ∀x ∈ Λc

ε,

then

(c+ 1) + A(1 + ||vn||1+r
ε ) ≥ C||vn||2Hε

+

∫

Λc
ε

F1(vn),

for some C > 0, and so, by (2.10),

Dε + ||vn||ε + A(1 + ||vn||1+r
ε ) ≥ C̃

(

||vn||2Hε
+

∫

RN

F1(vn)

)

, (2.12)

where Dε := (Cε + c + 1) > 0 and C̃ := min{C, 1}. From now on in this proof, we fix

r ∈ (0, 1) so that 1 + r < l, where l is the number obtained in (C.6).

Suppose that ||vn||F1 ≤ 1. Employing (C.3) in (2.12), and modifying C̃ if

necessary, one gets

Dε + ||vn||ε + A(1 + ||vn||1+r
ε ) ≥ C̃(||vn||Hε

+ ||vn||F1)
2 = C̃||vn||2ε. (2.13)
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Otherwise, if ||vn||F1 > 1, we have two possibilities: ||vn||Hε
> 1 or ||vn||Hε

≤ 1. When

||vn||Hε
> 1, in the same way of the preceding case we obtain

Dε + ||vn||ε + A(1 + ||vn||1+r
ε ) ≥ Cl||vn||lε. (2.14)

If it occurs ||vn||F1 > 1 and ||vn||Hε
≤ 1, using the definition || · ||ε in (2.12), we find

D̃ε + ||vn||F1 + Cr||vn||1+r
F1

≥ C̃||vn||lF1
. (2.15)

The proof is completed by combining (2.13)-(2.15).

Next, we present an important property of the (PS) sequences whose the proof

can be found in [11] and that is a crucial tool in order to prove that Jε satisfies the

(PS) condition in the space Xε.

Lemma 2.3 Let (vn) be a (PS)c sequence for Jε. Then, given τ > 0 there is R > 0

such that

lim sup
n→∞

∫

Bc
R(0)

(|∇vn|2 + (V (εx) + 1)|vn|2) < τ.

Proof. See [11, Lemma 3.4] or [56, Lemma 3.3] for a similar result.

Corollary 2.1 The functional Jε satisfies the (PS) condition.

Proof. Let (vn) be a (PS)c sequence for Jε. Without loss of generality we may assume

that vn ⇀ v in Xε for some v ∈ Xε. Moreover, arguing as in [5, Section 2], we also

have J ′
ε(v) = 0, and so, J ′

ε(v)v = 0, i.e.,

||v||2Hε
+

∫

RN

F ′
1(v)v =

∫

RN

G′
2(εx, v)v. (2.16)

As the embedding Xε →֒ Lq(BR(0)) is compact for each R > 0 and p ∈ [2, 2∗),

the growth condition on G′
2 (see (A1) ) together with the Lemma 2.3 yields

∫

RN

G′
2(εx, vn)vn −→

∫

RN

G′
2(εx, v)v.

Taking into account this information and using the fact that (vn) is (PS) sequence, we

find

||vn||2Hε
+

∫

RN

F ′
1(vn)vn =

∫

RN

G′
2(εx, vn)vn + on(1).

The last equality combined with (2.16) implies that

||vn||2Hε
+

∫

RN

F ′
1(vn)vn = ||v||2Hε

+

∫

RN

F ′
1(v)v + on(1),
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from where it follows that

||vn||2Hε
→ ||v||2Hε

(2.17)

and
∫

RN

F ′
1(vn)vn −→

∫

RN

F ′
1(v)v, (2.18)

and so, vn → v in Hε. It remains to show that vn → v in LF1(RN). Note that, since

F ′
1(t)t ≥ 0, the convergence in (2.18) means that

F ′
1(vn)vn → F ′

1(v)v in L1(RN).

This fact associated with (C.6) and Lebesgue’s Dominated Convergence Theorem shows

that, going to a subsequence if necessary,

F1(vn) → F1(v) in L1(RN).

Finally, using that F1 ∈ (∆2), we deduce that

∫

RN

F1(|vn − v|) −→ 0,

showing that vn → v in LF1(RN), which finishes the proof.

The main result of this section reads as follows

Theorem 2.2 For each ε > 0 the functional Jε has a nontrivial critical point uε.

Consequently, (S̃ε) has a nontrivial solution.

Proof. By Lemma 2.1 and Corollary 2.1, we see that the functional Jε satisfies the

assumptions of the Mountain Pass Theorem found in [19, Theorem 2.1], then the

mountain pass level given by

cε := inf
γ∈Γε

max
t∈[0,1]

Jε(γ(t))

with

Γε := {γ ∈ C([0, 1], Xε); γ(0) = 0 and Jε(γ(1)) < 0},

is a critical point of Jε.

From now on, otherwise mentioned, the notation uε designates the solution of

(S̃ε) given in the preceding theorem.
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2.3 The Nehari manifold and the existence of

positive solution for (Pε)

In this section we will prove that the Nehari set associated with Jε, namely

Nε := {u ∈ Xε − {0}; J ′
ε(u)u = 0},

is a C1-manifold and that critical points of Jε|Nε
are critical points of Jε in the usual

sense. Furthermore, by studying the behavior of levels cε as ε → 0+, we will prove

some properties related with Nε that allows us to prove that the solutions uε of (S̃ε)

are solutions of (Sε) for ε ≈ 0+.

2.3.1 Main properties of Nε

First of all, set

Ψε(u) := Jε(u)−
1

2

∫

RN

|u|2 −
[
∫

RN

[F2(u)−
1

2
F ′
2(u)u+

1

2
G′

2(εx, u)u−G2(εx, u)]

]

.

Accordingly to (2.8),

Nε = Ψ−1
ε ({0}).

We start our study with the following result

Proposition 2.2 There exists β > 0, such that

||u||ε ≥ ||u||Hε
≥ β, ∀u ∈ Nε,

for all ε > 0.

Proof. For each u ∈ Nε,

∫

RN

(|∇u|2 + (V (εx) + 1)|u|2) +
∫

RN

F ′
1(u)u =

∫

RN

G′
2(ε, u)u.

Therefore, from (A1),

∫

RN

(|∇u|2 + (α0 + 1− b0)|u|2) ≤ C

∫

RN

|u|p, (2.19)

where α0 = inf
RN
V . The number b0 has been chosen so that α0 + 1 − b0 > 0, then the

expression

||u||20 :=
∫

RN

(|∇u|2 + (α0 + 1− b0)|u|2)
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defines a norm on H1(RN). Setting H = (H1(RN), || · ||0), one sees that the embedding

H →֒ Lp(RN) is continuous. From (2.19),

M ≤ ||u||p−2
0 ,

for a convenient M > 0 that is independent of ε. The last inequality yields

0 < β :=M
1

(p−2) ≤ ||u||0 ≤ ||u||Hε
≤ ||u||ε.

For the sake of completeness, we would like to mention that repeating the ideas

found in [11, Lemma 3.6 and Remark 3.1], it can be proved the following lemma

Lemma 2.4 For each u ∈ Oε = {u ∈ Xε; |supp(|u|) ∩ Λε| > 0}, there is a unique

tu > 0 such that tuu ∈ Nε. Reciprocally, if u ∈ Nε, then u ∈ Oε.

In the next proposition we prove that Nε is a C
1-manifold for each ε > 0.

Proposition 2.3 Nε is a C1-manifold for each ε > 0.

Proof. In the sequel we will prove that for all u ∈ Nε we must have Ψ′
ε(u)u ̸= 0.

Assume by contradiction that there is u ∈ Nε with Ψ′
ε(u)u = 0, i.e.,

0 = −
∫

RN

|u|2 −
[
∫

RN

(
1

2
F ′
2(u)u−

1

2
F ′′
2 (u)u

2) +

∫

RN

(
1

2
G′′

2(εx, u)u
2 − 1

2
G′

2(εx, u)u)

]

.

Using that G′
2 ≡ F ′

2 in Λε, we find

0 = −
∫

Λε

|u|2−
[
∫

Λc
ε

(|u|2 + 1

2
F ′
2(u)u−

1

2
F ′′
2 (u)u

2) +

∫

Λc
ε

(
1

2
G′′

2(εx, u)u
2 − 1

2
G′

2(εx, u)u)

]

.

(2.20)

By the definition of F2,

F ′
2(s) :=











0, s ∈ [0, δ];

s log

(

s2

δ2

)

+ 2δ − 2s, |s| ≥ δ,

and so,

t2 +
1

2
F ′
2(t)t−

1

2
F ′′
2 (t)t

2 = δt > 0, t ≥ δ,

leading to

|u|2 + 1

2
F ′
2(u)u−

1

2
F ′′
2 (u)u

2 ≥ 0, a.e x ∈ Λc
ε.
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Using this information and the fact that G′
2(εx, t) ≡ F ′

2(t), for x ∈ Λc
ε and t ≤ t1 in

(2.20), we arrive at

∫

Λε

|u|2 ≤ −
∫

Λc
ε∩[t1<|u|<t2]

(
1

2
G′′

2(εx, u)u
2−1

2
G′

2(εx, u)u)−
∫

Λc
ε∩[|u|≥t2]

(
1

2
G′′

2(εx, u)u
2−1

2
G′

2(εx, u)u).

As G′
2(εx, u) = h(u) for x ∈ Λc

ε and u(x) ∈ (t1, t2), (h3) gives

G′′
2(εx, u)u

2 − 1

2
G′

2(εx, u)u =
1

2
(h′(u)u− h(u))u ≥ 0, a.e x ∈ Λc

ε ∩ [t1 < |u| < t2].

Note also that, by the definition of F
′

2,

G′′
2(εx, u)u

2 − 1

2
G′

2(εx, u)u = 0, a.e x ∈ Λc
ε ∩ [|u| ≥ t2].

Gathering the above information, we derive that u = 0, a.e. x ∈ Λε. Hence, inasmuch

as u ∈ Nε, we get

||u||2Hε
+

∫

RN

F ′
1(u)u =

∫

Λc
ε

G′
2(εx, u)u ≤ b0

∫

RN

|u|2

that leads to u ≡ 0, which is absurd because u ∈ Nε, showing the desired result.

In view of the last proposition, we can establish the notion of critical point for

Jε|Nε
. Recall that u ∈ Nε is a critical point of Jε constrained to Nε when

||J ′
ε(u)||∗ := min

λ∈R
||J ′

ε(u)− λΨ′
ε(u)|| = 0. (See [83, Proposition 5.2])

By a (PS)c sequence associated with Jε|Nε
, we mean a sequence (un) in Nε such that

J(un) → c and ||J ′(un)||∗ → 0.

From now on, we say that Jε|Nε
satisfies the (PS) condition when each (PS)c sequence

for Jε|Nε
has a convergent subsequence, for any c ∈ R.

The next proposition relates critical points of Jε|Nε
with critical points of Jε in

Xε.

Proposition 2.4 Let u ∈ Nε be a critical point of Jε constrained to Nε. Then u is a

critical point of Jε on Xε.

Proof. If u ∈ Nε is a critical point of Jε|Nε
, then

J ′
ε(u) = λΨ′ε(u),
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for some λ ∈ R. Consequently,

0 = J ′
ε(u)u = λΨ′

ε(u)u.

Since u ∈ Nε, the arguments explored in the proof of Proposition 2.3 yields Ψ′
ε(u)u ̸= 0.

Hence, the above equality guarantees that λ = 0 and the proof is over.

We finish this subsection by proving that Jε|Nε
satisfies the (PS) condition.

Proposition 2.5 Jε|Nε
satisfies the (PS) condition.

Proof. Let (un) be an arbitrary (PS)c sequence for Jε|Nε
. Then,

Jε(un) → c and J ′
ε(un) = λnΨ

′
ε(un) + on(1),

for some sequence of real numbers (λn). Taking into account that Jε(un) → c and

J ′
ε(un)un = 0, repeating the same reasoning of the proof of Lemma 2.2, one has that

(un) is a bounded sequence. By Corollary 2.1, it suffices to show that (un) is a (PS)c

sequence for Jε. Aiming this fact, we will prove that

λn → 0. (2.21)

Note that (un) satisfies

0 = J ′
ε(un)un = λnΨ

′
ε(un)un + on(1).

Arguing as in the proof of Proposition 2.3, it is possible to show that if |Ψ′
ε(un)un| =

on(1), then
∫

Λε

|un|2 ≤ on(1) ⇒
∫

Λε

|un|2 = on(1).

This combined with the boundedness of (un) leads to
∫

Λε

|un|p = on(1).

Consequently,

||un||2Hε
+

∫

RN

F ′
1(un)un =

∫

Λε

F ′
2(un)un +

∫

Λc
ε

G′
2(εx, un) ≤ on(1) + b0

∫

RN

|un|2,

which combines with (C.6) to give
∫

RN

(|∇un|2 + (V (εx) + 1)|un|2) +
∫

RN

F1(un) ≤ on(1).

The above inequality implies that un → 0 in Xε, which contradicts Proposition 2.3.

Thereby, (2.21) is true and the proof is completed.
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2.3.2 Existence of positive solution for (Pε)

For the goals of this section, we will consider the following autonomous problem

(P0)







−∆u+ V0u = u log u2, in R
N ,

u ∈ H1(RN) ∩ LF1(RN).

The energy functional related to the (P0) is given by

J0(u) :=
1

2

∫

RN

(|∇u|2 + (V0 + 1)|u|2) +
∫

RN

F1(u)−
∫

RN

F2(u).

It is well known (see [10, 11, 79]) that (P0) has a positive ground state solution u0,

which satisfies

c0 := inf
u∈N0

J0(u) = J0(u0),

where N0 is the Nehari set associated with J0, i.e.,

N0 :=

{

u ∈ H1(RN) ∩ LF1(RN); J0(u) =
1

2

∫

RN

|u|2
}

.

Hereafter, we fix

X =
(

H1(RN) ∩ LF1(RN), (|| · ||H1(RN ) + || · ||LF1 (RN ))
)

, (2.22)

where || · ||H1(RN ) denotes the usual norm in H1(RN).

The level c0 can be characterized by

c0 = inf
u∈N0

J0(u) = inf
u∈(X−{0})

max
t≥0

J0(tu).

In the next lemma we prove that the solution uε obtained in Theorem 2.2 is a

ground state solution of (S̃ε), and we study the behavior of levels cε, as ε → 0+. By

a ground state solution we mean a solution of least energy of (S̃ε), that is, a solution

verifying

inf
u∈Nε

Jε(u) = Jε(uε).

Lemma 2.5 The following properties hold:

i) There is γ0 > 0 such that cε ≥ γ0 for all ε > 0.

ii) cε = inf
u∈Nε

Jε(u) for all ε > 0.

iii) lim sup
ε→0

cε ≤ c0.
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Proof. i) Note that

Jε(u) ≥
1

2

∫

RN

(|∇u|2 + (α0 + 1)|u|2) +
∫

RN

F1(u)−
∫

RN

F2(u),

with α0 = inf
RN

V . Arguing as Lemma 2.1-i), we find r0 ≈ 0+ and γ0 > 0 independent of

ε such that

Jε(u) ≥ ρ0, ∀u ∈ Xε, ||u||ε = r0.

By the definition of cε, we derive cε ≥ γ0.

ii) By Lemma 2.4 we know that u ∈ Oε for each u ∈ Nε. In this way, using the same

ideas of Theorem 2.1-ii), there is t0 such that Jε(t0u) < 0. Setting η : [0, 1] −→ Xε

given by η(t) := t(t0u), it follows that η ∈ Γε, and so,

cε ≤ max
t∈[0,1]

Jε(η(t)) ≤ max
s≥0

Jε(su) ≤ Jε(u).

The above inequality shows that

cε ≤ inf
u∈Nε

Jε(u).

The reverse inequality follows by observing that

inf
u∈Nε

Jε(u) ≤ Jε(uε) = cε.

iii): Let u0 ∈ N0 be a positive ground state solution of (P0), i.e,

J0(u0) = c0 and J ′
0(u0) = 0.

For each R > 0, set ϕR(x) := ϕ( 1
R
x), where ϕ ∈ C∞

0 (RN) is such that ϕ(x) = 1,

for x ∈ B1(0), and ϕ(x) = 0, for x ∈ Bc
2(0). Then, putting uR := ϕRu0, it is easy to

check that

uR → u0 in H1(RN) as R → ∞.

Since 0 ≤ uR ≤ u0, the Lebesgue Dominated Convergence Theorem ensures that
∫

RN

F1(uR) −→
∫

RN

F1(u0), as R → ∞.

By the last two limits we can infer that uR → u0 in X.

Given R > 0, from the definition of uR, one can see that uR ∈ Oε for each ε > 0,

since u0 > 0 and 0 ∈ Λε. So, thanks to preceding item, we find tε > 0 in such way that

cε ≤ max
t≥0

Jε(tuR) = Jε(tεuR).
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Our next step is to show that, for some ε0 > 0, the family (tε)0<ε<ε0 is bounded. In

fact, as tεuR ∈ Nε,

∫

RN

(|∇uR|2+(V (εx)+1)|uR|2) =
1

tε

∫

Λε

F ′
2(tεuR)uR+

1

tε

∫

Λc
ε

F̃ ′
2(tεuR)uR−

1

tε

∫

RN

F ′
1(tεuR)uR.

Considering that uR ≡ 0 in Bc
2R(0) and V (εx) → V (0) = V0, we have

∫

RN

(|∇uR|2 + (V (εx) + 1)|uR|2) −→
∫

RN

(|∇uR|2 + (V0 + 1)|uR|2),

as ε→ 0, for each R > 0. On the other hand, if tε → ∞ as ε→ 0, the following claim

holds:

Claim 2.1
(

1

tε

∫

Λε

F ′
2(tεuR)uR +

1

tε

∫

Λc
ε

F̃ ′
2(tεuR)uR − 1

tε

∫

RN

F ′
1(tεuR)uR

)

−→ ∞.

First of all, the limit χΛε
(x) → 1 as ε→ 0+ together with (A1) guarantees that

1

tε

∫

Λc
ε

F̃ ′
2(tεuR)uR = oε(1).

Thereby, in order to get the Claim 2.1, it suffices to show that

Aε :=

(

1

tε

∫

Λε

F ′
2(tεuR)uR − 1

tε

∫

RN

F ′
1(tεuR)uR

)

−→ ∞.

Observe that, by (2.3),

Aε =

∫

RN

|uR|2 +
∫

RN

|uR|2 log(tε|uR|)2 −
1

tε

∫

Λc
ε

F ′
2(tεuR)uR =

= log(tε)
2

∫

RN

|uR|2 −
1

tε

∫

Λc
ε

F ′
2(tεuR)uR + CR,

with CR =

∫

RN

(|uR|2 + |uR|2 log |uR|2). From the definition of F2,

1

tε
F ′
2(tεuR)uR = u2R log(tε|uR|)2 − log δ2u2R +

2δ

tε
uR − 2u2R,

and so,
1

tε

∫

Λc
ε

F ′
2(tεuR)uR ≤

∫

Λc
ε

u2R log(tε|uR|)2 +
2δ

tε

∫

RN

uR +BR,

with BR := − log δ2
∫

RN

u2R. From this and using that tε → ∞ as ε→ 0, one finds

Aε ≥ log(tε)
2

∫

RN

|uR|2 −
∫

Λc
ε

u2R log(tε|uR|)2 + oε(1) +DR,
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where DR = CR − BR. Therefore,

Aε ≥ log(tε)
2

∫

Λε

|uR|2 −
∫

Λc
ε

u2R log |uR|2 + oε(1) +DR,

from where it follows that

Aε → ∞ as ε→ 0+,

showing the Claim 2.1.

As a byproduct of the Claim 2.1, we get that (tε)0<ε<ε0 is bounded, for some

ε0 > 0. Now, take tR > 0 such that J0(tRuR) = maxt≥0 J0(tuR). Note that

Jε(tεuR)− J0(tεuR) =
t2ε
2

∫

RN

(V (εx)− V0)|uR|2 +
∫

Λc
ε

(F2(tεuR)− F̃2(tεuR)).

Using that uR has compact support, uR → u0 in X as R → ∞ and the Lebesgue’s

Dominated Convergence Theorem, we arrive at

Jε(tεuR)− J0(tεuR) = oε(1),

lim sup
ε→0

cε ≤ lim sup
ε→0

Jε(tεuR) ≤ J0(tRuR). (2.23)

The choose of tR gives tR → 1 (see [11, Lemma 3.7]), and then,

J0(tRuR) → J0(u0) = c0, as R → ∞.

The result is a direct consequence of the limit above and (2.23).

Now, we are ready to prove the existence of positive ground state solution for

(S̃ε).

Proposition 2.6 Given ε > 0 the problem (S̃ε) has a positive ground state solution.

Proof. Let uε be the solution of (S̃ε) given in Theorem 2.2. For v ∈ Xε, set

v+ := max{v, 0} and v− := max{0,−v}. Therefore, either u+ε = 0 or u−ε = 0, otherwise

we would have u+ε , u
−
ε ∈ Nε and Jε(uε) = Jε(u

+
ε ) + Jε(u

−
ε ) ≥ 2cε, which contradicts

Jε(uε) = cε. Thereby, since g is odd, we may assume that uε is a nonnegative solution

of (S̃ε). By an analogous reasoning as used in the proof of [11, Theorem 3.1] and [44,

Section 3.1], using a suitable version of maximum principle ( [82, Theorem 1]), we

deduce that uε is positive in whole R
N .

Our next result improves [11, Lemma 3.9] and it is an essential step in order to

get a solution for (Sε).



2.3. The Nehari manifold and the existence of positive solution for (Pε) 79

Lemma 2.6 Let (un) be a nonnegative sequence with un ∈ Xεn, Jεn(un) = cεn,

J ′
εn(un) = 0 and εn → 0. Then, there exits a sequence (yn) ⊂ R

N such that

wn(x) := un(x+ yn) has a convergent subsequence, supn∈N ||wn||∞ <∞ and

wn(x) → 0 as |x| → ∞ uniformly in n ∈ N. (2.24)

Furthermore, for some y0 ∈ Λ, the following limit holds lim
n→+∞

(εnyn) = y0.

Proof. To begin with, note that (un) is a bounded sequence in the space X given in

(2.22). Indeed, by the assumptions and employing Lemma 2.5-iii), (un) must satisfy

Jεn(un) ≤M1 and J ′
εn(un)un = 0, ∀n ∈ N,

for some positive M1. By following closely the arguments of Lemma 2.2, we find,

instead of (2.9),

M1 ≥
1

2

∫

Λεn

|un|2.

Hence, by the same ideas explored in the proof of Lemma 2.2, there are a M1,M2 > 0

such that
∫

Λεn

|un|2 log |un|2 ≤M2(1 + ||vn||1+r
Hεn

)

and,

M1 +M2(1 + ||vn||1+r
Hεn

) ≥ C||un||2Hεn
+

∫

Λc
ε

F1(un) ≥ C||un||2Hεn
, ∀n ∈ N,

for some C > 0 and 0 < r < 1, which shows the boundedness of (||un||Hεn
) in R. Now,

the conditions on V ensure that (un) is bounded in H1(RN). Since

∫

RN

F1(un) = Jεn(un)−
1

2
||un||2Hεn

+

∫

RN

G2(εnx, un),

we infer that

sup
n∈N

∫

RN

F1(un) <∞,

proving the boundedness of (un) in X. For some r, λ > 0 and a sequence (yn) it holds

lim sup
n→+∞

∫

Br(yn)

|un|2 ≥ λ > 0. (2.25)

Otherwise, using a concentration-compactness principle due to Lions ( [83, Lemma

1.21]), we would have

un → 0 in Lp(RN) ∀p ∈ (2, 2∗),
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then
∫

RN

G′
2(εnx, un)un = on(1) and

∫

RN

G2(εnx, un) = on(1).

From the assumptions in the statement we get J ′
εn(un)un = 0. This associated with

the last equality give

on(1) = ||un||2Hεn
+

∫

RN

F ′
1(un)un.

The above limit together with (C.6) ensures that

||un||2Hεn
+

∫

RN

F1(un) → 0,

which permits to conclude that Jεn(un) = cεn → 0, contradicting Lemma 2.5-i).

From now on, set wn := un(·+yn). The boundedness of (un) and (2.25) yield that

(wn) is a bounded sequence in X, and so, we may assume that there is w ∈ X − {0}
such that

wn ⇀ w in X.

Our next step is proving that (εnyn) is a bounded sequence in R
N . This fact is a direct

consequence of the claim below.

Claim 2.2 It holds lim
n→+∞

d(εnyn, Λ) = 0, with d being the usual distance between εnyn

and Λ in R
N .

The proof of the claim follows the same ideas of [11, Claim 3.1], however for the

reader’s convenience we will write its proof. Arguing by contradiction, if the claim is

not true, there exist some subsequence of (εnyn), still denoted by itself, and γ > 0

satisfying

d(εnyn, Λ) ≥ γ, ∀n ∈ N.

Then, for some r > 0,

Br(εnyn) ⊂ Λc, ∀n ∈ N.

Now, for each j ∈ N, we fix vj = ϕjw, with ϕj defined as in Lemma 2.5-iii). So,

we know that vj → w in X. For each j fixed, a simple change of variable leads to
∫

RN

(∇wn∇vj + (V (εnx+ εnyn))wnvj) +

∫

RN

F ′
1(wn)vj =

∫

RN

G′
2(εnx, wn)vj. (2.26)

Writing
∫

RN

G′
2(εnx, wn)vj =

∫

B r
εn

(0)

G′
2(εnx, wn)vj +

∫

Bc
r
εn

(0)

G′
2(εnx, wn)vj
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and using (A1), we find

∫

RN

G′
2(εnx, wn)vj ≤ b0

∫

B r
εn

(0)

wnvj +

∫

Bc
r
εn

(0)

F ′
2(wn)vj,

and so
∫

RN

(∇wn∇vj + Cwnvj) +

∫

RN

F ′
1(wn)vj ≤

∫

Bc
r
εn

(0)

F ′
2(wn)vj, (2.27)

for a convenient C > 0. Since vj has compact support, one can sees that

∫

Bc
r
εn

(0)

F ′
2(wn)vj −→ 0 as n→ ∞.

By using that wn ⇀ w in X, we firstly take the limit of n → ∞ and after the limit of

j → ∞ in the inequality (2.27) to get

∫

RN

(|∇w|2 + C|w|2) +
∫

RN

F ′
1(w)w ≤ 0,

which yields w = 0. This contradiction proves the claim.

The preceding claim ensures that, going to a subsequence if necessary,

εnyn → y0 ∈ Λ for some y0. Actually, we will prove that y0 ∈ Λ. To this aim,

note that for each R > 0 the sequence χn(x) := χΛ(εnx+ εnyn) is a bounded sequence

in Lq(BR(0)), for any q ∈ [2,∞). Since Lq(BR(0)) is a reflexive space for all q ∈ [2,∞),

then there exists a function χR ∈ Lq(BR(0)) such that

χn ⇀ χR in Lq(BR(0)).

The reader is invited to note that, given positive numbers 0 < R1 < R2, the functions

χR1 and χR2 obtained in the same way of χR satisfy

χR1 ≡ χR2 |BR1
(0).

Therefore, there is a measurable function χ ∈ Lq
loc(R

N) satisfying

χn ⇀ χ in Lq(BR(0)), (2.28)

for each R > 0. Note also that 0 ≤ χ ≤ 1.

In the same way of (2.26), for each ϕ ∈ C∞
0 (RN) we have

∫

RN

(∇wn∇ϕ+ (V (εnx+ εnyn) + 1)wnϕ) +

∫

RN

F ′
1(wn)ϕ =

∫

RN

G′
2(εnx+ εnyn, wn)ϕ.
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By Claim 2.2 and (2.28),

∫

RN

(∇w∇ϕ+ (V (y0) + 1)wϕ) +

∫

RN

F ′
1(w)ϕ =

∫

RN

G̃′
2(x, w)ϕ,

where

G̃′
2(z, t) := χ(z)F ′

2(t) + (1− χ(z))F̃ ′
2(t).

It is easy to check that G̃′
2 satisfies

G̃′
2(z, t) ≤ C(|t|+ |t|p−1),

where p ∈ (2, 2∗). Moreover, the map t 7−→ G̃′
2(z,t)

t
, for t > 0, is an nondecreasing

function.

The above arguments guarantee that J̃ ′(w) = 0, where J̃ : X −→ R is the

functional given by

J̃(u) :=
1

2

∫

RN

(|∇u|2 + (V (y0) + 1)|u|2) +
∫

RN

F1(u)−
∫

RN

G̃2(x, u),

and G̃2(x, u) :=

∫ t

0

G̃′
2(x, s) ds. Next, we set

JV (y0) :=
1

2

∫

RN

(|∇u|2 + (V (y0) + 1)|u|2) +
∫

RN

F1(u)−
∫

RN

F2(u) ∀u ∈ X,

M0 :=
{

u ∈ X − {0}; J ′
V (y0)

(u)u = 0
}

and

cV (y0) = inf
u∈M0

JV (y0)(u) = inf
u∈X−{0}

{

max
t≥0

J(tw)

}

.

Define also Σ0 := suppχ and O0 := {u ∈ Xε; |supp(|u|) ∩ Σ0| > 0}. Using the same

ideas explored in the proof of Lemma 2.1, the conditions on G̃2 allows us to conclude

that

J̃(tv) → −∞, as t→ ∞,

for each v ∈ O0. Since w ̸= 0 and J̃ ′(w) = 0, we get w ∈ O0. Therefore, by standard

arguments,

J̃(w) = max
t≥0

J̃(tw) ≥ max
t≥0

J(tw) ≥ cV (y0).
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In the same way of (2.8), we find by a change of variable,

cεn = Jεn(un)−
1

2
J ′
εn(un)un =

=
1

2

∫

RN

(|wn|2 + [F2(wn)−
1

2
F ′
2(wn)wn +

1

2
G′

2(εnx+ εnyn, wn)wn −G2(εnx+ εnyn, wn)]).

From (A1)− iv),

cεn ≥ 1

2

∫

BR(0)

(|wn|2+[F2(wn)−
1

2
F ′
2(wn)wn+

1

2
G′

2(εnx+εnyn, wn)wn−G2(εnx+εnyn, wn)])

for each R > 0. Now, fix p ∈ (2, 2∗). Since wn → w in Lp(BR(0)), the growth conditions

on F ′
2 and F̃ ′

2 assures that, for some q ∈ (p, 2∗), it holds







F ′
2(wn)wn → F ′

2(w)w, in L
q
p (BR(0));

F̃ ′
2(wn)wn → F̃ ′

2(w)w, in L
q
p (BR(0)).

The convergence in (2.28) implies that χn ⇀ χ in Lr(BR(0)), where r is the conjugate

exponent of q/p. Gathering these information,

χnF
′
2(wn) + (1− χn)F̃

′
2(wn) −→ χF ′

2(w) + (1− χ)F̃ ′
2(w) in L1(BR(0)).

Now, employing the fact that

G′
2(εnx+ εnyn, wn) = χn(x)F

′
2(wn) + (1− χn(x))F̃

′
2(wn),

we conclude that

G′
2(εnx+ εnyn, wn) → G̃′

2(x, w) in L1(BR(0)).

Using an analogous reasoning we also derive

G2(εnx+ εnyn, wn) → G̃2(x, w) in L1(BR(0)).

Consequently, by Fatou’s Lemma (recall the inequality in (A1)− iv)) and Lemma 2.5,

c0 ≥
∫

BR(0)

(

1

2
|w|2 + [F2(w)−

1

2
F ′
2(w)w +

1

2
G̃′

2(x, w)w − G̃2(x, w)]

)

, ∀R > 0.

Letting R → ∞, one gets

c0 ≥
∫

RN

(

1

2
|w|2 + [F2(w)−

1

2
F ′
2(w)w +

1

2
G̃′

2(x, w)w − G̃2(x, w)]

)

=

= J̃(w)− 1

2
J̃ ′(w)w = J̃(w) ≥ cV (y0).
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By the definitions of levels c0 and cV (y0), the above inequality ensures that

V (y0) ≤ V (0) = inf
x∈Λ

V (x). Indeed, note that, if λ1 < λ2, then

max
t≥0

Jλ1(tu) < max
t≥0

Jλ2(tu),

so that cλ1 < cλ2 , where Jλ is the energy functional associated with the problem

(Pλ)







−∆u+ λu = u log u2, in R
N ,

u ∈ H1(RN) ∩ LF1(RN).

and

cλ := inf
u∈X\{0}

max
t≥0

Jλ(tu).

Thus, by (V2), we must have V (y0) = V (0) = V0 and y0 ∈ Λ.

In order to finish the proof, it remains to prove that

wn −→ w in X as n→ +∞.

Aiming this goal, we will prove the following result

Claim 2.3 lim
n→+∞

∫

(Λεn−yn)

|wn|2 =
∫

RN

|w|2.

Note first that, since εnyn → y0 ∈ Λ, there exists a number r > 0 such that

Br(εnyn) ⊂ Λ, for all n large enough. Thereby,

B r
εn
(0) ⊂ Λεn − yn,

for all n large enough, and so,

χ(Λεn−yn)(x) −→ 1, a.e. x ∈ R
N . (2.29)

Now, note that, by using G̃′
2 ≤ F ′

2 and that J̃ ′(w)w = 0 we get J ′
V (y0)

(w)w ≤ 0, so that

J ′
0(w)w ≤ 0, because V (y0) = V0. Therefore, for some t0 ∈ (0, 1] it holds t0w ∈ N0.

Then, from (2.29) and Lemma 2.5-iii),

c0 ≤ J0(t0w) =
t20
2

∫

RN

|w|2 ≤ t20
2
lim inf
n→+∞

∫

(Λεn−yn)

|wn|2 ≤
t20
2
lim sup
n→+∞

∫

(Λεn−yn)

|wn|2 ≤

≤ t20
2
lim sup
n→+∞

cεn ≤ c0,

(2.30)
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where we have used that

1

2

∫

(Λεn−yn)

|wn|2 =
1

2

∫

Λεn

|un|2 ≤ Jεn(un)−
1

2
J ′
εn(un)un = cεn .

The above computations prove the claim.

Observe that the sentence in (2.30) also ensures that t0 = 1, and so, w ∈ N0.

Using that J ′
εn(un)un = 0, by a change of variable, we find

∫

RN

(|∇wn|2 + (V (εnx+ εnyn) + 1)|wn|2) +
∫

RN

F ′
1(wn)wn =

∫

(Λεn−yn)

F ′
2(wn)wn +

∫

(Λεn−yn)c
F̃ ′
2(wn)wn.

(2.31)

By applying Claim 2.3 and interpolation,

χ(Λεn−yn)wn −→ w in Lp(RN)

and
∫

(Λεn−yn)

F ′
2(wn)wn =

∫

RN

F ′
2(w)w + on(1).

As w ∈ N0 and

(V (εnx+ εnyn) + 1])|wn|2 − F̃ ′
2(wn)wn) ≥ 0 in (Λεn − yn)

c,

the equality (2.31) yields that
∫

RN

(|∇w|2 + (V (y0) + 1)|w|2) +
∫

RN

F ′
1(w)w ≤

≤ lim inf

∫

RN

(

|∇wn|2 +
∫

(Λεn−yn)

(V (εnx+ εnyn) + 1)|wn|2) +
∫

RN

F ′
1(wn)wn

)

≤

≤
∫

RN

(|∇w|2 + (V0 + 1)|wn|2) +
∫

RN

F ′
1(w)w.

Taking into account V (y0) = V0, we derive that

||wn||2H1(RN ) → ||w||2H1(RN ) and

∫

RN

F ′
1(wn)wn →

∫

RN

F ′
1(w)w.

The above limit together with (C.6) ensure that wn → w inX. Finally the boundedness

of (wn) in L
∞(Ω) and the limit (2.24) follow as in [11, Lemma 3.10]

As a direct consequence of the computations made above, see the sentence (2.30),

we have the following result

Corollary 2.2 The levels cε satisfies lim
ε→0

cε = c0.
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Finally, we are ready to prove that (Pε) has a positive solution for all ε small

enough.

Theorem 2.3 There exists ε0 > 0 such that (Sε) (and so (Pε)) has a positive solution

uε ∈ Xε for all ε ∈ (0, ε0).

Proof. In what follows, we will prove that

uε(x) < t1, ∀x ∈ R
N − Λε, (2.32)

for ε ∈ (0, ε0). Indeed, consider a sequence εn → 0 and (uεn) such that Jεn(uεn) = cεn

and J ′
εn(uεn) = 0. By Lemma 2.6, going to a subsequence if necessary, there exists a

sequence (yn) in R
N satisfying εnyn → y0, with V (y0) = V0. Thus, for some r > 0 it

holds Br(εnyn) ⊂ Λ, and so, B r
εn
(yn) ⊂ Λεn . The last inclusion is equivalent to

R
N − Λεn ⊂ R

N − B r
εn
(yn).

On the other hand, the sequence (yn) can be chosen such that wn(x) = uεn(x + yn)

satisfies (2.24). Therefore, for R > 0 large enough,

wn(x) < t1, ∀x ∈ R
N − BR(0),

which implies

uεn(x) < t1, ∀x ∈ R
N − BR(yn).

Since for n ∈ N large enough r/εn ≥ R, we have

R
N − Λεn ⊂ R

N − B r
εn
(yn) ⊂ R

N − BR(yn),

for all n large enough, showing that

uεn(x) < t1, ∀x ∈ R
N − Λεn .

Since εn → 0 is arbitrary, the proof is over.

Remark 2.2 A natural question related with the problem (Pε) it is about the

concentration of positive solutions. Using (2.24), the same arguments employed in [11,

Section 4] guarantee that the below result holds.

Corollary 2.3 (Concentration phenomena) Let vε(x) = uε(x/ε). Then, vε is a

solution of (Pε) for ε ∈ (0, ε0). Moreover, if zε ∈ R
N is a global maximum point of vε,

we have

lim
ε→0+

V (zε) = V0.
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2.4 Multiplicity of solution for (Pε)

In this section we will show the existence of multiple solution for (Pε) by using

the Lusternik-Schnirelmann category theory. More precisely, setting

M := {x ∈ Λ; V (x) = V0} and Mδ := {x ∈ R
N ; d(x,M) ≤ δ}, (2.33)

where δ > 0 is small enough of such way that Mδ ⊂ Λ, our arguments will prove

that (Sε) has at least catMδ
(M) solutions. To begin with, we start by recalling some

notions related with the Lusternik-Schnirelmann category theory, for further details

see [83, Chapter 5, and references therein].

Definition 2.2 Let Y be a closed subset of a topological space Z. We say that the

(Lusternik-Schnirelmann) category of Y in Z is n, catZ(Y ) = n for short, if n is the

least number of closed and contractible sets in Z which cover Y .

Suppose that W is a Banach space and V is a C1- manifold of the form

V = Ψ−1({0}), where Ψ ∈ C1(W,R) and 0 is a regular value of Ψ. For a functional

I : W −→ R denote

Id := {u ∈ V ; I(u) ≤ d}.

The following result can be found in [83, Chapter 5] and it is our main abstract

tool to get the existence of multiple solution for (Pε).

Theorem 2.4 Let I ∈ C1(W,R) be such that I|V is bounded from below. Suppose that

I satisfies the (PS)c condition for c ∈ [inf I|V , d], then I|V has at least catId(I
d) critical

points in Id.

In the sequel, let us introduce some notations that will be used later on. Hereafter,

we denote by u0 a positive ground state solution of (P0). Furthermore, for each δ > 0,

we fix ϕ ∈ C∞([0,∞) such that 0 ≤ ϕ ≤ 1 and

ϕ(t) =











1, 0 ≤ t ≤ δ

2
;

0, t ≥ δ.

Using the above notation, for each y ∈M we also set

wε,y(x) := ϕ(|εx− y|)u0
(

εx− y

ε

)
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and let tε,y > 0 be such that tε,ywε,y ∈ Nε. Note that |supp(wε,y) ∩ Λε| > 0, then we

know that tε,y verifies Jε(tε,ywε,y) = maxt≥0 Jε(twε,y).

For each ε > 0, we define the map

Φε :M −→ Nε

y 7−→ Φε,y ≡ tε,ywε,y.

Now, fix ρ > 0 such that Mδ ⊂ Bρ(0) and ζ : R
N −→ R

N given by

ζ(x) =











x, |x| ≤ ρ;

ρ
x

|x| , |x| ≥ ρ.

Finally, we set β : Nε −→ R
N given by

β(u) :=

∫

RN

ζ(εx)|u(x)|p

||u||pp
.

Lemma 2.7 The following limit holds

lim
ε→0

Jε(Φε,y) = c0, uniformly in y ∈M.

Proof. Arguing by contradiction, we get sequences (εn) and (yn), with εn → 0 and

(yn) ⊂M , such that

|Jεn(Φεn,yn)− c0| ≥ δ0, (2.34)

for some δ0 > 0. Setting tn = tεn,yn and using that Φεn,yn ∈ Nεn , we find

Jεn(Φεn,yn) =
t2n
2

∫

RN

(|∇ϕ(εnz)u0(z)|2 + (V (εnz + yn) + 1)|ϕ(εnz)u0(z)|2)+

+

∫

RN

F1(tnϕ(εnz)u0(z))−
∫

RN

G2(εnz + yn, tnϕ(εnz)u0(z))

(2.35)

and

t2n

∫

RN

(|∇ϕ(εnz)u0(z)|2 + (V (εnx+ εnyn) + 1)|ϕ(εnz)u0(z)|2) =

=

∫

RN

G′
2(εnz + yn, tnϕ(εnz)u0(z))tnϕ(εnz)u0(z)−

∫

RN

F ′
1(tnϕ(εnz)u0(z))tnϕ(εnz)u0(z).

(2.36)

Note that, if z ∈ B δ
εn

(0), then εnz + yn ∈ Bδ(yn) ⊂ Mδ. By (2.33), we derive that

εnz + yn ∈ Λ. Hence, for z ∈ B δ
εn

(0) one has G′
2 ≡ F ′

2. This information together with
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(2.36) yields
∫

RN

(|∇ϕ(εnz)u0(z)|2 + (V (εnx+ yn) + 1)|ϕ(εnz)u0(z)|2) =

=

∫

RN

|ϕ(εnz)u0(z)|2 log(|tnϕ(εnz)u0(z)|2) =

=

∫

RN

|ϕ(εnz)u0(z)|2 log(|ϕ(εnz)u0(z)|2) + log(|tn|2)
∫

RN

|ϕ(εnz)u0(z)|2.

Our next step is proving that, going to a subsequence, tn → 1. Since yn ∈ M , we can

assume yn → y0 ∈ M . In this way, the above equality ensures that (tn) is a bounded

sequence. Otherwise, going to a subsequence if necessary, we would have tn → ∞
and thus log(|tn|2) → ∞. Gathering this information with the Lebesgue Dominated

Convergence Theorem in the above equality we arrive at a contradiction.

We may assume that tn → t0 ≥ 0. Using the same ideas of preceding paragraph,

one can see that t0 > 0. Finally, by combining the Lebesgue’s Theorem with the last

equality we find

t20

∫

RN

(|∇u0|2 + V0|u0|2) =
∫

RN

|t0u0|2 log(t0|u0|2),

which shows that t0 = 1, because u0 is a ground state solution of (P0). As tn → 1, the

sentence in (2.35) implies that Jεn(Φεn,yn) → J0(u0) = c0, contradicting (2.34). The

proof is now complete.

Let us introduce the following set

Ñε : {u ∈ Nε; Jε(u) ≤ c0 + o1(ε)}.

Note that the last lemma assures that Φε,y ∈ Ñε.

Lemma 2.8 The map β satisfies

lim
ε→0

β(Φε,y) = y, uniformly in y ∈M.

Proof. The idea is the same found in [14, Lemma 4.2]. If the result is false, there are

sequences εn → 0 and (yn) ⊂M such that

|β(Φεn,yn)− yn| ≥ δ1,

for some δ1 > 0. By using the definition of β and setting z = εnx−y
εn

, we find

β(Φεn,yn) = yn +

∫

RN

(ζ(εz + yn)− yn)|ϕ(|εnz|)u0(z)|p
∫

RN

|ϕ(|εnz|)u0(z)|p
.
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Without loss of generality, we may assume that yn → y0 ∈ M ⊂ Bρ(0). Thus, the

definition of ζ together with the Lebesgue Dominated Convergence Theorem implies

that

|β(Φεn,yn)− yn| = on(1),

which is absurd.

In the next lemma we prove a version of result of Cingolani-Lazzo in [43, Claim

4.2]. In that paper the authors have considered a homogenous type nonlinearity while

in our case we are working with a logarithmic nonlinearity.

Lemma 2.9 Let un ∈ Nεn. Suppose that Jεn(un) → c0, where εn → 0. Then, there

exists a sequence (yn) in R
N such that wn(x) := un(x+yn) has a convergent subsequence

in X. Furthermore,

lim
n→+∞

(εnyn) = y0,

for some y0 ∈M .

Proof. As made in the proof of Lemma 2.6, we have that sup
n∈N

||un||εn < ∞, and

so, (un) is a bounded sequence in X. By Lemmas 2.5-ii) and 2.34, we know that

cεn = inf
u∈Nεn

Jεn(u) and Jεn(un) = cεn + on(1). Therefore, by a slight variant of Eke-

land’s Variational Principle, there is vn ∈ Nεn such that

i) Jεn(vn) = cεn + on(1);

ii) ||vn − un||εn ≤ on(1);

iii) ||J ′
εn(vn)||∗ = on(1).

The reasoning employed in the proof of the Proposition 2.5 shows that

||J ′
εn(vn)||X′

εn
→ 0, where X ′

εn designates the topological dual space of Xεn . From

the condition ii) above,

J ′
εn(vn)vn = on(1).

Now, by following the steps in the proof of Lemma 2.6, we get a sequence (yn) ⊂ R
N

such that

lim
n→+∞

(εnyn) = y0,

for some y0 ∈M . Moreover, the sequence w̃n = vn(·+yn) has a convergent subsequence
in X and thus, using ii) above, wn := un(· + yn) has a convergent subsequence in X.

This finishes the proof.
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The below result relates the number of solutions of (S̃ε) with catMδ
(M).

Proposition 2.7 Assume that (V1) − (V2) hold and that δ is small enough. Then,

problem (S̃ε) has at least catMδ
(M) solutions, with ε ∈ (0, ε1), for some ε1 > 0.

Proof. In this proof we will employ the Theorem 2.4 with I = Jε, V = Nε and

d = co + o1(ε). In this case, we have Jd
ε = Ñε. On account of Proposition 2.5, the

functional Jε|Nε
verifies the (PS) condition, and so, the Theorem 2.4 guarantees that

Jε|Nε
has at least catÑε

(Ñε) critical points in Ñε = Jd
ε . Thereby, by Proposition 2.4,

Jε has catÑε
(Ñε) critical points, from where it follows that (P̃ε) has at least catÑε

(Ñε)

solutions.

In order to finish the proof, we will prove

catÑε
(Ñε) ≥ catMδ

(M).

Our argument follows the ideas of [43, Section 6]. It suffices to consider the case

catÑε
(Ñε) < ∞. Let n = catÑε

(Ñε) and take A1, ...An closed and contractible sets in

Ñε satisfying Ñε =
n
⋃

i=1

Ai. In this way, it is possible to find hi ∈ C([0, 1]×Ai, Ñε), with

hi(0, u) = u and hi(1, u) = hi(1, v
i
0), for some fixed vi0 ∈ Ai, i ∈ {1, ..., n}. Note that,

by Lemma 2.7, we have Φε(M) ⊂ Ñε for ε ≈ 0+. Also, the map

β ◦ Φε :M −→Mδ

is well defined for ε ≈ 0+. Set

η : [0, 1]×M −→Mδ

(t, y) 7−→ η(t, y) = tβ(Φε,y) + (1− t)y.

By using the properties related with β, one can see that η is well defined and β ◦ Φε

is homotopic to inclusion map i : M −→ Mδ. Since Φε is a continuous map, the sets

Bi := Φ−1
ε (Ai) are closed subsets of M . In addition,

M =
n
⋃

i=1

Bi. (2.37)

Now we are able to show that n ≥ catMδ
(M). Indeed, it remains to prove that,

for each i ∈ {1, ..., n}, the set Bi is contractible in Mδ. To this aim, let

Hi : [0, 1]× Bi −→Mδ
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be given by

Hi(t, u) =











η(2t, u), 0 ≤ t ≤ 1

2
;

gi(2t− 1),
1

2
≤ t ≤ 1,

with gi(t, u) := β(hi(t,Φε,y)). The above conditions on η and hi ensure that Hi is well

defined. Furthermore,

Hi(0, y) = η(0, y) = y and Hi(1, y) = β(hi(1, v
i
0)), ∀y ∈ Bi,

which shows that Bi is contractible in Mδ. From (2.37) we get the desired inequality.

The result below points out an important property of the solutions of (S̃ε)

obtained in the last theorem.

Proposition 2.8 (Positive solutions counting) There exists ε2 > 0 such that, for

ε ∈ (0, ε2), it holds

i) (S̃ε) has at least
catMδ

(M)

2
positive solutions, if catMδ

(M) is an even number;

ii) (S̃ε) has at least
catMδ

(M)+1

2
positive solutions, if catMδ

(M) is an odd number.

Proof. Take ε2 ≈ 0+ and fix ε ∈ (0, ε2). If vε is a critical point of Jε(vε) ≤ c0 + oε(1),

we must have v+ε = 0 or v−ε = 0. Otherwise, we would have v+ε , v
−
ε ∈ Nε, and so,

2cε ≤ Jε(v
+
ε ) + Jε(v

−
ε ) = Jε(vε) ≤ c0 + oε(1),

which is a contradiction for ε2 ≈ 0+. Therefore, using the same arguments of Lemma

2.6, we deduce that either vε > 0 or vε < 0.

Now, suppose that k := catMδ
(M) is an even number and let v1, ..., vk be the

solutions of (P̃ε) given in the preceding proposition. If at least k
2
of the solutions

v1, ..., vk are positive solutions, the item i) is proved. Otherwise, we know that at least

k
2
of the solutions v1, ..., vk are negative. Denote by w1, ..., w k

2
such negative solutions.

Since g2(x, ·)−F ′
1 is an odd function, the functions −w1, ...,−w k

2
are positive solutions

of the problem

(S̃ε)







−∆u+ (V (εx) + 1)u = g2(εx, u)− F ′
1(u), in R

N ,

u ∈ H1(RN) ∩ LF1(RN).

and thus i) is proved. The proof of ii) follows by a similar reasoning.
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2.4.1 Proof of Theorem 2.1

The proof is as follows.

Proof of Theorem 2.1. Let vε be a critical point of Jε(vε) ≤ c0 + oε(1). It suffices

to show that there exists ε3 ≈ 0+ such that, for ε ∈ (0, ε3),

0 < vε(x) < t1, ∀x ∈ R
N − Λε, (2.38)

for each solution vε of (S̃ε) given in the items i)−ii) of the last proposition. Arguing by
contradiction, we get a sequence (vεn) of solutions of (S̃εn) where εn → 0 and vn := vεn

does not satisfy (2.38). Note that the obtained sequence (vn) satisfies the hypothesis of

Lemma 2.9 and that the sequence (wn) given in the lemma must satisfy (2.24). Thus,

a contradiction is obtained by following closely the same ideas used in the proof of

Theorem 2.3. This argument ensures that (Sε) verifies i)− ii) in the statement of the

Theorem 2.1. Now, the result follows by a change of variable.

We finish this chapter by pointing out an important question related with the

number of positive solutions obtained in our previous results.

Remark 2.3 In [14, 43] the result of multiplicity of solution involving the Lusternik-

Schnirelmann category assures the existence of at least catMδ
(M) positive solutions. In

[14], for example, the key point is the fact that the nonlinearity f was assumed such that

f(t) = 0, t ≤ 0. In our case, this framework lead us to consider f(t) = |t+|2 log |t+|2,
as well as,

Jε(u) :=
1

2

∫

RN

(|∇u|2 + (V (εx) + 1)|u|2) +
∫

RN

F1(u
+)−

∫

RN

G2(εx, u
+), ∀u ∈ Xε.

However, we were not able to reproduce some estimates made throughout this work

by considering Jε given as above. For example, in the Lemma 2.2, we were not able

to show the boundedness of the (PS) sequences when Jε is chosen in this way. In

fact, since the norm on Xε involves the norm || · ||F1 of Orlicz space LF1(RN), we need

of the information of term

∫

RN

F1(u) in our computations. This justifies because our

number of positive solutions by using the Lusternik-Schnirelmann category is a little

bit different from that given in [14, 43].



CHAPTER 3

Existence of positive solution for a class of Schrödinger

logarithmic equations on exterior domains

In the study developed in Chapter 2, the new function space introduced in the

Section 2.1 allowed us to apply C1-variational methods to find solutions for a class of

elliptical problems with logarithmic nonlinearity. Inspired in such ideas, in the present

chapter we intent to treat on the existence of positive solution for the following class

of logarithmic equations.







−∆u+ u = Q(x)u log u2, in Ω,

Bu = 0 on ∂Ω,

with Ω ⊂ R
N , N ≥ 3, an exterior domain (i.e., Ωc = R

N \ Ω is a bounded smooth

domain) and Bu = u or Bu = ∂u
∂ν
.

As in the problem (Pε) in Chapter 2, if one tries to apply variational methods

to the above problem, it is required to deal with the lack of smoothness of the natural

candidate to energy functional associated to the problem.

In order to overcome such difficulty, we borrow the ideas of the preceding chapter

and we consider a decomposition of the nonlinearity f(t) = t log t2, as well as a function

space on which we will can to use the classical variational methods.

Our study is divided into two cases.
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Case 1. Dirichlet case: In this case we will assume Q ≡ 1 and Bu = u. These

conditions lead us to consider the problem:

(P0)







−∆u+ u = u log u2, in Ω,

u ∈ H1
0 (Ω).

The main result associated with (P0) to be proved in this chapter is the following:

Theorem 3.1 There exists ρ0 ≈ 0+ such that, if Ωc ⊂ Bρ(0), then the problem (P0)

has a positive solution for each ρ ∈ (0, ρ0).

Case 2. Neumann case: this case corresponds to the choosing Bu :=
∂u

∂η
. On the

function Q, we will assume in this case that

(Q1) lim
|x|→∞

Q(x) = Q0 and q0 := inf
x∈RN

Q(x) > 0 for all x ∈ R
N ;

(Q2) Q0 ≥ Q(x) ≥ Q0 − Ce−M0|x|2 , for x ≥ R0,

with Q0, C,M0, R0 > 0.

In Case 2 our problem takes the following form:

(S0)











−∆u+ u = Q(x)u log u2, in Ω

∂u

∂η
= 0, on ∂Ω,

The main result on the problem (S0) is the following.

Theorem 3.2 If the conditions (Q1)− (Q2) hold, then for some M0 large enough, the

problem (S0) has a positive ground state solution.

It is important to mention that the conditions (Q1) − (Q2) are inspired in the works

[4, 33].

The new approach introduced in Chapter 2 and used in this chapter plays a crucial

role in order to study the problems (P0) and (S0), because it permits to adapt several

arguments explored in the literature about problems in exterior domains related with

C1-functionals to the problems (P0) and (S0); here, we have adapted and modified a

lot of arguments present in the papers [3, 4, 9, 18, 27, 33,54].

We would like to emphasize the results in the sequel can be found in the work

due to Alves and da Silva in [6].
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3.1 The variational framework

This section is devoted to show some technical results that will be used later on.

We start by recalling an important result involving the uniqueness of positive solution

for the logarithmic equation on the whole R
N . After that, we recall some notions

studied in Chapter 2 and we introduce the convenient function space that allows us to

apply the C1-variational methods in order to get solutions for our problem. Next, a

result of nonexistence of ground state solution for (P0) is also established. Finally, we

prove a compactness lemma analogous to the result of Benci and Cerami in [27, Lemma

3.1] that plays a crucial role in our study.

Our first result in this section can be found in [44, Section 1] (see also [30]) and

it concerns with the uniqueness of solution for the following class of problems







−∆u+ κu = u log u2, in R
N ,

u ∈ H1(RN),
(3.1)

where κ > 0.

Theorem 3.3 The problem (3.1) has a unique positive solution u ∈ C2(RN ,R), up to

translations, such that u(x) → 0 as |x| → ∞. More precisely, the solution u is given

by

u(x) = Cκ,N e
−|x|2

2 .

The theorem above ensures that any positive solution of (3.1) has an exponential

decaying.

3.1.1 The energy functional

In the same way of Chapter 2 (see also [6, 10, 11, 62]), we will explore a suitable

decomposition of the function

F (s) =

∫ s

0

t log t2 dt =
1

2
s2 log s2 − s2

2
, s ∈ R,

which allows us to introduce an energy functional associated with (P0). For each δ > 0

sufficiently small, let F1, F2 ∈ C1(R) be given as in the Section 2.1.1 verifying

F2(s)− F1(s) =
1

2
s2 log s2, ∀s ∈ R. (3.2)
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Recall that F1 and F2 satisfy the properties (P1)− (P2) below:

(P1) F1 is an even function with F ′
1(s)s ≥ 0 and F1(s) ≥ 0 for all s ∈ R. Moreover

F1 ∈ C1(R,R) and it is also convex if δ ≈ 0+;

(P2) F2 ∈ C1(R,R) and for each p ∈ (2, 2∗), there exists C = Cp > 0 such that

|F ′
2(s)| ≤ C|s|p−1 ∀s ∈ R.

As in Subsection 2.1.1, it will be explored the fact that F1 is a N-function verifying

the (∆2) condition (see the Appendix C for the proof). This fact ensures that the Orlicz

space

LF1(Ω) =

{

u ∈ L1
loc(Ω) ;

∫

Ω

F1 (|u|) dx < +∞
}

with the norm

||u||F1 = inf

{

λ > 0 ;

∫

Ω

F1

( |u|
λ

)

≤ 1

}

is a reflexive and separable Banach space.

From now on, we will set X := H1
0 (Ω) ∩ LF1(Ω) endowed with the norm

|| · ||X := || · ||H1
0 (Ω) + || · ||F1 .

Here, LF1(Ω) designates the Orlicz space associated with F1 and || · ||F1 denotes the

usual norm associated with LF1(Ω). In view of the last proposition, the space X is a

separable and reflexive Banach space. Furthermore, the embeddings X →֒ H1(Ω) and

X →֒ LF1(Ω) are continuous.

The natural candidate for the energy functional associated with (P0) is given by

I(u) :=
1

2

∫

Ω

(|∇u|2 + 2|u|2) +
∫

Ω

F1(u)−
∫

Ω

F2(u), ∀u ∈ X.

It will be convenient to take the norm of H1
0 (Ω) as being

||u||H1
0 (Ω) :=

(
∫

Ω

(|∇u|2 + 2|u|2)
)

1
2

,

which is equivalent to the usual norm of H1
0 (Ω). Moreover, it is associated with the

inner product

⟨u, v⟩H1
0 (Ω) :=

∫

Ω

(∇u∇v + 2uv), ∀u, v ∈ H1
0 (Ω).
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Similarly, we will consider

||u||H1(RN ) :=

(
∫

RN

(|∇u|2 + 2|u|2)
)

1
2

, ∀u ∈ H1(RN),

as the norm in H1(RN).

From (P1)− (P2), I ∈ C1(X,R) and

I ′(u)v =

∫

Ω

(∇u∇v + 2uv) +

∫

Ω

F ′
1(u)v −

∫

Ω

F ′
2(u)v, ∀v ∈ X.

In our approach, we will use some properties of the limit problem below

(P∞)







−∆u+ u = u log u2, in R
N ,

u ∈ H1(RN).

Associated with (P∞), we have the functional

I∞(u) :=
1

2

∫

RN

(|∇u|2 + 2u2) +

∫

RN

F1(u)−
∫

RN

F2(u), ∀u ∈ Y,

where Y := (H1(RN)∩LF1(RN), || · ||Y ) and || · ||Y := || · ||H1(RN )+ || · ||LF1 (RN ). Related

to the functionals I and I∞, we also have the Nehari sets

N := {u ∈ X − {0}; I ′(u)u = 0}

and

N∞ := {u ∈ Y − {0}; I ′∞(u)u = 0},

which can be characterized by

N := Ψ−1
0 (0) and N∞ := Ψ−1

∞ (0),

with

Ψ0(u) = I(u)− 1

2

∫

Ω

|u|2 and Ψ∞(u) = I∞(u)− 1

2

∫

RN

|u|2. (3.3)

A direct computation shows that Ψ0 ∈ C1(X,R) and Ψ∞ ∈ C1(Y,R). Furthermore,

associated with N and N∞, we consider the levels d0 and d∞ given by

d0 := inf
u∈N

I(u) and d∞ := inf
u∈N∞

I∞(u).

The next result presents an important property of the sets N and N∞ that is

crucial in our approach
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Proposition 3.1 The sets N and N∞ are C1-manifolds with the topology of (X, ||·||X)
and (Y, || · ||Y ) respectively,. Furthermore, the critical points of I|N and I∞|N∞ are

critical points of I and I∞ respectively

Proof. For the first part, from (3.3), it is sufficient to show that 0 is a regular value

for Ψ0 and Ψ∞. Indeed, if u ∈ Ψ−1
0 ({0}), then

Ψ′
0(u)u = I ′(u)u−

∫

Ω

|u|2 = −
∫

Ω

|u|2 < 0,

since u ̸= 0. Consequently, Ψ′
0(u) ̸= 0 and 0 is a regular value of Ψ0. A similar

reasoning shows that 0 is also a regular value of Ψ∞.

Now, note that if u ∈ N is a critical point of I|N , then it holds

I ′(u) = λΨ′
0(u),

for some λ ∈ R. So, one can see that 0 = λΨ′
0(u)u, which implies that λ = 0 and

I ′(u) = 0, because Ψ′
0(u)u < 0 for u ∈ N . In a similar way, the result follows for

I∞|N∞ .

The last proposition yields that a critical point of I|N is a point u ∈ X such that

||I ′(u)||∗ := min
λ∈R

||I ′(u)− λΨ′
0(u)|| = 0. ( See [83, Section 5.3] )

Analogously, we define a critical point of I∞|N∞ .

Remark 3.1 Note that in the preceding proposition, it is crucial the fact that in

our approach, in view of the topology induced by the spaces X and Y , the energy

functionals I and I∞ are of C1 class. This fact is not verified if we consider, for

example, I and I∞ with the usual topology of H1
0 (Ω) and H

1(RN).

In the next result, we point out an important property related with the sets N
and N∞ that will be explored later on.

Proposition 3.2 There exist ρ1, ρ2 > 0 such that

ρ1 ≤ ||u||X , ∀ u ∈ N

and

ρ2 ≤ ||u||Y , ∀ u ∈ N∞.
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Proof. In fact, for u ∈ N it holds

0 < ||u||2H1
0 (Ω) ≤ ||u||2H1

0 (Ω) +

∫

Ω

F ′
1(u)u =

∫

Ω

F ′
2(u)u ≤ ||u||p

H1
0 (Ω)

,

with p ∈ (2, 2∗]. Using the embedding X →֒ H1
0 (Ω), one gets

0 < 1 ≤ ||u||p−2

H1
0 (Ω)

≤ C||u||p−2
X ,

for a convenient C = C(p) > 0. Thus, the first part of the result follows by setting

ρ1 := (C−1)
1

p−2 . The second part of the lemma is proved with a similar argument.

From now on, let us designate by u∞ a positive ground state solution of (P∞)

that can be assumed radial, that is,

I∞(u∞) = d∞ > 0 and I ′∞(u∞) = 0.( See Theorem 3.3 )

The next result relates the levels d0 and d∞.

Lemma 3.1 It holds d0 = d∞.

Proof. Fix ρ > 0 the smallest positive number such that RN \ Ω ⊂ Bρ(0). Now, let

ϕ ∈ C∞(RN) satisfying






ϕ(x) = 0, x ∈ Bρ(0)

ϕ(x) = 1, x ∈ B2ρ(0)
c,

with 0 ≤ ϕ ≤ 1. Take (yn) ⊂ R
N with |yn| → ∞ and set

ϕn(x) := ϕ(x)u∞(x− yn).

For each n ∈ N, fix tn > 0 of a such way that tnϕn ∈ N . Thereby,

d0 ≤ I(tnϕn) = I∞(tnϕn), ∀n ∈ N. (3.4)

Note that, from the Lebesgue’s Dominated Convergence Theorem,

ϕ(·+ yn)u∞ −→ u∞. (3.5)

Our next step is proving that tn → 1. To see why, firstly we recall that tnϕn ∈ N leads

to
∫

RN

(|∇(tnϕn)|2 + |(tnϕn)|2) =
∫

RN

(tnϕn)
2 log(|tnϕn|2). (3.6)
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This combined with (3.2) gives

∫

RN

(|∇(ϕn)|2 + |(ϕn)|2) = 2

∫

RN

(F2(ϕn)− F1(ϕn)) + log t2n

∫

RN

ϕ2
n. (3.7)

Using (3.5) and the invariance by translation of RN , one finds

∫

RN

Fi(ϕn) −→
∫

RN

Fi(u∞) for i ∈ {1, 2} and

∫

RN

|ϕn|2 −→
∫

RN

|u∞|2.

Gathering the limits above with (3.5), one sees that (tn) is a bounded. So, we may

assume that tn → t0 ≥ 0. If t0 = 0, the equality (3.7) gives a contradiction. Therefore,

it holds t0 > 0 and, from the Lebesgue’s Theorem,

∫

RN

(|∇(t0u∞)|2 + |(t0u∞)|2) =
∫

RN

|t0u∞|2 log(t0u∞|2),

showing that t0 = 1, that is, tn → 1 as n → +∞. Using this limit together (3.4), we

arrive at

d0 ≤ lim I∞(tnϕn) = I∞(u∞) = d∞.

As X ⊂ Y , the reverse inequality follows directly of the definition of I∞, by noting

that the condition I ′(u)u = 0 also implies I ′∞(u)u = 0.

Next, we establish the nonexistence of ground state solution for (P0), i.e., we are

going to prove that it does not exist a positive solution u0 of (P0) such that I(u0) = d0.

Theorem 3.4 The problem (P0) has no ground state solution.

Proof. Seeking for a contradiction, assume that (P0) has a positive ground state

solution w ∈ X. Then,

I ′(w) = 0 and I(w) = d0.

Let v be the null extension of w, i.e., v(x) = w(x) for x ∈ Ω and v(x) = 0 otherwise.

It follows that I ′∞(v)v = I ′(w)w = 0, and by Lemma 3.1, I∞(v) = I(w) = d0 = d∞.

Therefore, v ∈ N∞ is a critical point for I∞|N∞ , and so, v is a critical point of I∞. As

made in [44, Section 3.1], by using a suitable version of the maximum principle found

in [82], one deduces that v > 0 in whole RN , which is absurd because v = 0 in R
N \Ω,

finishing the proof.

In order to prove our next proposition, we recall the inequality in (1.61):

∫

RN

|u|2 log |u|2 dx ≤ b2

π
||∇u||22 + (log ||u||22 −N(1 + log b))||u||22, ∀u ∈ H1(RN), (3.8)
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where b > 0 is a fixed positive constant.

Let us recall that a (PS)c sequence for I|N is a sequence (un) ⊂ N such that

||I ′(un)||∗ → 0 and I(un) → c.

Lemma 3.2 If (un) is a (PS)c sequence for I|N , then (un) is bounded in X.

Proof. Let (un) be a (PS)c sequence for I|N . Since I ′(un)un = 0, one has

c+ on(1) = I(un)−
1

2
I ′(un)un =

1

2

∫

Ω

|un|2, (3.9)

and so,
∫

Ω

|un|2 ≤ C, ∀n ∈ N,

for a convenient C > 0. Applying the logarithmic inequality for some b ≈ 0+, we derive

that
∫

RN

|v|2 log |v|2 ≤ 1

2
||∇v||22 + C(log ||v||22 + 1)||v||22, v ∈ H1(RN),

which leads to
∫

Ω

|un|2 log |un|2 ≤
1

2
||∇un||22 + C,

for some C > 0 independent of n. Therefore, by (3.8), there are C1, C2 > 0 such that

C1 ≥
1

2
||un||2H1

0 (Ω) −
1

2

∫

Ω

|un|2 log |un|2 ≥ C2||un||2H1
0 (Ω),

showing that

sup
n∈N

||un||2H1
0 (Ω) <∞. (3.10)

The definition of I gives

∫

Ω

F1(un) = I(un)− ||un||2H1
0 (Ω) +

∫

Ω

F2(un).

Hence, by (3.9) and (3.10),

sup
n∈N

∫

Ω

F1(un) <∞. (3.11)

The sentences (3.10) and (3.11) guarantee that (un) is a bounded sequence in X.

By using the definition of the functions F1 and F2 and a Brezis-Lieb type result

(Proposition C.1), it is possible to prove the lemma below whose the idea for the proof

can be found in [80, Lemma 3.1].
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Lemma 3.3 Let (un) be a bounded sequence in X such that un → u a.e. in Ω. Then,

∫

Ω

|un − u|2 log |un − u|2 =
∫

Ω

u2n log u
2
n −

∫

Ω

u2 log u2 + on(1).

Proof. The proof could be made following the reasoning in [80, Lemma 3.1]. However,

for the reader’s comfort, we will present the idea of the proof. The argument consists

in a suitable application of a Brezis-Lieb type result: By (3.2), one gets

2(F2(un − u)− F1(un − u)) = |un − u|2 log |un − u|2 ,

from where we derive that

∫

Ω

|un − u|2 log |un − u|2 = 2

∫

Ω

(F2(un − u)− F1(un − u)).

Now, the proof follows by noting that, since F2 has subcritical growth, the Lemma 3.1

in [4] assures that

∫

Ω

F2(un − u) =

∫

Ω

F2(un)−
∫

Ω

F2(u) + on(1).

In a similar way,

∫

Ω

F1(un − u) =

∫

Ω

F1(un)−
∫

Ω

F1(u) + on(1),

by the Brezis-Lieb type result valid for N-functions in Proposition C.1.

Our next result is an important compactness lemma that describes the behavior

of (PS)c sequences for I|N .

Lemma 3.4 Let (un) be a (PS)c sequence for I|N with un ⇀ u0. Then, going to a

subsequence if necessary, either

i) un → u0 in X, or

ii) There exist k ∈ N and k sequences (ujn)n∈N, u
j
n ∈ Y , with

ujn ⇀ uj

and uj nontrivial solutions of (P∞), j ∈ {1, ..., k}. Furthermore, it holds

||un||2H1
0 (Ω) → ||u0||2H1

0 (Ω) +
k
∑

j=1

||uj||2H1(RN ) and I(un) → I(u0) +
k
∑

j=1

I∞(uj).
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Proof. Initially, for a convenient sequence of real numbers (λn), we must have

I ′(un) = λnΨ
′
0(un) + on(1). (3.12)

As I ′(un)un = 0, one gets

λnΨ
′
0(un)un = on(1).

From this information, we claim that λn = on(1). Indeed, notice that |Ψ′
0(un)un| ↛ 0,

otherwise we would have

Ψ′
0(un)un =

∫

Ω

|un|2 = on(1),

and so, since (un) is a bounded sequence in X, by interpolation, it follows that

||un||p = on(1), ∀p ∈ (2, 2∗).

This combines with (P2) to give

∫

Ω

F ′
2(un)un = on(1).

Now, the limit above together with the fact that I ′(un)un = 0 leads to

∫

Ω

(|∇un|2 + 2|un|2) +
∫

Ω

F ′
1(un)un = on(1).

Since F1 is convex with F1(0) = 0, we know that F ′
1(s)s ≥ F1(s) for all s ∈ R. Then,

we can infer that
∫

RN

(|∇un|2 + 2|un|2) +
∫

Ω

F1(un) = on(1).

Using the fact that F1 ∈ (∆2), the last limit yields un → 0 in X, which contradicts the

fact that un ∈ N in view of the Proposition 3.2. So, it follows that |Ψ′
0(un)un| ↛ 0

and λn = on(1). By (3.12), since (un) is a bounded sequence, it holds I ′(un) → 0, that

is, the sequence (un) is a (PS)c sequence for I. In addition, accounting that un ⇀ u0

and the growth conditions on F1 and F2, we deduce that I ′(u0)v = 0, for any v ∈ X,

implying that u0 is a solution of (P0).

From now on, inspired in the ideas of [27], we set

ψ1
n(x) :=







un − u0, x ∈ Ω

0, x ∈ R
N \ Ω.
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A direct verification shows that ψ1
n ⇀ 0 in X. In [4,27], it was proved that (ψ1

n|Ω) is a
(PS) sequence for I∞|H1

0 (Ω) with

I∞(ψ1
n) = I(un)− I(u0) + on(1). (3.13)

However, since we are working with a logarithmic nonlinearity, we are not able to show

that (ψ1
n|Ω) is also a (PS) sequence. In our case we will prove that a weaker condition

occurs. More precisely, the following properties hold:

i) I∞(ψ1
n) = I(un)− I(u0) + on(1);

ii) Let ϕ ∈ C∞
0 (Ω) with ||ϕ||Y ≤ 1 and, for each y ∈ R

N , define ϕ(y)(x) = ϕ(x+ y) for

all x ∈ R
N . Then,

sup
y∈RN

∥I ′∞(ψ1
n)∥||ϕ(y)||Y = on(1).

Verification of i) By simplicity, in what follows ψ1
n also denotes ψ1

n|Ω. The definition
of ψ1

n gives I∞(ψ1
n) = I(ψ1

n), then by a simple computation, the Lemma 3.3 guarantees

that i) holds.

Verification of ii) First of all, note that

I ′∞(ψ1
n)ϕ

(y) =

∫

Ω

(∇ψ1
n∇ϕ(y) + 2ψ1

nϕ
(y)) +

∫

Ω

F ′
1(ψ

1
n)ϕ

(y) −
∫

Ω

F ′
2(ψ

1
n)ϕ

(y). (3.14)

In order to prove the item ii), we will need to show the following claim

Claim 3.1

sup
y∈RN

∫

Ω

|F ′
i (un − u0)− (F ′

i (un)− F ′
i (u0))||ϕ(y)| = on(1), for i ∈ {1, 2}.

In the proof of the claim above, we adapt some ideas presented in [12, Proof of

(3.39)]. In what follows, we will only show that the claim for function F1, because the

proof for F2 follows by using similar arguments (see also [4, Lemma 3.1]).

Given ε > 0 and r ∈ (1, 2), the definition of F1 guarantees that there is t0 > 0

small enough such that

|F ′
1(t)| ≤ ε|t|r−1, |t| ≤ 2t0. (3.15)

On the other hand, note that it is possible to get t1 > t0 large enough such that

|F ′
1(t)| ≤ ε|t|2∗−1, |t| ≥ t1 − 1, (3.16)
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as well as

|F ′
1(t)− F ′

1(s)| ≤ ε|t0|r−1, |t− s| ≤ s0, and |t|, |s| ≤ t1 + 1, (3.17)

for some s0 > 0 small enough. Therefore,

|F ′
1(t)| ≤ Cε|t|r−1 + ε|t|2∗−1, t ∈ R, (3.18)

for some Cε > 0. Now, fixing R > 0 of such way Bc
R(0) ⊂ Ω and using then fact that

F1 has a subcritical growth, it is easy to prove that
∫

BR(0)∩Ω

| F ′
1(un − u0)− (F ′

1(un)− F ′
1(u0)) || ϕ(y) |= on(1), uniformly in y ∈ R

N .

Our next step is to estimate the integral below
∫

Bc
R(0)∩Ω

| F ′
1(un − u0)− (F ′

1(un)− F ′
1(u0)) || ϕ(y) | .

Fix ε > 0. From (3.18), since R > 0 can be chosen large enough, one has
∫

Bc
R(0)∩Ω

| F ′
1(u0) || ϕ(y) | ≤ Cε

∫

Bc
R(0)∩Ω

| u0 |r−1| ϕ(y) | +ε
∫

Bc
R(0)∩Ω

| u0 |2
∗−1| ϕ(y) |

≤ C(||u0||r−1
2 ||ϕ(y)|| 2

3−r
+ ||u0||2

∗−1
2∗ ||ϕ(y)||2∗)

≤ εC||ϕ(y)||Y ,
(3.19)

where C does not depend on y ∈ R
N . Setting

An := {x ∈ Bc
R(0); |un(x)| ≤ t0}

and

Bn := {x ∈ Bc
R(0); |un(x)| ≥ t1},

we have by (3.15),
∫

An∩[|u0|≤δ]

| F ′
1(un − u0)− F ′

1(un) || ϕ(y) | ≤

≤ ε

∫

An∩[|u0|≤δ]

(| un − u0 |r−1| ϕ(y) | + | un |r−1| ϕ(y) | ≤

≤ εC||ϕ||Y ,

(3.20)

where C does not depend on y ∈ R
N . Here, we have explored the fact that

|suppϕ(y)| = |suppϕ| for any y ∈ R
N . In a similar way, by using (3.16),

∫

Bn∩[|u0|≤δ]

| F ′
1(un − u0)− F ′

1(un) || ϕ(y) |≤ εC||ϕ||Y . (3.21)
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Next, let us consider Cn := {x ∈ Bc
R(0); t0 ≤ |un(x)| ≤ t1}. Accounting that (un) is a

bounded sequence in X, we derive that

M := sup
n∈N

|Cn| <∞.

Thereby, by (3.17),
∫

Cn∩[|u0|≤δ]

| F ′
1(un − u0)− F ′

1(un) || ϕ(y) |≤ tr−1
0 ε|Cn|1/2||ϕ(y)||2 ≤ εC||ϕ||Y , (3.22)

for a convenient C independent of ε and y ∈ R
N . From (3.20), (3.21) and (3.22),

∫

Bc
R(0)∩[|u0|≤δ]

| F ′
1(un − u0)− F ′

1(un) || ϕ(y) |≤ εC||ϕ||Y . (3.23)

Now, we are going to analyze the case that |u0| > δ. The boundedness of (un) in X

together with the inequality (3.18) give
∫

Bc
R(0)∩[|u0|>δ]

| F ′
1(un − u0)− F ′

1(un) || ϕ(y) | ≤

≤ Cε

∫

Bc
R(0)∩[|u0|>δ]

(| un − u0 |r−1| ϕ(y) | + | un |r−1| ϕ(y) | +εC||ϕ||Y ,

where C is independent of ε and y. Since u0 ∈ X ⊂ H1
0 (Ω), one has

|Bc
R(0) ∩ [|u0| > δ]| −→ 0, as R → +∞.

Thereby,

Cε

∫

Bc
R(0)∩[|u0|>δ]

(| un − u0 |r−1| ϕ(y) | + | un |r−1| ϕ(y) |≤

≤ Cε(||(un − u0||r−1
2∗ + ||un||r−1

2∗ )||ϕ||2∗ |BR(0)
c ∩ [|u0| > δ]|(2∗−r)/2∗ ≤

≤ εC||ϕ||Y ,

for R > 0 large enough and C independent of ε and y. Using the last information

together with (3.19) and (3.23), one finds

sup
y∈RN

∫

Bc
R(0)∩Ω

| F ′
1(un − u0)− (F ′

1(un)− F ′
1(u0)) || ϕ(y) |≤ εC||ϕ||.

Since ε is an arbitrary positive number, the last inequality with ||ϕ||Y ≤ 1 ensures that

the Claim 3.1 is valid for the function F1 and this finishes the proof of the claim.

Now, we are ready to show the item ii). In fact, fix ϕ ∈ C∞
0 (Ω). So, by (3.14),

[I ′∞(ψ1
n)− (I ′(un)− I ′(u0))](ϕ

(y)) =

∫

Ω

[F ′
1(un − u0)− (F ′

1(un)− F ′
1(u0))]ϕ

(y) +

+

∫

Ω

[F ′
2(un − u0)− (F ′

2(un)− F ′
2(u0))]ϕ

(y).
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Hence, by Claim 3.1,

sup
y∈RN

|I ′∞(ψ1
n)− (I ′(un)− I ′(u0))|||ϕ(y)||Y = on(1),

from where it follows that

sup
y∈RN

∥I ′∞(ψ1
n)∥ ||ϕ(y)||Y = on(1),

and the item ii) is proved. If ψ1
n → 0, then the proof would be finished. Thereby, in

order to get the desired result, let us consider that

ψ1
n ↛ 0 in Y. (3.24)

In this way, we can prove that the following claim holds

Claim 3.2 There exist λ0 > 0 and n0 ∈ N such that

I∞(ψ1
n) ≥ λ0, ∀n ≥ n0.

Otherwise, considering a subsequence of (ψ1
n) if necessary, we would have

I∞(ψ1
n) ≤ on(1).

Now, recalling that

F ′
2(t)t− F ′

1(t)t = t2 log t2 + t2, t ∈ R

the same arguments explored in the proof of item i) ensure that

I ′∞(ψ1
n)ψ

1
n = I ′(un)un − I ′(u0)u0 = on(1),

and so,

I∞(ψ1
n) = I∞(ψ1

n)−
1

2
I ′∞(ψ1

n)ψ
1
n + on(1) =

1

2

∫

RN

|ψ1
n|2 + on(1).

Consequently, one finds

∫

RN

|ψ1
n|2 = on(1), and by interpolation,

∫

RN

|ψ1
n|p = on(1). So,

the growth condition on F2 allows us to conclude that

∫

RN

F ′
2(ψ

1
n)ψ

1
n = on(1).

From the computations above, one has

||ψ1
n||2H1(RN ) +

∫

RN

F ′
1(ψ

1
n)ψ

1
n = on(1),
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which contradicts (3.24). Then, the claim is proved.

Now, lets us consider a decomposition of RN into unit hypercubes Bi with vertices

having integer coordinates and set

dn := max
i∈N

||ψ1
n||Lp(Bi),

for a fixed p ∈ (2, 2∗).

Claim 3.3 There exist λ1 > 0 and n1 ∈ N such that

dn ≥ λ1, ∀n ≥ n1.

Arguing as in the last claim,

I ′∞(ψ1
n)ψ

1
n = I ′(un)un − I ′(u0)u0 = on(1),

and so

||ψ1
n||2H1(RN ) +

∫

RN

F ′
1(ψ

1
n)ψ

1
n =

∫

RN

F ′
2(ψ

1
n)ψ

1
n + on(1).

By (2.4),

C

(

||ψ1
n||2H1(RN ) +

∫

RN

F1(ψ
1
n)

)

≤
∫

RN

F ′
2(ψ

1
n)ψ

1
n + on(1),

for some constant C > 0. Combining this inequality with (P2), one finds

I∞(ψ1
n) =

1

2
||ψ1

n||2H1(RN ) +

∫

RN

F1(ψ
1
n)−

∫

RN

F2(ψ
1
n) ≤

≤ C

∫

RN

|ψ1
n|p + on(1) = C

∑

i∈N

||ψ1
n||pLp(Bi)

+ on(1).

Since each Bi is a unit hypercube of RN , there is a constant C̃ > 0 independent of i

such that

||ψ1
n||Lp(Bi) ≤ C̃||ψ1

n||H1(Bi), ∀i ∈ N. (3.25)

Hence, modifying C̃ > 0 if necessary, it holds

I∞(ψ1
n) + on(1) ≤ Cdp−2

n

∑

i∈N

||ψ1
n||2H1(Bi)

≤Mdp−2
n ,

for some M > 0. Now, we apply Claim 3.2 to get the desired result.

Hereafter, for our goals, let us consider y1n the center of Bi in such way that

dn = ||ψ1
n||Lp(Bi).
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In this way, one can see that, by taking a subsequence, |y1n| → ∞. Otherwise, for some

R > 0 large enough we must have

∫

BR(0)

|ψ1
n|p ≥

∫

Bi

|ψ1
n|p = dpn ≥ λp1 > 0,

which is a contradiction, because the weak limit ψ1
n ⇀ 0 in Y implies that

∫

BR(0)

|ψ1
n|p −→ 0.

Thereby, we may assume that |y1n| → ∞.

Notice that, by the invariance of translations of RN , we conclude that (ψ1
n(·+y1n))

is bounded in Y . Then, for some u1 ∈ Y ,

ψ1
n(·+ y1n)⇀ u1 in Y. (3.26)

Our next step is to prove that u1 is a nontrivial solution of (P∞).

Claim 3.4 The function u1 is a nontrivial solution of (P∞).

Initially, let us prove that u1 ̸= 0. To see why, let us denote by B0 the unit hypercube

of RN centered at the origin. Then, by the Claim 3.3,

∫

B0

|ψ1
n(·+ y1n)|p =

∫

Bi

|ψ1
n|p = dpn ≥ λp1 > 0.

Observe that, by (3.26), ψ1
n(·+ y1n) → u1 in Lp(B0). Hence,

∫

B0

|u1|p ≥ λp1 > 0,

showing that u1 ̸= 0.

Set

Ωn := {x ∈ R
N ; x+ y1n ∈ Ω}.

Note that, for each v ∈ C∞
0 (RN), we have that suppt v ⊂ Ωn for n large enough.

Setting v(n)(x) := v(x− y1n), it follows that

suppt v(n) ⊂ Ω and v(n) ∈ H1
0 (Ω).

Taking v ∈ C∞
0 (RN) with ||v||Y ≤ 1, we see that ||v(n)||X = 1 and

I ′∞(ψ1
n(·+ y1n))v = I ′∞(ψ1

n)v
(n).
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Thus, by item ii), I ′∞(ψ1
n(· + y1n))v = on(1). On the other hand, standard arguments

involving the weak convergence of (ψ1
n(·+ y1n)) yield

I ′∞(ψ1
n(·+ y1n))v = I ′∞(u1)v.

By gathering these information, we derive that I ′∞(u1)v = 0, then u1 is a nontrivial

critical point of I∞, and so, u1 is a solution of (P∞).

Define ψ2
n := (ψ1

n(·+ y1n)− u1). If ψ
n
2 → 0, then the proof is finished. Otherwise,

we use the fact that ψ2
n ⇀ 0 and the ideas explored above to find a unbounded sequence

(y2n) of R
N and to produce u2 ∈ Y a nontrivial solution of (P∞). Continuing with this

procedure, for each j ≥ 2 it is possible to define

ψj
n := ψj−1

n (·+ yj−1
n )− uj−1,

with






yj−1
n → ∞

ψj−1
n ⇀ uj−1,

and uj−1 a nontrivial solution of (P∞). By exploring the same type of argument used

in the prove of item i), one can prove that

iii): ||ψj
n||2H1(RN ) = ||un||2H1

0 (Ω)
− ||u0||2H1

0 (Ω)
−

j−1
∑

i=1

||ui||2H1(RN ) + on(1);

iv): I∞(ψj
n) = I(un)− I(u0)−

j−1
∑

i=1

I∞(ui) + on(1).

v): lim inf
n→∞

I∞(ψj
n) > 0 for each j ∈ N.

We finish the proof by proving that the following claim holds.

Claim 3.5 There is a number k ∈ N such that ψk
n → 0 in Y .

In fact, otherwise it would be possible to get by the preceding procedure a nontrivial

solution uj of (P∞) for each j ∈ N, and so,

I∞(uj) ≥ d∞ = inf
u∈N∞

I∞(u) > 0, ∀j ∈ N.

Thus, from iv),

I∞(ψj
n) ≤ I(un)− I(u0)− (j − 1)d∞ + on(1).

As (I(un)) is a bounded sequence, for j large enough the last inequality implies that

lim inf
n→∞

I∞(ψj
n) < 0, which contradicts v). From this, the Claim 3.5 is proved and the

proof is over.
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3.2 Technical Results

In this section we prove some technical results that are crucial in the proof of

Theorem 3.1. The main goal is to prove that I|N satisfies the (PS)c condition for all

c ∈ (d∞ + ε, 2d∞ − ε), for some ε > 0 small enough.

In the sequel,

χ(t) :=











1, 0 ≤ t ≤ R;

R

t
, R ≤ t,

where R > 0 is such that Ωc ⊂ BR(0). Next, let τ : Y −→ R
N be given by

τ(u) :=

∫

RN

|u|2χ(|x|)x

and set

P := {u ∈ X; u ≥ 0} and T0 := {u ∈ N ∩ P ; τ(u) = 0}.

Employing the above notations, let us define the level

c0 := inf
u∈T0

I(u),

which satisfies

d∞ = d0 ≤ c0. (3.27)

Our first result is the following

Lemma 3.5 The number c0 satisfies d∞ < c0.

Proof. Arguing by contradiction, in view of (3.27), if the lemma does not hold, then

it occurs

d∞ = d0 = c0.

Thus, it is possible to take a sequence (vn) in N ∩ P such that

τ(vn) = 0 and I(vn) −→ d0 = inf
u∈N

I(u).

By applying the Ekeland’s Variational Principle, there is a sequence (un) inN satisfying

I(un) ≤ I(vn), ||un − vn||X = on(1) and (un) is also a (PS)d0 sequence for I|N (see

e.g. [83, Theorem 8.5]). Thanks to Lemma 3.4, there are k ∈ N and nontrivial solutions

u1, ..., uk of (P∞) with

||un||2H1
0 (Ω) −→ ||u0||2H1

0 (Ω) +
k
∑

j=1

||uj||2H1(RN ) (3.28)
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and

I(un) −→ I(u0) +
k
∑

j=1

I∞(uj), (3.29)

where u0 has been chosen in a such way that un ⇀ u0 and u0 is a solution of (P0).

Using the fact that d∞ = d0, it holds

I(u0) +
k
∑

j=1

I∞(uj) ≥ I(u0) + kd0.

Since I(un) → d0 and I(u0) ≥ 0, from (3.29) one has k = 0 or k = 1. If k = 0,

accounting (3.28), we find

un −→ u0 in H1
0 (Ω).

Now, as (un) is a (PS)d0 sequence for I|N (and also for I) and u0 is a solution of (P0),

one gets

||un||2H1
0 (Ω) +

∫

Ω

F ′
1(un)un =

∫

Ω

F ′
2(un)un =

=

∫

Ω

F ′
2(u0)u0 + on(1) =

= ||u0||2H1
0 (Ω) +

∫

Ω

F ′
1(u0)u0 + on(1),

that is,

||un||2H1
0 (Ω) +

∫

Ω

F ′
1(un)un −→ ||u0||2H1

0 (Ω) +

∫

Ω

F ′
1(u0)u0.

In particular, one has

||un||2H1
0 (Ω) −→ ||u0||2H1

0 (Ω) and

∫

Ω

F ′
1(un)un −→

∫

Ω

F ′
1(u0)u0,

which yields that un → u0 in H1
0 (Ω) and un → u0 in LF1(Ω), since F1 ∈ (∆2). From

this, un → u0 in X, and so,

I(un) −→ I(u0) = d0,

showing that u0 is a ground state solution for (P0), which contradicts Theorem 3.4. So,

k = 1 and u0 = 0. Otherwise, if u0 ̸= 0, the function u0 would be a nonzero solution

of (P0), and so,

d0 = lim I(un) ≥ 2d0,

giving a new contradiction. By following the notation in the proof of Lemma 3.4, one

finds






un(x+ y1n) = ψ1
n(x+ y1n)⇀ u1;

y1n → ∞.
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Note also that ||un||2H1
0 (Ω)

→ ||u1||2H1
0 (Ω)

and I∞(u1) = d∞. Thus, u1 is a ground state

solution of (P∞).

Now, on accounting of Theorem 3.3 one can gets a contradiction by following

the same ideas in [27, Lemma 4.3]. For the sake of completeness, we recall some steps

made in [27, Lemma 4.3]. Denote, by simplicity, yn := y1n,

(RN)+n := {x ∈ R
N ; ⟨x, yn⟩RN > 0},

(RN)−n := R
N − (RN)+n ,

and

wn(x) := un(x)− u1(x− yn).

The above information gives wn → 0 in H1(RN).

By Theorem 3.3, without loss of generality we may assume that u1 is a radially

symmetric solution of (P∞). In the same way as [27, Lemma 4.3] (see also [2, Lemma

4.3]), we derive that















u1(x− yn) ≥
1

2
u1(0) > 0, x ∈ Br(yn);

u1(x− yn) → 0, a.e x ∈ (RN)−n and

∫

(RN )−n

|u1(x− yn)|2χ(|x|)|x| = on(1),

for some r > 0, as well as

⟨τ(u1(x− yn)), yn/|yn|⟩RN ≥ C > 0, n ≥ n0, (3.30)

for some C > 0. On the other hand, taking into accounting that τ(u1(· − yn)) =

τ(un − wn), and that |τ(un)|, |τ(wn)| = on(1), we derive that

|τ(u1(x− yn))| = on(1). (3.31)

From (3.30)-(3.31), we find a contradiction, finishing the proof.

Hereafter we will fix ρ > 0 as the smallest positive number such that Ωc ⊂ Bρ(0).

Let ϕ(x) := φ( |x|
ρ
), where φ ∈ C∞

0 ([0,∞)) is an increasing function such that φ(t) = 0,

0 ≤ t ≤ 1, and φ(t) = 1, t ≥ 2. Now, for each y ∈ R
N , we set

ψy,ρ(x) := ϕ(x)u∞(x− y),
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where u∞ ∈ N∞ is a ground state solution of (P∞), which is assumed to be a decreasing

and radially symmetric at the origin. Finally, fix ty,ρ > 0 satisfying

ϕρ(y) := ty,ρψy,ρ ∈ N∞.

Next, we prove an important property related to the mappings ϕρ(y).

Lemma 3.6 The family of mappings (ϕρ(y)) satisfies the following limits:

i): lim
ρ→0

I∞(ϕρ(y)) = d∞, uniformly in y ∈ R
N ;

ii): For each fixed ρ > 0, it holds lim
|y|→∞

I∞(ϕρ(|y|)) = d∞.

Proof. Verification of i): From the definition of ψy,ρ and the properties of u∞ (see

Theorem 3.3 above), for each fixed p ∈ [2, 2∗], one has

||ψy,ρ − u∞(· − y)||pp ≤ C

∫

B2ρ(0)

|u∞(· − y)|p

≤ C

∫

B2ρ(0)

|u∞(0)|p

≤ C̃ρN = oρ(1), ∀y ∈ R
N .

Similarly, since N ≥ 3,

||∇(ψy,ρ − u∞(· − y))||22 ≤ C

∫

B2ρ(0)

|∇ϕ|2|u∞(· − y)|2 + C

∫

B2ρ(0)

|ϕ(x)− 1|2|∇u∞(· − y)|2

≤ C1ρ
N + C2ρ

N−2, ∀y ∈ R
N .

Hence,

||ψy,ρ||p −→ ||u∞(· − y)||p as ρ→ 0,

as well as

||ψy,ρ||H1(RN ) −→ ||u∞(· − y)||H1(RN ), as ρ→ 0,

uniformly in y ∈ R
N . From this,

∫

RN

F2(ψy,ρ) −→
∫

RN

F2(u∞), as ρ→ 0,

uniformly in y ∈ R
N . Now, using the definition of ψy,ρ, one gets

∫

RN

|F1(ψy,ρ)− F1(u∞(· − y))| =
∫

Bρ(0)

|F1(ψy,ρ)− F1(u∞(· − y))|. (3.32)
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By the mean value theorem,

∫

Bρ(0)

|F1(ψy,ρ)− F1(u∞(· − y))| =
∫

Bρ(0)

|F ′
1(θy,ρ)||ϕ(x)− 1||u∞(· − y))|, (3.33)

where |θy,ρ| ≤ |ψy,ρ|+ |u∞(·−y)|. Then, since (θy,ρ) ⊂ R is a bounded and F1 ∈ C1(R),

we derive that

∫

Bρ(0)

|F ′
1(θy,ρ)||ϕ(x)− 1||u∞(· − y))| ≤ C

∫

Bρ(0)

|ϕ(x)− 1||u∞(0)| = oρ(1).

From (3.32)-(3.33),

∫

RN

F1(ψy,ρ) −→
∫

RN

F1(u∞(· − y)), ∀y ∈ R
N .

Adapting the ideas used in the proof of Lemma 3.1, we can show that ty,ρ → 1 as

ρ→ 0, and so,

||ϕρ(y)||H1(RN ) = ||ty,ρψy,ρ||H1(RN ) −→ ||u∞||H1(RN ) as ρ→ 0,

and
∫

RN

Fi(ϕρ(y)) −→
∫

RN

Fi(u∞), i ∈ {1, 2}.

The last convergences yield that

lim
ρ→0

I∞(ϕρ(y)) −→ I∞(u∞) = d∞,

uniformly in y ∈ R
N , proving the part i) of lemma.

Verification of ii): The proof follows as in the proof Lemma 3.1 and it will be omitted.

A byproduct of the last lemma is the following corollary.

Corollary 3.1 Given ε ≈ 0+, there exists ρ0 > 0 such that

sup
y∈RN

I∞(ϕρ(y)) < 2d∞ − ε, ∀ρ ∈ (0, ρ0).

Next, we establish more two important properties of the mappings ϕρ(y).

Lemma 3.7 Fixed ρ > 0, there exists R0 > ρ such that

i): d∞ < I(ϕρ(y)) <
c0+d∞

2
, |y| ≥ R0;

ii): ⟨τ(ϕρ(y)), y⟩, |y| = R0.
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Proof. Verification of i): By the definition of ϕρ(y),

d∞ ≤ I∞(ϕρ(y)) = I(ϕρ(y)).

On the other hand, as d∞ = d0 (see Lemma 3.1) and (P0) has no ground state solution,

it follows that

d∞ < I(ϕρ(y)), for any ρ > 0 and y ∈ R
N .

Finally, note that, by part ii) of Lemma 3.6,

I(ϕρ(y)) <
c0 + d∞

2
, |y| ≥ R0,

for some R0 > 0 large enough, because c0 > d∞. This completes the proof of item i).

Verification of ii): The proof follows as in [27, Lemma 4.3 (b)].

We finish this section by showing that I|N satisfies the (PS)c for some levels

c ∈ R.

Proposition 3.3 For each fixed ε ≈ 0+, the functional I|N satisfies the (PS)c

condition for c ∈ (d∞ + ε, 2d∞ − ε).

Proof. Let (un) be a (PS)c sequence for I|N . By Lemma 3.2, we know that (un) is a

bounded sequence in X. Since X is a reflexive space, we may assume that

un ⇀ u0 in X.

If un ↛ u0, by Lemma 3.4 there are u1, ..., uk solutions of (P∞) such that

||un||2H1
0 (Ω) −→ ||u0||2H1

0 (Ω) +
k
∑

j=1

||uj||2H1(RN )

and

I(un) −→ I(u0) +
k
∑

j=1

I∞(uj).

Supposing that u0 ̸= 0, we arrive at

I(un) ≥ (k + 1)d∞ + on(1).

Since k ≥ 1, it follows that

c ≥ (k + 1)d∞ ≥ 2d∞,
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which is absurd, because c < 2d∞. This contradiction allows us to infer that u0 = 0.

Moreover, we must have k = 1, because if k > 1, then

I(un) ≥ kd∞ ≥ 2d∞,

obtaining again a contradiction. From this, the unique possibility is u0 = 0 and u1 > 0,

and so,

c+ on(1) = I(un) = I∞(u1) + on(1) = d∞ + on(1).

The last equality implies that c = d∞, which is absurd. This reasoning shows that

un → u0 and the proof is finished.

3.3 Existence of positive solution for (P0) (Dirichlet

case)

Along this section we show how the technical results of the preceding section

imply in the existence of positive solution for (P0). The key point is to show that

the functional I possesses a (PS)c sequence in a suitable level c ∈ (d∞ + ε, 2d∞ − ε),

ε ≈ 0+. Bearing this in mind, set

G := {ϕρ(y); |y| ≤ R0}

and

H :=

{

η ∈ C(N ∩ P,N ∩ P ); η(u) = u, if I(u) <
c0 + d∞

2

}

.

Hereafter, we are using the same notations introduced in Section 4. Now, fix

Γ := {η(G); η ∈ H}

and

c := inf
A∈Γ

sup
u∈A

I(u).

In view of Lemma 3.7-ii), as made in [9, 27], we can prove the lemma below.

Lemma 3.8 It holds

A ∩ T0 ̸= ∅, ∀A ∈ Γ.

Our second result in this section ensures that, for some convenient ε > 0, we must

have
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c ∈ (d∞ + ε, 2d∞ − ε), which is a key step to show the (PS)c condition of I re-

stricted to N .

Lemma 3.9 There exists ε > 0 such that c ∈ (d∞ + ε, 2d∞ − ε).

Proof. Using the preceding lemma, for each A ∈ Γ there exists u0 ∈ A∩T0. Therefore,

c0 = inf
u∈T0

I(u) ≤ I(u0) ≤ sup
u∈A

I(u),

and so,

c0 ≤ c.

Take ε ∈ (0, d∞
2
), ε ≈ 0+, such that

d∞ + ε < c0 ≤ c, (3.34)

which is possible in view of Lemma 3.5. On the other hand, since

c ≤ sup
u∈A

I(u), ∀A ∈ Γ,

we know that,

c ≤ sup
φρ(y)∈G

I(η(ϕρ(y))), ∀η ∈ H.

Choosing η := Id(N∩P ) and applying the Corollary 3.1, one finds

c < 2d∞ − ε,

for ε and ρ small enough. This combines with (3.34) to give

c ∈ (d∞ + ε, 2d∞ − ε).

Now we are able to prove that the problem (P0) has a positive solution.

Proof of Theorem 3.1: Combining the preceding lemma with the Proposition

3.3, it suffices to show that I|N has a (PS)c sequence in P . More precisely, we will

prove that the following condition holds:

(D): For each λ ∈ (0, c− c0+d∞
2

), there exists uλ ∈ I−1([c− λ, c+ λ]) with uλ ∈ N ∩ P
and

||I ′(uλ)||∗ < λ.
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Arguing by contradiction, we find λ0 ∈ (0, c− c0+d∞
2

) such that

||I ′(uλ)||∗ ≥
λ0
2
, ∀u ∈ I([c− λ0, c+ λ0]) ∩ (N ∩ P ).

By applying the version of quantitative deformation lemma in [83], we get

η ∈ C([0, 1]×N ∩ P, N ∩ P ) satisfying
i) : η(t, u) = u, ∀u ∈ I−1([c− λ0, c+ λ0]);

ii) : η(1, Ic+
λ0
2 ) ⊂ Ic−

λ0
2 , with Id := {u ∈ N ∩ P ; I(u) ≤ d}.

By the definition of c, it holds

sup
u∈A0

I(u) ≤ c+
λ0
2
,

for some A0 ∈ Γ, that is,

A0 ∈ Ic+
λ0
2 .

Then, by item ii),

η(1, A0) ∈ Ic−
λ0
2 . (3.35)

Note that A0 = η0(G) for some η0 ∈ H. Setting γ1 := η(1, ·) ◦ η0 we derive that

γ1 ∈ C(N ∩ P,N ∩ P ) and, if I(u) < c0+d∞
2

,

γ1(u) = η(1, η0(u)) = u

(Note that c− λ0 >
c0+d∞

2
). Thus, γ1 ∈ H and

η(1, A0) = η(1, η0(G)) = γ1(G) ∈ Γ.

Consequently, by (3.35),

c ≤ sup
u∈η(1,A0)

I(u) ≤ c− λ0.

This contradiction completes the proof. □

3.4 Existence of positive solution for (S0) (Neu-

mann case)

In this section, we study the existence of solution for the following class of

problems

(S0)











−∆u+ u = Q(x)u log u2, in Ω

∂u

∂η
= 0, in ∂Ω,
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where Ω is an exterior domain as in the problem (P0), and Q : RN −→ R is a continu-

ous function satisfying the following conditions:

(Q1) lim
|x|→∞

Q(x) = Q0 and q0 := inf
x∈RN

Q(x) > 0 for all x ∈ R
N ;

(Q2) Q0 ≥ Q(x) ≥ Q0 − Ce−M |x|2 , for x ≥ R0, M ≥M0,

with Q0, C,M0, R0 > 0.

The reader will see in this section that different of the Dirichlet case, we will prove

that if M0 > 0 is large enough, then the Problem (S0) has a ground state solution.

Let (E, || · ||E) be a Banach space and d ∈ R. We recall that a Cerami sequence

for a functional J ∈ C1(E,R) at level d (shortly (C)d-sequence), is a sequence (un) ⊂ E

satisfying

J(un) −→ d and (1 + ||un||E)||J ′(un)||E′ −→ 0.

We say that J verifies the Cerami condition at level d, or (C)d-condition for short, if

each (C)d-sequence for J admits a convergent subsequence. Note that a (C)d-sequence

for J is also a (PS)d-sequence. Therefore, if un → u0 and (un) is a (C)d-sequence, then

u0 is a critical point of J . See [35] for further details.

Hereafter, we will need of the auxiliary problem below

(S∞)







−∆u+ u = Q0u log u
2, in R

N

u ∈ H1(RN).

Note that, in view of the condition (Q1), the problem (S∞) is the limit problem of (S0).

Applying the Theorem 3.3, by a change of variable, we get the uniqueness

of positive solution for (S∞). In fact, if u1 is a solution for (3.1), by defining

v1(x) := u1(
√
k−1x), by a direct computation, we find

−∆v1 = −v1 +
1

k
v1 log v

2
1 in R

N .

So, we get the existence and uniqueness of positive solution for (S∞) by choosing

k = Q−1
0 .
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From now on, we may assume that, up to translations, the problem (S∞) has a

unique positive solution of the form

v∞(x) = C1e
−C2|x|2 , ∀x ∈ R

N , (3.36)

for convenient C1, C2 > 0.

Related with the problems (S0) and (S∞) we have the energy functionals

J(u) :=
1

2

∫

Ω

(|∇u|2 + (1 +Q(x))|u|2) +
∫

Ω

Q(x)F1(u)−
∫

Ω

Q(x)F2(u), ∀u ∈ Z,

and

J∞(u) :=
1

2

∫

RN

(|∇u|2 + (1 +Q0)|u|2) +
∫

RN

Q0F1(u)−
∫

RN

Q0F2(u), ∀u ∈ Y,

with Z := (H1(Ω) ∩ LF1(Ω), || · ||Z), || · ||Z := || · ||H1(Ω) + || · ||LF1 (Ω), and Y is chosen

as in the previous sections. Thus, J ∈ C1(Z,R), J∞ ∈ C1(Y,R) and critical points of

J and J∞ correspond respectively to solutions of (S) and (S∞).

The Nehari sets associated with the functionals J and J∞ respectively are given

by

M := {u ∈ Z − {0}; J ′(u)u = 0}

and

M∞ := {u ∈ Y − {0}; J ′
∞(u)u = 0}.

Arguing as in the proof of Proposition 3.1, we also derive that the sets M and M∞

are C1-manifolds. Indeed, it suffices to replace Ψ0 and Ψ∞ in the proof of Proposition

3.1 by

Ψ̃0(u) = J(u)− 1

2

∫

Ω

Q(x)|u|2 and Ψ̃∞(u) = J∞(u)− 1

2

∫

RN

Q0|u|2,

respectively. From now on, we will denote by l0 and l∞ the levels

l0 := inf
u∈M

J(u) and l∞ := inf
u∈M∞

J∞(u).

It is not difficulty to prove that the function v∞ given in (3.36) satisfies

J∞(v∞) = l∞. (3.37)

The next result is a version of Lemma 3.4 for the (C)d-sequences of the functional J .
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Lemma 3.10 Let (vn) be a (C)d-sequence for J . Assume that vn ⇀ v0. Then, going

to a subsequence if necessary, either

i) vn → v0 in Z, or

ii) There exists k ∈ N and k nontrivial solutions vj of (S∞), j ∈ {1, ..., k}, satisfying
∥

∥

∥

∥

∥

vn − v0 −
k
∑

j=1

vjn

∥

∥

∥

∥

∥

2

H1(Ω)

= on(1) and J(un) → J(v0) +
k
∑

j=1

J∞(uj),

with vjn := vj(· − yjn), and (yjn) ⊂ R
N with |yjn| → ∞ for each j ∈ {1, ..., k}.

Proof. The proof is a slight variant of the argument made in Lemma 3.4 (see also

the ideas in [4, Lemma 3.3] and [27, Lemma 3.1]). In fact, since (vn) is (C)d-sequence

for J , it holds J ′(vn)vn = on(1). So, it is possible to prove that (vn) is bounded in

the same way of the proof of Lemma 3.4. From this, it follows that (vn) is a bounded

(PS)d sequence for J . Accounting that vn ⇀ v0, we derive that J ′(v0) = 0, and so, v0

is a solution of (S0). Following the ideas in the proof of Lemma 3.4, setting

ξ1n(x) := vn(x)− v0(x), in Ω;

we find that

ξ1n ⇀ 0 in Z.

Then, if ξ1n → 0 in Z, the proof would be finished. Otherwise, if ξ1n ̸→ 0 in Z, arguing

as in the proof of Lemma 3.4, see items i)− ii), we find

J(ξ1n) = J(vn)− J(v0) + on(1) (3.38)

and

J ′(ξ1n)ξ
1
n = J ′(vn)vn − J ′(v0)v0 + on(1). (3.39)

In the same line of Lemma 3.4, let us consider (y1n)n∈N in R
N , with y1n the centers

of unit N -dimensional hypercubes Bi, R
N =

⋃

i∈N

Bi, and verify

||ξ1n||pLp(B̃i)
= max

j∈N
||ξ1n||pLp(B̃j)

:= δn,

where B̃i = (Bi ∩ Ω). Next, we are going to guarantee that

δn ≥ τ0 > 0, n ≥ n0,
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for some n0 ∈ N, and

|y1n| → ∞.

In the sequel, we set

ξ̃n(x) = ξ1n(x+ y1n), Ω1
n = {y − y1n; y ∈ Ω}, Xn := H1(Ω1

n) ∩ LF1(Ω1
n)

and the functional Jn : Xn −→ R given by

Jn(u) :=
1

2

∫

Ω1
n

(|∇u|2+(1+Q(x+y1n))|u|2)+
∫

Ω1
n

Q(x+y1n)F1(u)−
∫

Ω1
n

Q(x+y1n)F2(u), u ∈ Xn.

The following claim holds.

Claim 3.6 The sequence ξ̃n is such that

Jn(ξ̃n) ≥ τ1 > 0, (3.40)

for some τ1 ∈ R.

It suffices to show that

inf
n∈N

(

1

2

∫

Ω1
n

(|∇ξ̃n|2 + (1 +Q(x+ y1n))|ξ̃n|2) +
∫

Ω1
n

Q(x+ y1n)F1(ξ̃n)−
∫

Ω1
n

Q(x+ y1n)F2(ξ̃n)

)

is a positive number.

Arguing as in the Claim 3.2, by considering (3.39) and the condition (Q1), we

find

Jn(ξ̃n) =

∫

Ω1
n

Q(x+ y1n)|ξ̃n|2 + on(1) ≥ q0

∫

Ω1
n

|ξ̃n|2 + on(1).

Now, if for some subsequence it holds Jn(ξ̃n) ≤ on(1), then it would have

||(χΩ1
n
ξ̃n)||2L2(RN ) = on(1), and so

∫

RN

|χΩ1
n
ξ̃n|p = on(1), for a fixed p ∈ (2, 2∗], by

an interpolation argument. From this, by the properties on F2 (vide (P2) above), it

follows that
∫

Ω1
n

F ′
2(ξ̃n)ξ̃n =

∫

RN

F ′
2(χΩ1

n
ξ̃n)χΩ1

n
ξ̃n = on(1).

Therefore,
∫

Ω1
n

(|∇ξ̃n|2 + (1 +Q(x+ y1n))|ξ̃n|2) +
∫

Ω1
n

Q(x+ y1n)F
′
1(ξ̃n)ξ̃n = on(1).

Equivalently, by a change of variable,
∫

Ω

(|∇ξn|2 + (1 +Q(x))|ξn|2) +
∫

Ω

Q(x)F ′
1(ξn)ξn = on(1),

contradicting the fact that ξn ↛ 0. The proof of the claim is completed.

In the same line of Lemma 3.4, we are able to show that the next claim holds.
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Claim 3.7 There exist τ0 > 0 and n0 ∈ N such that

δn ≥ τ0, n ≥ n0.

Take into accounting the inequality in (3.40), the proof of the claim follows by

reasoning as made in Claim 3.2. However, we would like point out an important fact

related with the proof of the Claim 3.2. The inequality in (3.25) plays a crucial role in

the proof of Claim 3.2. Such inequality is based in the fact that the constant associated

with the embedding

H1(Bi) →֒ Lp(Bi)

are independent of i. In the current proof a similar property also holds, more precisely

H1(B̃i) →֒ Lp(B̃i),

since the sets B̃i = (Bi ∩ Ω) verify the uniform cone property (see [1]).

The preceding claim assures that

|y1n| −→ ∞.

In fact, otherwise, it would be possible to find R > 0, such that
∫

(BR(0)∩Ω)

|ξ1n|p ≥
∫

B̃i

|ξ1n|p = δpn ≥ τ p0 > 0.

This contradicts the convergence
∫

(BR(0)∩Ω)

|ξ1n|p −→ 0,

which is valid in view of the weak convergence ξ1n ⇀ 0 in Z. Thus, hereafter we will

assume that |y1n| → ∞.

Now, since y1n → ∞, we know that Ω1
n → R

N , as n → ∞, (in the sense of the

characteristic functions χΩ1
n
→ 1 a.e. in R

N) for each R > 0, there exists m0 ∈ N such

that BR(0) ⊂ Ω1
n, n ≥ m0. Considering that (ξ1n) is a bounded sequence, it is possible

to find v1 ∈ Y \ {0} satisfying

ξ̃n ⇀ v1 in H1(BR(0)) ∩ LF1(BR(0)),

for each R > 0 fixed. Fixed ϕ ∈ C∞
0 (Ω), inasmuch as |y1n| → ∞, we know that, for

some m1 ∈ N, it holds

suppϕ(· − y1n) ⊂ Ω, n ≥ m1.
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Hence, ϕ(y1n) := ϕ(· − y1n) ∈ C∞
0 (Ω) for n ≥ m1.

By exploring the ideas in the proof of Lemma 3.4-ii), we derive

sup
n∈N

(

|J ′(ξn)| · ||ϕ(· − y1n)||Z
)

= on(1).

By combining these information with the properties (Q1) and (3.25) above, we

derive that v1 is a nontrivial solution of (S∞). Set

ξ2n := ξ1n − v1(· − y1n), in Ω.

Hence, we can repeat the preceding steps made with ξ1n. Following this procedure,

the reasoning made in final of Lemma 3.4 allows us to get a k ∈ N and unbounded

sequences (y1n), ..., (y
k
n) in R

N in such way that

ξjn := ξj−1
n (·+ yj−1

n )− vj−1 ⇀ 0, in Y,

with vj−1 a nontrivial solution of (S∞), ξk+1
n → 0, as n → ∞, j ∈ {2, ..., k}. Setting

vj := vj(· − yjn), these facts assure that

∥

∥

∥

∥

∥

vn − v0 −
k
∑

j=1

vjn

∥

∥

∥

∥

∥

2

H1(Ω)

= on(1)

as well as

J(un) −→ J(v0) +
k
∑

j=1

J∞(uj).

An immediate consequence of the preceding lemma is following corollary.

Corollary 3.2 The functional J verifies the (C)d-condition for d ∈ (0, l∞).

Proof. Let (vn) be a (C)d-sequence, with d ∈ (0, l∞). In particular,

J ′(vn)vn = on(1),

and so, using the same ideas explored in the begin of the proof of Lemma 3.3, we derive

that (vn) is a bounded sequence in Z and, going to a subsequence if necessary, it holds

vn ⇀ v0, for some v0 ∈ Z. Since (vn) is a (C)d-sequence, we have J ′(v0) = 0. Now, it

is sufficient to observe that the hypothesis d ∈ (0, l∞) combined with the items i)− ii)

of the preceding lemma gives the required result.
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We are going to show that J has a ground state solution, i.e., a positive solution v0

satisfying J(v0) = l0. We start by showing that the functional J satisfies the mountain

geometric (see e.g [83, Section 2.3]).

Lemma 3.11 The functional J verifies the Mountain Pass geometry, i.e.,

i) J(0) = 0 and there exist r, ρ0 > 0 such that J∂Br(0) ≥ ρ0;

ii) There exits v, ||v||Z > r, and J(v) ≤ J(0) = 0.

Proof. i): From the conditions (Q1)− (Q2) it follows that, for some constant C > 0,

it holds

J(u) ≥ C||u||2H1(Ω) + C

∫

Ω

F1(u)−Q0

∫

Ω

F2(u).

By using (2.4) and (P2), modifying the constant C if necessary, we can find r ≈ 0+

such that, for ||u||Z = r, is valid that

J(u) ≥ C||u||2H1(Ω) + C||u||2LF1 (Ω) − C1||u||pZ ≥ C2||u||2Z − C1||u||pZ

with C1, C2 > 0 and p > 2. The property required in the item i) follows as a direct

consequence of the last inequality.

ii): Fix u ∈ Z − {0}. So,

J(tu) =
t2

2

[
∫

Ω

(|∇u|2 + |u|2)− 1

2

∫

Ω

Q(x)u2 log u2 − log t

∫

Ω

Q(x)u2
]

−→ −∞,

as t→ ∞. So, the item ii) holds by taking v = tu, for some t ≈ ∞.

We are going to show that the problem (S0) has a ground state solution. To begin

with, we will show the existence of a (C)d-sequence at mountain pass level. Namely,

we have the following corollary.

Corollary 3.3 The functional J has a sequence (C)l̃0-sequence, where l̃0 is the level

l̃0 := inf
γ∈Γ

sup
t∈[0,1]

J(γ(t)),

and

Γ := {γ ∈ C([0, 1], Z); γ(0) = 0, γ(1) < 0}.

Proof. The result follows by a variant of the classical Mountain Pass Theorem of

Ambrosetti-Rabinowitz (see, e.g., [83, Section 2]). Note that the reasoning made in [83]

can be adapted when the (PS)d-sequences are replaced by (C)d-sequences (see the
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Proposition 1.1 in [38] for a statement of a variant Mountain Pass Theorem involving

the Cerami sequences).

Exploring the ideas in [10, Lemma 3.3], in view of (Q1), we can show that the

level l̃0 in the above corollary coincides with the level l0, namely, it holds

l̃0 = l0 := inf
u∈M

J(u). (3.41)

Thereby, the last corollary assures the existence of a (C)l0-sequence for J . The next

lemma is our main technical result in the present section, and it relates the levels l0

and l∞.

Lemma 3.12 Assume the conditions (Q1)−(Q2). Then the following inequality holds.

l0 < l∞.

Proof. Set

vn(x) := v∞(x− xn),

with xn := (n, 0, ..., 0) ∈ R
N and v∞ the solution of (S∞) satisfying (3.37). By (3.41),

l0 ≤ max
t≥0

J(tvn) =: J(tnvn),

and tn ∈ (0,∞). In this way, we derive that tnvn ∈ M, which yields

t2n

∫

Ω

(|∇vn|2 + |vn|2) =
∫

Ω

t2n|vn|2 log |tnvn|2.

Therefore, since |xn| → ∞, the same ideas employed in the proof of Lemma 3.1 enable

us to show that, going to a subsequence if necessary, it holds tn → 1.

Now, it follows that

l0 ≤ J(tnvn) =
1

2

∫

Ω

(|tn∇vn|2 + (1 +Q(x))|tnvn|2) +
∫

Ω

Q(x)F1(tnvn)−
∫

Ω

Q(x)F2(tnvn) =

= J∞(tnvn)−
t2n
2
An +

∫

Ωc

Q0F2(tnvn)−
∫

Ωc

Q0

[

F1(tnvn) +
t2n
2
v2n

]

+

+

∫

Ω

(Q0 −Q(x))

[

F2(tnvn)− F1(tnvn)−
t2n
2
v2n

]

,

with An :=

∫

Ωc

(|∇vn|2 + |vn|2). From (Q1),

l0 ≤ J∞(tnvn)−
t2n
2
An +

∫

Ωc

Q0F2(tnvn) +

∫

Ω

(Q0 −Q(x))F2(tnvn).
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Taking into account that tn → 1 as |xn| → ∞, the condition (Q1) and the invariance

by translations of RN , one finds

J∞(tnvn) = J∞(v∞) + on(1) = c∞ + on(1).

This information together with the last inequality give

l0 ≤ l∞ + on(1)−
t2n
2
An +Bn, (3.42)

with Bn :=

∫

Ωc

Q0F2(tnvn) +

∫

Ω

(Q0 −Q(x))F2(tnvn).

Our next step is proving that
Bn

An

→ 0. Having this in mind, since |Ωc| <∞, the

equality in (3.36) implies

An ≥
∫

Ωc

|vn|2 ≥ Ce−2C2n2

, ∀n ∈ N, (3.43)

for a convenient C > 0. From the condition (P2), for some p ∈ (2, 2∗], it holds

|F2(t)| ≤ Cp|t|p, ∀t ∈ R.

Therefore, using again |Ωc| <∞, one has

Q0

∫

Ωc

F2(tnvn) ≤ Ce−pC2n2

, (3.44)

for some C. Now, take Rn ∈ (0, n). So,

∫

Ω

(Q0 −Q(x))F2(tnvn) =

∫

Ω∩[|x|>Rn]

(Q0 −Q)F2(tnvn) +

∫

Ω∩[|x|≤Rn]

F2(tnvn).

By invoking the assumption (Q2), it follows that

∫

Ω∩[|x|>Rn]

(Q0 −Q(x))F2(tnvn) ≤ Ce−MR2
n , (3.45)

for some C > 0, as well as,

∫

Ω∩[|x|≤Rn]

(Q0 −Q(x))F2(tnvn) ≤ CNn
Ne−pC2(n−Rn)2 . (3.46)

for some constant CN > 0. The estimates in (3.43)-(3.46) combined produce, for some

constant C > 0,

Bn

An

≤ C

(

e2C2n2

epC2n2 +
e2C2n2

eMR2
n
+
CNn

Ne2C2n2

epC2(n−Rn)2

)

.
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Setting Rn :=
n

k
, k ∈ N, we find

CNn
Ne2C2n2

epC2(n−Rn)2
=
CNn

Ne2C2n2

e(
k−1
k

)2pC2n2
.

Since

(

k − 1

k

)2

converges to 1, as k → ∞, and p > 2, we may fix k0 ≈ ∞ such that

p
(

k0
k0−1

)2

> 2. Hence

CNn
Ne2C2n2

e
(
k0−1
k0

)2pC2n2
−→ 0.

Then, choosing M0 large enough in the condition (Q2), we derive that

e2C2n2

eMR2
n
=

e2C2n2

e(M/k20)n
2
−→ 0.

These convergences assure that
Bn

An

−→ 0.

Recalling that tn → 1 for some n0 ∈ N,

−t
2
n

2
An +Bn =

(−t2n
2

+
Bn

An

)

An < 0, n ≥ n0.

Using this information in (3.42), we derive that

l0 < l∞,

proving the desired result.

Now we can prove our main result.

Proof of Theorem 3.2. The proof is essentially established. In fact, by combining

the Corollary 3.3 with (3.41), there exists a (C)l0-sequence for J , which will be denotes

by (vn). Since (vn) is bounded, it follows that

J(vn) −→ l0 and J ′(vn) −→ 0.

Invoking together the Corollary 3.2 and the Lemma3.12, we may assume that

vn −→ v0 in Z,

for some v0. In this way, we derive that

J(v0) = l0 and J ′(v0) = 0,
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and so v0 is a ground state solution for (S0). Now, we would like to point out

that v0 can be chosen as a positive solution. Indeed, writing v0 = v+0 − v−0 , with

v+0 := max{v0, 0} and v−0 := max{−v0, 0}, we find J ′(v+0 )v
+
0 = J ′(v−0 )v

−
0 = 0 and

l0 = J(v0) = J(v+0 ) + J(v−0 ). These facts combined assure that either v+0 = 0 or

v−0 = 0. Hence, since f(t) = t log t is an odd function, we may assume that v0 ≥ 0, so

that v0 > 0 by a variant of maximum principle presented in [82] (see [7, 10, 11] for a

similar reasoning)



APPENDIX A

A brief on nonsmooth critical point theory

Next, we present, in general lines, some notions of the generalized critical point

theory required in our study. We subdivide the list of abstract concepts and results

into two parts: firstly, we present the notions related with locally Lipschitz functionals.

Secondly, we introduce the concepts referring to l.s.c. functionals. For further details

and proofs, we refer Chang [36], Clarke [40,41], Carl, Le and Motreanu [34], Motreanu

and Panagiotopoulos [71, Chapters 1-2], and Szulkin [81].

A.1 The locally Lipschitz case

A real-valued functional φ : X → R is called locally Lipschitz continuous (briefly

φ ∈ Liploc(X,R)) when to every u ∈ X there correspond a neighbourhood V := Vu of

u and a constant K := Ku > 0 such that

|φ(v)− φ(w)| ≤ K∥v − w∥, ∀v, w ∈ V.

The generalized directional derivative of φ ∈ Liploc(X,R) at u along the direction

v ∈ X is defined by

φ◦(u; v) := lim sup
w→u, t→0+

φ(w + tv)− φ(w)

t
.

The generalized gradient of the function φ ∈ Liploc(X,R) in u is the set

∂φ(u) = {ϕ ∈ X∗ : φ◦(u; v) ≥ ⟨ϕ, v⟩ , ∀ v ∈ X}.
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Proposition 2.1.2 of [41] ensures that ∂φ(u) turns out nonempty, convex, in addition

to weak* compact, and that

φ◦(u; v) := max{⟨η, v⟩ : η ∈ ∂φ(u)}.

In the sequel we say that a point u ∈ X is a critical point of φ ∈ Liploc(X,R)

if 0 ∈ ∂φ(u). We also recall that, when a functional η : X → R is convex, the

subdifferential of η at u is the set

∂sη(u) := {ϕ ∈ X∗ : η(v)− η(u) ≥ ⟨ϕ, v − u⟩ , ∀ v ∈ X}. (A.1)

If η ∈ Liploc(X,R) then ∂sη(u) = ∂η(u).

Some usual properties of the generalized directional derivative as well of the

generalized gradient are listed below.

Lemma A.1 Let φ ∈ Liploc(X,R), then

i) the map (u, v) 7→ φ◦(u, v) is an upper semicontinuous functional, i.e. if

(uj, vj) → (u, v) then

lim supφ◦(uj, vj) ≤ φ◦(u, v);

ii) φ◦(u,−v) = (−φ)◦(u, v).

Lemma A.2 If ψ is continuously Fréchet differentiable in an open neighborhood of

u ∈ X, then ∂ψ(u) = {ψ′(u)}.

Lemma A.3 If φ, ψ ∈ Liploc(X,R), then for each u ∈ X one has

i) ∂(φ+ ψ)(u) ⊆ ∂φ(u) + ∂ψ(u);

ii) ∂(φ+ ψ)(u) = {φ′(u)}+ ∂ψ(u), provided that φ ∈ C1(X,R).

In the next lemma we report an important property between φ◦(u, v) and the

Gâteaux derivatives of φ at u ∈ X along v ∈ X, i.e.

∂φ

∂v
(u) := lim

t→0+

φ(u+ tv)− φ(u)

t
. (A.2)

Lemma A.4 If φ ∈ Liploc(X,R) is convex, then
∂φ

∂v
(u) exists for any u, v ∈ X and

∂φ

∂v
(u) = φ◦(u, v).
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A.2 The lower semicontinuous case

From now on, we say that a functional I : X → (−∞,+∞] is a Szulkin-type functional

if

(H0) I := Φ + Ψ, with Φ ∈ C1(X,R) and Ψ : X → (−∞,+∞] is a convex lower

semicontinuous functional and proper, i.e. Ψ ̸≡ ∞.

The effective domain of I is defined by

D(I) := {u ∈ X : I(u) < +∞},

and so, for a Szulkin-type functional I one has that D(I) = D(Ψ). For each u ∈ D(I),

we say that the subdifferential of I at u is the set

∂I(u) := {φ ∈ X∗ : ⟨Φ′(u), v − u⟩+Ψ(v)−Ψ(u) ≥ ⟨φ, v − u⟩ , ∀v ∈ X}. (A.3)

Definition A.1 Suppose that I is a Szulkin-type functional Then

i) a point u ∈ X is called a critical point of I if 0 ∈ ∂I(u), or more precisely,

u ∈ D(I) and

⟨Φ′(u), v − u⟩+Ψ(v)−Ψ(u) ≥ 0, ∀v ∈ X,

ii) a sequence (un) is called a Palais-Smale sequence (briefly (PS) sequence) for I at

level c ∈ R if I(un) → c and

⟨Φ′(un), v − un⟩+Ψ(v)−Ψ(un) ≥ −εn∥v − un∥, ∀v ∈ X,

with εn → 0+, or equivalently (see [81, Proposition 1.2])

⟨Φ′(un), v − un⟩+Ψ(v)−Ψ(un) ≥ ⟨wn, v − un⟩, ∀v ∈ X,

where wn ∈ X∗ with wn → 0 in X∗;

iii) I satisfies the Palais-Smale condition (briefly (PS) condition) at level c ∈ R when

each (PS) sequence (un) at level c has a convergent subsequence. If I verifies the

(PS) condition for all level c, we say simply that I satisfies the (PS) condition.

For a fixed Szulkin-type functional I, denote by K and Kc respectively, the

following sets

K := {u ∈ X : u is a critical point of I},

and

Kc := {u ∈ K : I(u) = c}.

The following result holds
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Proposition A.1 Suppose that I verifies (H0) and the (PS) condition at level c ∈ R.

Then, Kc is a compact set.



APPENDIX B

Group actions on Banach spaces

This appendix is focused in discussing the main notions associated with group

actions on Banach spaces. The notions described in this subsection follow closely the

presentation in [83, Sections 1.6 and 3.2]; see also Bartsch [24] for additional comments

and remarks. We also give a short review about the building of the Haar’s integral on

a compact group G; see Nachbin [72] for a abstract preview on this subject.

B.1 General settings

Let G be a topological group with neutral element e and X a Banach space. An

action of G on X is a continuous function

ϕ :G×X →X

(g, v) 7→ϕ(g, v) = gv

such that

(G1) ev = v, ∀x ∈ X;

(G2) (gh)v = g(hv), ∀v ∈ X, ∀g, h ∈ G;

(G3) For each g ∈ G the map

ϕg :X → X

v 7→ ϕg(v) = gv

is linear.
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If in addition to the above condition, the following relation holds

(G4) ∥gv∥ = ∥v∥, ∀v ∈ X, ∀g ∈ G,

then the map ϕ is said to be an isometric action. According to the above definitions,

we say that G acts isometrically on X when (G1)− (G4) hold.

The subspace of invariant elements of X is defined by

Fix(G) := {u ∈ X : gu = u ∀g ∈ G}.

Example B.1 1º) Let Id : X → X be the identity map on X and consider the usual

representation Z2 = {Id,−Id}. Standard computations ensure that the group Z2 acts

isometrically on X.

2º) Consider G = O(N) the group of orthogonal maps on R
N . We define the action

of G on H1(RN) in the following way

gu = u ◦ g−1, g ∈ G, u ∈ H1(RN).

Note that, in this case, Fix(G) = H1
rad(R

N) and that G acts isometrically on H1(RN)

(see [83, Section 1.5] for additional comments).

A subset A of X is said to be G-invariant if gA = A for every g ∈ G, where

gA := {gx : x ∈ A}. Also, when A ⊂ X is a G-invariant set, a map γ : A → X is

called equivariant map if

γ(gx) = gγ(x) ∀x ∈ A, ∀g ∈ G.

If a functional (not necessarily linear) φ defined on X satisfies φ(gx) = φ(x) for any

x ∈ X and g ∈ G, we say that φ is a G-invariant functional.

Notation: ΓG(A) := {γ ∈ C(A,X) : γ is equivariant}.

B.2 The Haar’s Integral

The proofs e more detailed comments about the results and concepts in the sequel

can be found in [72, Chapter II].
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B.2.1 The normalized Haar measure

Suppose that G is a locally compact group and µ a positive measure on G.

According to the classical literature on the subject, L(G, µ) denotes here the space of

the integrable functions f : G −→ R with respect to the measure µ, and µ is a left

invariant measure when

∫

G

f(g−1y)dµ =

∫

G

f(y)dµ, ∀g ∈ G, (B.1)

for every f ∈ L(G, µ).
The next result assures the existence of a left invariant measure on a locally

compact topological group G.

Theorem B.2 (Haar) Let G be a locally compact group. Then, there exists at least

one left invariant positive measure µ0 ̸= 0. Moreover, the measure µ0(G) is unique

except for a strictly positive factor of proportionality, i.e. if µ1 is a left invariant

positive measure on G, there exists c > 0 such that µ1 = cµ0(G). Finally

µ0(G) <∞ ⇔ G is compact.

See [72, Chapter II, Sections 4 and 5] for a detailed proof.

Corollary B.1 (Normalized Haar measure) Let G be a compact group. Then,

there exists a left invariant positive measure µ on G such that µ(G) = 1.

Proof. Take µ :=
1

µ0(G)
µ0, with µ0 given in the Theorem B.2.

Remark B.1 The integral associated to µ0 in the Theorem B.2 is the so called Haar’s

integral.

B.2.2 A vector-valued version of the Haar’s integral

The Haar’s integral as defined above can be extended for

X-valued measurable functions, that is, for functions f : G −→ X. In the sequel

we show how this construction can be established. The steps and arguments follow

the ideas in [55, Apenddix E] and [31, Chapter 9.].

Fix G a compact group that acting isometrically in a Banach space X and let µ

be the Normalized Haar’s measure given in Corallary B.1. Denote by Σ a σ-algebra of

G such that µ is well defined on Σ.
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Definition B.1 A function ϕ : G −→ X is said to be a measurable simple function if

there exist A1, ..., Ak ∈ Σ, Ai ∩ Aj = ∅, i ̸= j, and v1, ..., vk ∈ X such that

ϕ =
k
∑

j=1

χAj
vj,

with χAj
the characteristic function of Aj, j ∈ {1, ..., k}.

An arbitrary function f : G −→ X is called a measurable function if there exists

a sequence of measurable functions (ϕn)n∈N such that

ϕn(x) −→ f(x), a.e. in G.

By following the same ideas in the building of the Bochner’s integral (see, e.g., [31,

Chapter 9]) we have the following definition.

Definition B.2 Consider a measurable simple function of the form f =
k
∑

j=1

χAj
vj. We

define the (vector) integral of f as follows:

∫

G

f dµ =

∫

G

(

k
∑

j=1

χAj
vj

)

dµ :=
k
∑

j=1

µ(Aj)vj.

Given a measurable function f : G −→ X, we say that f is an integrable function

if there exists a sequence (fn)n∈N of measurable simple functions satisfying

lim
n→∞

∫

G

||fn − f || dµ −→ 0. (B.2)

The convergence in (B.2) enable us to define the integral of a measurable function in

the following way.

Definition B.3 Given a measurable function f : G −→ X and B ∈ Σ we define the

integral of f on B by the equality below:

∫

B

f dµ := lim
n→∞

∫

G

χBfn dµ,

with (fn)n∈N a sequence of measurable simple functions verifying (B.2).

The following propositions, whose the proofs can be found in [31, Section 9.7],

assure that last definition is well posed. In addition, some technical properties involving

vector integrals are pointed out in the next results.
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Proposition B.1 Let f : G −→ X be a function. The following items are valid:

i): The function f is a measurable function if, and only if, the function

||f || : G −→ R is a real-valued measurable function.

ii): The function f is an integrable function if, and only if, the function

||f || ∈ L(G, µ).

iii): If f : G −→ X is an integrable function (in the sense of (B.2)), then there exists

(fn)n∈N a sequence of measurable simple functions such that

fn(x) −→ f(x), a.e in G

and

||fn − f || −→ 0 in L1(G).

The next result present some properties of the vector integrals which have been

used in Chapter 1.

Proposition B.2 Let f : G −→ X be an integrable function and consider B ∈ Σ. So,

it holds:

i):

∣

∣

∣

∣

∣

∣

∣

∣

∫

B

f dµ

∣

∣

∣

∣

∣

∣

∣

∣

≤
∫

B

||f || dµ.

ii): Let Y a Banach space and T : X −→ Y a continuous linear map. Then, the

function T ◦ f : G −→ Y is an integrable function with

∫

G

T ◦ f dµ = T

(
∫

G

f dµ

)

.

Next, we prove that the left invariance property of µ in (B.1) still holds for

integrable X-valued functions f : G −→ X.

Theorem B.3 For all integrable function f : G −→ X it holds
∫

G

f(g−1x) dµ =

∫

G

f(x) dµ.

Proof. Initially, consider the case that

f =
k
∑

j=1

χAj
vj

is a measurable simple function. So, given g ∈ G, we have

f(g−1x) = vj,
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for any x ∈ gAj = {gy; y ∈ Aj}. Since G acts isometrically in X, it holds gAj ∩ gAi,

i ̸= j, i, j ∈ {1, ..., k}, so that

f(g−1x) =
k
∑

j=1

χgAj
(x)vj.

Since µ is a left-invariant for real function ϕ ∈ L(G, µ), we get

µ(gAj) =

∫

G

χgAj
(x) dµ =

∫

G

χAj
(g−1x) dµ =

∫

G

χAj
(x) dµ = µ(Aj),

para todo j ∈ {1, ..., k}. Hence
∫

G

f(g−1x) dµ =
k
∑

j=1

µ(gAj)vj =
k
∑

j=1

µ(Aj)vj =

∫

G

f(x) dµ,

showing that the result it is true for measurable simple functions.

The general case is a direct consequence of the first case. To see why, given

a integrable function f : G −→ X, take (fn)n∈N a sequence of measurable simple

functions verifying the Part iii) of Proposition B.1. Note that, for each g ∈ G, using

the properties of convergence, we derive that

∫

G

f(g−1x) dµ = lim
n→∞

∫

G

fn(g
−1x) dµ.

The conclusion is now an application of the first part.

We will finish this subsection by presenting the useful example below.

Example B.4 Define η : X −→ X as follows:

η(u) :=

∫

G

gβ(g−1u) dµ,

with β ∈ C(X,X). From the properties of the integral, we know that η ∈ C(X,X).

Furthermore, given g0 ∈ G, we get

η(g0u) = g0

∫

G

g−1
0 gβ((g−1

0 g)
−1
u) dµ.

By the preceding theorem, we derive that

η(g0u) = g0η(u),

proving that η is an equivariant map on X, i.e., η ∈ ΓG(X).
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A short review on Orlicz spaces

This appendix is a primer of Orlicz spaces, in which we present some notions

and properties related to the Orlicz spaces needed in our work; for further details

see [1, 59, 77].

C.1 On N-functions and Orlicz spaces

We start by recalling the definition of a N-function.

Definition C.1 A continuous function Φ : R → [0,+∞) is a N-function if:

(i) Φ is convex.

(ii) Φ(t) = 0 ⇔ t = 0.

(iii) lim
t→0

Φ(t)

t
= 0 and lim

t→∞

Φ(t)

t
= +∞.

(iv) Φ is an even function.

We say that a N -function Φ verifies the ∆2-condition, denoted by Φ ∈ (∆2), if

Φ(2t) ≤ kΦ(t) ∀ t ≥ t0,

for some constants k > 0 and t0 ≥ 0.

The conjugate function Φ̃ associated with Φ is given by the Legendre’s

transformation, more precisely,

Φ̃ = max
t≥0

{st− Φ(t)} for s ≥ 0.
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It is possible to prove that Φ̃ is also a N-function. The functions Φ and Φ̃ are

complementary to each other, that is, ˜̃Φ = Φ.

Given an open set A ⊂ R
N , we define the Orlicz space associated with the

N -function Φ as

LΦ(A) =

{

u ∈ L1
loc(A) ;

∫

A

Φ

( |u|
λ

)

< +∞, for some λ > 0

}

.

The space LΦ(A) is a Banach space endowed with Luxemburg norm given by

||u||Φ = inf

{

λ > 0 ;

∫

A

Φ

( |u|
λ

)

≤ 1

}

.

We would like to point out that in Orlicz spaces we also have a Hölder and Young

type inequalities, namely

st ≤ Φ(t) + Φ̃(s), ∀s, t ≥ 0,

and
∣

∣

∣

∣

∫

A

uv

∣

∣

∣

∣

≤ 2||u||Φ||v||Φ̃, ∀ u ∈ LΦ(A) and u ∈ LΦ̃(A).

Moreover, for each ε > 0, it holds

st ≤ Φ(Cεt) + εΦ̃(s), ∀s, t ≥ 0, (C.1)

for some positive Cε > 0. When Φ, Φ̃ ∈ (∆2), the space LΦ(A) is reflexive and

separable. Furthermore, the ∆2-condition yields that

LΦ(A) =

{

u ∈ L1
loc(A) ;

∫

A

Φ (|u|) < +∞
}

and

un → u in LΦ(A) ⇔
∫

A

Φ(|un − u|) → 0.

We would like to mention an important relation involving N-functions related with

the (∆2) condition. Let Φ be a N-function of C1 class and Φ̃ its conjugate function.

Suppose that

1 < l ≤ Φ′(t)t

Φ(t)
≤ m < N, t ̸= 0, (C.2)

then Φ, Φ̃ ∈ (∆2). It is very important to point out that, when Φ, Φ̃ ∈ (∆2), it holds

C∞
0 (A)

||·||Φ
= LΦ(A),
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for any open set A ⊂ R
N .

Finally, setting the functions

ξ0(t) := min{tl, tm} and ξ1(t) : max{tl, tm}, t ≥ 0,

it is well known that under the condition (C.2) one has

ξ0(||u||Φ) ≤
∫

A

Φ(u) ≤ ξ1(||u||Φ). (C.3)

We finish this section by recalling a Brezis-Lieb type result involving N-functions found

in [32, Theorem 2]

Proposition C.1 (A Brezis-Lieb type result) Suppose Φ is a N-function with

Φ ∈ (∆2). Let (gn) be a sequence in LΦ(A) satisfying:

i) (gn) is a bounded sequence in LΦ(Ω);

ii) gn(x) → 0 a.e. in A.

Then, for each w ∈ LΦ(A),

∫

A

|Φ(gn + w)− Φ(gn)− Φ(w)| = on(1).

C.2 A special example of N-function

Here we prove that the function F1 in (2.2), used in the decomposition

F2(t)− F1(t) =
1

2
t2 log t2,

is a N-function such that F1, F̃1 ∈ (∆2).

Fix a small δ > 0 and recall the definition of F1.

F1(s) :=



























0, s = 0

−1

2
s2 log s2, 0 < |s| < δ

−1

2
s2(log δ2 + 3) + 2δ|s| − δ2

2
, |s| ≥ δ

(C.4)

The following proposition is the main result of this section.

Proposition C.2 The function F1 is a N-function. Furthermore, it holds that F1,

F̃1 ∈ (∆2).
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Proof. A direct computation shows that F1 verifies i)−iv) of the Definition C.1. Now,

in order to finish the proof we will show that F1 satisfies the relation (C.2). First of

all, notice that

F ′
1(s) :=







− (log s2 + 1)s, 0 < s < δ,

− s(log δ2 + 3) + 2δ s ≥ δ.

Next, we will analyze separately the cases 0 < s < δ and s ≥ δ.

Case 1: 0 < s < δ ≈ 0+.

In this case,
F ′
1(s)s

F1(s)
= 2 +

1

log s
,

which implies the existence of l1 > 1 satisfying

1 < l1 ≤
F ′
1(s)s

F1(s)
≤ m1 := sup

0<s<δ

(

2 +
1

log s

)

≤ 2, (C.5)

for δ small enough.

Case 2: s ≥ δ.

In this case,
F ′
1(s)s

F1(s)
=

−(log δ2 + 3)s2 + 2δs

−1
2
(log δ2 + 3)s2 + 2δs− 1

2
δ2
.

From this,

sup
s≥δ

F ′
1(s)s

F1(s)
≤ sup

s≥δ

(−(log δ2 + 3)s2 + 2δs+ (2δs− δ2)

−1
2
(log δ2 + 3)s2 + 2δs− 1

2
δ2

)

≤ 2.

Since

lim
s→+∞

F ′
1(s)s

F1(s)
= 2 and

F ′
1(s)s

F1(s)
> 1, ∀s > 0,

one gets

1 < inf
s>0

F ′
1(s)s

F1(s)
.

The last inequalities ensure the existence of l ∈ (1, 2) such that

1 < l ≤ F ′
1(s)s

F1(s)
≤ 2, ∀s > 0. (C.6)

As F1 is an even function, the sentence above holds for any s ̸= 0 and the proof is

finished.

Given an open set Ω ⊂ R
N , by the remarks in the previous section, the last

proposition assures that

C∞
0 (Ω)

||·||
LF1 (Ω) = LF1(Ω),

as well as that the Orlicz space LF1(Ω) is a reflexive and separable Banach space.
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