
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

RUAN GOMES DE OLIVEIRA ALVES

A CASE STUDY OF LARC ADMISSION CONTROL ON WEB

CACHING

CAMPINA GRANDE - PB

2023

RUAN GOMES DE OLIVEIRA ALVES

A CASE STUDY OF LARC ADMISSION CONTROL ON WEB

CACHING

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em
Ciência da Computação.

Orientador : Thiago Emmanuel Pereira da Cunha Silva

CAMPINA GRANDE - PB

2023

RUAN GOMES DE OLIVEIRA ALVES

A CASE STUDY OF LARC ADMISSION CONTROL ON WEB

CACHING

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em
Ciência da Computação.

BANCA EXAMINADORA:

Thiago Emmanuel Pereira da Cunha Silva
Orientador – UASC/CEEI/UFCG

Franklin de Souza Ramalho

Examinador – UASC/CEEI/UFCG

Francisco Vilar Brasileiro

Professor da Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 28 de Junho de 2023.

CAMPINA GRANDE - PB

RESUMO

O armazenamento em cache é crucial para melhorar o desempenho dos serviços da Web. O principal

fator que determina a qualidade do armazenamento em cache é sua capacidade. Se a capacidade do

cache for muito pequena, o desempenho do cache (por exemplo, taxa de acertos) será afetado. No

entanto, não se pode simplesmente adicionar mais capacidade para melhorar o desempenho. Se a

capacidade do cache aumentar além de um determinado ponto, o desempenho do cache não será

aprimorado e a capacidade adicionada será desperdiçada. Para uma capacidade definida, os sistemas

de cache aplicam uma política de substituição que decide quais itens devem ser removidos quando o

cache estiver cheio. A literatura tem muitas políticas de substituição de cache. Neste trabalho,

tomamos outra direção. Analisamos como economizar usando a capacidade do cache com base nas

políticas de controle de admissão. Em vez de decidir quais itens devem ser removidos do cache, o

controle de admissão decide se um item deve entrar no cache. Consideramos o LARC, uma conhecida

política de admissão que permite que os itens sejam armazenados em cache apenas em seu segundo

acesso. Avaliamos essa política de cache simulando uma carga de requisições de um grande serviço

de comércio eletrônico. Os resultados indicam que quando o cache é superdimensionado, por ex. sua

capacidade é maior que a ótima, a política de controle de admissão reduz o uso do cache em até

50%, com uma pequena penalidade de desempenho de 5%. Por outro lado, quando o cache é

subdimensionado, a política de controle de admissão aumenta o desempenho do cache em até 22%

sem nenhum custo no aumento do uso do cache. Acreditamos que esses resultados indicam que há

potencial para integrar o controle de admissão ao gerenciamento de cache.

A Case Study of LARC Admission Control on Web Caching

Ruan Gomes
Federal University of Campina Grande

ruan.alves@ccc.ufcg.edu.br

Thiago Emmanuel Pereira
Federal University of Campina Grande

temmanuel@computacao.ufcg.edu.br

ABSTRACT

Caching is crucial for improving the performance of Web services.

The key factor that determines the quality of caching is its capacity.

If the cache capacity is too small, caching performance (e.g. hit

ratio) is impacted. However, one cannot simply add more capacity

to improve performance. If cache capacity grows beyond a certain

point, caching performance is not improved, and the added capacity

is wasted. For a deined capacity, caching systems apply a replace-

ment policy that decides which items must be removed when the

cache is full. The literature has a lot of cache replacement policies. In

this work, we take another direction. We analyze how to be thrifty

using cache capacity based on admission control policies. Instead

of deciding which items should be removed from the cache, the

admission control decides whether an item should enter the cache.

We considered LARC, a well-known admission policy that allows

items to be cached only in their second access. We evaluated this

cache policy by simulating a request trace of a large e-commerce

web service. The results indicate that when the cache is oversized,

e.g. its capacity is larger than the optimal, the admission control

policy reduces the cache usage up to 50%, with a small 5% perfor-

mance penalty. On the other hand, when the cache is undersized,

the admission control policy increases the cache performance up to

22% with no cost on cache usage increase. We believe these results

indicate that there is potential for integrating admission control

into cache management.

KEYWORDS

Cache; web; performance; admission control

1 INTRODUCTION

Caching is a performance enhancement for web systems. It involves

using a fast storage layer between clients and the target service. A

web cache can be viewed as a key-value data structure in which the

keys are the URLs representing the http requests, and the values

are the corresponding responses to those requests. When a client

requests data, the cache service checks whether it already has a copy

of the response. If a copy was found (cache hit), the response could

be quickly served without accessing the server directly, reducing

response time and server load. If a copy was not found (cache

miss), the service retrieves it from the server, stores the request

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

Trabalho de Conclusão de Curso, Bacharelado em Ciência da Computação, 2023

© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

and response in the cache, and returns the response to the client.

Once a key-value pair (also known as item) is stored in the cache,

the subsequent requests for the same item are addressed without

requiring direct server access.

More than processing power and IO bandwidth, cache capacity

is the most important factor for caching performance. However, as

it is well known, cache performance could be improved by adding

capacity only up to a certain point. Beyond this optimal capacity

value, any increment in cache capacity is wasted since the perfor-

mance (hit ratio) does not improve. Choosing a good capacity value

requires careful consideration of many factors, including workload

characteristics such as the popularity of cache items and temporal

and spatial locality. In addition to the capacity, another important

coniguration choice is the cache replacement policy. The replace-

ment occurs when the cache is full, and a new item needs to enter

the cache; the policy decides which item needs to leave the cache to

make room for the new one. The literature is rich on cache replace-

ment policies [3, 5, 6, 8, 9]. These policies are heuristics that try to

ind and remove the item that is likely to be used in the farthest

future. A good replacement policy improves cache performance by

retaining in the cache the items more likely to be used in the near

future.

In this work, we evaluate admission control policies. These strate-

gies are complementary to the replacement ones. Instead of deciding

which items must leave the cache when it is full, an admission con-

trol policy decides whether an item should enter the cache. In our

evaluation, we considered the LARC admission policy, which allows

an item to enter the cache only in the second request. When this

heuristic makes the right choice, for example, when it avoids admit-

ting an item accessed only once (also known as "one-hit wonder"

[7]), it reduces capacity usage. When the heuristic makes a mistake,

it impacts the performance since it turns the second request to an

item from a hit to a miss.

To conduct this study, we gathered a 10% sample of requests

from a multi-client caching service utilized by a large ecommerce

provider, resulting in approximately 62 million observations over

approximately 10 hours. To analyze the impact of our admission

policy on cache performance, we simulated a cache load using a

tool developed by our research group [1].

Through our simulations, we observed the relationship between

cache capacity and the eicacy of our admission policy in enhancing

cache performance. When cache capacity is insuicient, the LARC

policy yielded a remarkable performance improvement of up to 21%.

Conversely, for cache capacities that exceeded optimal levels, the

application of the policymaintains the cache capacity utilization but

leads to a slight degradation of cache performance, approximately

5%. These indings provide valuable insights for future studies and

serve as a practical guide for implementing admission policies in

cache services. Ultimately, our research aims to optimize capacity

Trabalho de Conclusão de Curso, Bacharelado em Ciência da Computação, 2023 Ruan Gomes and Thiago Emmanuel Pereira

utilization and assist in the determination of optimal conigurations

for cache services.

The remainder of the paper is organized as follows. Section 2

provides background on cache management policies and discusses

their importance for this type of service. Section 3 describes the

methodology adopted to conduct this study, including aspects of the

request load, the simulator employed for evaluating cache policies,

and the admission policy used in this research. The results are

discussed in Section 4. Finally, Section 5 describes future work and

the importance of the results.

2 BACKGROUND AND RELATED WORK

In this Section, we present the key concepts for conducting this

research.We delve into cache management policies, discussing their

signiicance and implications for caching systems.

Cache policies dictate how data is managed within the cache.

They determine how incoming requests are handled, including

decisions on data replacement and admission. The choice of a cache

policy directly impacts the eiciency and performance of the cache,

so it is important to understand the motivations for using these

policies.

Cache policies rest upon two empirical assumptions. The irst

assumption is temporal locality, which suggests that recently ac-

cessed items are highly likely to be re-accessed in the near future.

The second assumption is the skewed popularity of items, imply-

ing that certain items are accessed more frequently than others.

By incorporating these assumptions into policies, eicient caching

strategies can be devised to enhance system eiciency. Two key

types of cache policies are eviction and admission policies. They

are not mutually exclusive, so it is possible to use an eviction and

admission simultaneously.

A replacement policy determines which items are removed from

the cache when its capacity limit is reached. The main objective of

a replacement policy is to create space for new data while retaining

the most relevant data in the cache. In many cases, to choose these

policies one must understand the characteristics of the cache usage.

These characteristics are presented, for example, in the degree of

temporal locality of the access. High temporal locality indicates

that recently accessed items are highly likely to be re-accessed in

the near future. Another important characteristic is the disparity

of the popularity of the items; a small portion of the items could be

responsible for a large fraction of the requests to the cache.

Two well-known replacement policies that consider these char-

acteristics are the Least Recently Used (LRU) and Least Frequently

Used (LFU). The LFU policy tracks the frequency that the stored

items are requested and selects the items with the least frequency

to be replaced. In another way, the LRU policy organizes items in

order of use and selects the least recently used items to be replaced.

LRU is the most commonly used policy in production (including

the cache studied in this work) due to its performance and ability to

store popular items. However, LRU may exhibit poor performance

in scenarios with weak temporal locality, where the workload con-

sists of items accessed only once. In such cases, the cache space

can quickly be illed with one-time accessed items, leading to a

degradation in service performance because these items are not

accessed in the near future, replacing items that would potentially

be accessed.

Another replacement policy is the Adaptive Replacement Cache

(ARC) [5] policy. This policy utilizes two segments T1 and T2, that

share the overall cache storage space and stores the keys and the

item’s values. Each segment includes a queue known as ghost

queue, B1 and B2, which stores item keys exclusively. B1 assists the

T1 segment in keeping track of the frequency (LFU) that the items

are requested, keeping stored in this segment the most frequently

requested items. On the other hand, B2 manages the least recently

used (LRU) items keys, assisting in storing these items in the T2

segment. The adjustment of segment sizes is controlled by the

P variable, tuned by the algorithm that observes the B1 and B2

queues hit ratio. When the segments and the queues are full, items

are removed by importance order, according to the purpose of the

queue. This adaptive mechanism allows this policy to consider

not only the frequency or the least recently used to keep stored

items but both of them, enhancing the efectiveness of the caching

strategy.

Unlike replacement policies, cache admission policies decide

whether incoming data should be cached. An efective admission

policy ensures that only valuable and frequently accessed data

is stored in the cache, leading to optimized cache utilization and

improved overall system performance. Notably, a well-designed

admission policy can address the limitation of the LRU algorithm

by preventing the storage of items accessed only once, thereby

enhancing the cache’s efectiveness.

A well-known example of admission policy is the Lazy Adaptive

Replacement Cache (LARC) [3], which despite its name, serves

as an initial ilter for storing items in the cache. This algorithm

incorporates two segments with ixed sizes: the main cache storage

that stores item keys and values and the ghost cache segment,

dedicated to storing only items key. In the LARC policy, when an

item is requested for the irst time, it is not immediately stored in

the main cache. Instead, only the item’s key is stored in the ghost

cache. The item is promoted to the main cache only upon the second

request if this item is present in the ghost cache. Both the main

cache and the ghost cache have their respective LRU structures.

Consequently, when either cache segment becomes full and needs

to store a new item, a stored item can be removed to give space to

the new item

LARC was developed to improve performance and decrease IO

operations in caches that use SSDs. In our work, we adopted a sim-

pliied LARC algorithm to simplify the execution of experiments. In

our modiication, we did not consider space limitation and removal

strategies (since there is no space limitation). As there is no space

limitation, our results are an upper bound to the original LARC

algorithm.

3 METHODOLOGY

This Section overviews the methodology used to conduct this work.

Section 3.1 describes the workload used, Section 3.2 describes how

we obtained the results, Section 3.3 describes the admission policy

used to conduct this work, and Section 3.4 explain the values of the

used parameters.

A Case Study of LARC Admission Control on Web Caching Trabalho de Conclusão de Curso, Bacharelado em Ciência da Computação, 2023

3.1 Workload

The collected load originates from requests made to one of the

caching services of a large ecommerce provider. This cache service

serves multiple tenants, meaning it is used by more than one ser-

vice. We sampled 10% of the requests received by the service and

then collected them not to impact the performance of the service

that runs in production. Despite being a sample, the collected load

contains a suicient number of requests to perform the necessary

analyses for this work. Figure 1 shows the workload over time.

Figure 1: Cache load, in requests per minute, along 10 hours.

The collected trace consists of approximately 62 million requests,

gathered over a continuous period of approximately 10 hours, which

is an interval that has a signiicant request quantity to be used in

performed analyses. This trace has an average load rate of approxi-

mately 1500 requests per second. Due to the extended time interval,

the load exhibits variability in the number of requests over this

duration, which can be attributed to the access patterns during the

collection period. The collected information includes the request

timestamp, request item identiier, and the request response sta-

tus. The collected request statuses are as follows: (1) MISS: The

requested item was not found, (2) HIT: The requested item was

found and returned to the client; and (3) STALE: The requested

item was found and returned to the client but may be expired,

necessitating an update.

Table 1 exhibits the distribution of items based on the follow-

ing frequency types: "one request," "two requests," and "more than

two requests" within the load. The table shows the corresponding

percentages for each category.

Approximately 25 million diferent items were requested, with

approximately 68% of them being requested only once as it is

showed in Table 1, corresponding to around about 17 million items.

A signiicant portion of items can be iltered rather than cached. In

turn, items that are requested more than once can be understood

as opportunities for performance improvement since they are more

popular, therefore they will be reused more if they are stored in

the cache. Therefore, it is crucial to thoroughly analyze the load to

address the caching of these items, taking into account the potential

issues that may arise.

3.2 Cache simulator

To conduct this study, we simulated the load described in Section 3.1.

This approach was chosen for its cost-efectiveness and eiciency

in obtaining results, thereby streamlining the analysis process. An

alternative approach would involve replicating the architecture of

the e-commerce provider’s service from which the payload was

collected. However, this would be prohibitively expensive.

The simulations were executed using a cache workload execu-

tion tool developed by our research group [1], which boasts an

error rate of less than 1%, which simulates NGINX, a popular cache

service. This tool enables the simulation of GET requests. The tool

utilizes the LRU (Least Recently Used) replacement policy, which

aligns with the policy used by the service from which the load was

collected. It allows for the selection of various important param-

eters for the conducted analyses, including: (1) Cache Capacity:

controlling the maximum number of items that can be stored in the

cache (integer value), the tool permits the use only the number of

items as the capacity value, not storage space.; (2) Admission Policy:

managing the admission of items into the cache, with a boolean

value representing the use (true) or non-use (false) of the LARC ad-

mission policy studied in this work (as described in section 3.3); (3)

Time-To-Leave: deining the expiration time of an item, indicating

when an item should be updated in the cache and serving as the

basis for the STALE request status mentioned earlier; (4) Expiration

time: Being the time set for an item not accessed in that interval

to be removed from the cache. The tool efectively executes cache

loads, resulting in three response types for the aforementioned

requests: MISS, HIT, and STALE.

In the simulations, it is important to note that the cache starts

empty at the beginning of the simulation. Extracting results from

an empty cache can yield unfavorable outcomes, e.g. the initial low

storage utilization could signiicantly afect the cache utilization

metric. To address this, we simulate a ’running’ cache in a produc-

tion environment by considering the irst 15 million requests of

the payload across all simulated cache coniguration scenarios to

populate the cache storage.

3.3 Admission policy

As mentioned earlier, the admission control mechanism employed

in this study is an adaptation of the LARC algorithm used with a

web cache workload. The algorithm prevents requested items from

being immediately stored in the cache upon their initial request.

Instead, it utilizes a storage space to retain the identiiers of re-

quested items, allowing them to be stored in the cache only when a

secondMISS request occurs. It’s worth noting that the storage space

consumes minimal memory as it solely stores item keys, which are

signiicantly smaller than their corresponding values.

3.4 Simulations parameters

Table 2 overviews the parameters employed in the simulations. The

parameters item expiration time, item time-to-live, and replacement

policy relect the original coniguration values obtained from the

cache service that the payload used in this work was collected.

The capacity values were speciically chosen based on the number

of items requested more than once present in the load, turning

possible to explore oversized and undersized cache conigurations.

Trabalho de Conclusão de Curso, Bacharelado em Ciência da Computação, 2023 Ruan Gomes and Thiago Emmanuel Pereira

Table 1: Percentage Distribution of Workload Item Frequency

Item Frequency Type Percentage

One Request 68.7%

Two Requests 13.2%

More Than Two Requests 18.1%

Table 2: Selected cache simulation parameters

Parameter Value

Cache Capacity (from 500K to 2.5M) and (from 3M to 8M)

Item time-to-leave 25 minutes

Item expiration time 3 hours

Replacement Policy Least Recently Used (LRU)

4 RESULTS

The performance metric employed in this study is the Hit Ratio,

which is widely used for evaluating caches. The proportion of hit

responses made for cached items. It is important to note that the

cache capacity afects the hit ratio. If the capacity is insuicient,

the cache may be unable to store many popular items. Conversely,

it is possible that the capacity can be reduced if the peak hit ratio

can be achieved with smaller capacities.

The higher the hit ratio, the better the performance. The hit ratio

is closely tied to the capacity of the cache, which is a signiicant

factor in resource utilization for a caching service. Efective man-

agement of the cache capacity is crucial to optimize resource usage.

The goal is to minimize resource usage while maximizing the hit

ratio. By eiciently allocating and utilizing cache resources, the

caching service can improve overall performance and eiciency.

Simulations were run with various cache capacities scenarios,

using and not using the proposed admission policy. This allows for

comparisons of the use of the admission policy, observing improve-

ments in hit ratio and capacity.

Figure 2 illustrates the enhancements achieved by implement-

ing the admission policy at each of the chosen cache capacities,

highlighting the observed improvements in hit ratio and cache

usage.

The load consists of a large number of items that are requested

only once, totaling approximately 25 million diferent items in the

workload. Out of these, approximately 17 million are one-request

items, accounting for approximately 68% of the total items.

Figure 2 indicates the simulated capacities and reveals that not

using an admission policy results in a full cache, as the total number

of items exceeds all simulated capacities. Conversely, employing

the admission policy allows less than 5 million items to enter the

cache. Therefore, simulations utilizing the admission policy and

having capacities smaller than this value exhaust their storage

space, explaining the 0% improvement observed for simulations

that have capacities equal to or below 4 million items.

As mentioned, the admission policy permits maximum capacity

utilization of fewer than 5 million items. Consequently, Figure 2

also demonstrates that the characteristics of this load contribute

Figure 2: Signiicant simulation results using LARC admis-

sion control show hit rate improvements for capacities less

than 3M items and improvements in storage utilization for

capacities greater than 4M items

to resource usage improvements in cache with capacities exceed-

ing 4 million items. It’s possible to understand the cache usage

improvement in simulations with capacities equal to or bigger than

5 million items.

Figure 2 also provides insights into the impact of using the ad-

mission policy on the hit ratio. Simulations with capacities greater

than 3 million items experience a consistent deterioration of ap-

proximately 5% in hit ratio compared to those without the proposed

admission policy. This decline is attributed to fewer items being

stored in the cache, resulting in more MISS requests that could have

been HIT if there had been an opportunity to store the requested

items.

Furthermore, simulations with capacities below 3 million items

exhibit an improved hit ratio compared to others. To present these

indings more clearly, Figure 3 ofers a focused depiction of the

results presented in Figure 2.

Figure 3 provides insights into the simulations and reinforces

that none of the simulations presented show improvements in

capacity utilization, as explained earlier. However, it is noteworthy

A Case Study of LARC Admission Control on Web Caching Trabalho de Conclusão de Curso, Bacharelado em Ciência da Computação, 2023

Figure 3: Hit ratio obtained from simulations with cache

capacities fewer than 3M using LARC admission control

that simulations with capacities below 1.75 million items exhibit a

remarkable enhancement in the hit rate, with the maximum value

reaching approximately 22%. This inding indicates a signiicant

improvement in cache service performancewhen admission policies

are implemented for caches with low capacities.

The observed hit ratio improvement in simulations with capac-

ities below 1.75 million items can be attributed to two potential

reasons: (1) The primary purpose of the LRU algorithm is to retain

items that are more likely to be reused. It achieves this by replacing

items that are not frequently used with those that are expected

to be reused. (2) Another contributing factor could be temporal

locality fault, meaning that there are no requests for the same items

within short time intervals. In such cases, admission control pre-

vents infrequently requested items from entering the cache. These

characteristics ensure that more popular items remain stored in the

cache, resulting in a higher rate of successful HIT requests.

5 CONCLUSION AND FUTUREWORK

This paper has analyzed using the LARC admission policy in a web

caching service. Based on the simulation results, it is evident that

under-dimensioned cache capacities exhibit a substantial improve-

ment of approximately 22% in the hit ratio. Conversely, caches with

larger capacities exceeding 3 million items experience a decline of

approximately 5% in the same metric. Furthermore, we observed

notable improvements in capacity utilization for simulations with

bigger than 4 million capacities.

The results of this study indicate substantial potential for en-

hancing web caching performance by implementing an admission

policy. While the focus of this research was on investigating the

LARC policy, it is important to acknowledge other policies in the

literature that warrant exploration in future studies, e.g. ML-based

[2] and policies that use Bloom Filter strategies [4]. A comparative

analysis of these policies in web cache scenarios can assist the de-

veloping new policies. To achieve this, it is necessary to implement

these policies and evaluate their efectiveness using diverse cache

workloads, including both synthetic and obtained from server col-

lections. Comparison of simulation results using these policies will

provide valuable insights into the eicacy of diferent policies and

their applicability in real-world settings.

REFERENCES
[1] Gabriela Roberta Alberga do. 2023. Development of a cache simulator for analysis

of management policies. Sistemoteca - Sistema de bibliotecas da UFCG. http:
//dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/29313

[2] Assaf Eisenman, Asaf Cidon, Evgenya Pergament, Or Haimovich, Ryan Stutsman,
Mohammad Alizadeh, and Sachin Katti. 2019. Flashield: a Hybrid Key-value
Cache that Controls Flash Write Ampliication. In 16th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2019, Boston, MA, February
26-28, 2019, Jay R. Lorch and Minlan Yu (Eds.). USENIX Association, 65ś78. https:
//www.usenix.org/conference/nsdi19/presentation/eisenman

[3] Sai Huang, Qingsong Wei, Dan Feng, Jianxi Chen, and Cheng Chen. 2016. Improv-
ing Flash-Based Disk Cache with Lazy Adaptive Replacement. ACM Trans. Storage
12, 2 (2016), 8:1ś8:24. https://doi.org/10.1145/2737832

[4] Bruce M. Maggs and Ramesh K. Sitaraman. 2015. Algorithmic Nuggets in Content
Delivery. Comput. Commun. Rev. 45, 3 (2015), 52ś66. https://doi.org/10.1145/
2805789.2805800

[5] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low
Overhead Replacement Cache. In Proceedings of the FAST ’03 Conference on File and
Storage Technologies, March 31 - April 2, 2003, Cathedral Hill Hotel, San Francisco,
California, USA, Jef Chase (Ed.). USENIX. http://www.usenix.org/events/fast03/
tech/megiddo.html

[6] Vivek R. Narasayya, Ishai Menache, Mohit Singh, Feng Li, Manoj Syamala, and
Surajit Chaudhuri. 2015. Sharing Bufer Pool Memory in Multi-Tenant Relational
Database-as-a-Service. Proc. VLDB Endow. 8, 7 (2015), 726ś737. https://doi.org/10.
14778/2752939.2752942

[7] M. Zubair Shaiq, Amir R. Khakpour, and Alex X. Liu. 2016. Characterizing
caching workload of a large commercial Content Delivery Network. In 35th Annual
IEEE International Conference on Computer Communications, INFOCOM 2016, San
Francisco, CA, USA, April 10-14, 2016. IEEE, 1ś9. https://doi.org/10.1109/INFOCOM.
2016.7524379

[8] Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Merchant, HomerWolfmeister, and
Junaid Khalid. 2023. CacheSack: Theory and Experience of Google’s Admission
Optimization for Datacenter Flash Caches. ACM Trans. Storage 19, 2 (2023), 13:1ś
13:24. https://doi.org/10.1145/3582014

[9] Yuanyuan Zhou, James Philbin, and Kai Li. 2001. The Multi-Queue Replacement
Algorithm for Second Level Bufer Caches. In Proceedings of the General Track:
2001 USENIX Annual Technical Conference, June 25-30, 2001, Boston, Massachusetts,
USA, Yoonho Park (Ed.). USENIX, 91ś104. http://www.usenix.org/publications/
library/proceedings/usenix01/zhou.html

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Workload
	3.2 Cache simulator
	3.3 Admission policy
	3.4 Simulations parameters

	4 Results
	5 Conclusion and Future Work
	References

