
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

COORDENAÇÃO DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

JOSÉ MANOEL DOS SANTOS FERREIRA

RELATING BUG REPORT FIELDS WITH RESOLUTION STATUS: A CASE STUDY
WITH BUGZILLA

CAMPINA GRANDE - PB
2023

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Relating Bug Report Fields with Resolution Status:

A Case Study with Bugzilla

José Manoel dos Santos Ferreira

Dissertação submetida à Coordenação do Curso de Pós-Graduação em

Ciência da Computação da Universidade Federal de Campina Grande -

Campus I como parte dos requisitos necessários para obtenção do grau

de Mestre em Ciência da Computação.

Área de Concentração: Computer Science

Linha de Pesquisa: Software Engineering

Franklin Ramalho and Tiago Massoni

(Supervisor)

Campina Grande, Paraíba, Brasil

©José Manoel dos Santos Ferreira, 05/09/2023

F383r

Ferreira, José Manoel dos Santos.

 Relating bug report fields with resolution status: a case study with

bugzilla / José Manoel dos Santos Ferreira. – Campina Grande, 2023.

 93 f. : il. color.

 Dissertação (Mestrado em Ciência da Computação) – Universidade

Federal de Campina Grande, Centro de Engenharia Elétrica e

Informática, 2023.

 "Orientação: Prof. Dr. Franklin de Souza Ramalho, Prof. Dr. Tiago

Lima Massoni”.
 Referências.

 1. Software Engineering. 2. Computer Science. 3. Bug Reports (BR)

– Software Quality. I. Ramalho, Franklin de Souza. II. Massoni, Tiago

Lima. III. Título.

 CDU 004.41(043)
 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA SEVERINA SUELI DA SILVA OLIVEIRA CRB-15/225

RELATING BUG REPORT FIELDS WITH RESOLUTION STATUS: A CASE STUDY
WITH BUGZILLA

JOSÉ MANOEL DOS SANTOS FERREIRA

DISSERTAÇÃO APROVADA EM 05/09/2023

FRANKLIN DE SOUZA RAMALHO, Dr., UFCG
Orientador(a)

TIAGO LIMA MASSONI, Dr., UFCG
Orientador(a)

EVERTON LEANDRO GALDINO ALVES, Dr., UFCG
Examinador(a)

BRENO ALEXANDRO FERREIRA DE MIRANDA, Dr., UFPE
Examinador(a)

CAMPINA GRANDE - PB

04/10/2023, 09:11 SEI/UFCG - 3768514 - PRPG-Folha de Assinatura para Teses e Dissertações

https://sei.ufcg.edu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=4185409&infra_sist… 1/2

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
POS-GRADUACAO EM CIENCIA DA COMPUTACAO

Rua Aprígio Veloso, 882, Ediİcio Telmo Silva de Araújo, Bloco CG1, - Bairro Universitário, Campina
Grande/PB, CEP 58429-900

Telefone: 2101-1122 - (83) 2101-1123 - (83) 2101-1124
Site: hƩp://computacao.ufcg.edu.br - E-mail: secretaria-copin@computacao.ufcg.edu.br /

copin@copin.ufcg.edu.br

FOLHA DE ASSINATURA PARA TESES E DISSERTAÇÕES

JOSÉ MANOEL DOS SANTOS FERREIRA

RELATING BUG REPORT FIELDS WITH RESOLUTION STATUS: A CASE STUDY WITH BUGZILLA

Dissertação apresentada ao Programa de Pós-
Graduação em Ciência da Computação como pré-
requisito para obtenção do ơtulo de Mestre em
Ciência da Computação.

Aprovada em: 05/09/2023

 Prof. Dr. FRANKLIN DE SOUZA RAMALHO, UFCG, Orientador

 Prof. Dr. TIAGO LIMA MASSONI, UFCG, Orientador

 Prof. Dr. EVERTON LEANDRO GALDINO ALVES, UFCG, Examinador Interno

 Prof. Dr. BRENO ALEXANDRO FERREIRA DE MIRANDA, UFPE, Examinador Externo

Documento assinado eletronicamente por EVERTON LEANDRO GALDINO ALVES, PROFESSOR 3
GRAU, em 08/09/2023, às 07:34, conforme horário oficial de Brasília, com fundamento no art. 8º,
caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por TIAGO LIMA MASSONI, COORDENADOR(A)
ADMINISTRATIVO(A), em 08/09/2023, às 09:08, conforme horário oficial de Brasília, com
fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por FRANKLIN DE SOUZA RAMALHO, PROFESSOR(A) DO
MAGISTERIO SUPERIOR, em 08/09/2023, às 09:18, conforme horário oficial de Brasília, com
fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

04/10/2023, 09:11 SEI/UFCG - 3768514 - PRPG-Folha de Assinatura para Teses e Dissertações

https://sei.ufcg.edu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=4185409&infra_sist… 2/2

A autenƟcidade deste documento pode ser conferida no site hƩps://sei.ufcg.edu.br/autenƟcidade,
informando o código verificador 3768514 e o código CRC 0DB99C23.

Referência: Processo nº 23096.068641/2023-40 SEI nº 3768514

26/10/2023, 10:17 SEI/UFCG - 3777226 - Ata de Defesa

https://sei.ufcg.edu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=4194944&infra_sist… 1/2

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
POS-GRADUACAO EM CIENCIA DA COMPUTACAO

Rua Aprígio Veloso, 882, Ediİcio Telmo Silva de Araújo, Bloco CG1, - Bairro Universitário, Campina
Grande/PB, CEP 58429-900

Telefone: 2101-1122 - (83) 2101-1123 - (83) 2101-1124
Site: hƩp://computacao.ufcg.edu.br - E-mail: secretaria-copin@computacao.ufcg.edu.br /

copin@copin.ufcg.edu.br

REGISTRO DE PRESENÇA E ASSINATURAS

ATA Nº 004/2023 (DISSERTAÇÃO N° 713)

Aos cinco (5) dias do mês de setembro do ano de dois mil e vinte e três (2023), às quatorze horas (14:00),
no Auditório do SPLab, da Universidade Federal de Campina Grande - UFCG, nesta cidade, reuniu-se a
Comissão Examinadora composta pelos Professores TIAGO LIMA MASSONI, Dr., UFCG, Orientador,
funcionando neste ato como Presidente, FRANKLIN DE SOUZA RAMALHO, Dr., UFCG, Orientador,
EVERTON LEANDRO GALDINO ALVES, Dr., UFCG, BRENO ALEXANDRO FERREIRA DE MIRANDA, Dr., UFPE,
este com parƟcipação por videoconferência. ConsƟtuída a mencionada Comissão Examinadora pela
Portaria Nº 016/2023 do Coordenador do Programa de Pós-Graduação em Ciência da Computação, tendo
em vista a deliberação do Colegiado do Curso, tomada em reunião de 14 de Agosto de 2023 e com
fundamento no Regulamento Geral dos Cursos de Pós-Graduação da Universidade Federal de Campina
Grande - UFCG, juntamente com o Sr(a) JOSÉ MANOEL DOS SANTOS FERREIRA, candidato(a) ao grau de
MESTRE em Ciência da Computação, comigo Paloma Nascimento Porto, Secretária(o) dos trabalhos,
presentes ainda professores e alunos do referido centro e demais presentes. Abertos os trabalhos, o(a)
Senhor(a) Presidente da Comissão Examinadora anunciou que a reunião Ɵnha por finalidade a
apresentação e julgamento da dissertação "RELATING BUG REPORT FIELDS WITH RESOLUTION STATUS: A
CASE STUDY WITH BUGZILLA", elaborada pelo(a) candidato(a) acima designado, sob a orientação do(s)
Professor(es) TIAGO LIMA MASSONI e FRANKLIN DE SOUZA RAMALHO, com o objeƟvo de atender as
exigências do Regulamento Geral dos Cursos de Pós-Graduação da Universidade Federal de Campina
Grande - UFCG. A seguir, concedeu a palavra ao (a) candidato(a), o qual, após salientar a importância do
assunto desenvolvido, defendeu o conteúdo da dissertação. Concluída a exposição e defesa do candidato,
passou cada membro da Comissão Examinadora a arguir o mestrando sobre os vários aspectos que
consƟtuíram o campo de estudo tratado na referida dissertação. Terminados os trabalhos de arguição,
o(a) Senhor(a) Presidente da Comissão Examinadora determinou a suspensão da sessão pelo tempo
necessário ao julgamento da dissertação. Reunidos, em caráter secreto, no mesmo recinto, os membros
da Comissão Examinadora passaram à apreciação da dissertação. Reaberta a sessão, o(a) Presidente da
Comissão Examinadora anunciou o resultado do julgamento, tendo assim, o candidato obƟdo o
Conceito APROVADO. A seguir, foi encerrada a sessão e lavrada a presente ata, que vai assinada por mim,
Paloma Nascimento Porto, pelos membros da Comissão Examinadora e pelo candidato, com exceção do
examinador externo BRENO ALEXANDRO FERREIRA DE MIRANDA, o qual receberá cópia da ata e dará
ciência e aprovação dos termos, por e-mail. Campina Grande, 5 de Setembro de 2023.

Documento assinado eletronicamente por EVERTON LEANDRO GALDINO ALVES, PROFESSOR 3
GRAU, em 08/09/2023, às 09:37, conforme horário oficial de Brasília, com fundamento no art. 8º,
caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

26/10/2023, 10:17 SEI/UFCG - 3777226 - Ata de Defesa

https://sei.ufcg.edu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=4194944&infra_sist… 2/2

Documento assinado eletronicamente por FRANKLIN DE SOUZA RAMALHO, PROFESSOR(A) DO
MAGISTERIO SUPERIOR, em 08/09/2023, às 10:33, conforme horário oficial de Brasília, com
fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por José Manoel dos Santos Ferreira, Usuário Externo, em
08/09/2023, às 15:39, conforme horário oficial de Brasília, com fundamento no art. 8º, caput, da
Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por PALOMA NASCIMENTO PORTO, ASSISTENTE EM
ADMINISTRACAO, em 11/09/2023, às 10:35, conforme horário oficial de Brasília, com fundamento
no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por TIAGO LIMA MASSONI, COORDENADOR(A)
ADMINISTRATIVO(A), em 12/09/2023, às 17:28, conforme horário oficial de Brasília, com
fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

A autenƟcidade deste documento pode ser conferida no site hƩps://sei.ufcg.edu.br/autenƟcidade,
informando o código verificador 3777226 e o código CRC 8A862FB6.

Referência: Processo nº 23096.068641/2023-40 SEI nº 3777226

Resumo

Os bug reports(BR) são artefatos essenciais para a garantia da qualidade do software. No

entanto, o BR produzido, seja por testadores ou usuários, exige do relator uma quantidade

considerável de dados, como resumo, etapas necessárias para reproduzir, comportamento es-

perado/real do sistema, gravidade/prioridade e até mesmo anexos (capturas de tela, vídeos

ou arquivos de log). Pesquisas anteriores destacaram a frequência com que esses campos de

dados são negligenciados; em resposta, várias diretrizes para escrever bons BR podem ser

encontradas na literatura. No entanto, é razoável avaliar o impacto relativo desses campos

relatados sobre o resultado dos bugs reportados, especialmente as condições em que eles são

resolvidos. Por exemplo, quais campos são os mais importantes para ajudar os desenvolve-

dores a corrigir um bug? Neste estudo, realizamos uma investigação em um conjunto de

dados de 69 mil bugs extraídos da plataforma Bugzilla. Avaliamos cinco modelos de apren-

dizado de máquina para classificar o status de resolução de bugs (entre FIXED, INVALID,

INCOMPLETE, WONTFIX, WORKSFORME, MOVED, DUPLICATED e INACTIVE) e,

em seguida, determinamos os recursos que mais influenciam a classificação FIXED. O pro-

cesso de classificação envolve o emprego de técnicas padrão de aprendizado de máquina

para otimização de modelos, incluindo balanceamento, agrupamento e fine-tuning. Notavel-

mente, o modelo Random Forest demonstrou excelente desempenho, alcançando 71,81% de

precisão, 74,46% de acurácia e 72,32% de f-measure, com uma notável precisão de 95%

na classificação de BR FIXED. Além disso, esse modelo nos permitiu identificar os cam-

pos mais influentes para a previsão de resolução. Entre os campos considerados, aqueles

relacionados a dados textuais, como resumo, descrição e comentários, surgiram como con-

tribuintes significativos para a classificação de importância do campo. Além disso, os anexos

adicionados por meio da seção de comentários mostraram uma relevância considerável para

a resolução do BR, assim como as alterações feitas durante o ciclo de vida do BR. Com base

nesses resultados, fica evidente que o preenchimento de determinados campos nos BRs pode

ajudar na correção dos bugs relatados. Consequentemente, as equipes de desenvolvimento

podem se beneficiar dessas descobertas para estabelecer prioridades durante o processo de

correção de bugs e alocar recursos de forma mais eficaz para a garantia de qualidade. Além

disso, comunicar a importância desses campos aos usuários antes de enviar os BRs pode

i

resultar em envios mais focados e informativos, além de ajudar a aproveitar melhor o tempo

deles.

ii

Abstract

Bug reports are critical artifacts in software quality assurance. However, bug reporting,

whether by testers or users, is costly; it demands from the reporter a considerable amount of

data, such as summary, steps required to reproduce, expected/actual system behavior, sever-

ity/priority, and even attachments (screenshots, videos, or log files). Previous research has

highlighted how often these data fields are neglected; in response, several guidelines for writ-

ing good reports can be found in the literature. Nevertheless, it is reasonable to assess the

relative impact of those reported fields on the outcome of the reported bugs, especially the

conditions under which they get resolved. As an inquiry, which fields are the most important

for helping developers fix a bug? This study investigates a 69k-bugs dataset extracted from

the Bugzilla platform. We evaluate five machine learning models to classify the bug res-

olution status (among FIXED, INVALID, INCOMPLETE, WONTFIX, WORKSFORME,

MOVED, DUPLICATED, and INACTIVE), then determine the features that influence the

FIXED classification most. The classification process employs standard ML techniques for

model optimization, including balancing, grouping, and fine-tuning. Notably, the Random

Forest model demonstrated outstanding performance, achieving 71.81% precision, 74.46%

accuracy, and 72.32% f-measure, with a remarkable 95% accuracy in classifying FIXED

reports. Additionally, this model allowed us to identify the most influential fields for resolu-

tion prediction. Among the fields considered, those related to textual data, such as summary,

description, and comments, emerged as significant contributors to the field’s importance

ranking. Furthermore, attachments added through the comments section showed consider-

able relevance to bug report resolution, as did the changes made throughout the bug report’s

lifecycle. Given these results, filling specific fields in the bug reports can significantly assist

in fixing the reported bugs. Consequently, development teams may benefit from consider-

ing these findings to establish priorities during the bug-fixing process and allocate resources

more effectively for quality assurance. Moreover, communicating the importance of these

fields to reporters before submitting bug reports can lead to more focused and informative

submissions and help to make better use of their time.

iii

Agradecimentos

A trajetória até este ponto foi verdadeiramente gratificante, repleta de desafios que foram

vencidos, resultando na conclusão deste trabalho. Recordo as palavras de minha estimada

mãe, que frequentemente falava o seguinte ditado "Às vezes, fazemos um planos e vira um

planeta", e, para alguém que só conhecia uma enxada, hoje posso me orgulhar do título de

mestre. Minha história começa na roça, no sertão de Pernambuco, em uma família humilde,

com 14 irmãos, e muito trabalho. Aos 15 anos, perdi meu pai, e juntamente com uma de

minhas irmãs, parti para trabalhar, um período que me forjou como homem.

Meu pai tinha o desejo de ver seus filhos trilhando o caminho da educação, e, infeliz-

mente, acabei sendo o único a ingressar em uma universidade. Meu sonho era claro: con-

quistar um lugar em uma instituição de ensino superior. No entanto, esse sonho não apenas

se tornou realidade, como ultrapassou todas as expectativas, levando-me a uma jornada que

incluiu a graduação, um intercêmbio na Alemanha, e finalmente na minha conquista do título

de mestre.

Conforme mencionei inicialmente, essa jornada foi marcada por desafios, mas também

por momentos de felicidade e realização. Muitas pessoas desempenharam um papel crucial

em meu sucesso, e a todas elas sou profundamente grato. Em primeiro lugar, reconheço que

toda a força provém de Deus, a quem acredito estar orquestrando todos os eventos, inclusive

minha própria vida. Meus orientadores desempenharam um papel fundamental na conclusão

deste trabalho, e expresso minha sincera gratidão pela dedicação e paciência dos professores

Franklin e Massoni.

Sou grato ao e-pol por possibilitar a concepção do tema e contribuir significativamente

para a minha formação. Minha família, com seu carinho e confiança inabalável em mim,

forneceu palavras de encorajamento e motivação essenciais, especialmente nos dias em que

a vontade de desistir se fazia presente. Meus amigos sempre estiveram ao meu lado, ofere-

cendo apoio, descontração e alívio nos momentos mais desafiadores. Agradeço a Iann, que

sempre esteve presente, fornecendo suporte e discutindo soluções para os obstáculos que

surgiram. E também a Lorenna pelo apoio na parte técnica da experimentação.

iv

Meus colegas do Lacina tornaram a jornada mais leve, e o grupo Farofa sempre esteve

presente, torcendo por mim. Agradeço a Brito, cujas palavras de motivação foram con-

stantes, a Jackson que sempre feliz me motivava a seguir, assim como a todos os outros

que, embora não mencionados individualmente, desempenharam um papel fundamental em

minha jornada. A Guilherme e Felipe, que, juntamente comigo, após muito esforço, con-

seguiram a publicação de dois artigos.

Além disso, minha gratidão se estende a Tiago, meu terapeuta e amigo, que abraçou meu

sonho como sua missão, preparando-me para enfrentar os desafios e concluir este trabalho

com sucesso. Agradeço de todo o coração a Lilian por seu carinho e ajuda, e a dona Marilene,

cujo sorriso radiante e cumprimentos calorosos iluminaram meus dias. Por fim, meu mais

sincero agradecimento a todos que fizeram parte desta extraordinária jornada.

v

Contents

1 Introduction 1

1.1 Motivation and Context . 2

1.2 Problem . 6

1.3 Problem Relevance . 7

1.4 Objective . 8

1.5 Scope . 9

1.6 Contribution . 9

1.7 Document Organization . 10

2 Background 12

2.1 Bugzilla . 12

2.2 Bug Reports . 15

2.3 Machine Learning Algorithms . 17

3 Research Method 20

3.1 The ABC framework . 21

3.2 Research Questions . 22

3.3 Study Subject . 23

3.3.1 Data . 23

3.3.2 Data collection . 24

3.4 Data Balancing . 30

3.4.1 Oversampling . 31

3.5 Machine Learning Algorithms . 32

3.6 Experimental Procedure . 33

vi

CONTENTS vii

3.7 Evaluation Metrics . 34

4 Results and Discussion 37

4.1 RQ1: What is the best machine learning model for bug report resolution

classification? . 38

4.1.1 Models’ Fine-tuning . 39

4.1.2 Grouping Resolutions . 46

4.1.3 Cross-Validation . 48

4.1.4 Results . 49

4.2 RQ2: Which bug report features are more strongly linked to the bug resolu-

tion status? . 52

4.3 Research Implications . 63

4.4 Threats to Validity . 64

4.4.1 Construct Validity . 64

4.4.2 Internal Validity . 65

4.4.3 External Validity . 67

4.4.4 Conclusion Validity . 68

5 Related Work 69

6 Conclusion 76

6.1 Limitations . 76

6.2 Contributions . 77

6.3 Future Work . 80

List of Symbols

BD - Balancing & Dumification

BR - Bug Report

D - Dummification

EB - Expected Behavior

GNB - Gaussian Naive Bayes

HIB - High Impact Bug

LDA - Latent Dirichlet Allocation

ML - Machine Learning

NLP - Natural Language Processing

N - Normalization

NB - Normalization & Balancing

NBD - Normalization & Balancing & Dummification

ND - Normalization & Dummification

OB - Observable Behavior

QA - Quality Assurance

RNN - Recurrent Neural Network

RQ - Research Question

S2R - Steps to Reproduce

SVM - Support Vector Machine

viii

List of Figures

1.1 Bug report 1687674 extracted from Bugzilla. 3

1.2 Fields - Bug report 1663121 extracted from Bugzilla (cropped). 4

1.3 Description - Bug report 1663121 extracted from Bugzilla (cropped). 5

2.1 Bugzilla bug report’s life cycle. 14

2.2 Bugzilla bug reporting form. 16

3.1 ABC Framework - Stol and Fitzgerald. 21

3.2 Data Setup before training the machine learning models. 25

3.3 Bug report distribution according to resolution. 31

3.4 Pipeline for machine learning algorithms training, testing, and fine-tuning. . 32

4.1 Random Forest confusion matrix. 45

4.2 Random Forest features importance. 53

4.3 Bug report with a stack trace (cropped). 55

4.4 Boxplot for the Feature total_words_desc. 55

4.5 Boxplot for the Feature total_attachment_comments. 58

ix

List of Tables

2.1 Main differences between machine learning models. 18

3.1 Bug report features for predicting bug resolution. 26

3.2 Bug report features for predicting bug resolution. 27

3.3 Bug report features for predicting bug resolution. 28

3.4 Bug report resolutions. 29

3.5 Data processing scenarios. 34

4.1 F-Measure by scenario. 39

4.2 Best models metrics results. 39

4.3 Random Forest metrics for individual classes. 40

4.4 Model results after fine-tuning. 44

4.5 Metrics for Random Forest when grouping the resolutions into two classes. 47

4.6 Metrics for Random Forest grouping the resolutions into three classes. . . . 47

4.7 Metrics for Random Forest grouping the resolutions into four classes. . . . 48

4.8 Comparison of classification groupings. 49

4.9 Metrics number of attachments in the comments for bug report description

under 40 words. 56

4.10 Descriptive statistics of attachments in the comments for bug report descrip-

tion for all resolutions. 59

4.11 Bug report resolution and comments statistics. 60

4.12 Statistics of the number of changes by bug report resolution. 61

x

Chapter 1

Introduction

The software development process encompasses several stages: planning, designing, coding,

testing, and fixing bugs [18]. Bug reporting plays a crucial role in this process, allowing

developers to identify and resolve bugs within the software [5]. However, bug reporting can

be challenging, mainly when users have limited time to provide the necessary information

[25]. In such cases, focusing on the most important details becomes essential to ensure

efficient bug resolution and effective triage. Even though there are works on understanding

the fields on the bug report and their importance [99; 59; 58; 47; 32], there is still a gap in

understanding the relationship between these fields on the bug report’s final resolution. The

mentioned gap can be related that most reporters have a different awareness which are the

features that are most important to achieve a proper bug fix as resolution.

Moreover, the complete compilation of information within a bug report is constituted by

various essential fields that diversify their content and structure. For instance, one essen-

tial field is the textual description, where users communicate the bug’s characteristics, such

as steps to reproduce, observed behavior, expected results, and pertinent system informa-

tion. Alongside this textual element, other fields, namely platform, component, priority, and

severity, also form integral constituents of the bug report. Furthermore, the resolution field

is essential in finalizing the bug report, encapsulating the final status of the bug resolution,

which can assume distinct values like FIXED or INVALID.

Also, bug reporting requires careful management to optimize resource utilization [4; 53;

69; 64; 81]. Therefore, it is crucial to facilitate the bug reporting process by prioritizing

the inclusion of essential information that enables bug reproduction and efficient fixes [20].

1

1.1 Motivation and Context 2

Users can effectively communicate the necessary details to developers by adapting bug re-

ports to accommodate time limitations. This approach helps in two ways: First, it focuses

on the main information on the bug report to minimize the user time filling it, facilitating

the triage process, where bugs are prioritized based on their information robustness and the

likelihood of being fixed. Clear and concise bug reports enable triage teams to quickly assess

the urgency of each bug and allocate development resources accordingly [5]. Second, when

a developer is assigned to resolve a bug, a concise and complete bug report ensures they have

the critical information needed to reproduce the bug and find a resolution promptly.

Optimizing bug reporting by considering time limitations and focusing on essential in-

formation greatly contributes to the efficiency of bug resolution and the overall software

development process. By better understanding the most pertinent fields, developers are ex-

pected to reproduce and fix bugs effectively, leading to a more streamlined and productive

software development lifecycle.

We adopted the ABC framework proposed by Stol and Fitzgerald [86] to guide our re-

search design and methods. The ABC framework provides a holistic classification of eight

research strategies based on two dimensions: generalizability and control. It helped us to

select the most suitable strategy for our research question and goal, and to communicate our

findings more effectively. We conducted a sample study, which collects data from a large and

representative sample of actors from a population of interest and measures their behavior.

1.1 Motivation and Context

In Figure 1.1, we present an illustrative bug report example (Bug ID: 16876741) sourced

from Bugzilla for the web-platform-tests component in Mozilla. The report is titled "Country

Search" and pertains to a defect. The user responsible for this report could be a developer

contributor to Mozilla or an individual browsing the platform who discovered the bug and

reported it. Notably, the triage team assigned the bug a high priority (P1) and high severity

(S1) designation.

Overall, the presented report suffers from significant shortcomings in terms of being a

well-written bug report. Firstly, the report lacks a precise summary that clearly conveys the

1https://bugzilla.mozilla.org/show_bug.cgi?id=1687674

1.1 Motivation and Context 3

Figure 1.1: Bug report 1687674 extracted from Bugzilla.

bug at hand. The current "country search" summary fails to indicate that searching for a

country does not yield the expected results. Additionally, there is an absence of any detailed

description of the problem. Providing more information about the bug, such as an overview

or specific details regarding additional builds and platforms affected, would be beneficial.

Lastly, the steps to reproduce the bug are not structured or intuitive enough to ensure accurate

replication. The report lacks a description of the interaction with Firefox, making it unclear

whether the bug is easily reproducible or occurs sporadically.

In contrast to this problem, numerous studies have extensively discussed the significance

of key fields [59; 58] and comprehensive information in bug reports, as they greatly assist

developers in identifying and ultimately resolving bugs. However, it is essential to under-

stand what makes an excellent bug report [99]: How much detail should be included, and

how can one effectively manage limited time when reporting a bug? In Figures 1.2 and 1.3,

we present another example of bug report (16631212) from Bugzilla, specifically addressing

2https://bugzilla.mozilla.org/show_bug.cgi?id=1663121

1.1 Motivation and Context 4

the Printing component in Mozilla. The triage team has classified this bug as a high-priority

(P1) defect with significant severity (S2).

Figure 1.2: Fields - Bug report 1663121 extracted from Bugzilla (cropped).

The report in Figures 1.2 and 1.3 effectively encompasses the fundamental elements re-

quired for an accurate and thorough problem description [22; 99], showcasing the user’s ded-

ication to facilitating a prompt and efficient resolution. One notable aspect of the mentioned

bug report is the succinct and informative summary, which concisely captures the essence of

the encountered bug. By encapsulating the problem within a concise statement, the user en-

ables developers to swiftly grasp the nature of the bug without the need for extensive reading

or interpretation.

Furthermore, the Bugzilla user who reported this bug demonstrates an astute under-

standing of bug reporting conventions by providing essential contextual information [99].

The categorization of the bug under the appropriate product and component ensures that

the reporter promptly directs the bug to the relevant development team for evaluation [63;

1.1 Motivation and Context 5

Figure 1.3: Description - Bug report 1663121 extracted from Bugzilla (cropped).

95]. By adhering to these organizational guidelines, the user effectively aids in expediting

the triaging process [96; 55; 97].

In addition to the accurate categorization, the user includes pertinent references to re-

lated bugs, regression information, and associated bugs [12; 66]. This thoughtful inclusion

enables developers to establish valuable connections and dependencies among various re-

ported problems, streamlining the investigation process and fostering a holistic approach to

bug resolution. The meticulous documentation of affected versions and platforms signifi-

cantly narrows down the scope of the bug, allowing developers to focus their efforts and

resources more efficiently. This attention to detail exhibits the user’s commitment to pro-

viding precise information, ultimately contributing to a more streamlined debugging and

resolution process.

The steps to reproduce instructions that the user provides serve as a vital resource for

developers in charge of fixing the bug [58; 99; 21]. By meticulously outlining the actions re-

1.2 Problem 6

quired to replicate the bug, the user empowers the development team to recreate it accurately,

enabling them to observe the undesired behavior firsthand and devise targeted solutions. Ad-

ditionally, the user’s description of the expected and actual results clearly and concisely

articulates the bug’s impact on the system. This contrast allows developers to ascertain the

bug’s severity, prioritize their efforts accordingly, and promptly address the discrepancy be-

tween expected and observed behavior. Furthermore, the user’s inclusion of supplementary

materials, such as attachments and additional information, enriches the bug report and en-

hances its overall quality [47; 45]. The attachments, such as the provided screencast, provide

developers with valuable visual insights, further aiding comprehension and expediting de-

bugging.

Given the inherent time constraints of software development, the user’s ability to strike

a harmonious balance between comprehensive detail and concise presentation is commend-

able. The user’s commitment to providing rich information ensures that developers can ef-

fectively address the bug with the utmost efficiency, thereby minimizing unnecessary delays

and optimizing the allocation of resources. While it is true that comprehensive bug reports

like the one presented are rare, it is important to acknowledge the user’s exceptional effort in

providing such rich and detailed information. In many software development contexts, users

may indeed lack the necessary time, expertise, or resources to produce such comprehensive

bug reports [99].

1.2 Problem

For a long time, the term "bug" has been used to refer to software issues, and the way de-

velopers and end users report these bugs has become increasingly important. We investi-

gate the problem of reporters does not properly know which field in the bug report has the

most importance for the final resolution, that must be filled while reporting a bug. Thus,

we focus not on the bug itself but on understanding the fields’ impact in the final bug re-

port resolution. Researchers have extensively studied the fields composing a bug report

and highlighted their importance. For instance, the steps to reproduce a bug have been

widely discussed. Their significance in resolving the bug is highly considered, as well

as observed behavior, expected result, concise summary, and description [99; 21; 29; 11;

1.3 Problem Relevance 7

47]. Studies related to bug report fields are still being conducted nowadays. Hence, our

work shows the importance of textual fields on the bug report’s final resolution and show-

cases that summary, description, and comments are the source of essential details, as well

as the attachments and the changes made by the reporter through the bug report life. Thus,

it complements the information and better illustrates the reported problem, leading the de-

velopers to understand the bug better and, consequently, to its final resolution. However,

we understand that a major problem is the reporter’s knowledge gap in understanding how

efficiently and adequately fill out the BRs’ fields.

1.3 Problem Relevance

Low-quality bug reports are a significant problem in software development projects that

can result in inefficiencies and resource wastage [90; 13; 99]. Since fixing bugs can

be a time-consuming and expensive task, having high-quality bug reports is crucial to

provide developers with enough information to locate and reproduce the bug [13; 99;

35]. While writing a comprehensive bug report may require additional time and ef-

fort, the benefits of a complete report may outweigh the drawbacks. However, when

there is no additional time, the available resource must be efficiently used, so focusing

on the essential information could contribute to having a complete bug report [59; 58;

99]. Submitting a well-documented bug report increases the likelihood of quickly identi-

fying and resolving the bug [84], compared to submitting a poor-quality report requiring

time-consuming triage to determine its validity [90; 13].

For the reason mentioned, providing the right information to locate and fix the bug re-

port becomes valuable knowledge and must be appropriately investigated. The users may

be unlikely to consistently provide such complete reports as illustrated in Figures 1.2 ad

1.3. However, with the knowledge about the relationship between BRs’ fields and resolu-

tion, the reporters can focus their effort and limited time to properly provide these fields that

most contribute to FIXED resolution. Additionally, investigating bug reports that have been

resolved with resolutions other than FIXED may provide valuable insights to reporters, help-

ing them understand what information is most helpful for developers to identify and address

bugs effectively.

1.4 Objective 8

Overall, managing and triaging bug reports is crucial for software development projects,

and addressing the problem of low-quality bug reports can lead to significant improvements

in the efficiency of bug resolution. Developers and users can work together to improve the

quality of bug reports by assisting and automating the identification and filtering of invalid

bug reports [13]. Providing users with clear instructions on writing quality bug reports may

help reduce the number of poor-quality reports, resulting in more accurate and complete bug

reports. Additionally, by automating the identification and filtering of invalid bug reports,

developers can save valuable time and effort in managing bug reports and instead focus on

addressing valid bug reports [88; 94; 35; 88; 45].

Low-quality bug reports are an important issue that deserves attention. It can lead to

inefficiencies in software development processes, hinder effective communication between

developers and users, and cause resource wastage. Addressing this problem can lead to more

effective bug resolution, improved user experiences, and increased efficiency in software

development processes.

1.4 Objective

This study aims to investigate bug report resolutions and provide valuable insights into the

essential information required in bug reports, particularly the fields that have the most sig-

nificant influence on achieving the FIXED resolution. Our research includes a comprehen-

sive case study on Bugzilla, as it is one of the most widely used bug-tracking systems [68;

51] and offers detailed information about bugs, users, projects, and collaboration networks.

Besides, we use machine learning algorithms (ML) to gain insight into these fields and de-

velop an analysis comparing different algorithms and trying to understand their behavior.

Overall, in this research, we seek to better understand the field’s impact on the final bug

report resolution according to the best machine-learning model and minimize the knowledge

gap of the reporters when filling out the bug report. The results form the best model guide

for understanding the field’s importance and are used to guide the reporter according to its

importance. For that, we intend to provide the following:

1. a study in identifying the most important fields in a bug report, according to the ma-

chine learning model, that users must effectively provide in the minimal time available;

1.5 Scope 9

2. a comparative analyses of five machine learning models on classifying bug report

resolution within INVALID, INACTIVE, INCOMPLETE, WORKSFORME, DUPLI-

CATED, WONTFIX, MOVED, and FIXED, from Bugzilla;

3. an investigation on how to improve the best model by applying techniques such as

fine-tuning and data preprocessing scenarios;

4. an analysis of the best model results within Random Forest, Logistic Regression, Gaus-

sian Naive Bayes, Decision Tree, and Gradient Boosting in understanding the most

influential features and their relation with the FIXED resolution.

1.5 Scope

The scope of this research is the field of Software Engineering in the context of bug reporting

and software maintenance. Specifically, this research studies the relationship between bug

report fields and the final resolution by applying and analyzing ML algorithms: Random

Forest, Decision Tree, Gaussian, Naive Bayes, Logistic Regression, and Gradient Boosting.

For that purpose, we use a database (69k bug reports approx.) collected from Mozilla’s

Bugzilla [2], whose type is defect, where there are several products such as Mozilla, Bugzilla

[16], Firefox [36], Thunderbird [38], Toolkit [37] and others.

1.6 Contribution

The study aims to make several significant contributions to the software development process

by addressing the knowledge gap between bug report fields and the bug final resolution. We

expect that the contributions include improvements in the quality and quantity of information

provided in bug reports, as well as more efficient and effective triaging and resolution of

bugs. Additionally, the proposed study may provide insight into the gap between the user’s

and developer’s perceptions of what constitutes essential information in bug reports. Thus,

this work provides the following contributions:

1. A study on five machine learning algorithms on bug report resolution classifi-

cation: We performed a detailed study on five specific machine learning algorithms

1.7 Document Organization 10

commonly used for bug report resolution classification. We also used appropriate eval-

uation techniques to compare their performance, including accuracy, precision, recall,

and F1 score. Furthermore, we have also analyzed the strengths and weaknesses of

each algorithm in the context of bug report resolution classification and identified the

most effective algorithm for this task.

2. Discussion and analysis on the fields more related to bug report FIXED resolu-

tion: We conducted a thorough discussion and analysis of the features that strongly

correlate with bug report resolutions, identifying the specific fields or information pro-

vided in bug reports that significantly contribute to achieving a FIXED resolution.

This research focuses on bug reporting and software maintenance in the field of Software

Engineering. By studying bug report resolutions, particularly the FIXED resolution, and the

influential fields/information, we made valuable contributions to improve the software devel-

opment process. Through the utilization of a large Bugzilla database and machine learning

models, this study aims to have implications by enhancing bug report quality, reducing the

bug backlog, improving communication between users and developers, and optimizing the

use of development resources. However, we have not evaluated the developer’s perception

in order to attest to whether the fields shown as important by the model are also considered

important by them. The main contribution is to support reporters in understanding the vi-

tal information they must provide while reporting a bug and the most efficient use of their

limited time. Together with a study in the area proportionating discussion and bringing an

analysis in the bug reporting data to share the achieved knowledge and insights from this

work.

1.7 Document Organization

This document is organized into chapters to provide a clear and structured study presenta-

tion. Following the introduction, Chapter 2 refers to the background providing an overview

of Bugzilla, the bug reporting system used for this study, as well as the concept of bug reports,

data balancing techniques, and the machine learning algorithms employed in the research.

Chapter 3 refers to the research method describing the study subject, including details on

1.7 Document Organization 11

data collection and the machine learning algorithms utilized. It also presents the research

questions, experimental procedure, and evaluation metrics employed to assess the effective-

ness of the models. The results and discussion are in Chapter 4, presenting the study findings

and addressing the research questions. It includes an analysis of the best machine learning

model for bug report resolution classification, the fine-tuning process, grouping resolutions,

identifying bug report features strongly linked to resolution status, and identifying threats

to validity. Chapter 5 presents the related work providing a summary of existing literature

and research relevant to bug report resolution and machine learning applications in software

engineering. Finally, we discuss the conclusion in Chapter 6, highlighting the study’s limi-

tations and its contributions to the field of software engineering. It also suggests avenues for

future work and potential areas of improvement.

Chapter 2

Background

This chapter provides a comprehensive overview of the concepts of Bugzilla, bug report and

bug reporting, machine learning algorithms used, and how they are applied in the software

engineering context to improve the quality and efficiency of bug reporting and resolution.

2.1 Bugzilla

Bugzilla is a widely used open-source bug-tracking and issue-tracking system popular among

software developers and project managers [68]. It was created in 1998 by Terry Weissman

as an internal tool for Netscape Communications Corporation. Still, it was later released as

an open-source project under the Mozilla Public License [16].

Bugzilla provides a web-based interface for submitting, tracking, and managing bugs and

other software issues. It allows developers and other stakeholders to report, track, and re-

solve software defects, feature requests, and other issues in a collaborative manner. Bugzilla

also offers features such as custom fields [30], email notifications, and advanced search ca-

pabilities, making it a versatile and powerful tool for bug tracking in software projects of all

sizes. One of the key advantages of Bugzilla is its flexibility and customizability. It can be

easily customized to meet the specific needs of different software development teams and

organizations. Additionally, Bugzilla integrates well with other software development tools

and platforms, such as source code management systems, continuous integration servers, and

project management tools.

In Figure 2.1 [15], extracted from the Bugzilla documentation, the comprehensive life cy-

12

2.1 Bugzilla 13

cle of a bug report is depicted, showcasing all possible statuses and potential resolutions as

outlined in the Bugzilla manual. The life cycle begins with discovering and reporting a new

bug, initially assigned to the UNCONFIRMED state. Subsequently, the developers analyze

the bug to determine its validity for further work, and when it is valid, the state becomes

NEW. If confirmed, the state is transitioned to CONFIRMED during the triage process,

where the developer thoroughly reviews the report. However, if the developer determines

that it is not a bug, the state is changed to RESOLVED. The report is then subjected to verifi-

cation by the Quality Assurance (QA) team, leading to the final state of VERIFIED. In order

to transition to the RESOLVED state, the bug report must have a resolution selected from a

set of predefined options, including FIXED, DUPLICATED, WONTFIX, WORKSFORME,

INCOMPLETE, INVALID, MOVED, INACTIVE, SUPPORT, and EXPIRED. Notably, as

depicted in Figure 2.1, the state of a bug report can be modified at any point, allowing for

transitions to any other state. For example, a bug report that has been RESOLVED can be

changed back to UNCONFIRMED.

In the bug triaging and fixing process, the responsibility of the developer assigned to

triage is to manually determine whether a bug report is confirmed as a genuine bug. This

confirmation necessitates evaluating each newly submitted bug report. However, the sheer

volume of bug reports can be overwhelming. For instance, according to Yuanrui et al. [35],

the Mozilla project receives an average of 307 new bug reports daily. Additionally, Anvik

et al. [3] estimated that in projects like Eclipse and Firefox, approximately 6% and 7% of

bug reports, respectively, are ultimately resolved as INVALID. These statistics highlight the

substantial number of bug reports that could have been avoided, saving valuable time spent

on manually verifying their validity. A fast search on Bugzilla in 2021 reveals around 6500

INCOMPLETE bug reports and 2400 INVALID bug reports. The cumulative total of these

numbers signifies a significant amount of time that could have been better utilized.

Many organizations and projects have been adopting Bugzilla, including the Mozilla

Foundation [2], Red Hat [76], the GNOME Project [93], and the Eclipse Foundation [39].

Its use has been documented in many research studies and software engineering publications,

demonstrating its importance and value in the software development community. Some spe-

cific examples of how Bugzilla has been used in different organizations include its use by

the Mozilla Foundation to track bugs and feature requests for its various products [1] and

2.1 Bugzilla 14

Figure 2.1: Bugzilla bug report’s life cycle.

its use by Red Hat to manage issues for its Linux distribution. Despite its many advantages,

some limitations and challenges are associated with using Bugzilla. For example, some users

may find its interface less intuitive than other bug-tracking systems. However, the Bugzilla

community has worked to address these challenges through ongoing development and im-

provement of the tool.

In comparison to other bug tracking and issue tracking systems such as JIRA [54],

Bugzilla offers a similar set of features and capabilities. However, some users may prefer

one tool over another based on usability, cost, and integration with other tools. Ultimately,

the choice between Bugzilla and other systems will depend on the user’s or organization’s

specific needs and preferences.

Overall, Bugzilla is a well-established and widely used platform for bug management in

open-source projects [68]. Its web-based interface allows for easy submission and tracking of

2.2 Bug Reports 15

bugs and collaboration between developers and users. Using Bugzilla in this research could

provide valuable insights into the bug reporting and fixing process, including the factors

contributing to effective bug reporting and resolution.

2.2 Bug Reports

Bug reports come in many different forms, but they typically include information about the

software program, the environment in which the bug occurred, and the steps taken to repro-

duce the problem. The more information the report includes, the easier for the developer to

identify and fix the issue [99].

The bug reporting form in Bugzilla consists of various fields that help users accurately

describe and report software bugs, as stated in Figure 2.2. The first field is the Summary,

where users provide a concise title or description of the bug. This field helps in quickly iden-

tifying and categorizing the reported bug. The following field is Product, which specifies the

software or project affected by the bug, ensuring that the bug report reaches the appropriate

development team for investigation.

The Version field allows users to specify the particular version of the software in which

the bug was encountered. This information helps developers determine if the bug has been

fixed in subsequent releases or if it is a known bug. The Component field allows users to

specify the specific module or component of the software where the bug occurred, aiding in

identifying the relevant codebase for debugging. The "What did you do?" field allows users

to describe their steps before encountering the bug. This section should include a detailed

sequence of actions developers can follow to reproduce the bug.

The "What happened?" field is where users describe the actual results or behavior they

observed when encountering the bug. This section should include specific error messages,

unexpected outputs, or any other anomalous behavior. Conversely, the "What should have

happened?" field outlines the expected results or the correct behavior that the user antici-

pated. This information helps developers understand the user’s expectations and provides a

clear target for resolving the bug. The "Attach a File" field allows users to include any rele-

vant files or screenshots that can aid in understanding and debugging the issue. The Bug Type

field enables users to categorize the bug based on its severity, priority, or other predefined

2.2 Bug Reports 16

Figure 2.2: Bugzilla bug reporting form.

classifications. The Security field indicates if the bug report contains sensitive information

or relates to a security vulnerability that needs immediate attention and restricted access.

The importance of bug reports cannot be overstated [47]. Without bug reports, developers

would have a harder time finding and fixing bugs in their software. Bugs can cause a range

of problems, from minor annoyances to critical errors that can cause the software to crash

or even become unusable [47]. In addition to helping developers identify and fix bugs, bug

reports also provide a valuable source of feedback for software users. By submitting bug

2.3 Machine Learning Algorithms 17

reports, users can help developers improve their software and make it more user-friendly

[13]. Bug reports can be submitted by anyone who encounters a bug with a software pro-

gram. This includes end-users, testers, and developers themselves. Also, bug reports can be

submitted through a variety of channels, including email, online forums, and bug-tracking

systems like Bugzilla.

Recently, there has been an increasing focus on the quality of bug reports. Researchers

have studied the factors that contribute to high-quality bug reports and have developed tools

and techniques to help improve the process of bug reporting [99; 47; 21; 22; 97; 13; 84;

70]. These efforts aim to make it easier for developers to identify and fix bugs in their

software and improve the overall quality of software products.

2.3 Machine Learning Algorithms

Machine learning is a powerful tool for making predictions based on data. One example of

how we can use machine learning to make predictions is in finance, where machine learn-

ing algorithms can be trained on historical stock market data to predict future stock prices.

The algorithm analyzes patterns and trends in the data and uses this information to make

predictions about future stock prices. Also, we have used only supervised machine learning

algorithms because Bugzilla provided the desired output (bug report resolution), which we

aim to predict. However, selecting appropriate algorithms is a critical step toward achieving

accurate and reliable predictions. In this study, we utilized five supervised machine learning

algorithms to analyze the bug report dataset: Random Forest [62], Decision Tree [61], Gra-

dient Boosting [17], Logistic Regression [10], and Gaussian Naive Bayes [92]. We selected

these algorithms based on their ability to handle the specific characteristics of the bug report

dataset, such as the presence of categorical and continuous features, for example, compo-

nents and number of attachments; class imbalance, as the most common is FIXED and there

are few samples from MOVED for instance; and the need for interpretability. We used these

five models to provide a comprehensive dataset analysis and identify the most effective ap-

proach for predicting bug report resolution. Table 2.1 shows some of the main characteristics

and differences within the models.

These five algorithms have been used in academia in the software engineering context and

2.3 Machine Learning Algorithms 18

Table 2.1: Main differences between machine learning models.

Model Main Differences

Random Forest - Ensemble model that combines multiple decision trees and aggregates

their predictions. Reduces overfitting by using random subsets of fea-

tures for each tree and averaging predictions [83]. Provides a mea-

sure of feature importance [78]. Generally performs well with high-

dimensional data and handles missing values effectively [52].

Decision Tree - Builds a single tree model by recursively partitioning the data based on

feature thresholds. Also, it allows easy interpretation and visualization.

Prone to overfitting, especially with complex or noisy data. However,

do not handle missing values well [8; 77].

Gradient Boosting - Ensemble model that combines multiple weak prediction models se-

quentially [71]. Minimizes errors by adjusting model weights dur-

ing training. Can handle a variety of data types. Less prone to

overfitting compared to a single decision tree. Requires careful tun-

ing of hyperparameters and may be computationally expensive [75;

17].

Logistic Regression - Supervised learning algorithm that predicts binary or multilabel out-

comes. It models the probability of classes using a logistic function. It

also provides interpretable coefficients for each feature and assumes a

linear relationship between features and the log-odds of the target vari-

able. Requires feature scaling and may struggle with non-linear rela-

tionships [87; 79].

Gaussian Naive Bayes - Probabilistic model based on Bayes’ theorem. It assumes indepen-

dence between features given the target variable. Also, it follows a

Gaussian distribution for continuous features, requires a small amount

of training data, and performs well with high-dimensional data. Can be

sensitive to correlated features [92; 43].

2.3 Machine Learning Algorithms 19

are applicable for properly using classification bug report resolution. For instance, a study

by Kumar et al. [62] used Random Forest to predict software faults in open-source projects,

achieving high accuracy and outperforming other machine learning algorithms; Goyal and

Sardana [41] used Decision Tree to assess the performance of bug fixing processes in open-

source repositories; Cerón-Figueroa et al. [19] used Stochastic Gradient Boosting to predict

the maintenance effort of software-intensive systems, achieving high accuracy and demon-

strating the usefulness of the model for identifying critical bugs; Tan et al. [89] used Logistic

Regression to predict the severity of bug reports in open-source projects, achieving high ac-

curacy and demonstrating the model’s usefulness for identifying critical bugs; and Dommati

et al. [32] found that using a probabilistic Naive Bayes approach for classifying network

bugs was effective.

Chapter 3

Research Method

We performed an exploratory study, aiming to understand the relationship between BR fields

and resolution status, and in this way, helping the user invest their limited time into infor-

mation that is essential to be in the report. In order to achieve this information, we assess

different machine learning models’ effectiveness in predicting bug report resolution. We

investigated two research questions: 1) Which machine learning model performs better in

predicting bug resolution status? and 2) Which bug report features are more strongly linked

to the bug report resolution status? The findings provide insights into model performance,

feature importance, and guidance for improving bug reporting practices.

We performed an experiment in order to understand features or actions that best indicate

a bug report resolution and how it influences resolving the bug as FIXED. Once a dataset and

a set of previously selected features were available, we used five machine learning algorithms

to predict the resolution of the bug report. It was done through a combination of procedures

to achieve the best results for the chosen machine learning models.

The rest of this chapter is organized as follows. Section 3.1 presents the ABC framework

we used to guide our research strategy and methods. Section 3.2 describes the research

questions that motivated our study. Section 3.3 introduces the study subject, including the

data sources and collection process. Section 3.4 explains how we balanced the data to avoid

class imbalance problems. Section 3.5 presents the machine learning algorithms we applied

to build predictive models for bug report resolution. Section 3.6 describes the experimental

procedure and Section 3.7 the evaluation metrics that we used to assess the performance of

our models.

20

3.1 The ABC framework 21

3.1 The ABC framework

The ABC framework for research strategy is a model that helps researchers design and eval-

uate their studies. It stands for Actors, Behavior, and Context, which are three aspects of re-

search that need to be balanced. Klaas-Jan Stol and Brian Fitzgerald proposed the framework

in their book Contemporary Empirical Methods in Software Engineering [86]. According to

the ABC framework, researchers need to consider the following trade-offs when choosing a

research strategy: Generalizability over actors (A): how representative are the study partici-

pants to the target population?; Precise control of behavior (B): how well can the researcher

manipulate and measure the variables of interest?; Realism of context (C): how similar is the

setting of the study to the real-world situation?

The ABC framework suggests that these three aspects cannot be maximized simultane-

ously, and different research strategies have different strengths and weaknesses. The frame-

work also provides examples of eight archetypal research strategies, such as laboratory ex-

periments, formal theory, computer simulation, and experimental simulation [86]. We used

the ABC framework to help plan our studies by identifying the most suitable research strat-

egy for our research question and the limitations and challenges we may face.

Figure 3.1: ABC Framework - Stol and Fitzgerald.

3.2 Research Questions 22

Our research is a Sample Study located at Quadrant III in the Image 3.1. A sample study

is a research strategy that uses a representative sample of actors from a population of interest

and measures their behavior or opinions using surveys or questionnaires. A sample study

has high generalizability over actors (A) but low control of behavior (B) and low realism

of context (c). A sample study can be used to answer descriptive or explanatory questions

about the characteristics or relationships of a population. The following characteristics of

the research can justify the archetypal strategy of the sample study:

• The research uses a dataset of bug reports from software projects as a representative

sample of a larger population of interest: the software projects. This implies that the

research has high generalizability over actors (A), as the results can be applied to the

whole population or similar populations.

• The research measures the behavior of the sample using machine learning models and

feature analysis. This implies that the research has low control of behavior (B), as

the researchers do not manipulate or intervene in the behavior of the sample but only

observe and measure it.

• The research performs an experiment in a simulated environment, using a combination

of procedures to achieve the best results for the chosen machine learning models. This

implies that the research has low realism of context (c), as the experiment does not

reflect the real-world context of bug reporting and resolution but only approximates it.

3.2 Research Questions

The primary goal of this study is to delve into the crucial information that a reporter should

include in a bug report and understand the relationship between BR and resolution status. We

examine the efficacy of five machine learning models in predicting bug report resolutions,

specifically focusing on reports resolved as FIXED. Subsequently, we conduct an in-depth

analysis of the characteristics associated with these reports. To accomplish this, we address

the following research questions:

RQ1. Which machine learning model performs better in predicting bug resolution

status? It aims to identify the best ML model for BR resolution prediction. In order to

3.3 Study Subject 23

answer this question, we compared the performance of five different machine learning mod-

els, namely Random Forest, Decision Tree, Gradient Boosting, Logistic Regression, and

Gaussian Naive Bayes. We evaluated the models using various metrics such as accuracy,

precision, recall, and F1 score. The goal is to determine which model performs better in

predicting bug resolution status. Additionally, we performed a sensitivity analysis to under-

stand how changing the model’s parameters impacts its performance. This analysis helps

us understand the selected model’s strengths and weaknesses and provide insights for future

work.

RQ2. Which bug report features are more strongly linked to the bug resolution sta-

tus? Aim to identify which bug report features are more strongly linked to the bug resolution

status. By analyzing the feature importance of the best classification model, we identified the

most important features for prediction according to the best prediction model. This analysis

can help developers and testers better understand the characteristics of bug reports that are

more likely to be resolved. Additionally, this knowledge can help in improving the quality

of bug reports, as it can guide developers, testers, and final users to provide more useful and

relevant information in the bug reports.

3.3 Study Subject

To conduct our research, we selected Bugzilla as our study subject, a widely used bug-

tracking system known for its diverse projects and open-source nature [27]. The used dataset

comprises bug reports from Mozilla’s Bugzilla [2], where there are several products. Thus,

to collect the bug report data, we developed a Python script that utilized the Bugzilla API

[28] to extract relevant fields for our study that will be further detailed.

3.3.1 Data

In this research, we utilize Bugzilla as our chosen study subject and collect a diverse dataset

encompassing various products such as Firefox, Bugzilla, Mozilla, Thunderbird, and more.

We selected Bugzilla for its wide range of projects and the wealth of information available

in bug reports, greatly enriching our research. Moreover, Bugzilla’s open-source nature

aligns with our objective of transparency and reproducibility. On the Bugzilla platform, the

3.3 Study Subject 24

bug reports are distinguished by the types of enhancement, task, and defect. However, our

analysis focuses on defects only, where software behavior deviates from expected norms,

including regressions, crashes, and errors [72]. To conduct our experiments, we compiled a

dataset of 68,492 bug reports spanning a ten-year period from January 1st, 2013, to January

1st, 2022. We chose this timeframe to ensure a comprehensive data representation, including

older and more recent bug reports.

In our comprehensive dataset, we have meticulously curated 65 distinct software projects,

each characterized by a dynamic and varied array of bug reports, spanning from as few as

one to an astonishing 31,000 reports. This intrinsic variance in the volume of bug reports

engenders an inherent high class imbalance, offering a rich and multifaceted dataset that au-

thentically mirrors the intricate landscape of software development. This diversity in bug

report frequencies endows our dataset with a broad and realistic spectrum of real-world sce-

narios, thereby enhancing the efficacy of our machine learning models in the context of

software development.

3.3.2 Data collection

We developed a Python script utilizing the Bugzilla API to collect the dataset, which is avail-

able on Github1. This script facilitated the extraction of bug report information, including

primary data, comments, and changes from the Bugzilla platform. Additionally, we de-

veloped an auxiliary script to crawl through the downloaded data and extract the relevant

features used in our experiments. To better illustrate the processes used in our work, Fig-

ure 3.2 presents the steps we took to prepare the data for the study, including the Feature

Cleaning, Dummification and Balancing, which we explain ahead.

Initially, we retrieved, from Bugzilla, ten (10) years’ worth of public Bug Reports (BRs)

belonging to several open-source software products. Our Python script initially fetched al-

most 68,500 BRs. We used three main endpoints from the Bugzilla API [28] to extract this

information, and each one is described below.

1. Bug Primary Data Endpoint: The bug primary data endpoint refers to the primary

information associated with individual bug reports in Bugzilla. This endpoint provides

1https://github.com/manoelf/master-research-bugreport

3.3 Study Subject 25

Figure 3.2: Data Setup before training the machine learning models.

essential details such as the bug ID, bug title, bug description, creation date, severity,

priority, status, and assigned developer. Bug ID serves as a unique identifier for each

bug report, enabling easy referencing and linking with other data sources. The bug

title succinctly describes the bug, and the description provides a detailed account of

the bug, including steps to reproduce and observed behavior. Other fields, such as

creation date, severity, priority, status, and assigned developer, offer valuable insights

into the bug’s lifecycle and its impact on the software development process. From this

endpoint, it is 44 fields available, and we have used 12 of them. The reason is that

most were about users involved as cc and QA contact or had many empty values.

2. Comment Data Endpoint: The comment data endpoint encompasses the comments

and discussions made by various stakeholders during the bug’s lifecycle. Each bug re-

port may have multiple comments from developers, testers, users, or project managers.

These comments can provide crucial information about bug resolutions, workarounds,

testing outcomes, and user feedback. By accessing the comment data endpoint, re-

searchers can gain insights into the collaborative efforts undertaken to identify, re-

solve, and document bugs. Comment data often includes fields such as comment ID,

author, creation date, comment text, and any attachments or links shared within the

comments. From this endpoint, it is ten fields available for each comment, from which

we have used to extract information such as the number of comments, the number of

attachments added to comments, etc.

3. Changes Data Endpoint: The changes data endpoint focuses on the historical changes

3.3 Study Subject 26

made to bug reports throughout their lifecycle. When a bug undergoes modifications,

such as status updates, reassignments, attachments, or resolution changes, these al-

terations are recorded as changes. The changes data endpoint provides access to this

valuable information, allowing researchers to analyze the evolution of bug reports over

time. Examples of fields available through the changes data endpoint include change

ID, change date, changed field (e.g., status, resolution), previous value, and new value.

This endpoint enables the exploration of patterns, trends, and decision-making pro-

cesses related to bug resolutions and bug tracking activities. The information extracted

from this endpoint is related to the total of changes in the bug report, such as the num-

ber of changes done by the reporter, the number of changes in the priority and severity,

etc.

After running the script, we extracted 21 features and the response variable (resolution),

as shown in Tables 3.1, 3.2 and 3.3.

Table 3.1: Bug report features for predicting bug resolution.

Feature Description / Reason for Choosing / Importance

resolution The final solution of the bug report, detailed in Table 3.4.

bg_number Bug report ID. Besides being an ID, it also highlights the

timing at which the bug has been reported; as it grows

means the bug report is recent, which could introduce a

semantic for the machine learning models.

has_attachment Boolean indicating whether the bug report has an attach-

ment. Attachments can provide additional information or

evidence for understanding and resolving the bug.

total_attachment_comments Number of attachments added in the comments. It indi-

cates the presence of additional information or discussions

related to the bug.

3.3 Study Subject 27

Table 3.2: Bug report features for predicting bug resolution.

Feature Description / Reason for Choosing / Importance

severity Bug severity (blocker, critical, major, normal, minor, triv-

ial, enhancement). The severity provides insight into the

bug’s impact on the system’s functionality.

number_changes_severity Number of changes in the bug report’s severity field. It

reflects the changes in the perceived impact or severity of

the bug.

priority Bug report severity (P1, P2, P3, P4, P5). Bug priority indi-

cates the urgency and importance of resolving the bug.

number_changes_priority Number of changes in the bug report’s priority field. It in-

dicates the significance and evolution of the bug’s priority

over time.

op_sys The operating system where the bug was found. The oper-

ating system may influence the bug’s behavior and resolu-

tion process.

platform This is the hardware platform against which the bug was

reported (ARM, ARM64, x86, x86_64, etc). The plat-

form can affect the bug’s behavior and may require specific

platform-related solutions.

component The component where the bug was found. Different com-

ponents may have varying levels of complexity and impact

on bug resolution.

product The product where the bug was found. Different products

may have different bug resolution processes and priorities.

version Product version. Different versions of the product may

have varying bug resolution priorities and strategies.

votes Number of votes by Bugzilla users for the bug report. It

may reflect the level of community interest and perceived

importance of the bug.

3.3 Study Subject 28

Table 3.3: Bug report features for predicting bug resolution.

Feature Description / Reason for Choosing / Importance

total_changes Number of changes in the bug report across all the fields in

its life. The overall activity level on the bug report, includ-

ing all types of changes

total_users_changes Number of different users that have made any change in

the bug report. It may represent the collaborative effort in

resolving the bug and the level of community involvement.

number_changes_assigned Number of changes in the bug report’s assigned developer,

expressing how many developers have been assigned to the

bug. It helps measure the activity level and collaboration

in resolving the bug report.

number_comment Number of comments on the bug report. More comments

could suggest a complex or critical bug that requires addi-

tional discussion and attention.

total_comments_by_author Number of comments added by the bug report author. The

author’s involvement and engagement may influence the

bug’s resolution.

total_users_commenting Number of different users commenting on the bug report.

It may indicate the level of discussion and attention the bug

has received from multiple stakeholders.

total_words_desc Number of words in the bug report description. More de-

tailed bug descriptions may provide clearer information for

effective resolution.

total_words_summary Number of words in the bug report summary. The sum-

mary provides a concise overview of the bug’s nature and

can help understand its resolution requirements.

In addition, we removed features directly related to the bug’s resolution, which, if main-

tained, could bias the classification results. The features removed are: changes_resolution,

indicating the number of changes in the resolution according to its history, which is the

model’s target label; total_changes_status, status_RESOLVED and status_VERIFIED, using

3.3 Study Subject 29

the status as a feature in a bug report resolution classifier can potentially introduce a bias

in the model’s understanding of the relationship between the status and resolution - if the

model is trained on data where certain statuses are more commonly associated with specific

resolutions, it may learn to rely heavily on the status feature to make predictions; also, some

other features that had too many empty values, such as flags, which are the flags that users

can sign a report and comments; assigned_to and creator were also removed because we do

not intend in working with the developer profile as features to the classifier.

As depicted in Figure 3.2, the data setup included the application of Dummification [56]

to handle the diverse set of non-numeric features extracted from Bugzilla bug reports. The

following non-numeric features were dummified: has_attachment, severity, platform, pri-

ority, status, version, type, product, component, and op_sys. This process resulted in 1228

columns, which we used as input to train the models.

Table 3.4: Bug report resolutions.

Resolution Description Total

MOVED Used when Bugzilla is not the proper place for the bug re-

ported.

45

INACTIVE The bug was reported a long time ago, no additional infor-

mation was given, and there is no way to move forward to

fix it.

226

INVALID The report is not an actual bug. 2,411

INCOMPLETE There is not enough information to reproduce the bug. 3,624

WONTFIX The person who triages the bug decides that the bug does

not worth fixing.

3,841

DUPLICATE The bug has been reported more than once. 6,701

WORKSFORME Attempts to reproduce the bug were not successful, and no

bug was found.

7,253

FIXED The bug reported was fixed and satisfactorily resolved. 44,377

The BRs that compose the dataset were subject to data cleaning by removing field re-

ports containing too many empty or null values as flags with approx. 86% of null data

and the reports that came with an empty resolution, which is the target variable, left us

3.4 Data Balancing 30

with a dataset of approximately 66K BRs. In addition, we removed features directly re-

lated to the bug’s resolution, which, if maintained, could bias the classification results.

For instance, total_changes_status indicates the number of changes in the status, and to-

tal_changes_resolution shows the number of changes in the bug’s history, which is the

model’s target label.

3.4 Data Balancing

The data obtained from Bugzilla is naturally unbalanced, where more bugs are resolved as

FIXED than any other resolution, as stated in Table 3.4. Generally, unbalanced data lead

the machine learning model to bad results because the unbalanced data is complex for the

model to generalize to the minimal classes [46; 57]. Due to the presence of unbalanced data,

we conducted experiments to address this issue by employing the oversampling method [14]

during the training phase. We chose this approach because it effectively increases the data

for classes with fewer samples, thus ensuring a more equitable representation of all classes

in the dataset. For instance, the class MOVED had insufficient data, but oversampling helped

equalize the data distribution across all classes. By applying the oversampling technique, we

aimed to mitigate the potential bias caused by the skewed data distribution, leading to more

robust and reliable results in our evaluation.

As the last step from the data setup in Figure 3.2, we applied data balancing to the training

data. In addition, this unbalance is expected as most reports tend to be system failures

that must be solved. While Figure 3.3(a) illustrates the distribution of the dataset before

performing the balancing method, Figure 3.3(b) shows the distribution of the (training) data

balanced by RandomOverSampler.

3.4 Data Balancing 31

(a) All data before balancing. (b) Training data after balancing.

Figure 3.3: Bug report distribution according to resolution.

3.4.1 Oversampling

The oversampling method basically generates new samples for the minimal classes. In or-

der to perform the data balancing, we used RandomOverSampler from Imbalanced Learn

[49], an open-source library. Studies have shown that imbalanced data can lead to poor

performance of machine learning models, especially when the minority class (in this case,

bug reports resolved as MOVED or INACTIVE) is of interest. In such cases, oversampling

techniques showed to be effective in improving the performance of machine learning mod-

els by balancing the distribution of classes [23; 44]. For instance, a study by Chawla et

al. [23] found that oversampling techniques, such as SMOTE, improved the performance of

machine learning models on imbalanced datasets. Another study by He and Garcia (2009)

showed that oversampling techniques improved the performance of a Support Vector Ma-

chine (SVM) classifier on imbalanced datasets [44]. Therefore, using oversampling tech-

niques in our study is justified to improve the performance of machine learning models in

3.5 Machine Learning Algorithms 32

predicting the resolution of bug reports.

3.5 Machine Learning Algorithms

In this research, we employ five machine learning algorithms to predict the resolution of

bug reports. The selection of these algorithms is justified based on their established effec-

tiveness in classification tasks and their suitability for bug report resolution prediction, as

described in the Background section 2. Each model brings unique characteristics and ad-

vantages contributing to the comprehensive analysis of bug report data. In Figure 3.4, we

show the adopted protocol for applying the five ML algorithms on the balanced BR dataset

for classifying their resolution status.

Figure 3.4: Pipeline for machine learning algorithms training, testing, and fine-tuning.

Once the dataset has been processed, including adding dummy features, we proceed to

split it into training and testing sets, and finally, we balance the training set. We divided

the dataset into 80% for training and 20% for testing [40]. We then apply five different ML

models to classify the final resolution of bug reports: Random Forest, Gradient Boosting,

Logistic Regression, Decision Tree, and Gaussian Naive Bayes. To achieve the best results

with the ML algorithms, we experiment with various combinations of procedures mentioned

earlier. We create different scenarios by trying out different combinations, as shown in Table

3.5. Following the pipeline depicted in Figure 3.4, we perform fine-tuning on all five models

to identify the optimal set of parameters that yield the best classification model. Finally, the

best model is selected to predict the BR according to its resolutions.

3.6 Experimental Procedure 33

3.6 Experimental Procedure

We experimented the ML algorithms using features dummyfication [56] on the dataset,

which transforms the non-numeric features into numeric ones; data normalization [82], basi-

cally normalizing the range of independent variables; data balancing using the RandomOver-

sample [14] method due to the considerable variance in the bug report resolutions; we split

the dataset into training and testing (80% and 20%); and, finally experimented five machine

learning algorithms to classify the bug report final resolution, which are:

• Random Forest, which is a meta-estimator that fits several decision tree classifiers

on various sub-samples of the dataset and uses averaging to improve the predictive

accuracy and control overfitting;

• Gradient Boosting builds an additive model in a forward stage-wise fashion; it allows

for the optimization of arbitrary differentiable loss functions;

• Logistic Regression is usually used for cases where the dependent variable is binary

and multiclass, which allows estimating the probability of the variable occurring ac-

cording to a given event, in the context of NLP and classification of a word impacting

the classification of a sentence and in our context is the impact of the features on clas-

sifying the bug report resolution;

• Decision Tree is a non-parametric supervised learning method used for classification

and regression;

• Gaussian Naive Bayes is a probabilistic classifier based on Bayes’ theorem that as-

sumes independence between terms.

We decided to experiment with these models because they are well fit for the multi-class

classification tasks, have different characteristics, and bring different insights for our study as

detailed in Table 2.1, as well these models could be easily used in future research to continue

this work. The primary purpose of this work is to understand the features or actions that help

increase the quality of bug reports and the chances of developers fixing them. In order to

achieve the best results for the machine learning algorithms used, we applied combinations

of different procedures from those mentioned before, forming the scenarios in Table 3.5.

3.7 Evaluation Metrics 34

Besides executing the models in the data without modification, which we named Original,

we also explored the scenarios where we just balanced the data (B), generating equal dis-

tribution through the BR resolutions; normalized the data (N), which transforms the values

of numeric features to a common scale, without distorting the differences in their ranges;

also applied the dummification (D), which is the process of converting categorical features

into numerical features by creating dummy variables (indicates the presence or absence of

a category); dummification and normalization together(DN); applied feature dummification

and data balancing (DB), and also combined these two with normalization (DNB).

Table 3.5: Data processing scenarios.

Scenario Normalization Balancing Dummification

Original

N ✓

B ✓

D ✓

NB ✓ ✓

ND ✓ ✓

BD ✓ ✓

NBD ✓ ✓ ✓

After executing the five models in the aforementioned scenarios, we fine-tuned the best

one to increase the metrics values, improve the models’ quality, and assess the results. We

also selected the model with the higher F1 measure, initially grouped the classification, eval-

uated the results, and conducted a more profound analysis. In Chapter 4, we detail the

results.

3.7 Evaluation Metrics

The classification models will classify the bug report in one of the eight possible resolu-

tions FIXED, DUPLICATE, INVALID, INCOMPLETE, WONTFIX, MOVED, WORKS-

FORME, and INACTIVE. We will evaluate the model results considering the well-known

metric accuracy, precision, recall, and F1-measure [73]. These metrics are commonly used

3.7 Evaluation Metrics 35

to evaluate the performance of multi-class classification models and are used to choose the

best machine learning model, answering the research questions according to the best model

selection involving fine-tuning and feature importance. Concerning analyzing the numeric

feature, we check their correlation by applying the method of Pearson [26], Kendall [60], and

Spearmen [85]. Also, we list the features that are most important to best model and analyze

them.

Accuracy 3.1 is a metric that measures the overall correctness of the model’s predictions

across all classes. In other words, it measures how many bug reports were correctly classified

into their respective categories by the model.

Accuracy =
CorrectPredictions

TotalPredictions
=

TruePositives+ TrueNegatives

TotalInstances
(3.1)

Precision 3.2 is a metric that measures the proportion of correctly predicted positive

instances out of the total instances predicted as positive for a particular class. In other words,

it measures how many of the bug reports that were classified into a certain category by the

model were actually in that category.

Precision =
TruePositives

TruePositives+ FalsePositives
(3.2)

Recall 3.3, also known as sensitivity or true positive rate, measures the proportion of

correctly predicted positive instances out of the total actual positive instances for a particular

class. In other words, it measures how many of the bug reports that were actually in a certain

category were correctly classified into that category by the model.

Recall =
TruePositives

TruePositives+ FalseNegatives
(3.3)

3.7 Evaluation Metrics 36

The F1 Measure 3.4 is a harmonic mean of precision and recall. It provides a single

metric that balances the trade-off between precision and recall.

F1Measure = 2×
Precision×Recall

Precision+Recall
(3.4)

In addition, we use histograms to understand the data distribution and boxplot to eval-

uate the machine learning models classifications trying to understand the relations between

some features and how they influence the results. The boxplot analysis considers the total

observations for each classification, the mean, standard deviation, minimum, maximum, and

first, second, and third quartile.

Chapter 4

Results and Discussion

This chapter presents the outcomes and analysis derived from evaluating bug report reso-

lution prediction using different machine learning models. We discuss the findings in light

of the research questions stated in this study, which aim to evaluate the performance of the

models, understand the characteristics of the best classification model, and identify the bug

report features strongly linked to bug resolution.

The first research question (RQ1) sought to determine which machine learning model

performs best in predicting bug resolution status. To address this question, we evaluated five

prominent machine learning models: Random Forest, Decision Tree, Gradient Boosting, Lo-

gistic Regression, and Gaussian Naive Bayes. We assessed the models using various metrics,

including accuracy, precision, recall, and F1 score, to measure their predictive capabilities

in determining bug resolution status. Additionally, we conducted a sensitivity analysis to

examine how parameter variations affected the model’s performance, providing a further un-

derstanding of its strengths and weaknesses and performing different data processing and

grouping strategies.

The second research question (RQ2) aims to discern the key BR fields in determining

its resolution, as elucidated by the best machine learning model. Addressing this inquiry

necessitates ranking the most influential features employed by the optimal model. Subse-

quently, we conducted an in-depth analysis of the pertinent data to discern how these identi-

fied features provide critical insights into the information a reporter should emphasize while

formulating and completing a bug report. By undertaking this comprehensive investigation,

we sought to unravel the intrinsic connections between the prominent BR fields and their

37

4.1 RQ1: What is the best machine learning model for bug report resolution classification?38

consequential impact on the resolution process.

In this section, we will present and discuss the results obtained from addressing these

research questions. The performance of each machine learning model will be compared,

highlighting the model that outperformed others in predicting bug resolution status. The

characteristics and features that contributed significantly to the performance of the best clas-

sification model will be explored, clearing the factors behind its success. Moreover, the bug

report features strongly linked to bug resolution status will be discussed, emphasizing their

importance in improving the quality and effectiveness of bug reports.

4.1 RQ1: What is the best machine learning model for bug

report resolution classification?

The execution of the aforementioned five ML models within the seven scenarios described

in Table 3.5 resulted in the outcomes presented in Table 4.1. According to Table 4.1, the

best performing model overall is the Random Forest, with an F1 measure of 72.32% in the

scenario where all features have (BD) applied, followed by Gradient Boosting in the same

scenario. Gaussian Naive Bayes model has the lowest F1 measures across all scenarios, in-

dicating that it might not perform as well as other models in this specific context. Regarding

the impact of preprocessing sets, it seems that applying (BD) yields better F1 measures than

subsets of preprocessing. The performance of the Logistic Regression model is quite sen-

sitive to the choice of preprocessing, with high variability in F1 measures across different

scenarios. It performs well (55.21%) only when applying (N). On the other hand, Random

Forest and Gradient Boosting models are relatively stable across different scenarios, with

consistently high F1 measures. Overall, Table 4.2 shows that Random Forest outperformed

the other models, achieving an accuracy of 74.46%, precision of 71.81%, and F1 score of

72.32%, despite Random Forest being the best model, the metrics demonstrate that there is

still room for improvement.

Table 4.3 presents the classification metrics for each class individually, as determined by

the Random Forest model. The model demonstrated excellent performance in classifying the

FIXED resolution, achieving an F1-score of 96%. The model also classified The INCOM-

PLETE class as a relatively high degree of precision, with an F1-score of 56%. However, the

4.1 RQ1: What is the best machine learning model for bug report resolution classification?39

Table 4.1: F-Measure by scenario.

ML Model Original N B D NB ND BD NBD

Gaussian Naive Bayes 53.43% 1.45% 17.12% 54.09% 2.88% 4.45% 15.78% 4.86%

Logistic Regression 50.35% 55.21% 5.00% 50.55% 43.89% 66.81% 0.00% 58.21%

Decision Tree 63.23% 63.75% 63.30% 68.00% 63.26% 67.66% 66.66% 65.73%

Random Forest 68.60% 68.35% 69.71% 71.32% 69.85% 70.92% 72.32% 72.19%

Gradient Boosting 67.65% 67.44% 65.37% 71.07% 65.81% 70.60% 69.22% 68.70%

Table 4.2: Best models metrics results.

Model Accuracy Precision Recall F1 Score

Gaussian Naive Bayes 57.34% 56.26% 57.34% 54.09%

Logistic Regression 71.28% 65.51% 71.28% 66.81%

Decision Tree 68.19% 67.83% 68.19% 68.0%

Random Forest 74.46% 71.81% 74.46% 72.32%

Gradient Boosting 73.57% 71.02% 73.57% 71.07%

model encountered difficulties in accurately predicting the remaining classes. For example,

the MOVED class had only seven bug reports in the test sample, and the model was unable to

classify any of them correctly. This suggests that further model refinement may be necessary

to improve its performance in classifying these classes.

4.1.1 Models’ Fine-tuning

In order to achieve optimal performance and enhance the predictive capabilities of the ma-

chine learning models, we conducted a process of fine-tuning. Fine-tuning involves adjusting

the hyperparameters and parameters of the models to improve their ability to learn patterns

and make accurate predictions [74; 67; 9; 24; 65]. This section outlines the fine-tuning pro-

cess employed for each one of the five machine learning models used in this research. In the

subsequent discussion, we elucidate the hyperparameters employed in fine-tuning each ML

algorithm, underscoring their significance in the process. We provide succinct explanations

to outline the nature and purpose of these hyperparameters, along with the specific values

4.1 RQ1: What is the best machine learning model for bug report resolution classification?40

Table 4.3: Random Forest metrics for individual classes.

Class Precision Recall F1-score Total

FIXED 86% 96% 90% 8488

INCOMPLETE 68% 47% 56% 712

WONTFIX 50% 30% 38% 728

DUPLICATE 40% 36% 38% 1310

WORKSFORME 45% 45% 45% 1463

INVALID 52% 17% 26% 452

INACTIVE 50% 2% 5% 42

MOVED 0% 0% 0% 7

chosen for their implementation.

1. Random Forest and Decision Tree: For the Random Forest model, the following hy-

perparameters were fine-tuned:

• max_depth: This hyperparameter determines the maximum depth of a decision

tree. It restricts the number of levels in the tree from the root to the leaf nodes. A

deeper tree can capture more complex relationships in the data but also increase

the overfitting risk. The max_depth hyperparameter accepts various values, in-

cluding:

- None: If set to None, the tree is grown until all the leaves are pure (i.e., all

samples in a leaf belong to the same class) or until all leaves contain less than the

min_samples_split samples required for further splitting. Essentially, there is no

constraint on the maximum depth, and the tree can become very deep. We chose

None due our due the large dataset with ample samples and features, as it can

help the model extract as much information as possible from the data.

- 15, 35, and 50: These specific values indicate that the maximum depth of the

tree is limited to 15, 35, and 50 levels, respectively. By restricting the maximum

depth, the model becomes less complex, reducing the risk of overfitting. These

values were chosen for experimenting, limiting the model to shallow threes and

deeper three for handling overfitting and capturing more complex patterns.

4.1 RQ1: What is the best machine learning model for bug report resolution classification?41

• max_leaf_nodes: This hyperparameter sets the maximum number of leaf nodes

that a decision tree can have. It controls the growth of the tree by restricting the

splitting process. The max_leaf_nodes hyperparameter accepts different values,

including:

- None: When set to None, there is no restriction on the number of leaf nodes,

and the tree continues to split until all nodes are pure or contain fewer samples

than the min_samples_split requirement. We chose None in order to give the tree

full freedom to partition the data as it sees fit.

- 250, 500, 750, 1000, and 5000: These specific values indicate the maximum

number of leaf nodes allowed in the tree. The tree is pruned earlier by setting

a smaller value, resulting in a simpler model with fewer leaf nodes. We chose

smaller values like 250 or 500 to encourage the tree to stop splitting earlier, cre-

ating simpler models with fewer leaf nodes. This can help combat overfitting,

especially when dealing with smaller datasets or when computational resources

are limited. And the higher values we chose to make it possible for the three to

grow higher.

2. Gradient Boosting: Fine-tuning of the Gradient Boosting model involved adjusting the

following hyperparameters:

• n_estimators: This hyperparameter represents the number of weak learners (de-

cision trees) that are sequentially added to the ensemble. It controls the overall

complexity and capacity of the model. Higher values of n_estimators can poten-

tially improve the model’s performance by allowing more iterations, but they also

increase computational time and memory requirements. Therefore, the following

values experimented with are 50 and 100. The values were chosen in order to

explore the trade-off between model performance and computational cost.

• max_depth: This hyperparameter determines the maximum depth of each deci-

sion tree in the ensemble. It limits the number of nodes or levels in a tree. A

smaller max_depth value constrains the complexity of the trees and helps prevent

overfitting. Conversely, a larger max_depth allows the trees to capture more intri-

cate relationships in the data. Therefore, the following values experimented with

4.1 RQ1: What is the best machine learning model for bug report resolution classification?42

are 3 and 8. We chose the values to test whether deeper trees can extract more

complex patterns from the data without overfitting.

• min_samples_split: This hyperparameter specifies the minimum number of

samples required to split an internal node during building a decision tree. It

controls the trade-off between increasing model complexity and preventing over-

fitting. A smaller value of min_samples_split can result in more complex trees

and may lead to overfitting, while a larger value promotes simpler trees. There-

fore, the following values experimented with are 2 and 5. We chose the values

for examining the trade-off between tree complexity and the risk of overfitting.

This helps determine the optimal minimum sample size for node splitting.

• min_samples_leaf: This hyperparameter sets the minimum number of samples

required to be at a leaf node. It determines the minimum size of the terminal

nodes of the decision trees. Similar to min_samples_split, a smaller value pro-

motes more complex trees, while a larger value encourages simpler trees. There-

fore, the following values experimented with are 1 and 5. We chose the values in

order to assess the impact of leaf node size on model performance. Smaller val-

ues can lead to more complex trees, while larger values encourage simpler trees

with fewer terminal nodes.

• max_features: This hyperparameter controls the number of features to consider

when looking for the best split at each node. It affects the randomness and di-

versity of the trees in the ensemble. A higher value or None means considering

all features, while a smaller value restricts the number of features considered for

splitting. Therefore, the following values experimented with are None, 1, and 5.

Experimenting with values of None, 1, and 5 helps to understand how the diver-

sity and randomness of feature selection impact the model’s performance. Using

None means considering all features, while smaller values restrict the number

of features considered for splitting. This exploration helps determine the most

relevant features for the task.

• subsample: This hyperparameter determines the number of samples to train each

weak learner. It controls the randomness of the training data used for each itera-

4.1 RQ1: What is the best machine learning model for bug report resolution classification?43

tion. A value less than 1.0 introduces stochasticity and can help reduce overfitting

by providing diversity in the training process. Therefore, the following values

experimented with are 0.5 and 1, indicating that two different experiments were

conducted with 50% and 100% of the training data used, respectively. The values

were chosen for experimenting with values of 0.5 and 1, so evaluating how the

use of a subset of the training data affects the model’s performance.

3. Logistic Regression: For Logistic Regression, the fine-tuning process focused on the

regularization parameter:

• C: Regularization parameter. The strength of the regularization term, either L1

or L2 regularization, was tuned to prevent overfitting and improve the model’s

generalization ability. Therefore, the following values experimented with are

0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, and 100000. We chose these

values in order to explore the trade-off between model complexity and overfitting.

Smaller values of C encourage sparsity in the coefficients, while larger values

allow for more flexible models.

• multi_class: Multi-Class. The parameter assuming the values multinomial is

used to specify that the model should use the cross-entropy loss function and

predict a multinomial probability distribution for multiclass classification prob-

lems. Chosen due to the nature of the problem to be multiclass.

• solver: Solver, specifies the algorithm to be used in the optimization problem.

For multiclass problems, the lbfgs solver is one of the options that can be used.

It stands for Limited-memory Broyden-Fletcher-Goldfarb-Shanno, which is an

optimization algorithm in the family of quasi-Newton methods that approxi-

mates the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm using a limited

amount of computer memory. We chose it because it is efficient and often works

well for logistic regression with multiclass problems.

4. Gaussian Naive Bayes: Being a probabilistic classifier, Fine-tuning of Gaussian Naive

Bayes involved feature selection and preprocessing rather than hyperparameter tuning.

• var_smooting: The portion of the largest variance of all features added to vari-

4.1 RQ1: What is the best machine learning model for bug report resolution classification?44

ances for calculation stability. However, in our experiment, we chose five random

values that range from a high value of 1.00000000e+00 (i.e., no smoothing) to

a low value of 1.00000000e-09 (i.e., strong smoothing). As the dataset has a

large number of features with low variance, it may be appropriate to use a higher

value of var_smoothing to avoid the problem of zero probabilities. The values

used are 1.00000000e+00, 5.62341325e-03, 3.16227766e-05, 1.77827941e-07,

1.00000000e-09. The choice of these specific values allows for an exploration of

the impact of smoothing on the model’s stability and performance. It helps iden-

tify the optimal level of smoothing for the specific dataset and the characteristics

of its features.

Throughout the fine-tuning process, manual experimentation and automated techniques,

such as grid search, were employed to explore the hyperparameter space and identify the

optimal settings for each model [48]. The best results achieved are shown in Table 4.4. After

performing model fine-tuning, the best Random Forest was the one with the same metric

values as before – we assume that the hyperparameters chosen were already the best ones in

the chosen scope. On the other hand, Decision Tree had its metric values increased, where the

accuracy went from 61.19% to 72.45% and F1 from 68% to 70.71%. However, the Gradient

Boosting, Naive Bayes, and Logistic regression matrix did not change significantly.

Table 4.4: Model results after fine-tuning.

Model Accuracy Precision Recall F1 Score

Random Forest 74.46% 71.81% 74.46% 72.32%

Gradient Boosting 70.3% 74.3% 70.3% 72.02%

Decision Tree 72.45% 70.1% 72.45% 70.71%

Gaussian Naive Bayes 64.97% 42.21% 64.97% 51.17%

Logistic Regression 71.28% 65.51% 71.28% 66.81%

Given the confusion matrix displayed in Figure 4.1, we observe that Random Forest per-

formed well in predicting FIXED, with a high precision (71.81%) and recall (74.96%). It

correctly identified most of the actual FIXED reports, but still confusion between WORKS-

FORME and DUPLICATE. The confusion between DUPLICATE and INVALID could be

4.1 RQ1: What is the best machine learning model for bug report resolution classification?45

Figure 4.1: Random Forest confusion matrix.

4.1 RQ1: What is the best machine learning model for bug report resolution classification?46

because these two classes might share similarities in the text content of bug reports. Users

might describe issues as either DUPLICATE or INVALID interchangeably, making it chal-

lenging for the model to differentiate between them. The model’s confusion between IN-

COMPLETE and other classes may be because INCOMPLETE reports lack complete in-

formation, making them harder to classify accurately. Additionally, the terminology used

in INCOMPLETE reports may overlap with other categories. Similar to WONTFIX, dis-

tinguishing WORKSFORME reports from other classes might be challenging because they

could contain vague or ambiguous descriptions. Additionally, the model may need to learn

subtleties in user feedback to make more accurate predictions in this category. Overall,

the errors can be attributed to the complexity of the classification task, potential ambiguity

in bug report descriptions, and the need for more informative features or refined modeling

techniques. Addressing these challenges may require additional data preprocessing, feature

engineering, or exploring more advanced machine learning algorithms to improve classifica-

tion accuracy for all classes.

4.1.2 Grouping Resolutions

To explore the effect of different class distributions, we grouped the bug reports by their res-

olution status into various categories. We compared these categories with the baseline case

of using eight classes named "Original". These categories could be useful for different pur-

poses. For example, some users might only care about whether a bug report will be FIXED

or not, while others might want to distinguish between FIXED, INVALID, and IGNORED

bug reports. We also examined how the performance of the best models changed with differ-

ent numbers of classes in the dataset. We used Random Forest to classify the new groups as

it is the best model from the five we experimented with.

When grouping them into two classes, we specifically distinguished the FIXED resolu-

tion from the rest, which we labeled as NOT FIXED. This distinction is illustrated in Table

4.5. The overall metric values showed an approximate 14% increase compared to the orig-

inal classification before grouping. Notably, the model achieved the highest values, around

90%, when predicting the FIXED bug reports. For the NOT FIXED classification, the model

achieved values ranging from 83% to 86%. Guo et al. [42] work in predicting which bugs

get FIXED in Microsoft Windows got a precision of 68% and recall of 64%. Hence, our

4.1 RQ1: What is the best machine learning model for bug report resolution classification?47

classifier outperformed his, but we consider that his work evaluated a private source and

used a Logistic Regression model. In contrast, we have used an open-source and Random

Forest model, which might be the reason for this difference.

Table 4.5: Metrics for Random Forest when grouping the resolutions into two classes.

accuracy precision recall f1-score support

Overall 88.84% 88.95% 88.84% 88.88% 13202

FIXED 90% 92% 90% 91% 8488

NOT FIXED 86% 83% 86% 85% 4714

Table 4.6 presents the results obtained from grouping the data into three classes: FIXED,

IGNORED (consisting of MOVED, WONTFIX, and INACTIVE), and INVALID (compris-

ing INVALID, INCOMPLETE, WORKSFORME, and DUPLICATED). At Yuanrui work

[35], the class INVALID has the same set of resolutions as ours. The overall metric values

generally hover around 84%, which is an improvement compared to the Original model with

eight classes that achieved approximately 10% less precision. Despite the grouping, FIXED

remains the class with the highest prediction accuracy. However, IGNORED exhibits lower

values, with an F1-score of 28%. Our approach outperformed Yuanrui’s on classifying IN-

VALID by a difference of approximately 11%.

Table 4.6: Metrics for Random Forest grouping the resolutions into three classes.

accuracy precision recall f1-score support

Overall 84.67% 84.09% 84.67% 83.54% 13202

FIXED 92% 91% 92% 91% 8488

IGNORED 18% 63% 18% 28% 777

INVALID 83% 74% 83% 78% 3937

In our analysis, we further subdivided the dataset into four distinct classes. The FIXED

class represents bug reports that were successfully resolved. Bug reports marked as WONT-

FIX or DUPLICATED we reclassified as IGNORED. Similarly, we grouped bug reports clas-

sified as INACTIVE or MOVED under the INACTIVE class, while those classified as IN-

COMPLETE, WORKSFORME, or INVALID we grouped under the INCOMPLETE class.

4.1 RQ1: What is the best machine learning model for bug report resolution classification?48

Table 4.7: Metrics for Random Forest grouping the resolutions into four classes.

accuracy precision recall f1-score support

Overall 78.87% 77.36% 78.87% 77.8% 13202

FIXED 94% 88% 94% 91% 8488

IGNORED 39% 53% 39% 45% 2038

INACTIVE 2% 50% 2% 4% 49

INCOMPLETE 64% 63% 64% 63% 2627

This classification scheme allows for a more nuanced analysis of the bug reports, enabling

us to distinguish between those that were fixed, those that were ignored, those that are no

longer active, and those that lack complete information.

The overall metric values for this classification approach are approximately 78%, which

remains considerably higher compared to the classification rate for the Original classes (4%

higher). The class with the highest prediction accuracy is still FIXED, followed by INCOM-

PLETE, with a prediction rate of 63%. However, INACTIVE still has much to improve,

possibly due to the few samples for the classes that compose it. For detailed results, refer to

Table 4.7.

Table 4.8 summarizes the results obtained from our analysis, comparing the model’s

overall performance when using different grouping schemes against the original classifica-

tion. As observed, the model’s performance improves as the number of classes decreases,

which is consistent with our expectation that fewer classes would enable the model to gen-

eralize its classifications better. In all cases, including the original classification, the model

demonstrated high accuracy in predicting the FIXED category, consistently achieving met-

rics of 90% or higher. Overall, we experimented with three different grouping schemes for

the original classes in the dataset, each yielded satisfactory results and can be applied in

different contexts as appropriate.

4.1.3 Cross-Validation

Cross-validation is a technique used to evaluate the performance of a machine learning model

[7]. We used to assess how well the model will generalize to an independent data set. In this

4.1 RQ1: What is the best machine learning model for bug report resolution classification?49

Table 4.8: Comparison of classification groupings.

No. of Classes Accuracy Precision Recall F1-Score

8 (Original) 74.46% 71.81% 74.46% 72.32%

4 78.87% 77.36% 78.87% 77.8%

3 84.67% 84.67% 84.67% 83.54%

2 88.84% 88.95% 88.84% 88.88%

context, we performed cross-validation to support the results of the best model obtained

from the experiment. The cross-validation metrics are: Average Accuracy: 75.11%, Average

Precision: 72.40%, Average Recall: 75.11%, and Average F1 Score: 72.89%. The k-fold

used was 10. These results suggest that the Random Forest model fits the data well, but

there is still room for improvement. The cross-validation results support the initial model

metrics obtained from the experiment. The average accuracy, precision, recall, and F1 score

are all consistent with the initial metrics obtained from the experiment. This indicates that

the model is not overfitting to the training data and is generalizing well to new data.

4.1.4 Results

Given the provided accuracy of 74.46%, precision of 71.81%, recall of 74.46%, and F1-

score of 72.32% for Random Forest in classifying bug report resolutions within the cate-

gories FIXED, INVALID, INCOMPLETE, WONTFIX, WORKSFORME, MOVED, DU-

PLICATED, and INACTIVE, along with the balanced dataset and fine-tuning applied, we

can draw several insights regarding the model’s performance and its implications in the con-

text of bug reporting and software engineering processes.

Precision and recall are particularly significant in bug report resolution classification.

High precision, such as the 85% precision achieved for the FIXED category, minimizes false

positives, ensuring that identified issues are genuinely in need of resolution. This is vital in

preventing resources from being wasted on incorrect bug reports. In contrast, a lower pre-

cision would lead to more false positives, potentially overwhelming the development team

with non-essential bug reports. In practical terms, a high precision is often more desirable

than a high recall in bug reporting because it ensures that the identified issues are genuine,

4.1 RQ1: What is the best machine learning model for bug report resolution classification?50

reducing the risk of wasting resources on false positives. The specific results for classifying

the FIXED category with 85% precision and 95% recall highlight the model’s ability to ac-

curately identify bug reports that should be resolved as FIXED while capturing the majority

of relevant issues.

The accuracy of 74.46% indicates the overall correctness of the model’s predictions

across all classes. It represents the proportion of correctly classified instances out of the

total number of instances. This value suggests that the model achieves a relatively high level

of accuracy in predicting bug report resolutions. However, it is important to note that accu-

racy alone might not provide a complete understanding of the model’s performance, as the

class distribution can influence it in the dataset. A higher accuracy indicates that the model

is making more correct predictions overall, which can support decision-making processes in

bug fixing and software development.

In the context of bug report resolution classification, precision and recall play crucial

roles in evaluating the performance of machine learning models. In summary, precision fo-

cuses on minimizing false positives, ensuring that identified issues are genuinely in need

of resolution. It emphasizes the accuracy of positive predictions. Recall, on the other hand,

prioritizes capturing all actual positive instances, emphasizing the model’s ability to find gen-

uine issues, even if it leads to some false positives. In this context, precision is of paramount

importance.

A high precision value, such as the 85% precision achieved by the Random Forest model

in classifying the resolution category FIXED, signifies that when the model predicts a bug

report as belonging to the FIXED category, it is highly likely to be correct. This is critical in

bug reporting because it minimizes the occurrence of false positives, ensuring that resources

are not wasted on incorrectly identified issues. In contrast, a low precision would lead to a

high number of false positives, potentially overwhelming the development team with non-

essential bug reports.

Considering the results for the best classification, in the context of bug reporting and

software engineering, the specific results obtained by the Random Forest model for classify-

ing the resolution category FIXED (precision of 85%, recall of 95%, and F1-score of 90%)

indicate the following findings:

• Precision of 85%: This implies that out of all bug reports predicted as belonging to the

4.1 RQ1: What is the best machine learning model for bug report resolution classification?51

FIXED resolution category, approximately 85% of them are correctly classified. In

bug reporting, this high precision suggests that when the model identifies a bug report

as FIXED, it is likely to be accurate, minimizing false positives. This precision value

indicates that the model’s predictions can be relied upon to a significant extent when

identifying bug reports that should be resolved as FIXED.

• Recall of 95%: The recall value of 95% indicates that the model successfully captures

approximately 95% of all bug reports that should have been classified as FIXED. This

high recall value implies that the model is effective at identifying the majority of bug

reports that require a FIXED resolution. It minimizes false negatives, ensuring that a

significant proportion of relevant FIXED issues are identified.

• F1-score of 90%: The F1-score combines precision and recall into a single metric, pro-

viding an overall assessment of the model’s performance. The F1-score of 90% indi-

cates a good balance between precision and recall for classifying FIXED bug reports.

This suggests that the model achieves high accuracy in identifying and categorizing

bug reports that should be resolved as FIXED. The F1-score considers false positives

and negatives, providing a reliable measure of the model’s effectiveness.

Fine-tuning machine learning models: Fine-tuning machine learning models can poten-

tially lead to improved results. However, due to resource constraints, we had to limit the

scope of our hyperparameter exploration by choosing a smaller set. Although we could have

achieved better outcomes with a broader range of hyperparameters, we chose to explore a

smaller set. We found that the F1 Score had a range between 66.81% and 72.32%, and the

best models were Gradient Boosting and Random Forest with very close metrics. We chose

Random Forest as it showed to be the best F1 Score (72.32%) and was relatively stable across

different scenarios with consistently high F1 Scores. Overall, the fine-tuning process did not

substantially improve the models’ performance. Random Forest remained the best model

for predicting bug report resolution, particularly for the FIXED class, with metric values

consistently around 90%. These results remained unchanged even after fine-tuning.

Grouping bug report resolution: In the context of grouping bug report resolutions, Table

4.8 illustrates that as the number of classes decreases, the results improve. Grouping the

resolution classes enhances the model’s performance, with Random Forest proving to be the

4.2 RQ2: Which bug report features are more strongly linked to the bug resolution status?52

most effective in predicting whether a bug report will be resolved as FIXED or not (approx.

88% accuracy and 89% precision). However, when it is necessary to discern the specific

resolution class within the eight classes, the model achieves an overall accuracy of approxi-

mately 74%. Notably, when the bug report is classified as FIXED, the accuracy increases to

90%. With a precision of 88.95% on classifying whether the bug report will be fixed or not,

it brings up a very good machine learning model that can be more precise in telling if the

bug will be successfully fixed.

These findings are valuable in software engineering processes as they provide a more

accurate and efficient way to identify and prioritize bug reports for resolution. By leveraging

the model’s predictions, software developers and teams can focus their efforts on addressing

the identified FIXED issues, improving software quality, and enhancing user satisfaction.

The high precision value contributes to a more effective bug-triaging process, facilitating

timely bug fixes and ultimately leading to a more robust and reliable software system.

4.2 RQ2: Which bug report features are more strongly

linked to the bug resolution status?

In this section, we aim to address research question RQ2, which focuses on identifying

the BR (Bug Report) features that appear to have a relationship with bug report resolution.

Understanding the relationship between specific BR features and the resolution status can

provide valuable insights into the factors influencing bug fixing and help improve bug man-

agement processes.

We conducted a thorough analysis of bug report features to examine their impact on the

prediction of bug resolution, particularly for the FIXED category. Figure 4.2 illustrates the

ten influential features significantly affecting the model’s prediction. Among these features,

three are the bug report ID, which relates to the timing the bug was filed as it is sequential;

text-related: summary, description, and comments, also including the number of comments

overall and made by the reporter; changes related: number of changes, number of changes

made by the reporter; and the users and reporter engagement: number of different users com-

menting; number of different users doing changes in the bug report; and finally the number

of attachments added in the comment section and the bug report severity. The feature impor-

4.2 RQ2: Which bug report features are more strongly linked to the bug resolution status?53

tance, also known as variable importance, provides insights into the most relevant features

according to the Random Forest model. It plays a crucial role in understanding the problem

at hand and can potentially guide model improvements through feature selection techniques.

The feature importance values range from 0 to 1, and their sum is normalized to 1. Follow-

ing the Scikit Learn API, the Random Forest’s built-in feature_importances_ is calculated as

the mean and standard deviation of the accumulated impurity decrease within each tree. As

follows, we discuss more about these features.

Figure 4.2: Random Forest features importance.

Due to time constraints, our evaluation focused exclusively on the most important fea-

tures of the best model, leaving the assessment of the remaining four models pending. As a

potential avenue for future research, it would be valuable to explore how these other mod-

els corroborate the significance of these features or potentially identify alternative features

as the most important. It’s important to note that our analysis may not directly align with

developers’ opinions but rather emphasizes the factors that aided the model in its final reso-

lution classification, pinpointing feature importance. Our hypothesis centers on studying the

features associated with the "FIXED" resolution category, with the aim of discerning which

aspects of the reports classified as "FIXED" played a pivotal role in assisting developers in

resolving the reported bugs.

Bug report ID (bg_number): The fact that the bug report ID appeared as the most im-

portant feature caught our attention, prompting us to delve deeper into the analysis to un-

4.2 RQ2: Which bug report features are more strongly linked to the bug resolution status?54

derstand the underlying reasons. Upon further investigation, we discovered that the Scikit

Learn API imposes a limitation on the method used to calculate feature importance. Specif-

ically, features with a large number of unique values are assigned higher importance. Given

that the bug report ID consists of unique values, it is likely the primary reason why this fea-

ture obtained the top position in the importance ranking. We chose to retain the bug report

IDs despite their sequential numbering, as this semantic feature, wherein higher numbers

correspond to more recent bugs, still holds valuable information. This decision preserves

important knowledge within our dataset.

Number of words in description (total_words_desc): represents the count of words in the

bug report description. Figure 4.4 showcases a notable distinction in the number of words

between bug reports accurately predicted by the Random Forest model and those incorrectly

predicted. For instance, consider bug 12764651, which has a description containing 723

words, and the model correctly classifies it as FIXED. Figure 4.3 is a snippet from the de-

scription of this bug report. To further investigate its impact on the model’s decisions, we

conducted an analysis focusing on the number of words in the bug report description.

We have manually observed that bug reports with a high number of words in the descrip-

tion (above 400) often include stack traces/backtraces/logs for the reported bugs. Likewise,

Schroter et al. [80], the stack traces are very helpful in fixing bug reports, highlighting that

up to 60% of FIXED bug reports that contain stack traces involved changes to one of the

stack frames. They also show that the average lifetime of these reports is significantly lower

than those with no stack traces.

Figure 4.4 displays a boxplot illustrating the distribution of values for total_words_desc

across the dataset. The boxplot is categorized into three groups: "right" represents bug

reports that were correctly labeled and predicted as FIXED, "wrong" represents bug reports

labeled as FIXED but predicted as another resolution status, and "Others" encompasses all

other cases such as other than FIXED resolutions. By examining this boxplot, we can gain

insights into how the number of words in the bug report description influences the model’s

predictions. In the boxplot depicted in Figure 4.4, we have chosen a limit of 500 words for

the bug report description to ensure better visibility of the boxes. However, it is worth noting

that the actual maximum number of words differs among the categories. For the "Others"

1Bugzilla link: https://bugzilla-dev.allizom.org/show_bug.cgi?id=1276465

4.2 RQ2: Which bug report features are more strongly linked to the bug resolution status?55

Figure 4.3: Bug report with a stack trace (cropped).

Figure 4.4: Boxplot for the Feature total_words_desc.

4.2 RQ2: Which bug report features are more strongly linked to the bug resolution status?56

Table 4.9: Metrics number of attachments in the comments for bug report description under

40 words.

Classification Count Mean STD Min 25% 50% 75% Max

Overall 13202 165.9 331.6 0 43 83 163 9857

wrong 83 0.1 0.34 0 0 0 0 2

right 1931 5.2 12.44 0 1 2 5 361

category, the maximum number of words reaches 7286, while for the "Right" category, it is

9857, and for the "Wrong" category, it is 3991.

Examining the mean number of words in the description across all categories, we ob-

serve a similarity, ranging from 162 to 171 words, which is in close proximity to the overall

average of approximately 165 words. Furthermore, the quartile values for all categories ex-

hibit similar patterns. However, the notable distinction lies in the presence of a longer tail

in the "Right" category compared to the "Wrong" category, indicating a higher number of

outliers. This implies that bug reports correctly classified as FIXED by the models tend to

exhibit more extreme values in terms of word count in the description, in contrast to those

erroneously classified as FIXED. However, as it could seem to be, there is no evidence that

as large the bug report description as it increases the chances of being resolved, but might the

content of it. Naturally, the description is not the indicated place to insert any type of trace

but in the attachment. As a future work, the content of the description could be evaluated

in terms of quality and clarity and checked whether it is influential in the final bug report

resolution.

As observed, textual fields have proven to be crucial assets in the bug reporting process.

This significance aligns seamlessly with the concepts of severity and priority, as when a

bug is deemed severe or of high priority, it necessitates a more comprehensive and detailed

report. This emphasis on thoroughness ensures that the essential information needed for an

effective bug fix is adequately provided, thereby enhancing the resolution process for critical

issues.

Number of attachments in comments (total_attachment_comments): Upon conducting a

more detailed analysis, we delved into bug report classifications as FIXED specifically for

4.2 RQ2: Which bug report features are more strongly linked to the bug resolution status?57

cases where the description contained fewer than 40 words. Interestingly, we discovered

that the presence of attachments added to the comments could significantly influence the

resolution of these bug reports as FIXED by the developers. Table 4.9 provides a comparison

between the "wrong" and "right" classes showing the statistics since the mean, standard

deviation, and quartiles, where we examined the presence of attachments in the comments.

Notably, the occurrence of attachments in the comments is more prevalent in the "right" class

than the "wrong" class. This observation leads us to speculate that the attachments added to

the comments potentially contribute additional information to the bug report, compensating

for any potential lack of detail in the short description. Hence, it appears that including

attachments in the comments may serve as a compensatory factor, supplementing the limited

information in bug reports with shorter descriptions and aiding in their accurate classification

as FIXED by the models.

Overall, recognizing the significance of adding attachments in the comments sec-

tion, particularly for bug reports with shorter descriptions, we analyzed the feature "to-

tal_attachment_comments". This feature represents the number of attachments added to the

bug report comments. We generated a boxplot visualization to gain insights into this feature,

as depicted in Figure 4.5. What can be difficult to follow is how clear are the description and

how it could potentially influence the total of attachments. The common knowledge is that

if a bug report is well described, there is no need to add further information as comments

or attachments. However, we haven’t evaluated the textual information from the comments

section nor the attachment’s relevance. What we can draw from the influence of attachments

in the bug report is that the description was not enough to precisely inform the bug faced.

Upon examining the boxplot, it becomes evident that the "right" class exhibits a substan-

tially higher number of attachments added in the comments than the other classes. The aver-

age number of attachments in the comments across all classes hovers around three. However,

the "wrong" class shows an average of less than one attachment, whereas the "right" class

boasts an average of nearly five attachments. In this context, the mere presence of comments

alone does not wield significant influence; however, the inclusion of multiple attachments

enhances the likelihood of a bug report being successfully classified as FIXED. Further delv-

ing into the bug report resolutions, we sought to understand how the number of attachments

was distributed across different resolution categories. Table 4.10 presents descriptive statis-

4.2 RQ2: Which bug report features are more strongly linked to the bug resolution status?58

tics specifically pertaining to the number of attachments found in the comments section for

each resolution category. It is remarkable to observe that the FIXED resolution stands out

prominently, featuring a higher attachment prevalence than any other resolution. In fact, the

third quartile value for the "FIXED" resolution indicates an average of approximately five

attachments, while the other resolutions hover around one attachment.

This analysis underscores the importance of attachments in the comments section, par-

ticularly in bug reports with shorter descriptions. The findings reveal that the "right" class,

which accurately predicts bug reports as FIXED, tends to possess more attachments in the

comments section, potentially contributing to a more comprehensive and informative bug

report. The number of attachments in the comments section of a bug report appears to im-

pact the resolution, particularly in cases where the resolution is classified as FIXED. This

observation suggests a higher prevalence of attachments in bug reports that are ultimately

resolved.

Figure 4.5: Boxplot for the Feature total_attachment_comments.

Number of comments added by the author to the bug report (total_comments_by_author):

This feature indicates the interaction by the author in the bug that he or she has reported.

We conducted a correlation analysis involving the feature total_attachment_comments, us-

ing the Pearson correlation coefficient. Among the various features examined, the one

demonstrating the highest positive correlation with total_attachment_comments was to-

tal_comments_by_author. The correlation coefficient was approximately 0.7, indicating a

4.2 RQ2: Which bug report features are more strongly linked to the bug resolution status?59

Table 4.10: Descriptive statistics of attachments in the comments for bug report description

for all resolutions.

Label Count Mean STD Min 25% 50% 75% Max

DUPLICATE 6559 0.5 2.4 0 0 0 0 137

FIXED 42574 4.6 10.7 0 1 2 5 1045

INACTIVE 219 1.6 9 0 0 0 1 105

INCOMPLETE 3499 0.3 1.8 0 0 0 0 58

INVALID 2323 0.4 1.6 0 0 0 0 32

MOVED 45 0.8 1.5 0 0 0 1 6

WONTFIX 3688 0.7 2.73 0 0 0 0 62

WORKSFORME 7101 0.5 1.6 0 0 0 0 36

strong positive correlation between the two features. This finding suggests that as the num-

ber of attachments in the comments section increases, there is a corresponding increase in the

number of comments contributed by the bug report author. It is reasonable to assume that the

author has actively participated by including attachments within the comments. However,

further analysis is required to gain deeper insights into the specific content and context of the

comments provided by the authors.

This correlation analysis highlights the potential relationship between the presence of

attachments in the comments section and the level of engagement and interaction by the

bug report author. It signifies the need for a more detailed examination of the comments

contributed by authors to fully understand the impact of their involvement and the role of

attachments in the resolution process.

Number of comments on the bug report: In order to understand the role of comments

in bug reports, we conducted an evaluation based on bug report resolution. We examined

how comments are distributed among eight different resolutions and how the classification

model utilizes them. Table 4.11 presents each resolution’s medians and means of comment

distribution. Additionally, it includes columns indicating the values associated with the right

and wrong classifications made by the Random Forest model:

• Wrong Median: Median value for instances with wrong classification;

4.2 RQ2: Which bug report features are more strongly linked to the bug resolution status?60

• General Median: Median value for all instances;

• Right Median: Median value for instances with right classification;

• Wrong Mean: Mean value for instances with wrong classification;

• General Mean: Mean value for all instances;

• Right Mean: Mean value for instances with right classification.

Table 4.11: Bug report resolution and comments statistics.

Label
Median Mean

Wrong General Right Wrong General Right

DUPLICATE 6.0 5.0 4.0 9.5 7.9 4.9

FIXED 5.0 12.0 12.0 7.9 17.7 18.1

INACTIVE 9.0 8.5 4.0 17.9 17.5 4.0

INCOMPLETE 6.0 5.0 3.0 12.5 10.9 9.1

INVALID 5.0 4.0 2.0 8.5 7.6 3.2

MOVED 10.0 10.0 NaN 11.0 11.0 NaN

WONTFIX 6.0 5.0 4.0 12.0 10.1 5.7

WORKSFORME 7.0 6.0 5.0 12.8 12.2 11.5

Analyzing the table results, it becomes apparent that the median comment counts for

wrong and right classifications vary across bug report resolutions. This suggests that the

number of comments in a bug report may influence classification accuracy. For instance,

the INACTIVE resolution tends to have a higher median comment count for wrong classi-

fications than for right ones. Furthermore, the mean comment counts also exhibit variation

between wrong and right classifications for bug report resolutions. This indicates that the

average number of comments in a report can impact classification accuracy. For example,

the mean comment count for the right classification of the WORKSFORME resolution is

higher than the mean comment count for the wrong classification. It could indicate the user

interaction in the comment section discussing that they could not reproduce the reported

bug. In order to understand and ensure this, a detailed investigation in the comment section

is needed.

4.2 RQ2: Which bug report features are more strongly linked to the bug resolution status?61

There is a noticeable difference in comment counts between wrong and right classifica-

tions. Wrong classifications tend to have lower median and mean comment counts than the

right ones. This implies that bug reports with a higher number of comments may have a

higher likelihood of being correctly classified. It is important to note that these conclusions

pertain specifically to the relationship between comment counts and the accuracy of bug

report resolution classification within the context of the Random Forest classification algo-

rithm. Other factors, such as comment quality, the bug’s specific nature, and the classification

algorithm’s choice, may also influence the classification results, which will be investigated

in future work.

Table 4.12: Statistics of the number of changes by bug report resolution.

Label
Median Mean

Wrong General Right Wrong General Right

DUPLICATE 6.0 5.0 4.0 8.5 7.2 4.8

FIXED 5.0 12.0 12.5 6.2 15.1 15.5

INACTIVE 7.0 7.0 3.0 9.3 9.1 3.0

INCOMPLETE 6.0 4.0 3.0 7.6 5.9 3.9

INVALID 5.0 5.0 3.0 6.9 6.4 3.8

MOVED 6.0 6.0 NaN 8.8 8.8 NaN

WONTFIX 7.0 6.0 5.0 8.8 8.0 6.2

WORKSFORME 7.0 6.0 5.0 9.3 8.0 6.3

Number of changes in the bug report (total_changes): Refer to the count of modifications

made to the report over time. In a given context where a bug report has been active, meaning

it has attracted attention and ongoing discussions, a higher number of changes often could

imply a more complex or critical issue. This increased level of activity can lead to a greater

likelihood of the bug report being eventually resolved as FIXED [91] as we can see in Table

4.12, the media and mean for the FIXED bug reports are the highest compared to the other

resolution. The reason behind this correlation could be that active bug reports tend to receive

more attention from developers and stakeholders, facilitating a deeper understanding of the

problem and promoting more comprehensive solutions. Also, these results are aligned with

the feature total_user_changes that indicates the changes made by the reporter, which for the

4.2 RQ2: Which bug report features are more strongly linked to the bug resolution status?62

FIXED resolution is the highest.

Given the critical role of the priority feature in bug report resolution, it is intriguing that

the model does not assign it significant importance. To delve into the underlying reasons, we

conducted a comprehensive investigation. Surprisingly, we discovered that approximately

20% of the bug reports in our dataset lack a priority designation, marked as ’–’. Conse-

quently, we hypothesize that the model may not have recognized the significance of this

feature due to its absence in a substantial portion of the dataset. Surprisingly, the Random

Forest analysis ranked severity as the tenth most important feature, which was unexpected

considering the critical role of severity and its semantic significance in bug reports. To gain

a deeper insight into this anomaly, further investigation is warranted to understand the distri-

bution of severity within the dataset and the factors influencing its importance.

However, these fields need to be thoroughly discussed with developers to ascertain, based

on their expertise, the extent to which they are crucial in comprehending the bug. This

exploration aims to confirm whether these fields are vital solely for the machine learning

model or if they indeed reflect the practical information required at the moment a developer

works to address the reported bug.

To conclude and answer RQ2, our analysis of the features identified as most important

by Random Forest indicates that the majority are related to textual information, including the

summary, description, and comments of bug reports. Additionally, some other features are

connected to updates in bug reports regarding changes made during the resolution process.

We observed that bug reports with more detailed descriptions tend to be resolved as FIXED,

and in many cases, they also contain stack trace information. This highlights the importance

of adding attachments and extra information to bug reports, a point discussed in other works

as well. Furthermore, attachments have proven significant in resolving bugs as FIXED,

especially for reports with limited descriptions, suggesting that they provide complementary

information. The presence of comments and changes signals that the bug report has been

active and continuously updated, indicating a relationship between these updates and the

resolution of the bug.

4.3 Research Implications 63

4.3 Research Implications

During the development of this work, we acquired valuable insights into composing bug

reports, drawing from studies rooted in our research and informed by the outcomes of the

models we experimented with. As a result, we have put forth a set of guidelines that can be

instrumental in enhancing bug report composition. Such guidelines, like to the one presented

here, could serve as a means to introduce best practices for novice bug reporters, thereby

optimizing their contributions. Additionally, for reporters who are integral members of a

software development team, these guidelines can aid in comprehending the significance of

the fields outlined below.

• Summary: Should be succinct while providing a summary that clearly articulates the

core problem.

• Description: While our research indicates that reports with more detailed descriptions

tend to result in faster resolutions, we emphasize that content quality is more important

than sheer word count. The description should include:

– Steps to Reproduce: A step-by-step sequence that outlines how to recreate the

bug.

– Actual Result: A description of the current, problematic system behavior.

– Expected Result: An explanation of the normal, expected system behavior.

• Product and Component: Accurate specify the product and component where the bug

is happening.

• Priority and Severity: Set these fields to appropriately ensure that the issue receives

the necessary attention.

• Attachments: Our findings indicate that the inclusion of traces or logs significantly

contributes to faster bug resolutions. Screenshots or screen recordings are especially

helpful, as they provide a visual context for understanding the issue. Any attachment

that complements the description, particularly those highlighting the problem’s loca-

tion in the code, is invaluable.

4.4 Threats to Validity 64

• System Information: Must provide precise information, it is imperative to specify the

environment in which the bug occurred. This includes details such as the software

version, platform, and any relevant hardware.

Effective bug reporting is crucial for the smooth resolution of software issues. A well-

crafted bug report, following guidelines such as providing a succinct summary, detailed de-

scription with steps to reproduce, and attaching relevant materials like traces or screenshots,

could help developers understand and address the problem. Accurate product and component

identification, along with setting appropriate priority and severity, might further streamline

the bug resolution process. Additionally, including precise system information helps devel-

opers replicate the issue in the same environment, ultimately expediting the resolution and

enhancing the overall efficiency of the bug fixing process.

4.4 Threats to Validity

There are several potential threats to the validity of this study, which can affect the credibility

and generalizability of the results. We categorized these threats into four types: construct

validity, conclusion validity, external validity, and internal validity.

4.4.1 Construct Validity

While conducting research on bug report resolution prediction, we identified several threats

to construct validity. Construct validity refers to the extent to which the measurements and

manipulations employed in a study accurately represent the concepts being investigated. To

ensure the construct validity of this work, the following threats were considered and miti-

gated:

• Measurement Bias: There is a risk of measurement bias if the selected features and

metrics do not adequately capture the relevant aspects of bug report resolution. We

carefully chose a comprehensive set of features to address this threat based on their

potential influence on bug report resolution. The selected features, such as resolution

status, number of comments, severity, priority, and attachment presence, were deemed

relevant and representative of the underlying construct. By including these features,

4.4 Threats to Validity 65

the study aimed to encompass various dimensions of bug report resolution and mini-

mize measurement bias.

• Sampling Bias: Sampling bias can undermine construct validity if the selected bug re-

ports do not represent the broader population effectively. A large dataset of 68,492 bug

reports from Bugzilla was collected to mitigate this threat. By leveraging Bugzilla as

a widely used bug-tracking system, the researchers aimed to include bug reports from

diverse projects, thus increasing the likelihood of capturing a representative sample.

This approach helped minimize sampling bias and enhance the generalizability of the

findings.

• Choice of Machine Learning Models: Selecting inappropriate or suboptimal ma-

chine learning models can compromise construct validity if the models do not effec-

tively capture the relationships between the features and bug report resolution. We

utilized Five machine learning models to overcome this threat (Random Forest, Gra-

dient Boosting, Logistic Regression, Decision Tree, and Gaussian Naive Bayes). This

diverse set of models was chosen based on their effectiveness in classification tasks

and suitability for bug report resolution prediction. By employing multiple models,

the study aimed to capture various aspects of the bug report data and increase the

robustness of the findings.

By addressing these threats to construct validity, the research ensured that the measure-

ments and manipulations used accurately represented the concepts of interest. The selection

of relevant features, the use of a representative dataset, thorough data cleaning and prepro-

cessing, and the application of appropriate machine learning models collectively contributed

to maintaining the construct validity of the study. These steps enhance the reliability and

validity of the research findings and support the credibility of the conclusions drawn from

the analysis.

4.4.2 Internal Validity

During the research on bug report resolution prediction, several threats to internal validity

were identified and effectively addressed. Internal validity pertains to the extent to which the

4.4 Threats to Validity 66

observed effects in a study can be confidently attributed to the manipulated variables rather

than extraneous factors. To ensure the internal validity of this work, the following threats

were carefully considered and mitigated:

• History: The occurrence of external events during the research period could influence

the bug report resolution, leading to potential threats to internal validity. To address

this threat, the bug report dataset was carefully selected to cover a significant time

period, ideally representing a range of external events. The study aimed to minimize

the impact of specific historical events on the bug report resolution prediction models

by including bug reports from various projects and time frames.

• Selection Bias: Selection bias can threaten internal validity if the bug reports used

for analysis are not representative of the broader population. A large dataset of bug

reports was collected from Bugzilla, a widely used bug-tracking system to address this

threat. By leveraging a diverse range of projects and including a large number of bug

reports, the study aimed to minimize selection bias and increase the generalizability of

the findings.

• Instrumentation: Changes in the measurement instruments or tools used to collect

bug report data can introduce threats to internal validity. A consistent methodology

and data collection process were employed throughout the study to mitigate this. The

bug report dataset was obtained using standardized queries and procedures, ensuring

uniformity in data collection. By maintaining consistent instrumentation, the study

aimed to minimize the potential impact of measurement variations on the internal va-

lidity of the research.

In order to maintain the internal validity of the bug report resolution prediction research,

we took several steps to address potential threats. We carefully selected the bug report

dataset, included a diverse range of bug reports, and used consistent instrumentation through-

out the study. These measures helped us establish reliable causal relationships and supported

the validity of our conclusions. By addressing these threats, we ensured that the observed

effects could confidently be attributed to the variables we manipulated.

4.4 Threats to Validity 67

4.4.3 External Validity

External validity refers to the extent to which the findings of a study can be generalized to

other populations, settings, or conditions beyond the specific context of the research. In this

work, several external threats to the validity of the findings can be identified. However, the

following measures addressed these threats and enhanced the study’s external validity.

• Generalizability of Bug Tracking Systems: The study focuses on bug reports col-

lected from the Bugzilla bug tracking system, which may differ from other bug track-

ing systems regarding workflows, policies, and data structures. In order to mitigate this

threat, a comprehensive description of the Bugzilla bug-tracking system was provided,

including its key features and characteristics. This allows readers to assess the gener-

alizability of the findings to bug-tracking systems with similar attributes. Furthermore,

future research could explore other bug-tracking systems to validate the findings’ ap-

plicability across different platforms.

• Diversity of Software Projects: The dataset used in the study consists of bug re-

ports from various projects, including Firefox, Bugzilla, Mozilla, and Thunderbird.

The specific nature and characteristics of these projects might influence the findings.

However, to address this threat, our study acknowledged the diversity of the software

projects included in the dataset. By explicitly stating the projects involved, readers can

assess the transferability of the findings to other software projects.

• Data Quality and Reliability: The accuracy and completeness of the bug reports

and associated information in Bugzilla may introduce external threats to the study’s

validity. To mitigate this threat, we peformed rigorous data cleaning and validation

processes. The study also provided details on the data cleaning steps undertaken to

ensure the reliability of the dataset.

• Limitations of Bugzilla API: The study relies on the Bugzilla API to collect the bug

report data. Any limitations or constraints in the API’s functionality or availability may

impact the completeness or accuracy of the dataset. Although to address this threat,

our study acknowledged the reliance on the Bugzilla API and its potential limitations.

By providing transparency about the data collection process, readers can evaluate the

4.4 Threats to Validity 68

potential impact of API-related issues on the findings. Also, the API is very much used

in the process of bug extraction and is already solid in the community.

By acknowledging these external threats and implementing the aforementioned mitiga-

tion strategies, this work aimed to enhance the study’s external validity.

4.4.4 Conclusion Validity

Conclusion validity refers to the degree to which the conclusions drawn from the data are

accurate and supported by evidence. This study potentially threatens conclusion validity due

to the limited scope of our analysis. We only examined bug reports from a single open-source

project, and the results may not be generalizable to other projects or types of software.

To address the potential threat to conclusion validity stemming from the limited scope of

analysis, it is essential to acknowledge the need for caution when generalizing the findings

of this study. While the results provide valuable insights into bug reports within the specific

open-source project examined, it is crucial to recognize each software project’s uniqueness

and specific characteristics. Different projects may have varying development methodolo-

gies, team dynamics, and bug reporting practices, which can influence the nature and reso-

lution of bugs.

However, using only open-source projects on Bugzilla for the analysis contributes to the

validation of generalizability in several ways. Firstly, the transparency and accessibility of

open-source projects’ bug repositories, such as Bugzilla, allow researchers to access a vast

amount of bug reports with detailed information. This transparency ensures that the find-

ings are based on real-world data and can be scrutinized by the community, enhancing the

credibility and generalizability of the conclusions drawn. Additionally, open-source projects

encompass a diverse range of domains, sizes, and complexities. By including multiple open-

source projects in the analysis, researchers can capture a wide variety of bug reporting prac-

tices, development methodologies, and team dynamics. This diversity helps to ensure that

the findings reflect the broader software development landscape and can apply to a wider

range of projects.

Chapter 5

Related Work

There are many works related to bug reports and how to identify ways to improve them to

help developers solve bugs faster. Bettenburg et al. [99] surveyed 156 developers and bug

reporters from open-source projects to investigate the fields expected in a bug report. The sur-

vey results showed that there are 16 important fields to fix bugs (product, hardware, observed

behavior, screenshots, component, operating system, expected behavior, code examples, ver-

sion, summary, steps to reproduce, error reports, severity, build information, stack traces, and

test cases), and from these features, we use in our research: product, component, version,

severity, summary, operating system, and attachments that could include screenshots, error

reports, stack traces, and test cases. Also, they developed a tool named CUEZILLA, which

evaluates bug reports and suggests the fields to be filled to improve the report and help de-

velopers fix bug reports. This tool was developed using supervised learning models, and to

validate, another survey was conducted asking developers to evaluate 289 randomly chosen

bug reports evaluating the quality on a five-point Likert scale. Once the bug report was evalu-

ated, the work compared the quality feedback provided by CUEZLLA with the one provided

on the survey. In conclusion, the models used on the tool achieved 45% accuracy in measur-

ing the quality of bug reports compared to the answers on the survey. Likely our study, there

is a line of looking for bug reporting improvement; their work has surveyed developers while

we have extracted information from the reports, trained a ML model, and investigated which

are the essential information pointed out from these models that most contribute to bug fix.

The study by Jian et al. [88] examined bug reports for an application server over four

years and listed why these were invalid to reveal the weakness and mistakes in the invalid

69

70

bug report. So they have found that in addition to errors in testing, misunderstandings on

functionality and environments, lack of background knowledge, problems in external sys-

tems and tools, and other reasons can lead to invalid bug reports. Xiaoxue et al. [94] also

investigated invalid bug reports to understand software aging signals by analyzing the per-

formance issues in these systems. As results were found that around 50% of the performance

bug reports (PBRs) in invalid bug reports (IBRs) are related to software aging; components

that undertake major tasks are more prone to aging problems; more than 50% aging-related

bug reports (ARBs) lead to timeout, 33% ARBs are caused by improper control of memory

or threats, and 29% ARBs are caused by inappropriate management of file operation or disk

usage; hard to reproduce is the major reason that ARBs are usually closed as invalid because

many aging-related bugs would temporarily disappear by restarting the system.

Yuanrui et al. [35] proposed an approach to identify if a new bug report will be valid,

and it used 33 features from bug reports, then grouped along five dimensions and used a

classifier to determine whether the bug is valid or not. The difference from our work is

that we need to differentiate the resolution classes, and we include MOVED and INACTIVE

resolutions. Also, we run another four machine learning models besides Random Forest

and compare their results. Only description and summary were used by Yuanrui from the

features we used. The dataset used form them includes Eclipse, Netbeans, Mozilla, Firefox

and Thunderbird, while we do not include Eclipse and Netbeans in ours. Their approach

achieved an F1-score for valid bug reports and F1-score for invalid ones of 74% and 67%,

respectively. However, when we grouped our dataset into VALID(only FIXED BR) and NOT

VALID(the other BR resolutions), the F1-score was 91% and 85%, respectively.

Davies et al. [29] research was developed to investigate how users report bugs in systems,

more specifically, what information is provided, how frequently, and which are the conse-

quences of. In the study, they examined four open-source projects (Eclipse [33], Firefox

[36], Apache HTTP [6], and Facebook API [34]) for the quality and quantity of information

provided in 1600 bug reports from those projects. The features studied are Observed be-

havior, Expected behavior, steps to reproduce, error reports, stack traces, screenshots, code

examples, test cases, build information, and application code. Most of these features are ex-

tracted from the description, which we have used only in a manner to understand the length

of it in terms of words, as well the features related to attachments, which they have used

71

for some specific type like screenshots. The research shows a clear mismatch between what

developers find essential in the bug report and what reporters provide. Furthermore, 12% of

the features on the bug report are provided after the first submission, making the developer

spend time collecting the needed features.

Also, Anvik et al. [3] have investigated open-source projects and found that 6% of bug

reports in the Eclipse project and 11% of bug reports in the Firefox project were resolved

as invalid. Bachmann et al. [8] studied open-source and closed-source projects reporting

that the proportion of invalid bugs together with non-reproducing ones was as high as 36%.

Yuanrui et al. [35] have already worked on classifiers (Random Forest and Support Vector

Machine) to identify valid and invalid bug reports. Still, in their work, they have set all the

resolutions besides FIXED to be invalid bug reports and only the ones resolved as fixed to

be valid bug reports. The features used were the report experience, collaboration network,

completeness, readability, and text. Their results are an F1-score for valid bug reports and an

F1-score for invalid ones of 74% and 67%, respectively. The features in common with our

work were summary, description, attachments, and description. We propose to investigate

the bug report field relationship with its resolution to bring the users’ awareness of what is

essential to inform when filling it. Some difference between the Yuanrui and our study is

that we investigated eight different resolutions, applied machine learning models to predict

them, and performed an analysis of how the features explain the model classification and

how this information could help the users to understand the essential features to focus while

reporting the bug. Besides, our best model was Random Forest, and when we grouped in

two resolutions, INVALID and NOT VALID, we got an F1-score of 91% and 95%.

The research from Karim [59] investigates the essential information required when re-

porting a High Impact Bug (HIB) in software development. The study analyzes HIB reports

in the Apache Camel project through qualitative and quantitative analysis. The findings re-

veal that four types of features (Steps to Reproduce, Stack Traces, Test Cases, and Code

Examples) are frequently requested by developers when fixing HIBs, and the inclusion of

requested additional information significantly impacts bug fixing time. The research aims

to understand the characteristics of effective HIB reports and provide insights for improv-

ing bug reporting guidelines and tool development. Further, Karim et al. [58] extend their

works aiming to improve the bug-fixing process by identifying key features that reporters

72

frequently miss in their initial bug report submissions and that developers require for fixing

bugs. To achieve this goal, the author conducts exploratory and empirical studies on five

large open-source projects from Apache and Mozilla ecosystems. They find that the addi-

tional features that reporters most often omit from their initial bug report submissions are

Steps to Reproduce, Test Case, Code Example, Stack Trace, and Expected Behavior. His

work differs from ours due to the bug report type we consider besides HIB, and the variety

of features we have used, including textual features related to the summary, description, and

comments. Additionally, we have incorporated features that pertain to the change history of

the bug report. Our investigation analyzes the main characteristics of FIXED bug reports

compared to seven other resolutions. Furthermore, we have employed five machine learning

(Logistic Regression, Random Forest, Decision Tree, Naive Bayes, and Gradient Boosting)

algorithms in our study to predict the bur report resolution and access their results. As a

result, Random Forest outperforms the other with an F1-score of 72%. At the same time,

they have four machine learning models (Naive Bayes, Naive Bayes Multinomial, k-Nearest

Neighbors, and Support Vector Machine); the best model was Naive Bayes Multinomial with

a F1-score variating between 65% to 76% across the projects.

Ding et al. [31] focuses on predicting highly impactful bugs (HIBs) in software systems

by analyzing test smell occurrence in bug reports. The study utilizes a combination of test

smell detection and bug report data to construct a dataset for analysis. Ding proposed a

model (Random Forest) that outperforms existing baseline models in predicting HIBs within

a project and achieves high mean F-Measure values over time. The model also shows promis-

ing results in cross-project prediction. The paper identifies specific test smells, such as asser-

tion roulette (AR), complex test logic (CTL), and coupling of implementation (CI), as strong

predictors of HIBs. Case studies further validate the connection between these test smells

and actual bug occurrences. The proposed machine learning model was Random Forest and

outperformed the baseline by 29.30%. The findings suggest that developers should focus

on improving test code quality, particularly by addressing code maintainability and avoiding

specific test smells, to reduce the occurrence of HIBs. The bug report features used are the

same as Karim [58], and the difference from our work is in the general nature of the features,

mainly the combination of HIB and test smell detection. While our work focuses on the

bug report resolution FIXED in order to understand the features that influence this resolution

73

considering all bugs besides HIB.

Also, Zhou [98] investigates the management of bug-fixing processes in software de-

velopment by analyzing the different severity and its changes. The study explores the dis-

tributions and evolutions of bug reporters and owners for high, medium, and low-severity

bugs on desktop and Android platforms. The features used include time to fix the bug, title,

description, description length, number of comments, number of words in the comments,

priority, bug report ID, reporter, and developer experience. We have also used the bug title,

description length, number of comments, priority, and bug report ID from these features. The

findings highlight the significant contribution of high-severity bug owners due to resource re-

quirements while also revealing differences in bug trends and severity classifications between

platforms. Additionally, the paper applies topic analysis to extract bug topics using Latent

Dirichlet Allocation (LDA), uncovering distinctions in bug characteristics across severity

classes. The research provides valuable insights into bug-fixing management, resource allo-

cation, and the dynamics between bug reporters and bug owners, emphasizing the importance

of considering severity levels and topic analysis in software development processes. In our

work, severity is a feature used in the models’ classification. Still, the focus is not on severity

itself but on the main characteristics of the FIXED bug reports and how they lead to be so.

The proposed approach from Imran [50], Bug-AutoQ, addresses the issue of incomplete

bug reports by automatically generating relevant follow-up questions. It leverages a large col-

lection of previously posted follow-up questions on GitHub to identify the most appropriate

questions for a given bug report. Bug-AutoQ selects bug reports from active GitHub repos-

itories with high bug reporting activity, focusing on longer-running projects and recently

active projects. It excludes feature requests and chooses issues with concise follow-up ques-

tions in the comments, retrieving answers from comments or edits to the original bug report.

The system determines the utility of a question based on the quality of its answers(according

to a dataset manually annotated), considering Observable Behavior (OB), Expected Behavior

(EB), and Steps to Reproduce (S2R). Bug-AutoQ demonstrates effectiveness, outperforming

baselines with a Precision@1 score of 0.49 and receiving positive feedback from software

developers in a survey. It successfully selects appropriate questions by evaluating their utility

based on the quality of answers, prioritizing questions with more OB, EB, or S2R informa-

tion. The system’s performance surpasses baseline methods, achieving a Precision score

74

of 49%, indicating that nearly half of the recommended follow-up questions are considered

valid. Feedback from software developers in a survey further supports Bug-AutoQ’s effec-

tiveness, as they found the selected follow-up questions to be useful and specific. They are

also requested new information yet to be present in the bug report. The utility and compati-

bility functions of Bug-AutoQ play crucial roles in its performance, demonstrating its value

in enhancing the bug reporting process. This work relates to ours in the line of improving

the bug reporting process, mainly by discussing the content of the bug report itself.

In Guo’s study [42], the authors present a descriptive and predictive statistical model to

understand the factors that influence the successful fixing of software bugs in Windows Vista

and Windows 7. They utilize a logistic regression model and an Analysis of Deviance test

to examine the independent effects of various factors on bug fixes. The descriptive model

provides insights into the correlations between factors such as bug opener reputation, severity

level, and the relationship between bug opener and assignee. The coefficients in the model

offer intuitive meanings, allowing comparisons between factors and their impacts on bug-

fix probability. Categorical factors, such as bug source, reveal variations in bug-fix rates,

while numerical and boolean factors demonstrate positive or negative correlations with bug

fixes. To address the limitations of the descriptive model in predicting bug-fix probability

for newly-opened bugs, the authors develop a predictive model using only factors available

at the time of bug report creation. This model achieves comparable performance to the

descriptive model, indicating the effectiveness of factors from the bug’s initial stages. The

authors evaluate the predictive model through cross-validation and by predicting bug fixes in

an entirely new dataset.

Overall, they achieve satisfactory precision and recall values, 68% and 64%, respectively,

when predicting Windows 7 bug fixes using the Logistic Regression model, suggesting the

model’s potential to prioritize bug reports during triage and aiding in the decision to close

bugs selectively. The study highlights the importance of understanding the factors that influ-

ence bug fixes for efficient resource allocation and bug monitoring in software development

projects, which also aligns with our interests in the sense of providing essential information

in a report, resources will be efficiently used in the whole bug fixing process. The features

used in common with the ones used in our work are severity, assignee, component, and reso-

lution status and related to bug report edit, finding that many assignments are a characteristic

75

that makes the bug less likely to be fixed, as well as the high reputation of the reporter,

makes more likely to be fixed. Finally, bugs handled by multiple teams and across multiple

locations are less likely to get fixed.

In summary, the works above primarily concentrate on enhancing the bug reporting pro-

cess. They aim to achieve this by comprehensively understanding and identifying crucial

information, thereby providing valuable guidance to users of bug management platforms

like Bugzilla. Furthermore, these efforts contribute positively to resource utilization, ulti-

mately leading to a more efficient bug-fixing process. Our study further adds to this by

specifically focusing on bug report resolutions and their feature relationships, using machine

learning algorithms for classification and analysis. Our research aims to contribute to the

overall bug-fixing process and resource utilization by identifying essential information in

bug reports.

Chapter 6

Conclusion

As we come to the end of this work on bug report resolution and features importance, it is

essential to reflect on the key findings and contributions that have been made. Throughout

this research, we have examined the effectiveness of different approaches to bug report res-

olution and analyzed the fields that influence bug report resolution. We have also discussed

the limitations of our study and identified areas for future research. This concluding chapter

summarizes this work’s main findings and contributions and highlights their implications for

software development practice. Additionally, we will provide some recommendations for

practitioners and researchers in this field.

6.1 Limitations

Several limitations to this study should be considered. First, the study focused solely on

open-source software projects, and the findings may not be generalizable to closed-source or

proprietary software projects. Additionally, the study only examined bug reports in English,

which may limit the generalizability of the findings to other languages. However, in terms of

generalization to private sources, there is a variety of projects and developers in the dataset

used, which might generalize the results for other private projects as well.

Another limitation is that the study relied on automated data collection and analysis meth-

ods. While these methods were designed to be as accurate as possible, there is always the

possibility of errors or inaccuracies in the data. In addition, automated methods may not be

able to capture all of the nuances and complexities of bug reports and may miss important

76

6.2 Contributions 77

contextual information. However, the scripts were properly tested in order to retrieve the

most information from the reports accurately.

Another limitation is that the study only considered a limited set of features in bug re-

ports, and other factors may be important in determining the quality and validity of bug

reports. For example, the study did not examine the impact of the severity or complexity of

the bug on the quality of the bug report.

Finally, the study focused on identifying the characteristics of bug reports that are associ-

ated with the reports’ resolution. While this information is helpful for improving the quality

of bug reports, it does not address the underlying reasons why these reports are FIXED.

However, there were also analyzed the other resolutions in order to understand what differs

from those reports resolved as FIXED and, in this way, find out the characteristic that could

further be improved when filling a bug report.

6.2 Contributions

This work contributes to the bug reporting process and software engineering, specifically

from the perspective of bug reporters who often face time constraints when submitting bug

reports. We address two research questions to shed light on bug resolution and identify

influential bug report (BR) features, focusing on enabling bug reporters to provide concise

and impactful information. The contributions of this study are summarized as follows:

Empirical Investigation: This study provides empirical evidence regarding the factors

that influence bug report resolution in open-source projects. By analyzing a large dataset,

we have identified fields that significantly impact the resolution, thereby enriching the un-

derstanding of bug resolution dynamics.

Identification of Textual Features Linked to Bug Resolution: We uncover the strong

correlation between these features and the bug resolution by analyzing BR features, partic-

ularly those related to text, such as summary, description, and comments. This finding is

particularly valuable for bug reporters who face time limitations and need to prioritize the

most critical information in their reports. By understanding which textual features signif-

icantly impact the bug resolution process, bug reporters can provide focused and concise

reports that effectively guide developers in identifying and fixing bugs. In this way, we

6.2 Contributions 78

found out that descriptions with many words are more likely to be resolved as FIXED. Still,

when there is a large description, there is likely an added stack trace, so it could be an in-

dication that logs are fundamental for the bug report and could be added as attachments to

have cleaner textual information in the description. We can also assume that the description

content could be more important than its size. In this way, our study suggests that any stack

trace or log should be beforehand added to the bug report, minimizing the need to provide

larger descriptions.

Importance of Bug Report Features in Predicting Resolution Status: By employing

the five machine learning algorithms, Random Forest was the best, and we assessed the

importance of various bug report features in predicting the resolution status. Our analysis

highlights that the number of words in the description and the total words in the summary

are among the most influential features. This insight empowers bug reporters to understand

which aspects of their reports will most likely impact the resolution process. By emphasizing

these key features, bug reporters can ensure that their bug reports provide developers with the

necessary information to identify and address the reported issues efficiently. This aligns with

other research highlighting the importance of adding steps to reproduce, expected behavior,

and actual results enriching the textual bug report fields.

Impact of Attachments on Bug Report Accuracy and Resolution: Our study explores

the significance of attachments on bug report accuracy and resolution, particularly for bug

reports with limited description content. We discover that attachments when included in the

comments section, play a substantial role in accurately classifying bug reports as FIXED.

This finding is crucial for bug reporters who may lack time to provide extensive descriptions

but can compensate by including attachments. Moreover, we observe a positive correlation

between the number of attachments in the comments section and the level of engagement

from the bug report author. This highlights the importance of attachments in fostering com-

munication between bug reporters and developers, ultimately contributing to more effective

bug resolution.

Predictive Models: The machine learning models developed in this research offer a prac-

tical approach for predicting bug report resolution. These models can help stakeholders in

open-source projects make informed decisions and streamline the bug management process.

Practical Implications: The insights gained from this research have practical implica-

6.2 Contributions 79

tions for bug management in open-source projects. By understanding the factors that affect

bug resolution time, project managers and developers can prioritize their efforts and allocate

resources more effectively to address critical bugs promptly.

Furthermore, this research can have significant implications for the ecosystem of bug

reporting, triaging, and software development as a whole. By addressing the problem of low-

quality bug reports and providing insights into essential bug report features. By considering

this approach, we can anticipate the potential outcomes:

1. Improved bug report quality: This work could help developers and users write better,

more informative reports by identifying the key factors contributing to a high-quality

report. This could help to reduce the time and effort required to triage and fix bugs,

ultimately leading to a more efficient and effective software development process;

2. Reduced bug backlog: By reducing the number of INVALID or INCOMPLETE bug

reports that need to be manually triaged, this work could reduce the backlog of bugs

that developers need to work through. This could lead to faster bug resolution times,

fewer open bugs, and ultimately a more stable and reliable software product;

3. Improved communication between users and developers: This work could improve

communication and collaboration between users and developers by helping users better

understand the bug reporting process and the types of information that developers need

to triage and fix bugs effectively. This could help to build stronger, more positive

relationships between software developers and their user communities;

4. More efficient use of development resources: By reducing the time and effort re-

quired to triage and fix bugs, this work could improve the efficiency of software de-

velopment teams. This could free up resources to work on other areas of software

development, such as new feature development, performance optimization, or code

refactoring;

5. More robust and reliable software: By improving the quality of bug reports and re-

ducing the backlog of bugs, this work could ultimately lead to more robust and reliable

software products. This could reduce the likelihood of critical bugs being missed or

overlooked, resulting in more satisfied users and fewer support requests;

6.3 Future Work 80

6. Knowledge and Insights Generation: Through the analysis of bug report resolutions

and influential features, valuable insights can be gained regarding the bug resolution

process. This knowledge can help researchers, practitioners, and stakeholders better

understand the factors affecting bug resolution outcomes and inform future bug report-

ing and triaging practices.

In conclusion, this research provides valuable insights into the bug reporting process and

software engineering by considering bug reporters’ challenges in providing comprehensive

information within limited time constraints. By identifying the textual features linked to bug

resolution status, emphasizing the importance of key bug report features, and highlighting

the impact of attachments, this study aids bug reporters in crafting concise and impactful

reports. These contributions enhance the bug management process, facilitate efficient bug

resolution, and support bug reporters in effectively assisting developers in finding and fixing

bugs.

6.3 Future Work

As with any research study, there are always areas for improvement and avenues for further

exploration. This study on bug report resolution is no exception, and there are several poten-

tial directions for future research. By identifying these areas, researchers or private initiatives

can build upon the findings of this study and make even greater strides in improving the effi-

ciency and effectiveness of bug report resolution processes. In this section, we explore some

potential future works that could arise from this study.

An intriguing aspect deserving further examination is the quality of comments appended

to bug reports. This investigation aims to ascertain the prevalent contexts within these com-

ments, identify those that facilitate developers in comprehending and addressing bugs with

greater efficiency, and pinpoint the types of information most frequently sought after in these

comments. To validate the influence of these comments based on their quality, we could con-

duct interviews with developers through surveys to inquire about comment quality and how

it affects bug report resolution. This may also lead to categorizing this information and

understanding what reporters often miss while filling out bug reports.

A potential study could be related to the incorporation of additional features. Although

6.3 Future Work 81

this study considered a set of commonly used features in bug report analysis, there may

be other relevant information that could contribute to better prediction models. Future work

could explore the inclusion of additional features such as developer and tester expertise, code

complexity, historical bug report patterns, or social network characteristics to capture a more

comprehensive representation of bug resolution dynamics.

There is also space to investigate advanced machine learning techniques. While the cur-

rent study utilized well-established machine learning models, future research could investi-

gate more advanced techniques to further improve predictive performance. Deep learning

models, such as recurrent neural networks (RNNs) or transformers, could be explored to

capture the temporal dependencies and complex relationships present in bug reports.

Evaluation of human factors could complement this work and be a line of research. Un-

derstanding the role of human factors in bug report resolution is another promising area for

future investigation. There is space to explore the impact of developer experience, team-

work dynamics, or community engagement on the resolution process. By incorporating such

factors, the prediction models could be augmented to provide more nuanced insights and

recommendations.

Our research has primarily emphasized resolution FIXED. However, there remains am-

ple opportunity to delve into other resolution statuses and explore their implications on the

bug reporting process, drawing conclusions that can enhance the overall efficiency of bug

reporting activities. It is crucial to comprehend the distinct characteristics of each resolution

and devise strategies for improvement to prevent unnecessary time allocation towards bugs

that may not undergo resolution. Therefore, as part of our proposed future work, we intend

to comprehensively investigate various bug report resolutions beyond FIXED, enhancing our

understanding of their dynamics and potential areas for enhancement.

Also, a comparison of different bug-tracking systems could be an interesting approach

to understanding if the results found here extend to other systems besides Bugzilla. This

study utilized Bugzilla as the bug-tracking system, but there are numerous other bug-tracking

systems in use across different open-source projects. Comparing the predictive performance

and characteristics of bug resolution across different bug-tracking systems could shed light

on the influence of the system itself on the resolution process.

Finally, a real-time prediction and intervention is an interesting path to validate the results

6.3 Future Work 82

and understanding if the information on which filed should be focused, provided to the user

while filling out a bug report, in fact, results in more bug resolved as FIXED. Building on the

predictive models developed in this study, future research could focus on developing real-

time prediction systems that can provide timely recommendations to developers and project

managers. Such systems could help prioritize bug reports, allocate resources efficiently, and

reduce resolution time.

By exploring these future directions, we can continue to advance our understanding of

bug report resolution in open-source projects, refine prediction models, and provide valuable

insights and tools to support software development and bug management processes. Also,

providing feedback on the important information that must be in the report so make better

use of the reporters’ limited time.

Bibliography

[1] Bugzilla . Bugzilla | contributing to mozilla | mozilla foundation. https://www.

mozilla.org/en-US/contribute/bugzilla/. Accessed: May 12, 2023.

[2] Mozilla . Mozilla. https://www.mozilla.org. Accessed: May 12, 2023.

[3] John Anvik, Lyndon Hiew, and Gail C Murphy. Coping with an open bug repository. In

Proceedings of the 2005 OOPSLA Workshop on Eclipse Technology eXchange (ETX),

pages 35–39, 2005.

[4] John Anvik, Lyndon Hiew, and Gail C Murphy. Who should fix this bug? In Pro-

ceedings of the 28th International Conference on Software Engineering (ICSE), pages

361–370, 2006.

[5] John Anvik and Gail C Murphy. Reducing the effort of bug report triage: Recom-

menders for development-oriented decisions. ACM Transactions on Software Engi-

neering and Methodology (TOSEM), 20:10, 2011.

[6] Apache. Apache http. http://httpd.apache.org. Accessed: May 15, 2023.

[7] Stephen Bates, Trevor Hastie, and Robert Tibshirani. Cross-validation: What does it

estimate and how well does it do it? Journal of the American Statistical Association

(JASA), pages 1–12, 2023.

[8] Cédric Beaulac and Jeffrey S Rosenthal. Best: A decision tree algorithm that handles

missing values. Computational Statistics, 35(3):1001–1026, 2020.

[9] Candice Bentéjac, Anna Csörgő, and Gonzalo Martínez-Muñoz. A comparative anal-

ysis of gradient boosting algorithms. Artificial Intelligence Review, 54:1937–1967,

2021.

83

BIBLIOGRAPHY 84

[10] Dimitris Bertsimas and Angela King. Logistic regression: From art to science. Statis-

tical Science, pages 367–384, 2017.

[11] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiß, Rahul Premraj, and

Thomas Zimmermann. Quality of bug reports in eclipse. In Proceedings of the 2007

OOPSLA Workshop on Eclipse Technology eXchange (ETX), pages 21–25, 2007.

[12] Larissa Braz, Enrico Fregnan, Vivek Arora, and Alberto Bacchelli. An exploratory

study on regression vulnerabilities. In Proceedings of the ACM/IEEE International

Symposium on Empirical Software Engineering (ESEM), pages 12–22, 2022.

[13] Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zimmermann. Information

needs in bug reports: Improving cooperation between developers and users. In Pro-

ceedings of the ACM Conference on Computer Supported Cooperative Work (CSCW),

pages 301–310, 2010.

[14] Jason Brownlee. Random oversampling and undersampling for imbalanced classifica-

tion. Machine Learning Mastery, 2020.

[15] Bugzilla. Bugzilla: Life cycle of a bug. https://www.bugzilla.org/docs/

2.18/html/lifecycle.html. Accessed: May 22, 2023.

[16] Bugzilla. Bugzilla overview. https://www.bugzilla.org/docs/4.4/en/

html/intro/overview.html, 2013. Accessed: May 12, 2023.

[17] Peter Bühlmann and Torsten Hothorn. Boosting algorithms: Regularization, prediction

and model fitting. Statistical Science, 22(4):477–505, 2008.

[18] M. Hanefi CALP and Utku Köse. Planning activities in software testing process: A lit-

erature review and suggestions for future research. preprint arXiv:1903.01222 (arXiv),

2019.

[19] Sergio Cerón-Figueroa, Cuauhtémoc López-Martín, and Cornelio Yá nez Márquez.

Stochastic gradient boosting for predicting the maintenance effort of software-intensive

systems. Institution of Engineering and Technology (IET Software), 14(2):135–143,

2020.

BIBLIOGRAPHY 85

[20] Oscar Chaparro. Improving bug reporting, duplicate detection, and localization.

In 2017 IEEE/ACM International Conference on Software Engineering Companion

(ICSE-C), pages 421–424, 2017.

[21] Oscar Chaparro, Carlos Bernal-Cárdenas, Jing Lu, Kevin Moran, Andrian Marcus,

Massimiliano Di Penta, Denys Poshyvanyk, and Vincent Ng. Assessing the quality

of the steps to reproduce in bug reports. In Proceedings of the ACM Joint Meeting on

European Software Engineering Conference (ESEC) Symposium on the Foundations of

Software Engineering (FSE), pages 86–96, 2019.

[22] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta,

Andrian Marcus, Gabriele Bavota, and Vincent Ng. Detecting missing information in

bug descriptions. In Proceedings of the ACM Joint Meeting on Foundations of Software

Engineering (FSE), pages 396–407, 2017.

[23] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence

Research, 16:321–357, 2002.

[24] Fuhu Che, Qasim Zeeshan Ahmed, Fahd Ahmed Khan, and Faheem A Khan. Novel

fine-tuned attribute weighted naïve bayes nlos classifier for uwb positioning. IEEE

Communications Letters, 27(4):1130–1134, 2023.

[25] Songqiang Chen, Xiaoyuan Xie, Bangguo Yin, Yuanxiang Ji, Lin Chen, and Baowen

Xu. Stay professional and efficient: Automatically generate titles for your bug re-

ports. In Proceedings of the 35th IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 385–397, 2020.

[26] Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong

Chen, Yiteng Huang, and Israel Cohen. Pearson correlation coefficient. Noise Reduc-

tion in Speech Processing, pages 1–4, 2009.

[27] Bugzilla Contributors. https://www.bugzilla.org/about/

installation-list, 2023. Accessed: June 30, 2023.

BIBLIOGRAPHY 86

[28] Bugzilla Contributors. Bugzilla api documentation. https://bugzilla.

readthedocs.io/en/latest/api/index.html, 2023. Accessed: June 30,

2023.

[29] Steven Davies and Marc Roper. What’s in a bug report? In International Symposium

on Empirical Software Engineering and Measurement (ESEM), pages 1–10, 2014.

[30] Felipe Emerson de Oliveira Calixto, Franklin Ramalho, Tiago Massoni, and José Ma-

noel Ferreira. Investigating bug report changes in bugzilla. International Conference

on Enterprise Information System (ICEIS), pages 55–64, 2023.

[31] Jianshu Ding, Guisheng Fan, Huiqun Yu, and Zijie Huang. Automatic identification of

high impact bug report by test smells of textual similar bug reports. In International

Conference on Software Quality, Reliability and Security (QRS), pages 446–457, 2021.

[32] Sunil Joy Dommati, Ruchi Agrawal, Prof. Ram Mohana Reddy.G, and Sowmya Ka-

math. Bug classification: Feature extraction and comparison of event model using

naive bayes approach. arXiv preprint arXiv:1304.1677, abs/1304.1677, 2013.

[33] Eclipse. Eclipse. http://www.eclipse.org. Accessed: May 15, 2023.

[34] Facebook. Facebook developers. https://developers.facebook.com. Ac-

cessed: May15, 2023.

[35] Yuanrui Fan, Xin Xia, David Lo, and Ahmed E Hassan. Chaff from the wheat: Charac-

terizing and determining valid bug reports. IEEE Transactions on Software Engineering

(TSE), 46(5):495–525, 2018.

[36] Firefox. Mozilla firefox. http://www.mozilla.org/firefox. Accessed May

15, 2023.

[37] Mozilla Foundation. Mozilla wiki - toolkit. https://wiki.mozilla.org/

Modules/Toolkit. Accessed: June 27, 2023.

[38] Mozilla Foundation. Thunderbird. https://www.thunderbird.net/pt-BR/.

Accessed: June 27, 2023.

BIBLIOGRAPHY 87

[39] The Eclipse Foundation. Eclipse bugzilla. https://bugs.eclipse.org/

bugs/. Accessed: May 12, 2023.

[40] Afshin Gholamy, Vladik Kreinovich, and Olga Kosheleva. Why 70/30 or 80/20 relation

between training and testing sets: A pedagogical explanation. Technical Report UTEP-

CS-18-09, University of Texas at El Paso, El Paso, TX, USA, 2018.

[41] Anjali Goyal and Neetu Sardana. Performance assessment of bug fixing process in

open source repositories. In Procedia Computer Science, volume 167, pages 2070–

2079, 2020.

[42] Philip J Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Murphy.

Characterizing and predicting which bugs get fixed: An empirical study of microsoft

windows. In International Conference on Software Engineering (ICSE), pages 495–

504, 2010.

[43] Shubham Gupta, Shubham Gupta, Shubham Gupta, Shubham Gupta, and Shubham

Gupta. Gaussian naïve bayes algorithm: A reliable technique for early detection of

cancer. Mobile Information Systems (MIS), 2022:2436946, 2022.

[44] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transactions

on Knowledge and Data Engineering (TKDE), 21(9):1263–1284, 2009.

[45] Jianjun He, Ling Xu, Yuanrui Fan, Zhou Xu, Meng Yan, and Yan Lei. Deep learning

based valid bug reports determination and explanation. In 2020 IEEE International

Symposium on Software Reliability Engineering (ISSRE), pages 184–194, 2020.

[46] Thomas Hirsch and Birgit Hofer. Root cause prediction based on bug reports. IEEE

International Symposium on Software Reliability Engineering Workshops (ISSREW),

pages 171–176, 2020.

[47] Pieter Hooimeijer and Westley Weimer. Modeling bug report quality. In Proceedings of

the IEEE/ACM International Conference on Automated Software Engineering (ASE),

pages 34–43, 2007.

BIBLIOGRAPHY 88

[48] R Hossain and Douglas Timmer. Machine learning model optimization with hyper

parameter tuning approach. Global Journal of Computer Science and Technology: D

Neural Artificial Intelligence, 21:7–13, 2021.

[49] imbalanced-learn contributors. Randomoversampler. https://

imbalanced-learn.org/dev/references/generated/imblearn.

over_sampling.RandomOverSampler.html. Accessed: May 12, 2023.

[50] Mia Mohammad Imran, Agnieszka Ciborowska, and Kostadin Damevski. Automati-

cally selecting follow-up questions for deficient bug reports. In International Confer-

ence on Mining Software Repositories (MSR), pages 167–178, 2021.

[51] Jiří Janák. Issue tracking systems. Diplomová práce, Masaryk University/Faculty of

Informatics, 2009.

[52] Silke Janitza, Ender Celik, and Anne-Laure Boulesteix. A computationally fast vari-

able importance test for random forests for high-dimensional data. Advances in Data

Analysis and Classification (ADAC), 12:885–915, 2018.

[53] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. Improving bug triage with

bug tossing graphs. In Proceedings of the 7th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of

Software (ESEC/FSE), pages 111–120, 2009.

[54] Jira. Jira. https://www.atlassian.com/software/jira. Accessed: May

12, 2023.

[55] Anvik John, Hiew Lyndon, and C Murphy Gail. Who should fix this bug? In Proceed-

ings of the International Conference on Software Engineering (ICSE), pages 361–370,

2006.

[56] Sakshi Jolly and Neha Gupta. Understanding and implementing machine learning mod-

els with dummy variables with low variance. In International Conference on Innovative

Computing and Communications (ICICC), volume 1, pages 477–487, 2021.

BIBLIOGRAPHY 89

[57] Luiz Alberto Ferreira Gomes Jr., Ricardo da Silva Torres, and Mario Lúcio Côrtes.

On the prediction of long-lived bugs: An analysis and comparative study using floss

projects. Information and Software Technology, 132:106508, 2021.

[58] Md Rejaul Karim. Key features recommendation to improve bug reporting. In Inter-

national Conference on Software and System Processes (ICSSP), pages 1–4, 2019.

[59] Md Rejaul Karim, Akinori Ihara, Xin Yang, Hajimu Iida, and Kenichi Matsumoto.

Understanding key features of high-impact bug reports. In 2017 Eighth International

Workshop on Empirical Software Engineering in Practice (IWESEP), pages 53–58,

2017.

[60] Maurice George Kendall. Rank Correlation Methods. Griffin, 4 edition, 1962.

[61] Sotiris B Kotsiantis. Decision trees: A recent overview. Artificial Intelligence Review

(AIJ), 39:261–283, 2013.

[62] Kulamala Vinod Kumar, Priyanka Kumari, Avishikta Chatterjee, and Durga Prasad

Mohapatra. Software fault prediction using random forests. In Proceedings of 2019

Intelligent and Cloud Computing (ICICC), volume 1, pages 95–103, 2021.

[63] Ahmed Lamkanfi and Serge Demeyer. Predicting reassignments of bug reports-an ex-

ploratory investigation. In 2013 European Conference on Software Maintenance and

Reengineering (CSMR), pages 327–330, 2013.

[64] Ahmed Lamkanfi, Serge Demeyer, Emanuel Giger, and Bart Goethals. Predicting the

severity of a reported bug. In 2010 IEEE Working Conference on Mining Software

Repositories (MSR), pages 1–10, 2010.

[65] Wei Li and Johannes Lederer. Tuning parameter calibration for l1-regularized logistic

regression. Journal of Statistical Planning and Inference (JSPI), 202:80–98, 2019.

[66] Kaiping Liu, Hee Beng Kuan Tan, and Mahinthan Chandramohan. Has this bug been

reported? In Proceedings of the ACM SIGSOFT International Symposium on the Foun-

dations of Software Engineering (FSE), pages 1–4, 2012.

BIBLIOGRAPHY 90

[67] Rafael Gomes Mantovani, Tomáš Horváth, Ricardo Cerri, Sylvio Barbon Junior,

Joaquin Vanschoren, and André Carlos Ponce de Leon Ferreira de Carvalho. An empiri-

cal study on hyperparameter tuning of decision trees. arXiv preprint arXiv:1812.02207,

abs/1812.02207, 2018.

[68] Lloyd Montgomery, Clara Lüders, and Walid Maalej. An alternative issue tracking

dataset of public jira repositories. In Proceedings of the International Conference on

Mining Software Repositories (MSR), pages 73–77, 2022.

[69] Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N Nguyen, David Lo, and Chengnian

Sun. Duplicate bug report detection with a combination of information retrieval and

topic modeling. In Proceedings of the 27th IEEE/ACM International Conference on

Automated Software Engineering (ASE), pages 70–79, 2012.

[70] Yuki Noyori, Hironori Washizaki, Yoshiaki Fukazawa, Keishi Ooshima, Hideyuki

Kanuka, Shuhei Nojiri, and Ryosuke Tsuchiya. What are good discussions within

bug report comments for shortening bug fixing time? In 2019 IEEE International

Conference on Software Quality, Reliability, Security (QRS), pages 280–287, 2019.

[71] Daniel Asante Otchere, Tarek Omar Arbi Ganat, Jude Oghenerurie Ojero, Bennet Nii

Tackie-Otoo, and Mohamed Yassir Taki. Application of gradient boosting regres-

sion model for the evaluation of feature selection techniques in improving reservoir

characterisation predictions. Journal of Petroleum Science and Engineering (JPSE),

208:109244, 2022.

[72] Anusha R Pai, Gopalkrishna Joshi, and Suraj Rane. Quality and Reliability Studies in

Software Defect Management: A Literature Review. International Journal of Quality

& Reliability Management (IJQRM), 38(10):2007–2033, 2021.

[73] David MW Powers. Evaluation: From precision, recall and f-measure to roc, informed-

ness, markedness and correlation. International Journal of Machine Learning Technol-

ogy (IJML), 2:37–63, 2011.

[74] Philipp Probst, Marvin N Wright, and Anne-Laure Boulesteix. Hyperparameters and

BIBLIOGRAPHY 91

tuning strategies for random forest. Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery (WIREs), 9(3):e1301, 2019.

[75] Zhao Qinghe, Xiang Wen, Huang Boyan, Wang Jong, and Fang Junlong. Optimised

extreme gradient boosting model for short term electric load demand forecasting of

regional grid system. Scientific Reports, 12(1):19282, 2022.

[76] RedHat. Bugzilla. https://bugzilla.redhat.com/. Accessed: May 12,

2023.

[77] Lior Rokach and Oded Maimon. Decision Trees, volume 6, pages 165–192. Spring,

2005.

[78] Mirka Saarela and Susanne Jauhiainen. Comparison of feature importance measures as

explanations for classification models. SN Applied Sciences, 3:1–12, 2021.

[79] Iqbal H Sarker. Machine learning: Algorithms, real-world applications and research

directions. SN Computer Science, 2(3):160, 2021.

[80] Adrian Schroter, Adrian Schröter, Nicolas Bettenburg, and Rahul Premraj. Do stack

traces help developers fix bugs? In 2010 IEEE Working Conference on Mining Software

Repositories (MSR), pages 118–121, 2010.

[81] Emad Shihab, Akinori Ihara, Yasutaka Kamei, Walid M Ibrahim, Masao Ohira, Bram

Adams, Ahmed E Hassan, and Ken ichi Matsumoto. Predicting re-opened bugs: A case

study on the eclipse project. In 2010 IEEE Working Conference on Reverse Engineering

(WCRE), pages 249–258, 2010.

[82] Dalwinder Singh and Birmohan Singh. Investigating the impact of data normalization

on classification performance. Applied Soft Computing, 97:105524, 2020.

[83] Moshe Sipper and Jason H Moore. Conservation machine learning: A case study of

random forests. Scientific Reports, 11(1):3629, 2021.

[84] Yang Song and Oscar Chaparro. Bee: A tool for structuring and analyzing bug reports.

In Proceedings of the ACM Joint Meeting on European Software Engineering Con-

BIBLIOGRAPHY 92

ference (ESEC) Symposium on the Foundations of Software Engineering (FSE), pages

1551–1555, 2020.

[85] Charles Spearman. The Proof and Measurement of Association between Two Things,

volume 100. Appleton-Century-Crofts, 1961.

[86] Klaas-Jan Stol and Brian Fitzgerald. Guidelines for Conducting Software Engineering

Research, pages 27–62. Springer International Publishing, Cham, 2020.

[87] Abdulhamit Subasi. Chapter 3 - machine learning techniques. In Abdulhamit Subasi,

editor, Practical Machine Learning for Data Analysis Using Python, pages 91–202.

Academic Press, 2020.

[88] Jian Sun. Why are bug reports invalid? In International Conference on Software

Testing, Verification and Validation (ICST), pages 407–410, 2011.

[89] Youshuai Tan, Sijie Xu, Zhaowei Wang, Zhou Zhang, and Luo Xu. Bug severity pre-

diction using question-and-answer pairs from stack overflow. Journal of Systems and

Software (JSS), 165:110567, 2020.

[90] GitHub Users. An open letter to GitHub from the maintainers of open source projects.

https://github.com/dear-github/dear-github, 2016. Accessed: June

21, 2023.

[91] Renan G Vieira, César Lincoln C Mattos, Lincoln S Rocha, João Paulo P Gomes, and

Matheus Paixão. The role of bug report evolution in reliable fixing estimation. Empir-

ical Software Engineering (ESE), 27:164, 2022.

[92] Indika Wickramasinghe and Harsha Kalutarage. Naive bayes: Applications, variations

and vulnerabilities: A review of literature with code snippets for implementation. Soft

Computing (SOCO), 25(4):2277–2293, 2021.

[93] GNOME Wiki. Bugzilla. https://wiki.gnome.org/Apps/Bugzilla. Ac-

cessed: May 12, 2023.

[94] Xiaoxue Wu, Wei Zheng, Minchao Pu, Jie Chen, and Dejun Mu. Invalid bug reports

complicate the software aging situation. Software Quality Journal, 28:195–220, 2020.

BIBLIOGRAPHY 93

[95] Xin Xia, David Lo, Emad Shihab, and Xinyu Wang. Automated bug report field re-

assignment and refinement prediction. IEEE Transactions on Reliability, 65(3):1094–

1113, 2015.

[96] Xin Xia, David Lo, Xinyu Wang, and Bo Zhou. Accurate developer recommenda-

tion for bug resolution. In 2013 IEEE Working Conference on Reverse Engineering

(WCRE), pages 72–81, 2013.

[97] Xin Xia, David Lo, Ming Wen, Emad Shihab, and Bo Zhou. An empirical study of

bug report field reassignment. In 2014 IEEE Conference on Software Maintenance,

Reengineering, and Reverse Engineering (CSMR-WCRE), pages 174–183, 2014.

[98] Bo Zhou, Iulian Neamtiu, and Rajiv Gupta. Experience report: How do bug characteris-

tics differ across severity classes: A multi-platform study. In International Symposium

on Software Reliability Engineering (ISSRE), pages 507–517, 2015.

[99] Thomas Zimmermann, Rahul Premraj, and Nicolas Bettenburg. What makes a good

bug report? In Proceedings of the ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering (FSE), pages 308–318, 2007.

