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Resumo

Nesta tese, nós provamos o teorema de Hörmander para uma equação de evolução

estocástica dada por um movimento Browniano fracionário de classe traço com o ex-

poente de Hurst 1
2
< H < 1 e um semigrupo analítico {S(t); t ≥ 0} em um espaço

de Hilbert separável E. Ao contrário do caso clássico de dimensão finita, o operador

Jacobiano em EDPs estocásticas parabólicas é tipicamente não invertível, o que causa

uma grande dificuldade em expressar a matriz de Malliavin em termos de um processo

adaptado. Através de uma condição de Hörmander sobre os colchetes de Lie aplicados

aos campos da equação e uma suposição adicional de que S(t)E é denso, provamos

que a lei das projeções finito-dimensionais da EDP estocástica no tempo t admite uma

densidade com respeito à medida de Lebesgue. O argumento baseia-se em técnicas de

"rough path" no sentido de Gubinelli (Controlling rough paths. J. Funct. Anal (2004))

e uma análise do espaço Gaussiano do movimento Browniano fracionário.

Palavras-chave: Equação de evolução estocástica, Movimento Browniano fracionário,

Cálculo de Malliavin, Teorema de Hörmander.
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Abstract

In this thesis, we prove the Hörmander’s theorem for a stochastic evolution equation

driven by a trace-class fractional Brownian motion with Hurst exponent 1
2
< H <

1 and an analytical semigroup {S(t); t ≥ 0} on a given separable Hilbert space E.

In contrast to the classical finite-dimensional case, the Jacobian operator in typical

parabolic stochastic PDEs is not invertible which causes a severe difficulty in expressing

the Malliavin matrix in terms of an adapted process. Under Hörmander’s bracket

condition on the vector fields of the stochastic PDE and the additional assumption that

S(t)E is dense, we prove the law of finite-dimensional projections of the stochastic PDE

at time t has a density w.r.t Lebesgue measure. The argument is based on rough path

techniques in the sense of Gubinelli (Controlling rough paths. J. Funct. Anal (2004))

and a suitable analysis on the Gaussian space of the fractional Brownian motion.

Keywords: Stochastic evolution equation, Fractional Brownian motion, Malliavin

calculus, Hörmander’s theorem.
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Introduction

Let A0, A1, . . . , An be C1-vector fields on R
d. Let V : Rd → R

d be a second-order

differential operator of the following form

V =
1

2

n
∑

i=1

A2
i + A0.

For a given function f , under elliptic conditions on the vector fields, it had been known

for some time that







∂u
∂t
(t, x) = V u(t, x); if t > 0, x ∈ R

d

u(0, x) = f(x); if x ∈ R
d

(1)

admits a smooth fundamental solution. In the celebrated 1967’s paper, Lars Hörman-

der introduced a much weaker condition on the vector fields in such way that (1) admits

a smooth C∞-solution. This important result had an immediate and profound impact

on Probability theory, more specifically, on the study of the infinitesimal behavior of

Markov processes defined via the so-called stochastic differential equations (henceforth

abbreviated by SDEs) previously introduced by Kiyoshi Itô in 1942. After Hörman-

der’s fundamental work, probabilists made use of purely analytical arguments to infer

smoothness of Feller’s semigroups associated with strong Markov processes driven by

second order differential operators.

This was the situation until Paul Malliavin has published his groundbreaking

work [27] on what he called a stochastic calculus of variations and nowadays known

as Malliavin calculus. His motivation was to investigate the existence of smooth den-



sities for laws of Markov diffusions by using purely probabilistic techniques. In this

direction, based on previous works by Leonard Gross [21] on the so-called Abstract

Wiener spaces, Malliavin has introduced a differential structure on the Wiener space

in such way that typical functionals of the Brownian motion are naturally smooth (in

the sense of Malliavin calculus) although not Frechét differentiable like solutions of

SDEs. The main insight was the observation that typical functionals of the Brownian

motion are differentiable in certain directions (the Cameron-Martin space) whose shifts

are equivalent to the Wiener measure. More importantly, the so-called Gross-Sobolev

(Malliavin) derivative D admits an adjoint operator which lies at the heart of the suc-

cess of the Malliavin calculus via integration by parts formula. His method was based

on the infinite-dimensional Ornstein-Uhlenbeck semigroup and was rather elaborate.

It has since been simplified and extended by many authors and has become a powerful

tool in stochastic analysis.

In order to illustrate the main argument based on Malliavin calculus and later

highlight the main obstacles in dealing with stochastic partial differential equations

(henceforth abbreviated by SPDEs) driven by the fractional Brownian motion, let

us briefly recall the classical case: Let X be a finite-dimensional SDE written in

Stratonovich form

dXt = V0(Xt)dt+
n
∑

j=1

Vj(Xt) ◦ dW j
t (2)

where V0, . . . , Vn are smooth vector fields and (Wi)
n
i=1 is a standard n-dimensional

Brownian motion on a probability space (Ω,F ,P). Roughly speaking, the Hörmander’s

theorem for the SDE (2) is a statement on the relation between smoothness of the law

A 7→ P(Xt ∈ A) of Xt and a geometric condition on the vector fields V0, . . . , Vn which

ensures that the solution spreads over the entire space. The first central argument

towards the Hörmander’s theorem for the SDE (2) is to find weaker conditions on the

vector fields (beyond ellipticity) to get invertibility of a certain random matrix involving

D. This is achieved by the so-called parabolic Hörmander’s bracket condition: In the

sequel, [U, V ] denotes the Lie bracket between two smooth vector fields U, V .

Definition 0.0.1 Given an SDE (2), define a family of vector fields Vk by

V0 = {Vi; 1 ≤ i ≤ n}, Vk+1 = Vk ∪ {[U, Vj];U ∈ Vk and 0 ≤ j ≤ n}.

2



Let us also define Vk(x) = span{V (x);V ∈ Vk}. We say that (2) satisfies the parabolic

Hörmander condition if ∪k≥1Vk(x) = R
d for every x ∈ R

d.

Let Mt be the Malliavin matrix

Mt =
(

〈DiXt,D
jXt〉L2([0,T ];Rd)

)

1≤i,j≤n
(3)

at a time t > 0, where D
jXt is the Gross-Sobolev derivative of Xt w.r.t the j-th

Brownian motion. The following result is the basis for the Hörmander’s theorem.

Theorem 0.0.2 Given x0 ∈ R
d and t ∈ (0, T ], assume that Xt is smooth in Malliavin

sense with integrable Gross-Sobolev derivatives of all orders and for every p > 1

E

( 1

|det Mt|p
)

<∞. (4)

Then, Xt has a C∞-density w.r.t Lebesgue in R
d.

The proof of Hörmander’s Theorem 0.0.3 below is based on Theorem 0.0.2, a suitable

linearization of the SDE (2) w.r.t its initial conditions and a quantitative version of

Doob-Meyer decomposition, the so-called Norris’s lemma ([34]). Denote by Φt the

(random) solution map to (2) so that Xt = Φt(x0). It is known that under Assumption

1 below, we do have a flow of smooth maps, namely a two parameter family of maps

Φs.t such that Xt = Φs,t(Xs) for every s ≤ t and such that Φt,u ◦ Φs,t = Φs,u and

Φt = Φ0,t. For a given initial condition x0, we then denote by Js,t the derivative of Φs,t

evaluated at Xs. The chain rule implies Js,u = Jt,uJs,t and

dJ0,t = DV0(Xt)J0,tdt+
n
∑

j=1

DVj(Xt)J0,t ◦ dW j
t ; J0,0 = I

where I is the identity matrix. Higher order derivatives J (k)
0,t w.r.t initial conditions can

be defined similarly.

By the composition property J0,t = Js,tJ0,s, we can write Js,t = J0,tJ
−1
0,s , where

the inverse J−1
0,t can be found by solving

dJ−1
0,t = −J−1

0,tDV0(Xt)dt−
n
∑

j=1

J−1
0,tDVj(Xt) ◦ dW j

t .

3



Assumption 1 The vector fields V0, . . . , Vn are smooth and all their derivatives grow

at most polynomially at infinity. Moreover,

E sup
0≤t≤T

|Xt|p <∞, E sup
0≤t≤T

|J−1
0,t |p <∞ and E sup

0≤t≤T
|J (k)

0,t |p <∞

for every k ≥ 1, for every initial condition x0, every terminal time T and every p ≥ 1.

The Hörmander’s theorem for the SDE (2) is given by the following result.

Theorem 0.0.3 If the vector fields V0, . . . , Vn satisfy the Hörmander’s bracket con-

ditions and Assumption 1 is satisfied, then the law of Xt has a smooth density w.r.t

Lebesgue for every t > 0.

Let us now outline the classical proof of Theorem 0.0.3. The Malliavin matrix associ-

ated with the Xt is given by

〈ξ,Mtξ〉 =
n
∑

j=1

∫ t

0

〈ξ, Js,tVj(Xs)〉2ds; ξ ∈ R
d.

Let V be the d× n-matrix-valued function obtained by concatenating the vector fields

Vj for j = 1, . . . , n. One can check

Mt = J0,tCtJ∗
0,t (5)

where

Ct =
∫ t

0

J−1
0,sV (Xs)V

∗(Xs)
(

J−1
0,s

)∗
ds.

Representation (5) is due to the fundamental relation Js,t = J0,tJ
−1
0,s so that the invert-

ibility of Mt is equivalent to the invertibility of the so-called reduced Malliavin matrix

Ct given by the following quadratic form

〈Ctξ, ξ〉 =
n
∑

j=1

∫ t

0

〈ξ, J−1
0,sVj(Xs)〉2ds; ξ ∈ R

d.

At this point, a well-known trick (see e.g Lemma 2.3.1 in Nualart [31]) says that

if

sup
‖ξ‖=1

P{〈ξ, Ctξ〉 ≤ ǫ} = O(ǫp) (6)

4



for every p ≥ 1 and ǫ > 0, then (4) holds true. In order to investigate (6) or even

the simpler question of invertibility, it is important to notice that working with the

reduced Malliavin matrix Ct is much simpler than Mt. The reason is that the integrand

in {〈ξ, J−1
0,sVj(Xs)〉2; 0 ≤ s ≤ t} is adapted w.r.t driving Brownian motion noise along

a given time interval [0, t]. In strong contrast, 〈ξ, Js,tVj(Xs)〉2 is not adapted which

prevents us to make use of standard stochastic calculus techniques. Working with

Ct yields the following argument: For a given smooth vector field G, let us define

ZG(t) = 〈ξ, J−1
0,t G(Xt)〉. In this case, Jensen’s inequality yields

〈ξ, Ctξ〉 =
n
∑

j=1

∫ t

0

|ZVj
(s)|2ds ≥ C

(

∫ t

0

|ZVj
(s)|ds

)2

(7)

for a constant C which only depends on t. By Itô’s formula, the process ZG has the

nice property that it solves the SDE written in Itô’s form

dZG(s) =

(

Z[G,V0](s) +
n
∑

j=1

1

2
Z[[G,Vj ],Vj ](s)

)

ds+
n
∑

j=1

Z[G,Vj ](s)dW
j(s). (8)

At this point, the standard argument is the following: If 〈ξ, Ctξ〉 is small, then (7) jointly

with Norris’s Lemma ([34]) and (8) ensure that {[Vj, V0], [[Vj, Vk], Vk], [Vj, Vk]; 1 ≤ k ≤
n, 1 ≤ j ≤ n} is small too. Since Hörmander’s bracket condition ensures that these

quantities cannot be small simultaneously, then (6) must follow.

Discussion of the literature

The goal of this thesis is to prove the Hörmander’s theorem for a SPDE driven

by a trace-class fractional Brownian motion with Hurst exponent 1
2
< H < 1. The

novelty of our work is to handle the infinite-dimensional case jointly with the fractional

case which requires a new set of ideas. For fractional Brownian motion driving noise

with H > 1
2

and under ellipticity assumptions on the vector fields {Vi; 0 ≤ i ≤ n},
the existence and smoothness of the density for SDEs are shown by Hu and Nualart

[24] and Nualart and Saussereau [32]. The hypoelliptic case for H > 1
2

is treated by

Baudoin and Hairer [1] based on previous papers of Nualart and Saussereau [33] and

the integrability of the Jacobian given by Hu and Nualart [24]. When 1
4
< H < 1

2
,

5



integrability of the Jacobian given by Cass, Litterer and Lyons [7] yields smoothness of

densities in the elliptic case. The hypoelliptic case was treated in a series of works by

Cass and Friz [8], Cass, Friz and Victoir [9] and culminating with Cass, Hairer, Litterer

and Tindel [7] who provide smoothness of densities for a wide class of Gaussian noises

including FBM with 1
4
< H < 1

2
.

The main technical problem with the generalization of Hörmander’s theorem to

parabolic SPDEs is the fact that the Jacobian J0,t is typically not invertible regardless

the type of noise. The existence of densities for images of SPDEs solutions through

linear functionals and driven by Brownian motion was firstly tackled by Baudoin and

Teichmann [2] where the linear part of the SPDE generates a group of bounded linear

operators on a Hilbert space. In this case, the Jacobian becomes invertible. Shamarova

[38] studies the existence of densities for a stochastic evolution equation driven by

Brownian motion in 2-smooth Banach spaces. Recently, based on a pathwise Fubini

theorem for rough path integrals, Gerasimovics and Hairer [20] overcome the lack of

invertbility of the Jacobian for SPDEs driven by Brownian motion. They show that

the Malliavin matrix is invertible on every finite-dimensional subspace and jointly with

a purely pathwise Norris’s lemma developed by Cass, Gerasimovics and Hairer [20],

they prove that laws of finite-dimensional projections of SPDE solutions driven by

Brownian motion admit smooth densities w.r.t Lebesgue measure. In contrast to [2],

the authors are able to prove existence and smoothness of densities for truly parabolic

systems generated by semigroups and SPDEs driven by Brownian motion under a

priory integrability conditions on the Jacobian.

Main contributions

In this thesis, we investigate the existence of densities for finite-dimensional pro-

jections of SPDEs driven by fractional Brownian motion (henceforth abbreviated by

FBM) with Hurst parameter 1
2
< H < 1. More precisely, let

dXt =
(

A(Xt) + F (Xt)
)

dt+G(Xt)dBt (9)

be a SPDE taking values on a separable Hilbert space E, where (A, dom(A)
)

is the

infinitesimal generator of an analytic semigroup {S(t); t ≥ 0} on E, B is a trace-

6



class fractional Brownian motion taking values a separale Hilbert space U with Hurst

parameter 1
2
< H < 1 and F,G are smooth coefficients. Let T : E → R

d be a

bounded and surjective linear operator. The goal is to prove, under Hörmander’s

bracket conditions, that the law of

T (Xt) has a density w.r.t Lebesgue

for every t > 0. In this thesis, we obtain the proof of this result under the additional

assumption that the analytical semigroup has a dense range in E at a given time t > 0.

To the best of our knowledge, this is the first result of hypoellipticity for SPDEs driven

by FBM. The result is build on a carefully analysis of the Itô map (solution map)

B 7→ X(B)

defined on a suitable abstract Wiener space associated with a trace-class FBM B with

parameter 1
2
< H < 1 and taking values on suitable space of increments. By means of

rough path techniques, it is shown that B 7→ X(B) is Frechét differentiable and hence

differentiable in sense of Malliavin calculus. Even though the noise B is more regular

than Brownian motion (in the sense of Hölder regularity), the rough path formalism

in the sense of Gubinelli [17, 18] allows us to obtain better estimates for the Itô map

compared to the classical Riemann sum approach [39] or other more sophisticated

frameworks based on fractional calculus [29].

Let us define

G0(x) := Ax+ F (x); x ∈ dom(A∞).

where dom(A∞) = ∩n≥1dom(An) is equipped with the projective limit topology asso-

ciated with the graph norm of dom(A). Given the SPDE (9), define a collection of

vector fields Vk by

V0 = {Gi; i ≥ 1}, Vk+1 := Vk ∪
{

[Gj, U ];U ∈ Vk and j ≥ 0
}

.

where Gi(x) = G(ηi)(x) for some orthonormal basis (ηi)∞i=1 of Q
1

2 (U), where Q a trace-

class linear operator on U . We also define the vector spaces Vk(x0) := span{V (x0);V ∈

7



Vk} and we set

D(x0) := ∪k≥1Vk(x0)

for each x0 ∈ dom(A∞). Let us now state the main result of this work.

Theorem 0.0.4 Fix x0 ∈ dom(A∞) and assume that D(x0) is a dense subset of E and

S(t)E is a dense subset of E for a given t ∈ (0, T ]. Under H1-A1-A2-A3-B1-B2-C1-

C2-C3, if T : E → R
d is a bounded linear surjective operator, then the law of T (Xx0

t )

has a density w.r.t Lebesgue measure in R
d.

Outline of the thesis: In chapter 1, we establish some preliminary results on the

Gaussian space of trace-class FBM and the associated Malliavin calculus. Chapter 2

presents the main technical results concerning the Malliavin (actually Frechét regular-

ity) of the Itô map and the existence of the right-inverse of the Jacobian. Chapter 3

presents the proof of Theorem 0.0.4.

8



Chapter 1

Preliminaries on the Gaussian space of

fractional Brownian motion

1.1 The fractional Brownian motion

The fractional Brownian motion (henceforth abbreviated by FBM) with Hurst

parameter 0 < H < 1 is a centered Gaussian process with covariance

RH(t, s) :=
1

2

(

s2H + t2H − |t− s|2H
)

.

Throughout this paper, we fix 1
2
< H < 1. Let β = {βt; 0 ≤ t ≤ T} be a FBM defined

on a complete probability space (Ω,F ,P). Let E be the set of all step functions on

[0, T ] equipped with the inner product

〈1[0,t],1[0,s]〉H := RH(t, s).

One can check (see e.g Chapter 5 in [31] or Chapter 1 in [30]) for every ϕ, ψ ∈ E , we

have

〈ϕ, ψ〉H = αH

∫ T

0

∫ T

0

|r − u|2H−2ϕ(r)ψ(u)dudr (1.1)

where αH := H(2H − 1). Let H be the reproducing kernel Hilbert space associated

with FBM, i.e., the closure of E w.r.t (1.1). The mapping 1[0,t] → βt can be extended

to an isometry between H and the first chaos {β(ϕ);ϕ ∈ H}. We shall write this



isometry as β(ϕ).

Let us define the following kernel

KH(t, s) := cHs
1

2
−H

∫ t

s

(u− s)H− 3

2uH− 1

2du; s < t, (1.2)

where cH =
(

H(2H−1)

beta(2−2H,H− 1

2
)

)
1

2

and beta denotes the Beta function. We setKH(t, s) = 0

for s ≥ t. From (1.2), we have

∂KH

∂t
(t, s) = cH

( t

s

)H− 1

2

(t− s)H− 3

2 .

Consider the linear operator K∗
H : E → L2([0, T ];R) defined by

(K∗
Hϕ)(s) :=

∫ T

s

ϕ(t)
∂KH

∂t
(t, s)dt; 0 ≤ s ≤ T.

We observe (K∗
H1[0,t])(s) = KH(t, s)1[0,t](s). It is well-known (see e.g [31]) that K∗

H

can be extended to an isometric isomorphism between H and L2([0, T ];R). Moreover,

β(ϕ) =

∫ T

0

(K∗
Hϕ)(t)dwt;ϕ ∈ H, (1.3)

where

wt := β
(

(K∗
H)

−1(1[0,t])
)

(1.4)

is a real-valued Brownian motion. From (1.3),

βt =

∫ t

0

KH(t, s)dws; 0 ≤ t ≤ T,

and (1.4) implies both β and w generate the same filtration. Lastly, we recall that H is

a linear space of distributions of negative order. In order to obtain a space of functions

contained in H, we consider the linear space |H| as the space of measurable functions

f : [0, T ] → R such that

‖f‖2|H| := αH

∫ T

0

∫ T

0

|f(t)||f(s)||t− s|2H−2dsdt <∞, (1.5)

for a constant αH > 0. The space |H| is a Banach space with the norm (1.5) and

10



isometric to a subspace of H which is not complete under the inner product (1.1).

Moreover, E is dense in |H|. The following inclusions hold true

L
1

H ([0, T ];R) →֒ |H| →֒ H. (1.6)

and

〈f, g〉H = αH

∫ T

0

∫ T

0

|u− v|2H−2f(u)g(v)dudv (1.7)

for f, g ∈ L
1

H ([0, T ];R). Moreover, there exists a constant C such that

‖f‖2H = C

∫ T

0

|IH− 1

2

T− f(s)|2ds (1.8)

where I
H− 1

2

T− is the right-sided fractional integral given by

I
H− 1

2

T− f(x) :=
1

Γ(H − 1
2
)

∫ T

x

f(s)(s− x)H− 3

2ds; 0 ≤ x ≤ T.

See Lemma 1.6.6 and (1.6.14) in [30].

1.2 Malliavin Calculus on Hilbert spaces

Throughout this thesis, we fix a self-adjoint, non-negative and trace-class operator

Q : U → U defined on a separable Hilbert space U . Then, there exists an orthonotmal

basis {ei; i ≥ 1} of U and eigenvalues {λi; i ≥ 1} such that

Qei = λiei; i ≥ 1

and trace Q =
∑∞

k=1 λk < +∞ such that λk > 0 for every k ≥ 1. Let U0 := Q
1

2 (U) be

the linear space equipped with the inner product

〈u0, v0〉0 := 〈Q− 1

2u0, Q
− 1

2v0, 〉U ; u0, v0 ∈ U0

where Q− 1

2 is the inverse of Q
1

2 . Then, (U0, 〈·, ·〉0) is a separable Hilbert space with an

orthonormal basis {
√
λkek; k ≥ 1}.

11



Let W be a Q-Brownian motion given by

Wt :=
∑

k≥1

√
λkekw

k
t ; t ≥ 0

where (wk)k≥1 is a sequence of independent real-valued Brownian motions. Let (βk)k≥1

be a sequence of independent FBM where βk is associated with wk via (1.3), i.e.,

βk
t =

∫ t

0

KH(t, s)dw
k
s ; 0 ≤ t ≤ T.

We then set

Bt :=
∞
∑

k=1

√

λkekβ
k
t ; 0 ≤ t ≤ T. (1.9)

For separable Hilbert spaces E1 and E2, let us denote L2(E1;E2) as the space of all

Hilbert-Schmidt operators from E1 to E2 equipped with the usual inner product. Let F
be the sigma-field generated by {B(ϕ);ϕ ∈ H⊗L2(U0,R)} where B : H⊗L2(U0,R) →
L2(Ω,F ,P) is the linear operator defined by

B(Φ) :=

∫ T

0

Φ(t)dBt :=
∞
∑

k=1

∫ T

0

(K∗
HΦ

k)(t)dwk
t ; Φ ∈ H ⊗ L2(U0,R),

where

Φi := Φ(
√

λiei); i ≥ 1.

We recall that H⊗L2(U0,R) is isomorphic to L2(U0,H). The elements of H⊗L2(U0,R)

are described by
∞
∑

m,j=1

amj

√

λmem ⊗ hj

where (amj)m,j ∈ ℓ2(N2), (hj) is an orthonormal basis for H and we denote

e⊗ h : y ∈ U0 7→ 〈e, y〉U0
h.

It is easy to check that E
[

B(Φ)B(Ψ)
]

= 〈Φ,Ψ〉L2(U0,H) for every Φ,Ψ ∈ L2(U0,H).

In this case,
(

Ω,F ,P;L2(U0,H)
)

is the Gaussian space associated with the isonormal

Guassian process B.

For Hilbert spaces E1 and E2, let Ck
p (E1;E2) be the space of all f : E1 → E2 such

12



that f and all its derivatives has polynomial growth. Let P be the set of all cylindrical

random variables of the form

F = f(B(ϕ1), . . . , B(ϕm)) (1.10)

where f ∈ C∞
p (Rm;R) an ϕi ∈ L2(U0,H). The Malliavin derivative of an element of

F ∈ P of the form (1.10) over the Gaussian space
(

Ω,F ,P;L2(U0,H)
)

is defined by

DF :=
m
∑

k=1

∂

∂xk
f(B(ϕ1), . . . , B(ϕm))ϕk.

We observe

〈DF, h〉L2(U0,H) =
m
∑

k=1

∂

∂xk
f(B(ϕ1), . . . , B(ϕm))〈ϕk, h〉L2(U0,H)

=
d

dǫ
f
(

B(ϕ1) + ǫ〈ϕ1, h〉L2(U0,H), . . . , B(ϕm) + ǫ〈ϕm, h〉L2(U0,H)

)

|ǫ=0.

The k-th derivative is naturally defined as the iterated derivative D
kF for F ∈ P

as a random variable with values in (L2(U0,H))⊗k. For a given separable Hilbert space

E, let P(E) be the set of all cylindrical E-valued random variables of the form

F =
n
∑

j=1

Fjhj

where Fj ∈ P and hj ∈ E for j = 1, . . . , n and n ≥ 1. We then define

D
kF :=

n
∑

j=1

D
kFj ⊗ hj; k ≥ 1

A routine exercise yields the following result.

Lemma 1.2.1 The operator D
k : P(E) ⊂ Lp(Ω;E) → Lp

(

Ω; (L2(U0,H))⊗k ⊗ E
)

is

closable and densely defined for every p ≥ 1.

For an integer k ≥ 1 and p ≥ 1, let D
k,p(E) be the completion of P(E) w.r.t the

semi-norm

‖F‖Dk,p(E) :=

[

E‖F‖pE +
k
∑

j=1

E‖DjF‖p
L2(U0,H)⊗j⊗E

]1/p

.

13



One can check the family of seminorms satisfies the properties of monotonicity and

compatibility (see Section 1.2, Chapter 2 in [31]). Moreover, Dk+1,p(E) ⊂ D
k,q(E) for

p > q and k ≥ 0.

Let us now devote our attention to some criteria for checking when a given func-

tional F : Ω → E belongs to the Sobolev spaces D
k,p(E) for p > 1 and k ≥ 1.

Lemma 1.2.2 Let p > 1 and F ∈ L
p
loc(Ω;E) be such that for every x ∈ E one has

〈F, x〉E ∈ D
1,p
loc(R). If there exists1 ξ ∈ L

p
loc

(

Ω;L2(U0;H)⊗ E
)

such that

〈

D〈F, u〉E, h
〉

L2(U0;H)
= 〈ξ(u), h〉L2(U0;H) locally (1.11)

for every u ∈ E, h ∈ L2(U0;H), then F ∈ D
1,p
loc(E) and DF = ξ.

Proof. Consider the Gaussian space
(

Ω,F ,P;L2(U0,H)
)

, take a localizing sequence

(Ωn, Fn) ∈ F × D
1,2(R) such that Fn = 〈F, u〉E on Ωn and Ωn ↑ Ω as n→ +∞. Then,

apply Theorem 3.3 given by [36].

In view of the Hölder path regularity of the underlying noise, it will be useful to

play with Fréchet and Malliavin derivatives. In this case, it is convenient to realize P

as a Gaussian probability measure defined on a suitable Hölder-type separable Banach

space equipped with a Cameron-Martin space which supports infinitely many indepen-

dent FBMs. Let C∞
0 (R+) be the space of smooth functions w : [0,∞) → R satisfying

w(0) = 0 and having compact support. Given γ ∈ (0, 1) and δ ∈ (0, 1), we define for

every w ∈ C∞
0 (R+), the norm

‖w‖Wγ,δ := sup
t,s∈R+

|w(t)− w(s)|
|t− s|γ(1 + |t|+ |s|)δ .

Let Wγ,δ be the completion of C∞
0 (R+) w.r.t ‖ · ‖Wγ,δ . We also write Wγ,δ

T when we

restrict the arguments to the interval [0, T ]. It should be noted that ‖·‖Wγ,δ
T

is equivalent

to the γ-Hölder norm on [0, T ] given by

|f |0 + |f |γ,
1We observe L2(U0,H⊗ E) ≡ L2(U0,H)⊗ E ≡ E ⊗ U0 ⊗H ≡ L2(E;L2(U0;H))
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where

|f |γ := sup
0≤s<t≤T

|f(t)− f(s)|
|t− s|γ ,

1

2
< γ < 1.

Moreover, Wγ,δ
T is a separable Banach space. Let λ = (λi)

∞
i=1 be the sequence of

strictly positive eigenvalues of Q. In addition to trace Q =
∑

i≥1 λi < ∞, let us

assume
∑

i≥1

√
λi <∞. Let Wγ,δ,∞

λ,T be the vector space of functions g : N → Wγ,δ
T such

that

‖g‖Wγ,δ,∞
λ,T

:=
∞
∑

i=1

√

λi‖gi‖Wγ,δ
T
<∞.

Clearly, Wγ,δ,∞
λ,T is a normed space.

Lemma 1.2.3 Wγ,δ,∞
λ,T is a separable Banach space equipped with the norm ‖ · ‖Wγ,δ,∞

λ,T
.

Proof. Let ‖gn − gm‖Wγ,δ,∞
λ,T

→ 0 as n,m → +∞. Then, for ǫ > 0, there exists N(ǫ)

such that
∞
∑

i=1

√

λi‖gin − gim‖Wγ,δ
T
< ǫ

for every n,m > N(ǫ). Since Wγ,δ
T is complete, then there exists g : N → Wγ,δ

T defined

by gi := limn→∞ gin in Wγ,δ
T for each i ≥ 1. By construction, we observe that

∞
∑

i=1

√

λi‖gi‖Wγ,δ
T

≤
∞
∑

i=1

√

λi‖gi − gin‖Wγ,δ
T

+
∞
∑

i=1

√

λi‖gin‖Wγ,δ
T

≤
∞
∑

i=1

√

λi
ǫ√
2i

+ sup
j≥1

‖gj‖Wλ,γ,∞
δ,T

≤
(

∞
∑

i=1

λi

)
1

2√
2ǫ+ sup

n≥1
‖gn‖Wγ,δ,∞

λ,T
<∞.

For separability, let
[

⊕∞
j=1 Wγ,δ

T

]

2
= {f : N → Wγ,δ

T ; ‖f‖2 < ∞} be the l2-direct sum

of the Banach spaces Wγ,δ
T where

‖f‖2 =
(

∞
∑

j=1

‖f j‖2
Wγ,δ

T

)
1

2

.

Since trace Q <∞, then

‖ · ‖Wγ,δ,∞
λ,T

≤ (trace Q)
1

2‖ · ‖2. (1.12)
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Of course, ∪n≥1 ⊕n
j=1 Wγ,δ

T ⊂ ⊕∞
j=1Wγ,δ

T and clearly ∪n≥1 ⊕n
j=1 Wγ,δ

T is a dense subset of
[

⊕∞
j=1 Wγ,δ

T

]

2
. Since Wγ,δ

T is separable, the previous argument shows
[

⊕∞
j=1 Wγ,δ

T

]

2
is

separable and hence (1.12) implies Wγ,δ,∞
λ,T is separable as well.

Lemma 1.2.4 If γ ∈
(

1
2
, H
)

and γ + δ ∈ (H, 1), then there exists a Gaussian prob-

ability measure µ∞
γ,δ on Wγ,δ,∞

λ,T . Therefore, there exists a separable Hilbert space H

continuously imbedded into Wγ,δ,∞
λ,T such that

(

Wγ,δ,∞
λ,T ,H, µ∞

γ,δ

)

is an abstract Wiener

space.

Proof. From Lemma 4.1 in [23], we know there exists a probability measure µγ,δ on

Wγ,δ
T such that the canonical process is a FBM with Hurst parameter 1

2
< H < 1 as

long as γ ∈
(

1
2
, H
)

and γ + δ ∈ (H, 1). Let Wγ,δ,∞
T :=

∏

j≥1 W
γ,δ
T be the countable

product of the Banach spaces Wγ,δ
T equipped with the product topology which makes

Wγ,δ,∞
T as a topological vector space. Let µ∞

γ,δ be the product probability measure

⊗j≥1µγ,δ over Wγ,δ,∞
T equipped with the usual product sigma-algebra. Then, µ∞

γ,δ is a

Gaussian probability measure (see e.g Example 2.3.8 in [4]). Moreover, we observe

µ∞
γ,δ

(

Wγ,δ,∞
λ,T

)

= 1.

Indeed, by construction, we can take a sequence of µγ,δ-independent FBMs βi; i ≥ 1.

By using the modulus of continuity of FBM, it is well-known that Eµγ,δ
‖βi‖Wγ,δ

T
=

Eµγ,δ
‖β1‖Wγ,δ

T
<∞ for every i ≥ 1. Therefore,

Eµ∞
γ,δ

∞
∑

i=1

√

λi‖βi‖Wγ,δ
T

= Eµγ,δ
‖β1‖Wγ,δ

T

∞
∑

i=1

√

λi <∞

and this proves that µ∞
γ,δ is a Gaussian probability measure on the Banach space Wγ,δ,∞

λ,T .

This shows that we have an abstract Wiener space structure for µ∞
γ,δ.

In the sequel, with a slight abuse of notation, we define K∗
H : E ⊗ L2(U0,R) →

L2
(

[0, T ];L2(U0,R)
)

as follows

K∗
H(h⊗ ϕ)(s) :=

∫ T

s

h(t)
∂

∂t
KH(t, s)dtϕ; h ∈ E , ϕ ∈ L2(U0,R).
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Clearly,

〈K∗
H(h1 ⊗ ϕ1), K

∗
H(h2 ⊗ ϕ2)〉L2([0,T ];L2(U0,R)) = 〈(h1 ⊗ ϕ1), (h2 ⊗ ϕ2)〉H⊗L2(U0,R),

for every h1, h2 ∈ E and ϕ1, ϕ2 ∈ L2(U0,R) and hence we can extend K∗
H to an

isometric isomorphism from H⊗L2(U0,R) to L2
(

[0, T ];L2(U0,R)
)

. Let us also denote

KH : L2
(

[0, T ];L2(U0,R)
)

→ H by

KHf(t) :=
√

λi

∫ t

0

KH(t, s)fs(ei)ds; 0 ≤ t ≤ T, i ≥ 1,

for f ∈ L2
(

[0, T ];L2(U0,R)
)

, where H := Range KH is the Hilbert space equipped with

the norm

‖KHf‖2H :=

∫ T

0

‖fs‖2L2(U0,R)
ds =

∞
∑

i=1

λi‖f(ei)‖2L2([0,T ];R) =
∞
∑

i=1

λi‖KH,1f(ei)‖2H

where H := Range KH,1 and

KH,1g(t) :=

∫ t

0

KH(t, s)g(s)ds; 0 ≤ t ≤ T,

for g ∈ L2([0, T ];R). We recall (see Th 3.6 [37]) there exists a constant C such that

‖KH,1g‖Wγ,δ
T

≤ C‖g‖L2([0,T ];R)

for every g ∈ L2([0, T ];R). Therefore, Cauchy-Schwartz inequality yields

‖KHf‖Wγ,δ,∞
λ,T

≤ (trace Q)
1

2‖KHf‖H

for every f ∈ L2
(

[0, T ];L2(U0,R)
)

. Let us set P = µ∞
γ,δ and Ω = Wγ,δ,∞

λ,T . Summing up

the above computations, we conclude H is the Cameron-Martin space associated with

P in Lemma 1.2.4, namely

∫

Ω

exp(i〈ω, z〉Ω,Ω∗)P(dω) = e−
1

2
‖z‖2

H ; z ∈ Ω∗ (1.13)

where Ω∗ is the topological dual of Ω.
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By applying Prop. 4.1.3 in [31] (see also [22]), we arrive at the following result. Let

RH := KH ◦K∗
H be the injection of L2(U0;H) into Ω. We observe RH : L2(U0;H) → Ω

is a bounded operator with dense range.

Corollary 1.2.5 If a random variable Y : Ω → R is Frèchet differentiable along di-

rections in the Cameron-Martin space H, then

h 7→ Y (ω +RH(h))

is Fréchet differentiable for each ω ∈ Ω, Y ∈ D
1,2
loc(R) and

∇Y (·)(RHh) = 〈DY, h〉L2(U0,H)

locally, for every h ∈ L2(U0,H).
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Chapter 2

Malliavin differentiability of solutions

In this chapter, we discuss differentiability in Malliavin sense (on the probability

space defined on Lemma 1.2.4) of SPDE mild F-adapted solutions

dXt =
(

A(Xt) + F (Xt)
)

dt+G(Xt)dBt (2.1)

in a separable Hilbert space E, where F is the filtration generated by a U -valued FBM

B with trace class covariance operator Q : U → U on a separable Hilbert space U

Bt =
∞
∑

i=1

√

λieiβ
i
t

where traceQ =
∑∞

i=1 λi <∞ and additional regularity conditions, namely
∑∞

i=1

√
λi <

∞ and λi > 0 for all i ≥ 1. Here, (A, dom(A)
)

is the infinitesimal generator of an an-

alytic semigroup {S(t); t ≥ 0} on E satisfying

‖S(t)‖ ≤Me−λt for some constants λ,M > 0 and for all t ≥ 0.

This allows us to define fractional power
(

(−A)α,Dom((−A)α)
)

for any α ∈ R (see

Sections 2.5 and 2.6 in [35]). The coefficients F : E → E and G : E → L(U ;E)
will satisfy suitable minimal regularity conditions (see Assumption H1) to ensure well-

posedness of (2.1). Let us define Gi(x) := G(x)(ei) for the orthonormal basis (ei)i≥1 of



U . Then, we view the solution as

Xt = S(t)x0 +

∫ t

0

S(t− s)F (Xs)ds+

∫ t

0

S(t− s)G(Xs)dBs (2.2)

where the dB differential is understood in Young’s sense [39, 18]

∫ t

0

S(t− s)G(Xs)dBs =
∞
∑

i=1

√

λi

∫ t

0

S(t− s)Gi(Xs)dβ
i
s; 0 ≤ t ≤ T

where the convergence of the sum is understood P-a.s in E in the sense of Lemma 2.1.2.

The solution of (2.2) will take values on the domains Dom((−A)δ) of the fractional

powers (−A)δ; δ > 0. To keep notation simple, we denote Eα := Dom((−A)α) for α > 0

equipped with the norm |x|α := ‖(−A)αx‖E which is equivalent to the graph norm of

(−A)α. If α < 0, let Eα be the completion of E w.r.t to the norm |x|α := ‖(−A)αx‖E.

If α = 0, we set Eα = E. Then, (Eα)α∈R is a family of separable Hilbert spaces such

that Eδ →֒ Eα whenever δ ≥ α. Moreover, S(t) may be extended to Eα as bounded

linear operators for α < 0 and t ≥ 0. Moreover, S(t) maps Eα to Eδ for every α ∈ R

and δ ≥ 0. To keep notation simple, we denote ‖ · ‖β→α as the norm operator of the

space of bounded linear operator L(Eβ, Eα) from Eβ to Eα and we set ‖ · ‖ = ‖ · ‖0→0.

The space of bounded multilinear operators from the n-fold space En
α to Eα is equipped

with the usual norm ‖ · ‖(n),α→α for α ≥ 0.

In order to prove differentiability in Frechét sense, it is crucial to play with linear

SPDE solutions living in Banach spaces which are ”sensible" to the Hölder -type norm

of the noise space Wγ,δ
λ,T . For this purpose, we make use of the algebraic/analytic

formalism developed by [17] in the framework of rough paths. Even though we are

working with a regular noise 1
2
< H < 1, the techniques developed by [17, 18] allow us

to derive better estimates than usual Riemman’s sum approach or fractional calculus

given by [29].

2.1 Algebraic integration

For completeness of presentation, let us summarize the basic objects of [17, 18]

which will be important for us. At first, we fix some notation. We denote by Ck(V )
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the set of continuous functions g : [0, T ]k → V such that gt1...tk = 0 whenever ti = ti+1

for some i ≤ k − 1. We define δ : Cn(V ) → Cn+1(V ) by

(δF )t1,...tn+1
:=

n+1
∑

j=1

(−1)jFt1,...t̂j ...tn+1
;F ∈ Cn(V )

where t̂j means that this particular argument is omitted. We are mostly going to use

the two special cases:

If F ∈ C1(V ), then

(δF )ts = Ft − Fs; (t, s) ∈ [0, T ]2.

If F ∈ C2(V ), then

(δF )tsu = −Fsu + Ftu − Fts; (t, s, u) ∈ [0, T ]3.

We measure the size of the increments by Hölder norms defined as follows: For f ∈
C2(V ) and µ ≥ 0, let

‖f‖µ := sup
s,t∈[0,T ]

|fst|
|t− s|µ

and we denote Cµ
2 (V ) := {f ∈ C2(V ); ‖f‖µ < ∞} and Cµ

1 (V ) := {f ∈ C1(V ); ‖δf‖µ <
∞}. In the same way, for h ∈ C3(V ), we set

‖h‖γ,ρ := sup
s,u,t∈[0,T ]

|htus|
|t− u|ρ|s− u|γ

and

‖h‖µ := inf
{

∑

i

‖hi‖ρi,µ−ρi ;h =
∑

i

hi, 0 < ρi < µ
}

,

where the last infimum is taken over all sequences {hi ∈ C3(V )} such that h =
∑

i hi

and for all choices of numbers ρi ∈ (0, µ). Then, ‖ · ‖µ is a norm on the space C3(V ),

and we set

Cµ
3 (V ) := {h ∈ C3(V ); ‖h‖µ <∞}.

Let us denote ZCk(V ) := Ck(V ) ∩ Kerδ|Ck(V ) and BCk(V ) := Ck(V ) ∩ Range δ|Ck−1(V ).
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We have ZCk+1(V ) = BCk+1(V ) for k ≥ 1.

The convolutional increments will be defined as follows. Let Sn = {(t1, . . . , tn);T ≥
t1 ≥ t2 ≥ . . . tn ≥ 0}. For a Banach space V , Ĉn(V ) denotes the space of continuous

functions from Sn to V . We also need a modified version of basic increments distorted

by the semigroup as follows: Let δ̂ : Ĉn(E) → Ĉn+1(E) given by

(δ̂F )t1,...tn+1
:= (δF )t1,...tn+1

− at1t2Ft2...tn

where at1t2 := S(t1 − t2)− Id for (t1, t2) ∈ S2.

Hölder-type space of increments. We need to define Hölder-type subspaces of Ĉk for

1 ≤ k ≤ 3 associated with Eα;α ∈ R. For 0 < µ < 1 and g ∈ Ĉ2(Eα), we define the

norm

‖g‖µ,α := sup
t,s∈S2

|gts|α
|t− s|µ

and the spaces

Ĉµ,α
2 := {g ∈ Ĉ2(Eα); ‖g‖µ,α <∞}

and

Ĉµ,α
1 := {f ∈ Ĉ1(Eα); ‖δ̂f‖µ,α <∞},

Cµ,α
1 := {f ∈ Ĉ1(Eα); ‖δf‖µ,α <∞}.

We denote Ĉ0,α
1 := Ĉ1(Eα) equipped with the norm

‖f‖0,α := sup
0≤t≤T

|ft|α.

We also equip Cµ,α
1 and Ĉµ,α

1 with the norms given, respectively, by

‖f‖Cµ,α
1

:= ‖f‖0,α + ‖δf‖µ,α

and

‖f‖Ĉµ,α
1

:= ‖f‖0,α + ‖δ̂f‖µ,α.
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We observe that

Ĉµ,µ
1 →֒ Cµ,0

1 (2.3)

for every µ ∈ (0, 1) due to the following estimate: For λ ≥ µ,

‖δf‖µ,0 ≤ ‖δ̂f‖µ,λ + C|T |λ−µ‖f‖0,λ (2.4)

whenever f ∈ Ĉµ,λ
1 (see Lemma 2.4 in [12]).

Let us now consider the 3-increment spaces. If h ∈ Ĉ3(Eα), we define

‖h‖η,ρ,α := sup
t,u,s∈S3

|htus|α
|t− u|η|u− s|ρ

and

‖h‖µ,α := inf
{

∑

i

‖hi‖ρi,µ−ρi,α;h =
∑

i

hi, 0 < ρi < µ
}

where the last infimum is taken over all sequences hi such that h =
∑

i hi and for all

choices of the numbers ρi ∈ (0, µ). One can check ‖ · ‖µ,α it is a norm and we define

Ĉµ,α
3 := {h ∈ Ĉ3(Eα); ‖h‖µ,α <∞}.

We also need Hölder-type spaces for operator-valued increments. For 0 ≤ µ ≤ 1 and

α, β ∈ R, we set

Ĉµ
2Lβ,α := Ĉµ

2

(

L(Eβ;Eα)
)

= {f : S2 → L(Eβ;Eα); ‖f‖µ,β→α <∞}

where

‖f‖µ,β→α := sup
t,s∈S2

‖fts‖β→α

|t− s|µ .

In order to work with the convolution sewing map, we define

ZĈµ,α
j := Ĉµ,α

j ∩ ker δ̂|Ĉj ; j = 2, 3.

We recall Range δ̂|Ĉj = Ker δ̂|Ĉj+1
; j ≥ 1. Let Eµ,α

2 := ∩ǫ≤µ∧1− Ĉµ−ǫ,α+ǫ
2 where ǫ ≤ µ∧ 1−

means ǫ ∈ [0, µ] ∩ [0, 1).
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Infinite-dimensional regularized noise: We define

X
x,i
ts := S(t− s)(δxi)ts

√

λi; (t, s) ∈ S2, (2.5)

for x = (xi)i≥1 ∈ Wγ,δ,∞
λ,T and 1

2
< γ < H < 1, γ + δ ∈ (H, 1). Let us now collect some

important properties of the regularized noise.

Lemma 2.1.1 The following properties hold true: Xx,i ∈ Ĉγ
2Lβ,α for i ≥ 1 and for

every (α, β) ∈ R
2 such that β ≥ α. Moreover, there exists a constant C which depends

on (α, β) such that

sup
(t,s)∈S2

‖Xx,i
ts ‖β→α

|t− s|γ ≤ C
√

λi‖xi‖Wγ,δ
T

(2.6)

for every i ≥ 1. Moreover, the following algebraic condition holds

(δ̂Xx,i)tsu = (Xx,ia)tsu; (t, s, u) ∈ S3 (2.7)

where asu = S(s− u)− Id; (s, u) ∈ S2.

Proof. We observe if β ≥ α, then there exists Cα,β such that sup0≤r≤T ‖S(r)‖β→α ≤
Cα,β <∞. This is obviously true for α = β. In case, β > α, we observe if x ∈ Eβ, then

|S(r)x|α = ‖(−A)αS(r)x‖E = ‖S(r)(−A)αx‖E = ‖S(r)(−A)α−β(−A)βx‖E

≤ ‖S(r)(−A)α−β‖0→0|x|β

because (−A)α−β is a bounded operator on E (see Section 2.6 in [35]) whenever β >

α. Therefore, ‖S(r)‖β→α ≤ ‖S(r)(−A)α−β‖0→0 ≤ ‖S(r)‖0→0‖(−A)α−β‖0→0 for every

r ∈ [0, T ]. This proves our first claim. Therefore,

‖Xx,i
ts ‖β→α ≤ ‖S(t− s)‖β→α|xit − xis|

√

λi

which implies (2.6). By definition,

(δ̂Xx,i)tsu = X
x,i
tu −X

x,i
ts − S(t− s)Xx,i

su

= S(t− u)(xit − xis)
√

λi − S(t− s)(xit − xis)
√

λi

= S(t− s)[S(s− u)− Id](xit − xis)
√

λi
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= X
x,i
ts asu = (Xx,ia)tsu; (t, s, u) ∈ S3.

This shows (2.7).

Lemma 2.1.2 Let us fix x = (xi)i≥1 ∈ Wγ,δ,∞
λ,T and 1

2
< γ < H < 1, γ + δ ∈ (H, 1).

Assume z = (zi)i≥1 satisfies supi≥1 ‖zi‖Ĉη,β
1

<∞ for η + γ > 1. Then

Jt1t2(d̂xz) :=
∞
∑

i=1

√

λiX
x,i
t1t2z

i
t2
+

∞
∑

i=1

√

λiΛ̂
(

Xx,iδ̂zi
)

t1t2

satisfies:

(i) There exists a constant C such that

‖δ̂J (d̂xz)‖γ,α ≤ C‖x‖Wγ,δ,∞
λ,T

sup
i≥1

{‖zi‖0,β + ‖δ̂zi‖η,β}

for α ≤ β.

(ii)

Jt1t2(d̂xz) =
∞
∑

i=1

√

λi

∫ t1

t2

S(t1 − u)ziudx
i
u in Eα,

for each (t1, t2) ∈ S2.

Proof. In the sequel, C is a constant which may defer from line to line and we fix

α ≤ β. At first, the algebraic property (2.7) yields

δ̂Xx,izi = −Xx,iδ̂zi; i ≥ 1.

Indeed,

−Xx,iδ̂zi = −Xx,iδzi +Xx,iazi

= −Xx,iδzi + (δ̂Xx,i)zi = −Xx,iδzi + (δXx,i)zi − aXx,izi .

On the other hand, Lemma 3.2 in [18] yields

δ̂Xx,izi = δXx,izi − aXx,izi
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= (δXx,i)zi −Xx,iδzi − aXx,izi

which implies δ̂Xx,izi = −Xx,iδ̂zi. We also observe −Xx,iδ̂zi ∈ ZĈµ,α
3 for µ > 1.

Indeed, let us take η + γ > 1. Then,

|Xx,i
t1t2(δ̂z

i)t2t3 |α ≤ ‖Xx,i
t1t2‖β→α|δ̂zit2t3 |β

≤ C
√

λi‖xi‖Wγ,δ
T
||t1 − t2|γ‖δ̂zi‖η,β|t2 − t3|η.

Therefore,

‖Xx,iδ̂zi‖γ,η,α = sup
(t1,t2,t3)∈S3

|Xx,i
t1t2(δ̂z

i)t2t3 |α
|t1 − t2|γ|t2 − t3|η

≤ C
√

λi‖xi‖Wγ,δ
T
‖δ̂zi‖η,β. (2.8)

By taking µ = γ + η > 1, we conclude Xx,iδ̂zi ∈ ZĈµ,α
3 for each i ≥ 1. The Sewing

property yields δ̂Λ̂
(

δ̂Xx,izi
)

= δ̂Xx,izi and hence

δ̂
(

Xx,izi − Λ̂(−Xx,iδ̂zi)
)

= 0

so that Xx,izi+ Λ̂(Xx,iδ̂zi) ∈ Ker|Ĉ2 = Range δ̂|Ĉ1 . Therefore, there exists f i ∈ Ĉ1 such

that

δ̂f i = Xx,izi + Λ̂(Xx,iδ̂zi)

=
(

Id − Λ̂δ̂
)

Xx,izi; i ≥ 1. (2.9)

The Sewing map yields Λ̂(Xx,iδ̂zi) ∈ Eγ+η,α
2 and we observe

|Xx,i
ts z

i
s|α ≤ C

√

λi‖xi‖Wγ,δ
T
|t− s|γ‖zi‖0,β (2.10)

so the best we can get is Xx,izi + Λ̂
(

Xx,iδ̂zi
)

∈ Ĉγ,α
2 . The Sewing property (Th. 3.5

in [18]) and (2.8) yield

|Λ̂
(

Xx,iδ̂zi
)

ts
|α ≤ C‖Xx,iδ̂zi‖γ,η,α|t− s|γ+η ≤ C

√

λi‖xi‖Wγ,δ
T
‖δ̂zi‖η,β|t− s|γ+η (2.11)
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Therefore, (2.10) and (2.11) imply

‖δ̂f i‖γ,α ≤ C‖zi‖0,β
√

λi‖xi‖Wγ,δ
T

+ C
√

λi‖xi‖Wγ,δ
T
‖δ̂zi‖η,β.

Therefore, we conclude (i). In order to check (ii), we just need to apply Corollary 3.6

in [18] and observe (2.9). Then, for each (t, s) ∈ S2, we have

(δ̂f i)ts = lim
‖Πst‖→0

∑

rj∈Πst

S(t− rj+1)(X
x,i)rj+1rj

zirj

= lim
‖Πst‖→0

√

λi
∑

rj∈Πst

S(t− rj)z
i
rj
(δxi)rj+1rj

where convergence holds (for each i ≥ 1) in Eα as the mesh |Π|st of the partition of

[s, t] vanishes. Therefore,

(δ̂f i)ts =

∫ t

s

S(t− u)ziudx
i
u; (t, s) ∈ S2, i ≥ 1. (2.12)

Representation (ii) is a consequence of (i) and (2.12). This concludes the proof.

2.2 The Itô map

For a given y0 = ψ ∈ E, the Itô map x 7→ y is defined as the solution of the

equation

yt = S(t− s)ys +

∫ t

s

S(t− u)F (yu)du+ Jts(d̂xG(y)); (t, s) ∈ S2

which can be rewritten in terms of the increment operator δ̂,

(δ̂y)ts =

∫ t

s

S(t− u)F (yu)du+ Jts(d̂xG(y)); y0 = ψ. (2.13)

Next, we list the basic assumptions needed for the existence and uniqueness of the

SPDE solution. Before that, let us check that we may choose the correct set of param-

eters.

Lemma 2.2.1 For given 1
2
< H < 1 and 1

2
> κ > 1

4
, there exist γ̃, κ0 satisfying
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γ̃ > κ0 > κ > 1
4

with γ̃ + κ > 1, γ̃ − κ ≥ κ0 such that

Xx,i ∈ Ĉ γ̃
2L0,−κ ∩ Ĉκ0

2 Lκ,κ (2.14)

for every i ≥ 1.

Proof. From Lemma 2.1.1 and the definition of the spaces Wγ,δ
T , there exists a constant

C (which does not depend on i ≥ 1) such that

‖Xx,i‖H−ǫ,0→−κ ≤ C
√

λi‖xi‖WH−ǫ,δ
T

and

‖Xx,i‖H−η,κ→κ ≤ C
√

λi‖xi‖WH−η,δ
T

for every κ > 0, ǫ ∈ (0, H), η ∈ (0, H) and δ > 0 such that H − ǫ + δ ∈ (H, 1) and

H−η+δ ∈ (H, 1). For a given 1
2
< H < 1 and 1

2
> κ > 1

4
. Choose ǫ = ǫ(κ,H) ∈ (0, H)

such that

H − ǫ+ κ > 1. (2.15)

Choose η = η(ǫ,H) such that

η >
1

2
+ ǫ and H − κ > η. (2.16)

Of course, (2.16) implies 1
2
+ ǫ < η < H −κ. Choose δ accordingly to these conditions.

We then set γ̃ = H − ǫ, κ0 = H − η where ǫ and η satisfy (2.15) and (2.16). Then, by

construction γ̃ + κ = H − ǫ + κ > 1 due to (2.15) and γ̃ > κ0 > κ > 1
4

due to (2.16).

Moreover, η − ǫ > 1
2
> κ > 1

4
so that

γ̃ − κ0 >
1

2
> κ >

1

4
.

Finally, we stress the choice of ǫ and η does not depend on the index i ≥ 1. This

concludes the proof.

Let us assume the following regularity assumptions on F,G:
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Assumption H1: For 1
2
> κ > 1

4
, we assume that F,Gi : Eκ → Eκ is Lipschitz

(uniformly in i ≥ 1) and they have linear growth

|Gi(x)|κ ≤ C(1 + |x|κ), |F (x)|κ ≤ C(1 + |x|κ); x ∈ Eκ,

for every i ≥ 1. Furthermore, we suppose that F,Gi can also be seen as maps from

E to E, and when considered as such, it holds that F,Gi are Lipschitz (uniformly in

i ≥ 1).

In the sequel, recall Ĉκ,κ
1 is the subspace of Ĉ1(Eκ) such that

‖z‖Ĉκ,κ
1

= ‖z‖0,κ + ‖δ̂z‖κ,κ <∞.

In what follows, x ∈ W γ̃,δ,∞
λ,T where γ̃ + δ ∈ (H, 1), 1

2
< γ̃ < H,

γ̃ > κ0 > κ >
1

4
(2.17)

and γ̃ + κ > 1, γ̃− κ ≥ κ0. By Lemma 2.2.1, Xx satisfies (2.14). By using Assumption

H1, the following result is a straightforward application of Theorem 4.3 in [18].

Proposition 2.2.2 Under Assumption H1 and the choice of indexes (2.17), for each

ψ ∈ Eκ there exists a unique global solution to (2.13) in Ĉκ,κ
1 .

By noticing (see Lemma 1.2.4) that (βi)i≥1 ∈ W γ̃,δ,∞
λ,T a.s, Proposition 2.2.2 yields the

following result.

Proposition 2.2.3 Under Assumption H1 and the choice of indexes (2.17), for each

initial condition x0 ∈ Eκ, there exists a unique adapted process X which is solution to

(2.1).

2.3 Fréchet differentiability

Let us now devote our attention to the Fréchet differentiability of the Itô map

Φ : W γ̃,δ,∞
λ,T → Ĉκ,κ

1 x 7→ y
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where y is the mild solution of (2.13) driven by x ∈ W γ̃,δ,∞
λ,T where the indices γ̃, δ, κ0, κ

satisfy (2.17). Then, the Fréchet derivative is a mapping

∇Φ : W γ̃,δ,∞
λ,T → L

(

W γ̃,δ,∞
λ,T ; Ĉκ,κ

1

)

.

The importance of Fréchet differentiability lies on the following argument: Once we

have Fréchet differentiability of the Itô map x 7→ y, we shall use the Fréchet derivative

chain rule to infer that 〈Xt, h〉E is Fréchet differentiable along the direction of the

Cameron-Martin space H for a given h ∈ E and t ∈ [0, T ]. Hence, Corollary 1.2.5

implies

〈Xt, h〉E ∈ D
1,2
loc(R).

Then, we must use Lemma 1.2.2 and try to conclude a representation. We follow the

idea contained in the work of Nualart and Saussereau [33]. At first, we list a set of

assumptions on the vector fields which will be important in this section.

Assumption A1: The vector fields, Gi, F : Eκ → Eκ are Fréchet differentiable

and also differentiable when considering from E to E. Moreover,

sup
i≥1

sup
x∈Eκ

‖∇Gi(x)‖κ→κ + sup
x∈Eκ

‖∇F (x)‖κ→κ <∞

and supi≥1 supx∈E ‖∇Gi(x)‖+ supx∈E ‖∇F (x)‖ <∞.

Assumption A2:

sup
i≥1

sup
g∈E

‖∇(2)Gi(g)‖(2),q→q + sup
f∈E

‖∇(2)F (f)‖(2),κ→κ <∞,

for q = 0, κ and there exists a constant C such that

sup
i≥1

‖∇Gi(f)−∇Gi(g)‖+ sup
i≥1

‖∇(2)Gi(f)−∇(2)Gi(g)
∥

∥

(2),0→0
≤ C‖f − g‖E

for every f, g ∈ E.

At first, it is necessary to investigate flow properties of linear equations. We start
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with the following corollary whose proof is entirely analogous to Proposition 2.2.2, so

we omit the details.

Corollary 2.3.1 Suppose F,G satisfy Assumptions A1 and H1 and let us fix (x, y) ∈
W γ̃,δ,∞

λ,T × Ĉκ,κ
1 and t0 ∈ [0, T ]. Then, for every η ∈ Ĉκ,κ

1 ,

vt = ηt +

∫ t

t0

S(t− s)∇F (ys)vsds+ Jtt0(d̂x∇G(y)v)

admits a unique solution in v ∈ Ĉκ,κ
1 on the interval [t0, T ].

The following lemma plays a key role on the Fréchet differentiability of the Itô

map.

Lemma 2.3.2 Let [s0, t0] be a subset of [0, T ] and let

Zt =
∑

i≥1

√

λi

∫ t

s0

S(t− s)zisdx
i
s; s0 ≤ t ≤ t0

where x ∈ W γ̃,δ,∞
λ,T and assume supi≥1 ‖zi‖0,η + supi≥1 ‖δ̂zi‖ζ,η−α < ∞ on the interval

[s0, t0] for some η ≥ 0 where 0 ≤ α ≤ min(ζ, η), 0 ≤ ζ ≤ γ̃ and γ̃ + ζ > 1. Then, there

exists a constant C which depends on η and γ̃ such that

‖δ̂Z‖γ̃,η ≤ C‖x‖W γ̃,δ,∞
λ,T

{

sup
i≥1

‖zi‖0,η + |t0 − s0|ζ−α sup
i≥1

‖δ̂zi‖ζ,η−α

}

(2.18)

and

‖δ̂Z‖ζ,η ≤ C‖x‖W γ̃,δ,∞
λ,T

{

|t0 − s0|γ̃−ζ sup
i≥1

‖zi‖0,η + |t0 − s0|γ̃−α sup
i≥1

‖δ̂zi‖ζ,η−α

}

(2.19)

on the interval [s0, t0].

Proof. In the sequel, C is a constant which may defer from line to line. To keep

notation simple, without loss of generality, we set s0 = 0, t0 = T . We observe (δ̂Z)ts =
∑

i≥1

√
λi
∫ t

s
S(t− u)ziudx

i
u. From the proof of Lemma 2.1.2, we know that

∫ t

s

S(t− u)ziudx
i
u = X

x,i
ts z

i
s + Λ̂

(

Xx,iδ̂zi
)

ts
; (t, s) ∈ S2,
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where Xx,i ∈ Ĉ γ̃
2Lη,η due to Lemma 2.1.1. Then, checking the proof of Lemma 2.1.2,

we have Xx,iδ̂zi ∈ ZĈζ+γ̃,θ
3 for θ ≤ η − α. Now,

∣

∣

∣

∑

i≥1

√

λi

∫ t

s

S(t− u)ziudx
i
u

∣

∣

∣

η
≤
∑

i≥1

√

λi

∣

∣

∣

∫ t

s

S(t− u)ziudx
i
u

∣

∣

∣

η

≤ C
∑

i≥1

√

λi‖Xx,i
ts ‖η→η|zis|η +

∑

i≥1

√

λi

∣

∣

∣
Λ̂
(

Xx,iδ̂zi
)

ts

∣

∣

∣

η
.

That is,

∣

∣

∣

∑

i≥1

√

λi

∫ t

s

S(t− u)ziudx
i
u

∣

∣

∣

η
≤ C‖x‖W γ̃,δ,∞

λ,T
|t− s|γ̃ sup

i≥1
‖zi‖0,η

+
∑

i≥1

√

λi

∣

∣

∣
Λ̂
(

Xx,iδ̂zi
)

ts

∣

∣

∣

η
; (t, s) ∈ S2. (2.20)

By applying the ”convolution” Sewing lemma (Th 3.5 in [18]), there exists a constant

Cζ+γ̃ such that

‖Λ̂Xx,iδ̂zi‖ζ+γ̃−ǫ,θ+ǫ ≤ Cζ+γ̃,ǫ‖Xx,iδ̂zi‖ζ+γ̃,θ

for every ǫ ∈ [0, ζ + γ̃] ∩ [0, 1). Take θ = η − α and ǫ = α. Then,

∣

∣

∣
Λ̂
(

Xx,iδ̂zi
)

ts

∣

∣

∣

η=θ+ǫ
≤ Cζ+γ̃,ǫ‖Xx,iδ̂zi‖ζ+γ̃,θ|t− s|ζ+γ̃−ǫ. (2.21)

On the other hand, (Xx,iδ̂zi) is a 3-increment where

‖Xx,iδ̂zi‖ζ+γ̃,η−α = inf
{

∑

j

‖hj‖ρj ,ζ+γ̃−ρj ,η−α;X
x,iδ̂zi =

∑

j

hj, 0 < ρj < ζ + γ̃
}

and the last infimum is taken over all sequences hj such that Xx,iδ̂zi =
∑

j hj and for

all choices of the numbers ρj ∈ (0, ζ + γ̃) and we recall for any 3-increment f , we have

‖f‖ρj ,ζ+γ̃−ρj ,η−α = sup
t,u,s∈S3

|ftus|η−α

|t− u|ρj |u− s|ζ+γ̃−ρj
.

Take hj = Xx,iδ̂zi and ρj = γ̃. By definition, (Xx,iδ̂zi)tus = X
x,i
tu δ̂z

i
us, then

‖Xx,iδ̂zi‖ζ+γ̃,η−α ≤ sup
t,u,s∈S3

|Xx,i
tu δ̂z

i
us|η−α

|t− u|γ̃|u− s|ζ ≤ sup
t,u,s∈S3

|Xx,i
tu |η−α→η−α|δ̂zius|η−α

|t− u|γ̃|u− s|ζ

32



≤ C‖xi‖W γ̃,δ
T
‖δ̂zi‖ζ,η−α.

Then, (2.21) yields

∑

i≥1

√

λi

∣

∣

∣
Λ̂
(

Xx,iδ̂zi
)

ts

∣

∣

∣

η
≤ Cζ+γ̃,α|t− s|ζ+γ̃−α‖x‖W γ̃,δ,∞

λ,T
sup
i≥1

‖δ̂zi‖ζ,η−α. (2.22)

Finally, we shall plug (2.22) into (2.20) and we conclude the proof of (2.18). By

observing (2.22) and (2.20), we conclude (2.19).

Lemma 2.3.3 Let y be the solution of (2.13) driven by x ∈ W γ̃,δ,∞
λ,T and assume As-

sumption (A1-A2) hold true. Then, the mapping

L : W γ̃,δ,∞
λ,T × Ĉκ,κ

1 → Ĉκ,κ
1

defined by

(x, y) 7→ L(x, y)t := yt − Stψ −
∫ t

0

S(t− s)F (ys)ds− Jt0

(

d̂(x)G(y)
)

is Fréchet differentiable. In particular, for each (x, y) ∈ W γ̃,δ,∞
λ,T × Ĉκ,κ

1 and (q, v) ∈
W γ̃,δ,∞

λ,T × Ĉκ,κ
1 , we have

∇1L(x, y)(q)t = −Jt0

(

d̂qG(y)
)

(2.23)

and

∇2L(x, y)(v)t = vt −
∫ t

0

S(t− s)∇F (ys)vsds− Jt0

(

d̂x∇G(y)v
)

; 0 ≤ t ≤ T. (2.24)

Moreover, for each x ∈ W γ̃,δ,∞
λ,T , the mapping ∇2L(x,Φ(x)) : Ĉκ,κ

1 → Ĉκ,κ
1 is a homeo-

morphism.

Proof. In the sequel, C is a constant which may defer form line to line. By the very

definition,

L(x+ h, y + v)t − L(x, y)t = (yt + vt)− S(t)ψ −
∫ t

0

S(t− u)F (yu + vu)du
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−
∑

i≥1

√

λi

∫ t

0

S(t− s)Gi(yu + vu)d(x
i
u + hiu)− yt + S(t)ψ

+

∫ t

0

S(t− u)F (yu)du+
∑

i≥1

√

λi

∫ t

0

S(t− u)Gi(yu)dx
i
u

= vt −
∫ t

0

S(t− u)
[

F (yu + vu)− F (yu)
]

du−
∑

i≥1

√

λi

∫ t

0

S(t− u)(Gi(yu + vu))dh
i
u

−
∑

i≥1

√

λi

∫ t

0

S(t− u)(Gi(yu + vu)−Gi(yu))dx
i
u.

Let us write the increments in terms of the Taylor formula (see e.g [10]),

F (yu + vu)− F (yu) = ∇F (yu)vu + zu(y, v)

Gi(yu + vu)−Gi(yu) = ∇Gi(yu)vu + ciu(y, v)

Gi(yu + vu) = Gi(yu) + eiu(y, v)

where

zu(y, v) :=

(

∫ 1

0

(1− r)∇(2)F (yu + rvu)dr

)

(vu, vu)

ciu(y, v) :=

(

∫ 1

0

(1− r)∇(2)Gi(yu + rvu)dr

)

(vu, vu)

eiu(y, v) :=

(
∫ 1

0

∇Gi(yu + rvu)dr

)

vu

for i ≥ 1 and 0 ≤ u ≤ t. Therefore,

L(x+h, y+v)t−L(x, y)t−∇1L(x, y)(h)t−∇2L(x, y)(v)t = R1(y, v)t+R2(y, v)t+R3(y, v)t

where

R1(y, v)t := −
∫ t

0

S(t− u)zu(y, v)du

R2(y, v)t := −
∑

i≥1

√

λi

∫ t

0

S(t− u)ciu(y, v)dx
i
u

R3(y, v)t := −
∑

i≥1

√

λi

∫ t

0

S(t− u)eiu(y, v)dh
i
u.
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We need to check

‖R1(y, v) +R2(y, v) +R3(y, v)‖Ĉκ,κ
1

= o
(

‖h‖2
W γ̃,δ,∞

λ,T

+ ‖v‖2
Ĉκ,κ
1

)
1

2 . (2.25)

The first term is easy. Indeed, if the second order derivative of F is bounded, then

the norm of the bilinear form zu(y, v) can be estimated as follows ‖zu(y, v)‖(2),κ→κ ≤
C|vu|2κ ≤ C‖v‖2

Ĉκ,κ
1

. Therefore,

‖R1(u, v)‖Ĉκ,κ
1

≤ C‖v‖2
Ĉκ,κ
1

.

Then,
‖R1(u, v)‖Ĉκ,κ

1

(

‖h‖2
W γ̃,δ,∞

λ,T

+ ‖v‖2
Ĉκ,κ
1

)
1

2

≤
‖R1(u, v)‖Ĉκ,κ

1

(

‖v‖2
Ĉκ,κ
1

)
1

2

≤ C‖v‖Ĉκ,κ
1
. (2.26)

Let us now estimate R2(y, v). At first, since R2(y, v)0 = 0, then

‖R2(y, v)‖Ĉκ,κ
1

≤ (2 + T κ)‖δ̂R2(y, v)‖κ,κ (2.27)

where

−(δ̂R2(y, v))ts =
∑

i≥1

√

λi

∫ t

s

S(t− u)ciu(y, v)dx
i
u = Jts

(

d̂xc(y, v)
)

so that ‖δ̂R2(y, v)‖κ,κ = ‖J
(

d̂xc(y, v)
)

‖κ,κ. By Lemma 2.3.2, there exists a constant

C such that

‖J
(

d̂xc(y, v)
)

‖κ,κ ≤ C‖x‖Wγ,δ,∞
λ,T

{

sup
i≥1

‖ci(y, v)‖0,κ + sup
i≥1

‖δ̂ci(y, v)‖κ,0
}

. (2.28)

By definition,

(δ̂ci(y, v))ts = cit(y, v)− cis(y, v) + cis(y, v)− S(t− s)cis(y, v); (t, s) ∈ S2.

By viewing ∇(2)Gi : Eκ×Eκ → Eκ as a bounded bilinear form where κ > 0, we observe

cis(y, v) ∈ Eκ and this little gain of spatial regularity allows us to estimate

‖(δ̂ci(y, v))ts‖ ≤ ‖(δci(y, v))ts‖+ ‖
(

S(t− s)− Id
)

cis(y, v)‖ (2.29)

35



where (see e.g Th 6.13 in [35])

‖
(

S(t− s)− Id
)

cis(y, v)‖ ≤ C|t− s|κ|cis(y, v)|κ

≤ C|t− s|κ|vs|2κ ≤ C|t− s|κ‖v‖20,κ (2.30)

and the estimate (2.30) is due to the boundedness supi≥1 supa∈Eκ
‖∇(2)Gi(a)‖(2),κ→κ <

∞.

We now observe for each i ≥ 1 and u ∈ [0, t],
∫ 1

0
(1 − r)∇(2)Gi(yu + rvu)dr :

E × E → E is a bounded bilinear form so that we shall estimate

‖ciu(y, v)− ciu′(y, v)‖ ≤
∥

∥

∥
ciu(y, v)−

(
∫ 1

0

(1− r)∇(2)Gi(yu + rvu)dr

)

(vu′ , vu′)
∥

∥

∥

+
∥

∥

∥

(
∫ 1

0

(1− r)∇(2)Gi(yu + rvu)dr

)

(vu′ , vu′)− ciu′(y, v)
∥

∥

∥

=
∥

∥

∥

(
∫ 1

0

(1− r)∇(2)Gi(yu + rvu)dr

)

(vu′ , vu′)

−
(
∫ 1

0

(1− r)∇(2)Gi(yu + rvu)dr

)

(vu, vu)
∥

∥

∥
+
∥

∥

∥

(
∫ 1

0

(1− r)
[

∇(2)Gi(yu + rvu)

−∇(2)Gi(yu′ + rvu′)
]

dr

)

(vu′ , vu′)
∥

∥

∥

=
∥

∥

∥

(
∫ 1

0

(1− r)∇(2)Gi(yu + rvu)dr

)

(vu′ − vu, vu′)

+

(
∫ 1

0

(1− r)∇(2)Gi(yu + rvu)dr

)

(vu, vu′ − vu)
∥

∥

∥

+
∥

∥

∥

(
∫ 1

0

(1− r)
[

∇(2)Gi(yu + rvu)−∇(2)Gi(yu′ + rvu′)
]

dr

)

(vu′ , vu′)
∥

∥

∥

≤ C‖vu′ − vu‖‖vu′‖+ C‖vu′ − vu‖‖vu‖

+

∫ 1

0

(1− r)
∥

∥∇(2)Gi(yu + rvu)−∇(2)Gi(yu′ + rvu′)
∥

∥

(2),0→0
dr‖vu′‖2.

By using the Lipschitz property on the bilinear form ∇(2)Gi, we have

∫ 1

0

(1− r)
∥

∥∇(2)Gi(yu + rvu)−∇(2)Gi(yu′ + rvu′)
∥

∥

(2),0→0
dr

≤ C

∫ 1

0

(1− r)‖yu − yu′‖dr +
∫ 1

0

(1− r)r‖vu − vu′‖dr

≤ C‖yu − yu′‖+ C‖vu − vu′‖.
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Now, we observe Ĉκ,κ
1 →֒ Cκ,0

1 (see (2.4)) and Eκ →֒ E. Therefore,

‖ciu(y, v)− ciu′(y, v)‖
|u− u′|κ ≤ C

‖vu − vu′‖
|u− u′|κ ‖vu′‖+ ‖vu − vu′‖

|u− u′|κ ‖vu‖

+ C

(

‖yu − yu′‖
|u− u′|κ +

‖vu − vu′‖
|u− u′|κ

)

‖vu′‖2

≤ C2‖v‖2
Ĉκ,κ
1

+ C‖v‖3
Ĉκ,κ
1

. (2.31)

By assumption, supi≥1 supp∈Eκ
‖∇2Gi(p)‖(2),κ→κ <∞ so that

sup
i≥1

‖ci(y, v)‖0,κ ≤ C‖v‖2
Ĉκ,κ
1

. (2.32)

Plugging (2.32), (2.31), (2.30) and (2.29) into (2.28), we conclude from (2.27) that

‖R2(y, v)‖Ĉκ,κ
1

≤ C‖v‖2
Ĉκ,κ
1

.

Let us now estimate R3(y, v). Similar to (2.27), from Lemma 2.3.2, we know

there exists a constant C such that

‖J
(

d̂xe(y, v)
)

‖κ,κ ≤ C‖h‖Wγ,δ,∞
λ,T

{

sup
i≥1

‖ei(y, v)‖0,κ + sup
i≥1

‖δ̂ei(y, v)‖κ,0
}

. (2.33)

Clearly, Assumption A1 yields

sup
i≥1

‖ei(y, v)‖0,κ ≤ C‖v‖0,κ ≤ C‖v‖Ĉκ,κ
1
. (2.34)

Similar to (2.29) and (2.30), we observe

‖(δ̂ei(y, v))ts‖ ≤ ‖(δei(y, v))ts‖+ ‖
(

S(t− s)− Id
)

eis(y, v)‖ (2.35)

where

‖
(

S(t− s)− Id
)

eis(y, v)‖ ≤ C|t− s|κ|eis(y, v)|κ

≤ C|t− s|κ|vs|κ ≤ C|t− s|κ‖v‖0,κ; (t, s) ∈ S2. (2.36)

The boundedness and the Lipschitz property on ∇Gi (Assumption A2) allow us
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to estimate

‖eiu(y, v)− eiu′(y, v)‖ ≤
∥

∥

∥

∥

∥

(
∫ 1

0

∇Gi(yu + rvu)dr

)

(vu − vu′)

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

(
∫ 1

0

[∇Gi(yu + rvu)−∇Gi(yu′ + rvu′)]dr

)

vu′

∥

∥

∥

∥

∥

≤ C‖vu − vu′‖+ C‖vu′‖
{

‖yu − yu′‖+ ‖vu − vu′‖
}

.

Then, (2.4) yields

‖eiu(y, v)− eiu′(y, v)‖
|u− u′|κ ≤ C‖δv‖κ,0 + ‖v‖Ĉκ,κ

1
{‖δy‖κ,0 + ‖δv‖κ,0}

≤ C‖v‖Ĉκ,κ
1

+ ‖v‖Ĉκ,κ
1

{‖y‖Ĉκ,κ
1

+ ‖v‖Ĉκ,κ
1

}. (2.37)

By using (2.33), (2.34), (2.35), (2.36) and (2.37), we infer

‖J
(

d̂xe(y, v)
)

‖κ,κ = O
(

‖h‖W γ̃,δ,∞
λ,T

× ‖v‖Ĉκ,κ
1

)

.

One can check (x, y) 7→ ∇1L(x, y) ∈ L(W γ̃,δ,∞
λ,T ; Ĉκ,κ

1 ) and (x, y) 7→ ∇2L(x, y) ∈
L(Ĉκ,κ

1 ; Ĉκ,κ
1 ) are both continuous. Summing up all the above steps, we conclude L is

Fréchet differentiable and formulas (2.23) and (2.24) hold true. It remains to check

∇2L(x,Φ(x)) is a Ĉκ,κ
1 - homeomorphism. By open mapping theorem, this is an immedi-

ate consequence of Corollary 2.3.1 (which proves it is an isomorphism). The continuity

can be easily checked so we left the details of this point to the reader.

By applying implicit function theorem, x 7→ Φ(x) is continuously Fréchet differ-

entiable and the following formula holds true

∇Φ(x) = −∇2L(x,Φ(x))
−1 ◦ ∇1L(x,Φ(x)); x ∈ W γ̃,δ,∞

λ,T (2.38)

The inverse operator yields ∇2L(x,Φ(x))
(

∇2L(x,Φ(x))
−1(v)

)

= v so that

∇2L(x,Φ(x))
−1(v)t = vt +

∫ t

0

S(t− u)∇F (Φ(x)u)∇2L(x,Φ(x))
−1(v)udu

+
∑

i≥1

√

λi

∫ t

0

S(t− u)∇Gi

(

Φ(x)u
)

∇2L(x,Φ(x))
−1(v)udx

i
u; 0 ≤ t ≤ T
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for each v ∈ Ĉκ,κ
1 . Therefore, for each x, h ∈ W γ̃,δ,∞

λ,T , ∇Φ(x)(h) is the unique solution

of

∇Φ(x)(h)t =
∑

i≥1

√

λi

∫ t

0

S(t− u)Gi

(

Φ(x)u
)

dhiu

+
∑

i≥1

√

λi

∫ t

0

S(t− u)∇Gi

(

Φ(x)u
)

∇Φ(x)(h)udx
i
u

+

∫ t

0

S(t− u)∇F
(

Φ(x)u
)

∇Φ(x)(h)udu; 0 ≤ t ≤ T. (2.39)

Now, by Corollary 2.3.1, for each u ∈ (0, T ), x ∈ W γ̃,δ,∞
λ,T and i ≥ 1, the mapping

t 7→ Ψi
t,u(x) given by

Ψi
t,u(x) := S(t− u)Gi

(

Φ(x)u
)

+
∑

j≥1

√

λj

∫ t

u

S(t− ℓ)∇Gj

(

Φ(x)ℓ
)

Ψi
ℓ,u(x)dx

j
ℓ

+

∫ t

u

S(t− ℓ)∇F
(

Φ(x)ℓ
)

Ψi
ℓ,u(x)dℓ (2.40)

where Ψi
t,u(x) = 0 for u > t, it is a well-defined element of Ĉκ,κ

1 over [u, T ]. Let us

denote Γi
x,u,u′(t) := Ψi

t,u(x)−Ψi
t,u′(x) for 0 ≤ u′ ≤ u ≤ t ≤ T . It is simple to check that

Γi
x,u,u′(t) = S(t− u)

[

Ψi
u,u(x)−Ψi

u,u′(x)
]

+
∑

j≥1

√

λj

∫ t

u

S(t− ℓ)∇Gj(Φ(x)ℓ)Γ
i
x,u,u′(ℓ)dx

j
ℓ

+

∫ t

u

S(t− ℓ)∇F (Φ(x)ℓ)Γi
x,u,u′(ℓ)dℓ.

The following technical lemma is important to derive an alternative representation for

Φ′(x)(h).

Lemma 2.3.4 For each x ∈ W γ̃,δ,∞
λ,T there exists a positive constant C which only

depends on ‖x‖W γ̃,δ,∞
λ,T

and ‖δΦ(x)‖κ,κ such that

|Γi
x,u,u′(t)|κ ≤ C|Ψi

u,u(x)−Ψi
u,u′(x)|κ

for every 0 ≤ u′ < u ≤ t ≤ T and i ≥ 1.

Proof. Fix 0 ≤ u′ < u ≤ T , i ≥ 1, 0 ≤ α ≤ min{κ, η} for η ≥ 0. Let us denote
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ϕi
x,u,u′ =

[

Ψi
u,u(x)−Ψi

u,u′(x)
]

. In the sequel, C is a constant which may defer form line

to line. Of course,

|δ̂Γi
x,u,u′‖κ,η ≤ ‖δ̂S(· − u)ϕi

x,u,u′‖κ,η

+
∑

j≥1

√

λj

∥

∥

∥

∥

∥

δ̂

∫ ·

u

S(· − ℓ)∇Gj(Φ(x)ℓ)Γ
i
x,u,u′(ℓ)dx

j
ℓ

∥

∥

∥

∥

∥

κ,η

+

∥

∥

∥

∥

∥

δ̂

∫ ·

u

S(· − ℓ)∇F (Φ(x)ℓ)Γi
x,u,u′(ℓ)dℓ

∥

∥

∥

∥

∥

κ,η

=: I1 + I2 + I3.

At first, we observe S(t− u)ϕi
x,u,u′ − S(t− s)S(s− u)ϕi

x,u,u′ = 0 so that I1 = 0.

By Lemma 2.3.2 (see (2.19)), we observe there exists a constant C such that

I2 ≤ C
∑

j≥1

√

λj

∥

∥

∥

∥

∥

δ̂

∫ ·

u

S(· − ℓ)∇Gj(Φ(x)ℓ)Γ
i
x,u,u′(ℓ)dx

j
ℓ

∥

∥

∥

∥

∥

κ,η

≤ C‖x‖W γ̃,δ,∞
λ,T

{

sup
j≥1

‖zijx,u,u′‖0,η|T − u|γ̃−κ + |T − u|γ̃−α sup
j≥1

‖δ̂zijx,u,u′‖κ,η−α

}

where zijx,u,u′(ℓ) = ∇Gj

(

Φ(x)ℓ
)

Γi
x,u,u′(ℓ). Let us take η = κ = α. We observe

|zijx,u,u′(ℓ)|κ ≤ ‖∇Gj

(

Φ(x)ℓ
)

‖κ→κ|Γi
x,u,u′(ℓ)|κ

so that the boundedness assumption on the gradient ∇Gj yields

‖zijx,u,u′‖0,κ ≤ C‖Γi
x,u,u′‖0,κ ≤ C‖Γi

x,u,u′‖Ĉκ,κ
1
. (2.41)

Triangle inequality yields

∥

∥(δ̂zijx,u,u′)ts
∥

∥

E
≤
∣

∣[∇Gj

(

Φ(x)t
)

−∇Gj

(

Φ(x)s
)

]Γi
x,u,u′(t)

∥

∥

E

+
∥

∥∇Gj

(

Φ(x)s
)(

Γi
x,u,u′(t)− Γi

x,u,u′(s)
)∥

∥

E

+
∥

∥[Id − S(t− s)]∇Gj

(

Φ(x)sΓ
i
x,u,u′(s)

∥

∥

E

≤
∥

∥[∇Gj

(

Φ(x)t
)

−∇Gj

(

Φ(x)s
)

]
∥

∥

0→0

∥

∥Γi
x,u,u′(t)

∥

∥

E

+ ‖∇Gj

(

Φ(x)s
)

‖0→0‖(δΓi
x,u,u′)ts‖E

+
∥

∥[Id − S(t− s)]∇Gj

(

Φ(x)s
)

Γi
x,u,u′(s)

∥

∥

E
=: I4 + I5 + I6,
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where ∇Gj

(

Φ(x)s
)

Γi
x,u,u′(s) ∈ Eκ. We observe

I6 ≤ C|t− s|κ|∇Gj

(

Φ(x)s
)

Γi
x,u,u′(s)|κ

≤ C|t− s|κ‖Γi
x,u,u′‖0,κ. (2.42)

The imbedding (2.4) yields

I5 ≤ C‖(δΓi
x,u,u′)ts‖E

≤ C|t− s|κ{‖δ̂Γi
x,u,u′‖κ,κ + ‖Γi

x,u,u′‖0,κ} = C|t− s|κ‖Γi
x,u,u′‖Ĉκ,κ

1
. (2.43)

We observe

I4 ≤ C‖δΦ(x)‖κ,κ|t− s|κ‖Γi
x,u,u′‖0,κ. (2.44)

Summing up (2.44), (2.43) and (2.42), we have

‖δ̂zijx,u,u′‖κ,0 ≤ C
(

1 + ‖δΦ(x)‖κ,κ
)

‖Γi
x,u,u′‖Ĉκ,κ

1
. (2.45)

This shows that

I2 ≤ C‖x‖W γ̃,δ,∞
λ,T

{

‖Γi
x,u,u′‖Ĉκ,κ

1
|T − u|γ̃−κ + |T − u|γ̃−α

(

1 + ‖δΦ(x)‖κ,κ
)

‖Γi
x,u,u′‖Ĉκ,κ

1

}

.

We notice that

I3 ≤ C sup
u≤s<t≤T

‖
∫ t

s
S(t− ℓ)∇F (Φ(x)ℓ)Γi

x,u,u′(ℓ)dℓ‖κ
|t− s|κ = C‖Γi

x,u,u′‖0,κ|T − u|1−κ.

Summing up the above inequalities, we have

‖δ̂Γi
x,u,u′‖κ,κ ≤ C‖x‖W γ̃,δ,∞

λ,T

{

C|T − u|γ̃−κ
(

1 + ‖δΦ(x)‖κ,κ
)

‖Γi
x,u,u′‖Ĉκ,κ

1

}

+ C‖Γi
x,u,u′‖0,κ|T − u|1−κ. (2.46)

Therefore,

‖Γi
x,u,u′‖Ĉκ,κ

1
≤ ‖S(· − u)ϕi

x,u,u′‖0,κ

+ C‖x‖W γ̃,δ,∞
λ,T

{

C|T − u|γ̃−κ
(

1 + ‖δΦ(x)‖κ,κ
)

‖Γi
x,u,u′‖Ĉκ,κ

1

}
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+ C‖Γi
x,u,u′‖0,κ|T − u|1−κ (2.47)

where ‖S(· − u)ϕi
x,u,u′‖0,κ ≤ C|ϕi

x,u,u′ |κ. Finally, by working on a small interval and

performing a standard patching argument, the estimate (2.47) allows us to conclude

‖Γi
x,u,u′‖Ĉκ,κ

1
≤ Cx,y,T |ϕi

x,u,u′ |κ

where Cx,y,T = g
(

‖x‖W γ̃,δ,∞
λ,T

, ‖δΦ(x)‖κ,κ, T
)

for a function g : R3
+ → R+ growing with

its arguments. This implies

|Γi
x,u,u′(t)|κ = |Ψi

t,u(x)−Ψi
t,u′(x)|κ ≤ Cx,y,T

∣

∣Ψi
u,u(x)−Ψi

u,u′(x)
∣

∣

κ
.

We are now in position to state the main result of this section. Let C∞
0,λ be the

subset of W γ̃,δ,∞
λ,T composed by functions g : N → C∞

0 .

Theorem 2.3.5 Under Assumptions (H1-A1-A2), the Itô map x 7→ Φ(x) is continu-

ously Fréchet differentiable and for each x, h ∈ W γ̃,δ,∞
λ,T , ∇Φ(x)(h) is the unique solution

of the equation (2.39). In addition, the following representation formula holds true

∇Φ(x)(h)t =
∑

i≥1

√

λi

∫ t

0

Ψi
t,u(x)dh

i
u ∈ Eκ; 0 ≤ t ≤ T (2.48)

for each (x, h) ∈ W γ̃,δ,∞
λ,T × C∞

0,λ.

Proof. The fact that x 7→ Φ(x) is continuously Fréchet differentiable and it satisfies

(2.39) are consequences of (2.38). Obviously,

∑

i≥1

√

λi

∫ t

0

Ψi
t,u(x)dh

i
u =

∑

i≥1

√

λi

∫ t

0

S(t− u)Gi

(

Φ(x)u
)

dhiu

+
∑

i≥1

√

λi

∫ t

0

∫ t

u

S(t− ℓ)∇F
(

Φ(x)ℓ
)

Ψi
ℓ,u(x)dℓdh

i
u

+
∑

i≥1

√

λi
∑

j≥1

√

λj

∫ t

0

∫ t

u

S(t− ℓ)∇Gj

(

Φ(x)ℓ
)

Ψi
ℓ,u(x)dx

j
ℓdh

i
u;

0 ≤ t ≤ T.
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Let us fix i ≥ 1 and x ∈ W γ̃,δ,∞
λ,T . By Lemma 2.3.4 and noticing

Ψi
u,u(x)−Ψi

u,u′(x) = Gi

(

Φ(x)u
)

− S(u− u′)Gi

(

Φ(x)u′

)

−
∑

j≥1

√

λj

∫ u

u′

S(u− ℓ)∇Gj

(

Φ(x)ℓ
)

Ψi
ℓ,u′(x)dx

j
ℓ

−
∫ u

u′

S(u− ℓ)∇F
(

Φ(x)ℓ
)

Ψi
ℓ,u′(x)dℓ; 0 ≤ u′ < u ≤ T ; i ≥ 1, (2.49)

we clearly have u 7→ Ψi
t,u(x) is continuous, so that we shall apply Fubini’s theorem to

get

∫ t

0

∫ t

u

S(t− ℓ)∇F
(

Φ(x)ℓ
)

Ψi
ℓ,u(x)dℓdh

i
u =

∫ t

0

∫ ℓ

0

S(t− ℓ)∇F
(

Φ(x)ℓ
)

Ψi
ℓ,u(x)dh

i
udℓ

and

∫ t

0

∫ t

u

S(t− ℓ)∇Gj

(

Φ(x)ℓ
)

Ψi
ℓ,u(x)dx

j
ℓdh

i
u =

∫ t

0

∫ ℓ

0

S(t− ℓ)∇Gj

(

Φ(x)ℓ
)

Ψi
ℓ,u(x)dh

i
udx

j
ℓ;

0 ≤ t ≤ T, i ≥ 1.

Therefore,

√

λi

∫ t

0

Ψi
t,u(x)dh

i
u =

√

λi

∫ t

0

S(t− u)Gi

(

Φ(x)u
)

dhiu

+

∫ t

0

S(t− ℓ)∇F
(

Φ(x)ℓ
)

√

λi

∫ ℓ

0

Ψi
ℓ,u(x)dh

i
udℓ

+
∑

j≥1

√

λj

∫ t

0

S(t− ℓ)∇Gj

(

Φ(x)ℓ
)

√

λi

∫ ℓ

0

Ψi
ℓ,u(x)dh

i
udx

j
ℓ;

0 ≤ t ≤ T.

At this point, in order to complete the proof of representation (2.48), we only

need to check

sup
i≥1

sup
0≤t≤T

‖Ψi
t,·‖0,κ <∞. (2.50)

Since Ψi is the solution of the linear equation (2.40), a completely similar argument as
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detailed in the proof of Lemma 2.3.4 yields

|Ψi
t,u(x)|κ ≤ Cx,y,T sup

0≤r≤T
|S(r − u)Gi(Φ(x)u)|κ

for each 0 ≤ u ≤ t ≤ T , where Cx,y,T = g
(

‖x‖W γ̃,δ,∞
λ,T

, ‖δΦ(x)‖κ,κ, T
)

for a function

g : R3
+ → R+ growing with its arguments. This completes the proof.

Let us now check Malliavin differentiability. Let us fix t ∈ [0, T ], g ∈ E and

we now look the mapping W γ̃,δ,∞
λ,T ∋ x 7→ 〈Φ(x)t, g〉E ∈ R. We can represent Φ(x)t =

τt(Φ(x)) where τt : Ĉκ,κ
1 → E is the evaluation map which is a bounded linear operator

for every t ∈ [0, T ]. Then the Fréchet derivative of x 7→ Φ(x)t equals to the linear

operator

W γ̃,δ,∞
λ,T ∋ f 7→ ∇Φ(x)(f)t ∈ Eκ ⊂ E.

Similarly, the Fréchet derivative of x 7→ 〈Φ(x)t, g〉E equals to

f 7→ 〈∇Φ(x)(f)t, g〉E.

We must find an L2(U0,H)-valued random element ω 7→ a(ω) such that

〈∇Φ(·)(RHh)t, g〉E = 〈a(·), h〉L2(U0,H) a.s

for each h ∈ L2(U0;H). If this is the case, then a = D·〈Xt, g〉E a.s.

Lemma 2.3.6 If h ∈ C∞
0 and ϕ ∈ L2(U0;R), then

RH(h⊗ ϕ) ∈ C∞
0,λ.

Proof. By definition, if (h⊗ ϕ) ∈ C∞
0 ⊗ L2(U0.R), then

K∗
H(h⊗ ϕ)s(

√

λiei) =
√

λi

∫ T

s

h(t)
∂KH

∂t
(t, s)dt.ϕ(ei); i ≥ 1

where
∂KH

∂t
(t, s) = cH

( t

s

)H− 1

2

(t− s)H− 3

2 ; s < t,
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RH(h⊗ ϕ)t =
√

λi

∫ t

0

KH(t, s)K
∗
H(h⊗ ϕ)s(ei)ds

=
√

λi

∫ t

0

(

∫ u

0

∂KH

∂u
(u, s)K∗

H(h⊗ ϕ)s(ei)ds
)

du; i ≥ 1. (2.51)

We observe

u 7→
∫ u

0

∂KH

∂u
(u, s)K∗

H(h⊗ ϕ)s(ei)ds

is continuous (hence bounded) and this implies that

∑

i≥1

λi sup
0≤u≤T

∣

∣

∣

∣

∣

∫ u

0

∂KH

∂u
(u, s)K∗

H(h⊗ ϕ)s(ei)ds

∣

∣

∣

∣

∣

=

=
∑

i≥1

λi sup
0≤u≤T

∣

∣

∣

∣

∣

∫ u

0

∂KH

∂u
(u, s)

∫ T

s

h(t)
∂KH

∂t
(t, s)dt.ϕ(ei)ds

∣

∣

∣

∣

∣

=
∑

i≥1

λi|ϕ(ei)| sup
0≤u≤T

∣

∣

∣

∣

∣

∫ u

0

∂KH

∂u
(u, s)

∫ T

s

h(t)
∂KH

∂t
(t, s)dtds

∣

∣

∣

∣

∣

≤
(

trace Q
)

1

2‖ϕ‖L2(U0,R) sup
0≤u≤T

∣

∣

∣

∣

∣

∫ u

0

∂KH

∂u
(u, s)

∫ T

s

h(t)
∂KH

∂t
(t, s)dtds

∣

∣

∣

∣

∣

.

Corollary 2.3.7 Under the probability space given in Lemma 1.2.4, the random vari-

able 〈Xt, g〉E ∈ D
1,2
loc
(R) and D〈Xt, g〉E ∈ L2(U0;H) is the Hilbert-Schmidt linear oper-

ator defined by

D〈Xt, g〉E(
√

λiei) := 〈
√

λiΨ
i
t,·, g〉E a.s

for every t ∈ [0, T ] and g ∈ E.

Proof. Let us fix t ∈ [0, T ] and g ∈ E. By Lemma 1.2.4, we shall represent Xt(ω) =

Φ(ω)t; (ω, t) ∈ W γ̃,δ,∞
λ,T × [0, T ]. Since H ⊂ Wγ,δ,∞

λ,T , then

f 7→ 〈Xt(f), g〉E = 〈Φ(f)t, g〉E

is Fréchet differentiable at all vectors f ∈ H. In this case, Corollary 1.2.5 yields

〈Xt, g〉E ∈ D
1,2
loc(R) and

〈∇Φ(·)(RHv)t, g〉E = 〈D〈Xt, g〉E, v〉L2(U0;H) locally in Ω
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for each v ∈ L2(U0;H). Let us take v = (h⊗ ϕ) ∈ C∞
0 ⊗ L2(U0.R). By using (2.48)

〈

∇Φ(RHv)t, g
〉

E
=
∑

i≥1

√

λi

〈

∫ t

0

Ψi
t,u(x)d(RHv

i)u, g

〉

E

. (2.52)

From (2.51), we have

(RHv
i)′u =

∫ u

0

∂KH

∂u
(u, s)K∗

H(h⊗ ϕ)s(ei)ds

Therefore,

∫ t

0

Ψi
t,u(x)d(RHv

i)u =
√

λi

∫ t

0

Ψi
t,u(x)

(

∫ u

0

∂KH

∂u
(u, s)K∗

H(h⊗ ϕ)s(ei)ds

)

du

=
√

λi

∫ T

0

Ψi
t,u(x)

(

∫ u

0

∂KH

∂u
(u, s)K∗

H(h⊗ ϕ)s(ei)ds

)

du

=
√

λi

∫ T

0

K∗
H(h⊗ ϕ)s(ei)

(

∫ T

s

∂KH

∂u
(u, s)Ψi

t,u(x)du

)

ds.

Then,

〈∇Φ(RHv)t, g〉E =
∞
∑

i=1

λi

∫ T

0

K∗
H

(

h⊗ ϕ
)

s
(ei)K

∗
H

(

〈Ψi
t,·, g〉E

)

s
ds

=
∞
∑

i=1

λi

〈

(h⊗ ϕ)(ei), 〈Ψi
t,·, g〉E

〉

H

=
∞
∑

i=1

〈

(h⊗ ϕ)(
√

λiei), 〈
√

λiΨ
i
t,·, g〉E

〉

H

where we observe (recall that this function is continuous (except at one point) for

every x ∈ Ω) 〈
√
λiΨ

i
t,·(x), g〉E ∈ L

1

H ([0, T ];R) ⊂ |H|. The candidate is then the linear

operator defined by

D〈Xt, g〉E(
√

λiei) := 〈
√

λiΨ
i
t,·, g〉E a.s. (2.53)

We observe (2.53) provides a well-defined Hilbert-Schmidt operator from U0 to H be-
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cause

∞
∑

i=1

λi

∫ T

0

∣

∣K∗
H

(

〈Ψi
t,·(ω), g〉E

)

s

∣

∣

2
ds =

∞
∑

i=1

λi

∫ T

0

∣

∣

∣

∫ T

s

∂KH

∂u
(u, s)〈Ψi

t,u(ω), g〉Edu
∣

∣

∣

2

ds

≤
∫ T

0

(

∫ T

s

∣

∣

∂KH

∂u
(u, s)

∣

∣du
)2

ds‖g‖2E sup
i≥1

‖Ψi
t,·(ω)‖20,κTrace Q <∞

for each ω ∈ Ω. This concludes the proof.

We are now able to state the main result of this section.

Theorem 2.3.8 If assumptions H1-A1-A2 hold true, then Xt ∈ D
1,2
loc(E) for each t ∈

[0, T ] and the following formula holds

DsXt = S(t− s)G(Xs) +

∫ t

s

S(t− r)∇F (Xr)DsXrdr

+
∞
∑

i=1

√

λi

∫ t

s

S(t− r)∇Gi(Xr)DsXrdβ
i
r (2.54)

where DsXt = 0 for s > t.

Proof. At first, we observe the postulated object DXt takes values on H⊗L2(U0;R)⊗
E ≡ L2(U0;H⊗ E). Let us compute

〈

D〈Xt, g〉E, v
〉

L2(U0;H)

for a given g ∈ E and v = (ϕ⊗ h) ∈ L2(U0;H). By definition,

〈

D〈Xt, g〉E, v
〉

L2(U0;H)
=

∞
∑

i=1

〈

〈
√

λiΨ
i
t,·, g〉E, (ϕ⊗ h)(

√

λiei)
〉

H

=
∞
∑

i=1

ϕ(ei)λi

〈

〈Ψi
t,·, g〉E, h

〉

H
.

Let us define a Hilbert-Schmidt operator Ψt,·(ω) : U0 → L
1

H ([0, T ];E) →֒ H ⊗ E

as follows

Ψt,·(ω)(
√

λiei) :=
√

λiΨ
i
t,·(ω);ω ∈ Ω.
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By (1.6), we observe

∞
∑

i=1

‖Ψt,·(
√

λiei)‖2H⊗E ≤ C

∞
∑

i=1

‖Ψt,·(
√

λiei)‖2
L

1
H ([0,T ];E)

≤ C

∞
∑

i=1

λi‖Ψi
t,·‖20,κ ≤ C sup

i≥1
‖Ψi

t,·‖0,κ.trace Q <∞ a.s.

We claim that Xt ∈ D
1,2
loc(E) and

D·Xt = Ψt,· a.s. (2.55)

Indeed, we observe Ψt satisfies

Ψt,s = S(t− s)G(Xs) +

∫ t

s

S(t− r)∇F (Xr)Ψr,sdr

+
∞
∑

i=1

√

λi

∫ t

s

S(t− r)∇Gi(Xr)Ψr,sdβ
i
r a.s

where Ψt,s = 0 for t < s. Moreover,

〈

D〈Xt, g〉E, v
〉

L2(U0;H)
=

∞
∑

i=1

ϕ(ei)λi

〈

〈Ψi
t,·, g〉E, h

〉

H

=
∞
∑

i=1

〈

〈Ψt,·(
√

λiei), g〉E, ϕ(ei)
√

λih
〉

H

= 〈DXtg, v〉L2(U0;H) a.s.

By applying Lemma 1.2.2 and Corollary 2.3.7, we conclude the proof.

2.4 The right inverse of the Jacobian of the SPDE

solution

From now on, it will be useful to make clear the dependence on the initial condi-

tions of (2.1). Let us write Xy as the solution of (2.1) for an initial condition y ∈ Eκ.

In previous section, we made use of the Ĉκ,κ
1 -topology to get differentiability of Xx0

t

(in Malliavin’s sense) for each initial condition at x0 ∈ Eκ. Even though we are

interested in establishing the existence of densities T (Xx0

t ) for initial conditions on
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dom (A∞) ⊂ Eκ, it is important to work with the solution map E → Cα,0
1 given by

y 7→ Xy ∈ Cα,0
1 (2.56)

for some α > 1−H. One drawback to keep the flow from Eκ to Ĉκ,κ
1 is that Xx0 does

not belong to Cκ,κ
1 and the best we can get is Xx0 ∈ Cκ,0

1 a.s. For this purpose, we need

to impose further regularity assumptions as described in Th 3.2 in [29], which we list

here for the sake of preciseness:

Assumption A3: There exists γ1, γ2 ∈ (0, 2H − 1) and c1 such that

‖S(r)G(x)‖ ≤ c1

rγ1
(1 + ‖x‖E)

and

‖S(r)
(

G(x)−G(y)
)

‖ ≤ c1

rγ2
‖x− y‖E

for every x, y ∈ E. Furthermore, for α > 1−H, α < min
(

1
2
(1−γ1), 12(1−γ2)

)

, assume

there exist constants c2, 0 ≤ η < 1− α, β̃ ∈ (α, 1
2
) such that

‖∇S(r)F (x)‖+ ‖‖∇S(r)Gi(x)‖ ≤ c2

‖∇S(r)F (x)−∇S(r)F (y)‖+ ‖∇S(r)Gi(x)−∇S(r)Gi(y)‖ ≤ c2

rη
‖x− y‖E,

‖∇(S(r)− S(s))F (x)‖+ ‖∇
(

S(r)− S(s)
)

Gi(x)‖ ≤ c2(r − s)β̃s−β̃

for every r ∈ (0, T ], 0 < s < r, x, y ∈ E and i ≥ 1.

Under these conditions, the map (2.56) is well-defined (see Th 3.2 in [29]). More-

over, it is not difficult to check the map E ∋ y 7→ Xy ∈ Cα,0
1 is Fréchet differentiable.

In other words,

J0→t(y; v) = ∇yX
y
t (v)

for each t ∈ [0, T ] and y, v ∈ E. The proof of this fact is quite standard and the main

arguments do not defer too much from the classical Brownian motion driving case (see

e.g Th. 3.9 in [19]), so we left the details to the reader. Moreover, (see [32]) there
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exists α ∈
(

1−H, 1
2

)

and κ ∈
(

1
2
, 1
4

)

satisfying

Cκ,0
1 ⊂ W α,∞(0, T ;E)

where W α,∞(0, T ;E) is the space of all measurable functions f : [0, T ] → E such that

‖f‖α,∞ :=
(

|f |0,0 + sup
0≤t≤T

∫ t

0

‖f(t)− f(s)‖
|t− s|1+α

)

<∞.

Therefore, under Assumptions H1 and A3, the uniqueness of the flow described in

Th 3.2 in [29] and (2.3) imply that all solutions Xy generated by Proposition 2.2.2

coincides with the ones given by [29] for every y ∈ Eκ. In addition, by applying Th 3.2

in [29], J0→t(y; v) satisfies the following linear equation

J0→t(y; v) = S(t)v +

∫ t

0

S(t− s)∇F (Xy
s )J0→s(y; v)ds

+
∞
∑

i=1

√

λi

∫ t

0

S(t− s)∇Gi(X
y
s )J0→s(y; v)dβ

i
s. (2.57)

Of course, v 7→ J0→t(y; v) ∈ L(E;E) for each t ∈ [0, T ] and y ∈ E. Then, we shall see

t 7→ J0→t(y) as an operator-valued process as follows

J0→t(y) = S(t) +

∫ t

0

S(t− s)∇F (Xy
s )J0→s(y)ds

+
∞
∑

i=1

√

λi

∫ t

0

S(t− s)∇Gi(X
y
s )J0→s(y)dβ

i
s; 0 ≤ t ≤ T.

Remark 2.4.1 Recall that infinitesimal generators of analytic semigroups are sectorial

(see e.g Prop 3.16 [25]). Then, it is known that (see e.g Corollary 2.1.7 in [26]) that

S(t) is one-to-one for every t ≥ 0. We also observe the left-inverse linear operator

S(−t) of S(t) defined on the subspace S(t)E is, in general, unbounded.

Example 2.4.2 Let E = L2(0, 1) with Dirichlet boundary conditions. Take the or-

thonormal basis

en(x) =
√
2sin(πnx); 0 < x < 1,

with eigenvalues λn = π2n. Then the heat semigroup generated by the Laplacian A = ∆

50



is given by

S(t)f =
∞
∑

n=1

e−λnt〈f, en〉Een

for f ∈ E. This is an analytic semigroup where

S(−t)g =
∞
∑

n=1

eλnt〈g, en〉Een

for g ∈ S(t)E.

In order to obtain a right-inverse operator-valued process for the Jacobian, we

need to assume the following regularity conditions. In the sequel, we denote S−(t) :=

S(−t); t ≥ 0 where S(−t) stands the left-inverse linear operator on S(t)E.

Assumption B1: Let α > 1 − H be a constant as defined in Assumption A3. For

each path f ∈ Cα,0
1 ,

sup
i≥1

{

‖S−∇Gi(f)S‖0,0→0 + ‖δS−∇Gi(f)S‖µ,0→0

}

<∞

for µ+ γ̃ > 1 where 1
2
< γ̃ < H satisfies (2.17).

Assumption B2: For each path f ∈ Cα,0
1 , ‖S−∇F (f)S‖0,0→0 <∞.

In Assumptions B1-B2, we assume

∇F (w)z ∈ S(T )E and ∇Gi(w)z ∈ S(T )E (2.58)

for every w, z ∈ E and i ≥ 1.

Remark 2.4.3 Since S(T )z = S(t)S(T − t)z for every 0 ≤ t ≤ T and z ∈ E, then

S(T )E ⊂ S(t)Eβ for every 0 ≤ t ≤ T and β ≥ 0.

Remark 2.4.4 We implicitly assume in Assumptions B1-B2 that ∇F (ft)S(t)x ∈ S(t)E

and ∇Gi(ft)S(t)x ∈ S(t)E for every t ≥ 0, x ∈ E and i ≥ 1. This property holds true

under (2.58) due to Remark 2.4.3. In this case, taking into account that S is a differ-
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entiable semigroup, then (see e.g Prop 3.12 in [25]) we have ∇F (w)z ∈ ∩∞
n=1dom(An)

and ∇Gi(w)z ∈ ∩∞
n=1dom(An) for every w, z ∈ E and i ≥ 1.

In the sequel, we freeze an initial condition y ∈ Eκ. Let us now investigate the

existence of an operator-valued process J
+
0→t(y) such that

J0→t(y)J
+
0→t(y) = Id a.s; 0 ≤ t ≤ T

where Id is the identity operator on S(t)E. We start the analysis with the following

equation

Ut(y) =−
∫ t

0

[

Id + Ur(y)
]

S(−r)∇F (Xy
r )S(r)dr

−
∞
∑

i=1

√

λi

∫ t

0

[

Id + Ur(y)
]

S(−r)∇Gi(X
y
r )S(r)dβ

i
r. (2.59)

Let Cµ,0→0
1 be the linear space of L(E;E)-valued functions r 7→ fr such that

‖f‖Cµ,0→0

1

:= ‖f‖0,0→0 + ‖δf‖µ,0→0 <∞.

Lemma 2.4.5 Under Assumptions B1-B2, there exists a unique adapted solution U(y)

of (2.59) such that U(y) ∈ Cµ,0→0
1 a.s for µ+ γ̃ > 1 and 0 < µ < γ̃.

Proof. For a given g ∈ W γ̃,δ,∞
λ,T and w ∈ Cα,0

1 , let us define Γ : Cµ,0→0
1 → Cµ,0→0

1 by

Γ(U)t :=−
∫ t

0

[

Id + Ur

]

S(−r)∇F (wr)S(r)dr

−
∞
∑

i=1

√

λi

∫ t

0

[

Id + Ur

]

S(−r)∇Gi(wr)S(r)dg
i
r.

We claim that Γ is a contraction map on a small interval [0, T ]. Indeed, for U, V ∈
Cµ,0→0
1 , if qt = Γ(U)t − Γ(V )t, then

qt =

∫ t

0

[

Vr − Ur

]

S(−r)∇F (wr)S(r)dr

+
∞
∑

i=1

√

λi

∫ t

0

[

Vr − Ur

]

S(−r)∇Gi(wr)S(r)dg
i
r = q1t +

∞
∑

i=1

q
2,i
t .
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Assumption B2 implies the existence of a constant CF such that

‖q1‖0,0→0 = sup
0≤t≤T

‖q1t ‖ ≤
∫ T

0

∥

∥

∥

[

Vr − Ur

]

S(−r)∇F (wr)S(r)
∥

∥

∥

0→0
dr

≤ CFT‖U − V ‖0,0→0 (2.60)

and

‖q1t − q1s‖
|t− s|µ ≤ CF‖U − V ‖0,0→0|t− s|1−µ ≤ CFT

1−µ‖U − V ‖0,0→0.

Then,

‖δq1‖µ,0→0 ≤ CFT
1−µ‖U − V ‖0,0→0. (2.61)

Young-Loeve’s inequality yields

∥

∥

∥

∞
∑

i=1

(q2,it − q2,is )
∥

∥

∥
≤ 1

2µ+γ̃ − 2

∞
∑

i=1

∥

∥δ[V − U ]S−∇Gi(w)S
∥

∥

µ,0→0

√

λi
∥

∥gi
∥

∥

W γ̃,δ,∞
λ,T

|t− s|µ+γ̃

+
∞
∑

i=1

∥

∥[Vs − Us]S(−s)∇Gi(ws)S(s)
∥

∥|(δgits)|
√

λi

≤ 1

2µ+γ̃ − 2

∞
∑

i=1

∥

∥δ[V − U ]S−∇Gi(w)S
∥

∥

µ,0→0

√

λi
∥

∥gi
∥

∥

W γ̃,δ,∞
λ,T

|t− s|µ+γ̃

+
∞
∑

i=1

∥

∥[Vs − Us]S(−s)∇Gi(ws)S(s)
∥

∥‖gi‖W γ̃,δ,∞
λ,T

|t− s|γ̃
√

λi (2.62)

where by linearity,

∥

∥δ[V − U ]S−∇Gi(w)S
∥

∥

µ,0→0
≤ ‖S−∇Gi(w)S‖0,0→0‖δ(V − U)‖µ,0→0

+ ‖V − U‖0,0→0‖δS−∇Gi(w·)S‖µ,0→0

≤ CG‖V − U‖Cµ,0→0

1

, (2.63)

for a constant CG coming from Assumption B1. Summing up (2.62) and (2.63), we

have

∥

∥

∥

∞
∑

i=1

δq2,i
∥

∥

∥

µ,0→0
≤ CG‖V − U‖Cµ,0→0

1

T γ̃‖g‖W γ̃,δ,∞
λ,T

+ CG‖V − U‖Cµ,0→0

1

‖g‖W γ̃,δ,∞
λ,T

T γ̃−µ

(2.64)

53



where we recall γ̃ > µ. In addition, (2.62) yields

∥

∥

∥

∞
∑

i=1

q2,i
∥

∥

∥

0,0→0
≤ CG‖V − U‖Cµ,0→0

1

T µ+γ̃‖g‖W γ̃,δ,∞
λ,T

+ CG‖V − U‖Cµ,κ→κ
1

‖g‖W γ̃,δ,∞
λ,T

T γ̃.

(2.65)

Summing up (2.60), (2.61), (2.64) and (2.65), we conclude

‖q‖Cµ,0→0

1

≤
[

CF (T
1−µ+T )+(CG‖g‖W γ̃,δ,∞

λ,T
)(2T γ̃+T γ̃−µ+T µ+γ̃)

]

‖U−V ‖Cµ,0→0

1

. (2.66)

where q = Γ(U) − Γ(V ). By making T small in (2.66), we conclude there exists a

unique fixed point for Γ on small interval [0, T̄ ] whose size does not depend on the

initial condition. The construction of a global unique solution from the solution in

[0, T̄ ] is standard and it is left to the reader for sake of conciseness. This pathwise

argument clearly provides a unique adapted process U realizing (2.59).

Now, we set Rt(y) = Ut(y) + Id and we observe that

Rt(y) = Id −
∫ t

0

Rs(y)S(−s)∇F (Xy
s )S(s)ds

−
∞
∑

i=1

√

λi

∫ t

0

Rs(y)S(−s)∇Gi(X
y
s )S(s)dβ

i
s; 0 ≤ t ≤ T. (2.67)

We the arrive at the following result which will play a key role in representing the

Malliavin matrix.

Proposition 2.4.6 If Assumptions H1-A1-A2-A3-B1-B2 hold then, for each initial

condition y ∈ Ek, the Jacobian J0→t(y) admits a right-inverse adapted process J
+
0→t(y)

which satisfies

J
+
0→t(y) = S(−t)−

∫ t

0

J
+
0→s(y)∇F (Xy

s )S(s− t)ds

−
∞
∑

i=1

√

λi

∫ t

0

J
+
0→s(y)∇Gi(X

y
s )S(s− t)dβi

s; 0 ≤ t ≤ T. (2.68)

Proof. The candidate is J+
0→t(y) := Rt(y)S

−(t) defined on S(t)E. At first, we observe

S(s)S(−t) = S(s− t) on S(t)E ⊂ S(t− s)E
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for every s < t. Then, (2.68) is well-defined in view of Assumptions B1-B2. Let us

check it is the right-inverse. Let

Vt(y) =

∫ t

0

S(−s)∇F (Xy
s )S(s)

[

Id + Vs(y)
]

ds

+
∞
∑

i=1

√

λi

∫ t

0

S(−s)∇Gi(X
y
s )S(s)

[

Id + Vs(y)
]

dβi
s; 0 ≤ t ≤ T. (2.69)

By following a similar proof of Lemma 2.4.5, we can safely state there exists a unique

adapted solution V (y) of (2.69) such that V (y) ∈ Cµ,0→0
1 a.s for µ < γ̃ and µ + γ̃ > 1.

Let us define Pt(y) = Vt(y) + Id and notice that S(t)S(−s) = S(t − s) on S(s)E for

every t > s ≥ 0. Then,

Pt(y) = Id +

∫ t

0

S(−s)∇F (Xy
s )S(s)Ps(y)ds

+
∞
∑

i=1

√

λi

∫ t

0

S(−s)∇Gi(X
y
s )S(s)Ps(y)dβ

i
s , (2.70)

and therefore J0→t(y) = S(t)Pt(y). Equations (2.67), (2.70) and integration by parts

in Hilbert spaces yield

〈

Pt(y)Rt(y)w,w
′
〉

E
=
〈

Rt(y)w, P
∗
t (y)w

′
〉

E
=
〈

w,w′
〉

E
+

∫ t

0

〈

dRs(y)w, P
∗
s (y)w

′
〉

E

+

∫ t

0

〈

Rs(y)w, dP
∗
s (y)w

′
〉

E

for each w,w′ ∈ E where P ∗ is the adjoint. To keep notation simple, we set I1 =
∫ t

0

〈

dRs(y)w, P
∗
s (y)w

′
〉

E
and I2 =

∫ t

0

〈

Rs(y)w, dP
∗
s (y)w

′
〉

E
. We observe

I1 = −
∫ t

0

〈

Rs(y)S(−s)∇F (Xy
s )S(s)w, P

∗
s (y)w

′
〉

E
ds

−
∞
∑

i=1

√

λi

∫ t

0

〈

Rs(y)S(−s)∇Gi(X
y
s )S(s)w, P

∗
s (y)w

′
〉

E
dβi

s

= −
∫ t

0

〈

Ps(y)Rs(y)S(−s)∇F (Xy
s )S(s)w,w

′
〉

E
ds

−
∞
∑

i=1

√

λi

∫ t

0

〈

Ps(y)Rs(y)S(−s)∇Gi(X
y
s )S(s)w,w

′
〉

E
dβi

s.
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In addition, Assumption B1 allows us to represent

I2 =

∫ t

0

〈

Rs(y)w,
(

S(−s)∇F (Xy
s )S(s)Ps(y)

)∗
w′
〉

E
ds

+
∞
∑

i=1

√

λi

∫ t

0

〈

Rs(y)w,
(

S(−s)∇Gi(X
y
s )S(s)Ps(y)

)∗
w′
〉

E
dβi

s

=

∫ t

0

〈

S(−s)∇F (Xy
s )S(s)Ps(y)Rs(y)w,w

′
〉

E
ds

+
∞
∑

i=1

√

λi

∫ t

0

〈

S(−s)∇F (Xy
s )S(s)Ps(y)Rs(y)w,w

′
〉

E
dβi

s.

This shows that

Pt(y)Rt(y) = Id +

∫ t

0

S(−s)∇F (Xy
s )S(s)(Ps(y)Rs(y)ds

+
∞
∑

i=1

√

λi

∫ t

0

S(−s)∇Gi(X
y
s )S(s)Ps(y)Rs(y)dβ

i
s

−
∫ t

0

Ps(y)Rs(y)S(−s)∇F (Xy
s )S(s)ds

−
∞
∑

i=1

√

λi

∫ t

0

Ps(y)Rs(y)S(−s)∇Gi(X
y
s )S(s)dβ

i
s. (2.71)

We now observe there exists a unique solution of (2.71). To see this, let Qt(y) =

Pt(y)Rt(y)− Id and from (2.71), we have

Qt(y) =

∫ t

0

S(−s)∇F (Xy
s )S(s)Qs(y)ds+

∞
∑

i=1

√

λi

∫ t

0

S(−s)∇Gi(X
y
s )S(s)Qs(y)dβ

i
s

−
∫ t

0

Qs(y)S(−s)∇F (Xy
s )S(s)ds−

∞
∑

i=1

√

λi

∫ t

0

Qs(y)S(−s)∇Gi(X
y
s )S(s)dβ

i
s.

(2.72)

The same argument of the proof of Lemma 2.4.5 yields the existence of a unique solution

of equation (2.72). This obviously implies that (2.71) admits only one solution. Since

Id solves (2.71), we do have Pt(y)Rt(y) = Id for every t ∈ [0, T ] and we conclude

J0→t(y)J
+
0→t(y) = S(t)Pt(y)Rt(y)S

−(t) = Id a.s.
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Chapter 3

Existence of densities under

Hörmander’s bracket condition

Here, we examine the existence of the densities for random variables of the form

T (Xx0

t ) for a bounded linear operator T : E → R
d for a given t ∈ (0, T ].

3.1 The Hörmander’s bracket condition

Throughout this section, we fix a set of parameters κ, κ0, γ̃, δ, λ as described in

(2.17). In order to state a Hörmander’s bracket condition, we need to work with smooth

vector fields F,Gi; i ≥ 1. Let

dom(An) := {h ∈ E;h ∈ dom(An−1) and An−1h ∈ dom(A)},

‖h‖2
dom(An) :=

n
∑

i=0

‖Aih‖2E,

dom(A∞) := ∩∞
n=1dom(An).

We observe dom(A∞) is a Frechét space equipped with the family of seminorms

‖ · ‖dom(An);n ≥ 0. In the sequel, for each t ∈ [0, T ], we equip S(t)E with the following

inner product

〈S(t)x, S(t)y〉S(t)E := 〈x, y〉E; x, y ∈ E. (3.1)



Notice that this is a well-defined inner product due to the injectivity of the semigroup.

One can easily check S(t)E is a separable Hilbert space equipped with the norm asso-

ciated with (3.1). Moreover, for each x0 ∈ Eκ and t ∈ [0, T ], J+
0→t(x0) : S(t)E → E

admits an adjoint as a bounded linear operator from E to S(t)E. Indeed, let J+,∗
0→t(x0) :

E → S(t)E be the linear operator defined by

y 7→ J
+,∗
0→t(x0)y := S(t)R∗

t (x0)y.

Then,

〈

J
+
0→t(x0)S(t)x, y

〉

E
=
〈

Rt(x0)S(−t)S(t)x, y
〉

E

=
〈

x,R∗
t (x0)y

〉

E
=
〈

S(t)x,J+,∗
0→t(x0)y

〉

S(t)E

where ‖J+,∗
0→t(x0)y‖S(t)E = ‖R∗

t (x0)y‖E ≤ ‖R∗
t (x0)‖‖y‖E. This proves our claim. We

observe R∗
t (x0) = Id + U∗

t (x0) where

U∗
t (x0) = −

∫ t

0

(

S(−r)∇F (Xx0

r )S(r)
)∗(

Id + U∗
r (x0)

)

dr

−
∞
∑

i=1

√

λi

∫ t

0

(

S(−r)∇Gi(X
x0

r )S(r)
)∗(

Id + U∗
r (x0)

)

dβi
r

so that

R∗
t (x0) = Id −

∫ t

0

(

S(−r)∇F (Xx0

r )S(r)
)∗
R∗

r(x0)dr

−
∞
∑

i=1

√

λi

∫ t

0

(

S(−r)∇Gi(X
x0

r )S(r)
)∗
R∗

r(x0)dβ
i
r. (3.2)

In other words,

J
+,∗
0→t(x0) = S(t)−

∫ t

0

S(t)
(

S(−r)∇F (Xx0

r )S(r)
)∗
R∗

r(x0)dr

−
∞
∑

i=1

√

λi

∫ t

0

S(t)
(

S(−r)∇Gi(X
x0

r )S(r)
)∗
R∗

r(x0)dβ
i
r.

Definition 3.1.1 A vector field V on an open subset U ⊂M of a Fréchet space M is

a smooth map V : U →M .
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Let us recall the concept of Lie brackets (see e.g [14]) between two vector fields

V1, V2 : dom(A∞) → dom(A∞)

[V1, V2](r) := ∇V2(r)V1(r)−∇V1(r)V2(r)

for each r ∈ dom(A∞). We observe [V1, V2] : dom(A∞) → dom(A∞) is a well-defined

vector field whenever V1, V2 are vector fields on dom(A∞). Moreover, 1
4
< κ < 1 implies

dom(A) ⊂ dom(−A)κ so that dom(A∞) ⊂ Eκ.

Assumption C1: G : E → L2

(

U0;S(T )E
)

satisfies

(i) x 7→ Gi(x) is an S(T )dom(A)-valued continuous mapping for each i ≥ 1. Moreover,

(ii)

E

∫ T

0

‖G(Xx0

r )‖2L2(U0,S(T )E)dr <∞.

Assumption C2: F,Gi : E → dom(A∞) are smooth mappings with bounded deriva-

tives for every i ≥ 1 with the property that

sup
ℓ≥1

sup
y∈E

‖∇nGℓ(y)‖(n),E→dom(Am) <∞,

for every n,m ≥ 1. There exists a constant C such that

‖Gℓ(y)‖dom(A) ≤ C(1 + ‖y‖dom(A)), y ∈ dom(A)

for every ℓ ≥ 1. Moreover, if V = F, Gi; i ≥ 1 : dom(Ak) → dom(Ak) are C∞-

bounded for every k ≥ 1, i.e., for a given k ≥ 1, each derivative ∇ℓV : dom(Ak) →
L(ℓ)

(

domℓ(Ak); dom(Ak)
)

is a bounded function for every ℓ ≥ 1, where domℓ(Ak) :=

dom(Ak)× · · · × dom(Ak) (ℓ-fold).

Assumption C3: For every n ≥ 1, ∇nGp(x)v ∈ S(T )dom(A) and ∇nF (x)v ∈
S(T )dom(A) for every x ∈ dom(A) and v ∈ domn(A).
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Under Assumption C2, if we assume that x0 ∈ dom(A∞), then we can construct

a solution process with α-Hölder continuous trajectories in dom(A∞). This is true be-

cause the Picard approximation procedure converges in every Hilbert space dom(Am),

and the topology of dom(A∞) is the projective limit of the ones on dom(Am). We

summarize this fact into the following remark.

Remark 3.1.2 Under Assumption C2, for each initial condition x0 ∈ dom(A), (2.1)

has a unique strong solution. If x ∈ dom(A∞) then we can construct a solution of (2.1)

taking values on dom(A∞) and such that

‖δXx0‖α,dom(Am) <∞

for every m ≥ 1.

Remark 3.1.3 Assumption C3 plays a rule in constructing the argument towards the

existence of densities which requires

[G0, V ](Xx0

t ) ∈ S(t)E

in order to belong to the domain of J
+
0→t(x0) for every V ∈ Vk; k ≥ 0 (see (3.11)),

where G0 is the vector field given by (3.10).

The following elementary result is useful.

Lemma 3.1.4 If V : E → dom(A∞) is a smooth mapping with bounded derivatives,

then

sup
y∈E

‖∇nV (y)‖(n),0→0 <∞.

Proof. The n-th Fréchet derivative of V viewed as a map from E to dom(A) is given

by ∇nV : E → Ln

(

En; dom(A)
)

, where

‖∇nV (x)(h1, . . . , hn)‖dom(A) ≤ ‖∇nV (x)‖(n),E→dom(A)‖h1‖ × . . .× ‖hn‖E

Then,

‖∇nV (x)(h1, . . . , hn)‖E ≤ ‖∇nV (x)(h1, . . . , hn)‖dom(A)
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≤ ‖∇nV (x)‖(n),E→dom(A)‖h1‖E × . . .× ‖hn‖E

≤ sup
y∈E

‖∇nV (y)‖(n),E→dom(A)‖h1‖E × . . .× ‖hn‖E

and hence ‖∇nV (x)‖(n),0→0 ≤ supy∈E ‖∇nV (y)‖(n),E→dom(A) for every x ∈ E.

Let us now investigate the existence of densities for the SPDE (2.1). We start

with some preliminary results.

Lemma 3.1.5 Under Assumptions H1-A1-A2-A3-B1-B2-C1-C2, for each x0 ∈ dom(A),

we have

DrX
x0

t = J0→t(x0)J
+
0→r(x0)G(X

x0

r ) a.s (3.3)

for every r < t. Therefore,

DrT (Xx0

t ) = T
(

J0→t(x0)J
+
0→r(x0)G(X

x0

r )
)

a.s (3.4)

for every r < t.

Proof. On one hand, Remark 3.1.2 and (2.54) yields

DrX
x0

t = G(Xx0

r ) +

∫ t

r

∇F (Xx0

ℓ )DrX
x0

ℓ dℓ+
∞
∑

i=1

∫ t

r

∇Gi(X
x0

ℓ )DrX
x0

ℓ dβ
i
ℓ (3.5)

for 0 ≤ r < t. On the other hand, Assumption C2 implies that (2.57) has a strong

solution for y = x0 ∈ dom(A) and for each v = Gj(X
x0

r ). Having said that, let us fix

0 ≤ r < t and a positive integer j ≥ 1. The fact that Gj(E) ⊂ S(T )E and Remark

2.4.3 yield

Gj(X
x0

r ) +

∫ t

r

∇F (Xx0

ℓ )J0→ℓ(x0)J
+
0→r(x0)Gj(X

x0

r )dℓ

+
∞
∑

i=1

∫ t

r

∇Gi(X
x0

ℓ )J0→ℓ(x0)J
+
0→r(x0)Gj(X

x0

r )dβi
ℓ

= Gj(X
x0

r ) +

(

∫ t

r

∇F (Xx0

ℓ )J0→ℓ(x0)dℓ

+
∞
∑

i=1

∫ t

r

∇Gi(X
x0

ℓ )J0→ℓ(x0)dβ
i
ℓ

)

J
+
0→r(x0)Gj(X

x0

r )

= Gj(X
x0

r ) +
(

J0→t(x0)− J0→r(x0)
)

J
+
0→r(x0)Gj(X

x0

r )
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= J0→t(x0)J
+
0→r(x0)Gj(X

x0

r ) a.s.

By invoking (2.55), (2.49), Lemma 2.3.4, (3.5) and Assumption C1(i), we know

that both (r, t) 7→ DrX
x0

t and (r, t) 7→ J0→t(x0)J
+
0→r(x0)Gj(X

x0

r ) are jointly continuous

a.s on the simplex {(r, t); 0 ≤ r ≤ t ≤ T}. This fact combined with the uniqueness of

the SPDE solution of (3.5) (for each fixed r) implies that they are indistinguishable

(

D·X
x0

·

)

(
√

λjej) = J0→·(x0)J
+
0→·(x0)Gj(X

x0

· ) a.s

for each j ≥ 1. Assumption C1 (ii) implies

r 7→ J0→t(x0)J
+
0→r(x0)G(X

x0

r ) ∈ L2

(

U0;L
1

H ([0, T ];E)
)

⊂ L2(U0;H⊗ E) a.s

for every t ∈ (0, T ]. Summing up the above arguments, we shall conclude (3.3) holds

true. The chain rule yields representation (3.4).

In what follows, let us denote

γt :=
(

〈

DTi(X
x0

t ),DTj(X
x0

t )
〉

L2(U0;H)

)

1≤i,j≤d
(3.6)

where T = (T1, . . . Td) : E → R
d. In order to investigate non-degeneracy of the

Malliavin derivative, it is convenient to work with a reduced Malliavin operator. Let

us define the self-adjoint linear operator Ct : E → E by the following quadratic form

〈Cty, y〉E := αH

∞
∑

ℓ=1

∫ t

0

∫ t

0

〈

J
+
0→u(x0)Gℓ(X

x0

u ), y
〉

E

〈

J
+
0→v(x0)Gℓ(X

x0

v ), y
〉

E

|u− v|2H−2dudv

=
∞
∑

ℓ=1

∥

∥

∥

〈

J
+
0→·(x0)Gℓ(X

x0

· ), y
〉

E

∥

∥

∥

2

H
=

∞
∑

ℓ=1

∥

∥

∥

〈

Gℓ(X
x0

· ),J+,∗
0→·(x0)y

〉

S(·)E

∥

∥

∥

2

H
(3.7)

for y ∈ E and 0 < t ≤ T . In (3.7), the norm in H is computed over [0, t]. We observe

Ct is a well-defined bounded linear operator due to Assumption C1 (ii) and 1
H
< 2.

Lemma 3.1.6 Under Assumptions H1-A2-A2-A3-B1-B2-C1-C2, we have for each x0 ∈
dom(A),

γt =
(

T ◦ J0→t(x0)
)

Ct
(

T ◦ J0→t(x0)
)∗
.
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Proof. In one hand, Lemma 3.1.5 and (1.7) yield

γ
ij
t =

〈

DTi(X
x0

t ),DTj(X
x0

t )
〉

L2(U0;H)

=
∞
∑

ℓ=1

〈

DTi(X
x0

t )(
√

λℓeℓ),DTj(X
x0

t )(
√

λℓeℓ)
〉

H

=
∞
∑

ℓ=1

αH

∫ t

0

∫ t

0

DuTi(X
x0

t )(
√

λℓeℓ)DvTj(X
x0

t )(
√

λℓeℓ)|u− v|2H−2dudv

=
∞
∑

ℓ=1

αH

∫

[0,t]2
Ti

(

J0→t(x0)J
+
0→u(x0)Gℓ(X

x0

u )
)

Tj

(

J0→t(x0)J
+
0→r(x0)Gℓ(X

x0

r )
)

|u− v|2H−2dudv. (3.8)

On the other hand, if (bi)di=1 is the canonical orthonormal basis of Rd, we observe

〈

(

T ◦J0→t(x0)
)

Ct
(

T ◦J0→t(x0)
)∗
bi, bj

〉

Rd
=
〈

Ct
(

T ◦J0→t(x0)
)∗
bi,
(

T ◦J0→t(x0)
)∗
bj

〉

E
.

(3.9)

Now, use the definition (3.7) and the polarization formula

〈

Ctx, y
〉

E
=

1

2

{

〈

Ct(x+ y), (x+ y)
〉

E
−
〈

Ctx, x
〉

E
−
〈

Cty, y
〉

E

}

to conclude (3.9) equals to (3.8).

Let us now investigate the existence of densities. At first, we recall the following

result which is an immediate consequence of the classical result in Malliavin calculus.

See e.g Th 2.1.1 in [31].

Lemma 3.1.7 Assume Ti(X
x0

t ) ∈ D
1,2
loc
(R) for i = 1, . . . , d and γt is invertible a.s for

an initial condition x0 ∈ dom(A) and t ∈ (0, T ]. Then, the law of T (Xx0

t ) has a density

w.r.t Lebesgue measure in R
d.

We can now turn to our first main result of this paper. Let us define

G0(x) := Ax+ F (x); x ∈ dom(A∞). (3.10)

Given the SPDE (2.1), define a collection of vector fields Vk by

V0 = {Gi; i ≥ 1}, Vk+1 := Vk ∪
{

[Gj, V ];V ∈ Vk and j ≥ 0
}

. (3.11)
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We also define the vector spaces Vk(x0) := span{V (x0);V ∈ Vk} and we set

D(x0) := ∪k≥1Vk(x)

for each x0 ∈ dom(A∞).

Note that under Assumption C2, all the Lie brackets in (3.11) are well-defined as

vector fields dom(A∞) → dom(A∞).

Proposition 3.1.8 If Assumptions H1-A1-A2-A3-B1-B2-C1-C2-C3 hold true, then

for each x0 ∈ dom(A∞), we have

J
+
0→t(x0)V (Xx0

t ) = V (x0) +

∫ t

0

J
+
0→s(x0)[G0, V ](Xx0

s )ds

+
∞
∑

ℓ=1

√

λℓ

∫ t

0

J
+
0→s(x0)[Gℓ, V ](Xx0

s )dβℓ
s; 0 ≤ t ≤ T, (3.12)

where V ∈ Vn for n = 0, 1, 2, . . . .

Proof. At first, we take V ∈ V0. Assumptions C2-C3 yield V (Xx0

· ) ∈ S(T )Eκ,

[G0, V ](Xx0

· ) ∈ S(T )E, and [Gℓ, V ](Xx0

· ) ∈ S(T )E a.s. Moreover, change of variables

for Young integrals yields

V (Xx0

t ) = V (x0)+

∫ t

0

∇V (Xx0

s )G0(X
x0

s )ds+
∞
∑

ℓ=1

√

λℓ

∫ t

0

∇V (Xx0

s )Gℓ(X
x0

s )dβℓ
s (3.13)

where G0(X
x0

s ) = A(Xx0

s ) + F (Xx0

s ); 0 ≤ s ≤ T . We observe Young-Loeve’s inequality

and A1-A2-A3 allow us to state the Young integral in (3.13) is well-defined. Recall

the Lie bracket [G0, V ](Xx0

s ) = ∇V (Xx0

s )G0(X
x0

s )−∇G0(X
x0

s )V (Xx0

s ), so that we can

actually rewrite

V (Xx0

t ) = V (x0) +

∫ t

0

(

∇G0(X
x0

s )V (Xx0

s ) + [G0, V ](Xx0

s )
)

ds

+
∞
∑

ℓ=1

√

λℓ

∫ t

0

∇V (Xx0

s )Gℓ(X
x0

s )dβℓ
s

where ∇G0(X
x0

s )V (Xx0

s ) = A(V (Xx0

s )) + ∇F (Xx0

s )V (Xx0

s ); 0 ≤ s ≤ T . This implies
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that V (Xx0) can be written as the mild solution of

V (Xx0

t ) = S(t)V (x0) +

∫ t

0

S(t− s)
(

∇F (Xx0

s )V (Xx0

s ) + [G0, V ](Xx0

s )
)

ds

+
∞
∑

ℓ=1

√

λℓ

∫ t

0

S(t− s)∇V (Xx0

s )Gℓ(X
x0

s )dβℓ
s

so that

S(−t)V (Xx0

t ) = V (x0) +

∫ t

0

S(−s)
(

∇F (Xx0

s )V (Xx0

s ) + [G0, V ](Xx0

s )
)

ds

+
∞
∑

ℓ=1

√

λℓ

∫ t

0

S(−s)∇V (Xx0

s )Gℓ(X
x0

s )dβℓ
s; 0 ≤ t ≤ T. (3.14)

The adjoint operator J
+,∗
0→t(x0) yields

〈J+
0→t(x0)V (Xx0

t ), y〉E = 〈V (Xx0

t ),J+,∗
0→t(x0)y〉S(t)E = 〈S(−t)V (Xx0

t ), R∗
t (x0)y〉E

for a given y ∈ E. Hence, integration by parts yields

〈J+
0→t(x0)V (Xx0

t ), y〉E = 〈V (x0), y〉E +

∫ t

0

〈dS(−s)V (Xx0

s ), R∗
s(x0)y〉E

+

∫ t

0

〈S(−s)V (Xx0

s ), dR∗
s(x0)y〉E; 0 ≤ t ≤ T.

By combining (3.14) and (3.2), we conclude that (3.12) holds true for V ∈ V0. Now,

we take V = [Gi, Gp] or V = [G0, Gp] for p, i = 1, 2, . . . . In this case, C2-C3 yield

V (Xx0

· ) ∈ S(T )E, [G0, V ](Xx0

· ) ∈ S(T )E, and [Gℓ, V ](Xx0

· ) ∈ S(T )E. From the above

argument for vector fields in V0, we learn that in order to prove (3.12), it is sufficient

to ensure that the Young integral in the right-hand side of (3.13) is well-defined, i.e.,

sup
ℓ≥1

‖δ∇V (Xx0

· )Gℓ(X
x0

· )‖α,0 <∞ a.s. (3.15)

At first, we observe if W : dom(A∞) → dom(A∞) is smooth, then

∇[G0,W ](x)(h) = ∇2W (x)(h,Ax) +∇W (x)A(h) +∇2W (x)(h, F (x))

+∇W (x)∇F (x)h− A∇W (x)h
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−∇2F (x)(h,W (x))−∇F (x)∇W (x)h;h ∈ dom(A∞), (3.16)

and

∇[Gp,W ](x)(h) = ∇2W (x)(h,Gp(x)) +∇W (x)∇Gp(x)(h)

−∇2Gp(x)(h,W (x))−∇Gp(x)∇W (x)(h) (3.17)

for h ∈ dom(A∞) and p ≥ 1. If V = [G0, Gp], we observe

∇V (Xx0

t )Gℓ(X
x0

t ) = −A∇Gp(X
x0

t )Gℓ(X
x0

t )−∇2F (Xx0

t )(Gp(X
x0

t ), Gℓ(X
x0

t ))

−∇F (Xx0

t )∇Gp(X
x0

t )Gℓ(X
x0

t ) +∇2Gp(X
x0

t )(AXx0

t , Gℓ(X
x0

t ))

+∇Gp(X
x0

t )AGℓ(X
x0

t ) +∇2Gp(X
x0

t )(F (Xx0

t ), Gℓ(X
x0

t ))

+∇Gp(X
x0

t )∇F (Xx0

t )Gℓ(X
x0

t )

=:
7
∑

i=1

Ii,p,ℓ(t).

Since F,Gi : E → dom(A∞) has bounded derivatives of all orders (by C2), we shall

use Lemma 3.1.4 to get

‖I1,p,ℓ(t)− I1,p,ℓ(s)‖E ≤ ‖∇Gp(X
x0

t )Gℓ(X
x0

t )−∇Gp(X
x0

t )Gℓ(X
x0

s )‖dom(A)

+ ‖A∇Gp(X
x0

t )Gℓ(X
x0

s )−A∇Gp(X
x0

s )Gℓ(X
x0

s )‖E

≤ sup
y∈E

‖∇Gp(y)‖E→dom(A)‖Gℓ(X
x0

t )−Gℓ(X
x0

s )‖E

+ ‖Gp(X
x0

t )−Gp(X
x0

s )‖E→dom(A)‖Gℓ(X
x0

s )‖E

≤ C sup
y∈E

‖∇Gp(y)‖E→dom(A)‖δXx0

ts ‖E

+ C sup
y∈E

‖∇Gp(y)‖E→dom(A)‖δXx0

ts ‖E(1 + ‖Xx0‖0,0),

‖I2,p,ℓ(t)− I2,p,ℓ(s)‖E ≤ ‖∇2F (Xx0

t )(Gp(X
x0

t ), Gℓ(X
x0

t ))−∇2F (Xx0

s )(Gp(X
x0

t ), Gℓ(X
x0

t ))‖E

+ ‖∇2F (Xx0

s )(Gp(X
x0

t ), Gℓ(X
x0

t ))−∇2F (Xx0

s )(Gp(X
x0

s ), Gℓ(X
x0

t ))‖E

+ ‖∇2F (Xx0

s )(Gp(X
x0

s ), Gℓ(X
x0

t ))−∇2F (Xx0

s )(Gp(X
x0

s ), Gℓ(X
x0

s ))‖E

≤ ‖∇2F (Xx0

t )−∇2F (Xx0

s )‖(2),0→0‖Gp(X
x0

t )‖E‖Gℓ(X
x0

t )‖E
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+ ‖∇2F (Xx0

s )‖(2),0→0‖Gp(X
x0

t )−Gp(X
x0

s )‖E‖Gℓ(X
x0

t )‖E

+ ‖∇2F (Xx0

s )‖(2),0→0‖Gℓ(X
x0

t )−Gℓ(X
x0

s )‖E‖Gp(X
x0

s )‖E

≤ C‖δXx0

ts ‖E(1 + ‖Xx0‖0,0)2

+ 2C sup
y∈E

‖∇2F (y)‖(2),0→0(1 + ‖Xx0‖0,0)‖δXx0

ts ‖E ,

‖I3,p,ℓ(t)− I3,p,ℓ(s)‖E ≤ ‖∇F (Xx0

t )∇Gp(X
x0

t )Gℓ(X
x0

t )−∇F (Xx0

s )∇Gp(X
x0

t )Gℓ(X
x0

t )‖E

+ ‖∇F (Xx0

s )∇Gp(X
x0

t )Gℓ(X
x0

t )−∇F (Xx0

s )∇Gp(X
x0

s )Gℓ(X
x0

t )‖E

+ ‖∇F (Xx0

s )∇Gp(X
x0

s )Gℓ(X
x0

t )−∇F (Xx0

s )∇Gp(X
x0

s )Gℓ(X
x0

s )‖E

≤ C sup
y∈E

|∇2F (y)|(2),0→0‖δXx0

ts ‖E(1 + ‖Xx0‖0,0)

+ C sup
y∈E

‖∇F (y)‖ sup
y∈E

‖∇2Gp(y)‖(2),0→0‖δXx0

ts ‖E(1 + ‖Xx0‖0,0),

‖I4,p,ℓ(t)− I4,p,ℓ(s)‖E ≤ ‖∇2Gp(X
x0

t )(AXx0

t , Gℓ(X
x0

t ))−∇2Gp(X
x0

s )(AXx0

t , Gℓ(X
x0

t ))‖E

+ ‖∇2Gp(X
x0

s )(AXx0

t , Gℓ(X
x0

t ))−∇2Gp(X
x0

s )(AXx0

s , Gℓ(X
x0

t ))‖E

+ ‖∇2Gp(X
x0

s )(AXx0

s , Gℓ(X
x0

t ))−∇2Gp(X
x0

s )(AXx0

s , Gℓ(X
x0

s ))‖E

≤ sup
y∈E

‖∇3Gp(y)‖(3),0→0‖δXx0

ts ‖E‖Xx0‖0,dom(A)(1 + ‖Xx0‖0,0)

+ sup
y∈E

‖∇2Gp(y)‖(2),0→0‖δXx0

ts ‖dom(A)(1 + ‖Xx0‖0,0)

+ sup
y∈E

‖∇2Gp(y)‖(2),0→0‖δXx0

ts ‖E(1 + ‖Xx0‖0,dom(A)),

‖I5,p,ℓ(t)− I5,p,ℓ(t)‖E ≤ ‖∇Gp(X
x0

t )AGℓ(X
x0

t )−∇Gp(X
x0

s )AGℓ(X
x0

t )‖E

+ ‖∇Gp(X
x0

s )AGℓ(X
x0

t )−∇Gp(X
x0

s )AGℓ(X
x0

s )‖E

≤ C sup
y∈E

‖∇2Gp(y)‖(2),0→0‖δXx0

ts ‖E‖Gℓ(X
x0

t )‖dom(A)

+ C sup
y∈E

‖∇Gp(y)‖ sup
y∈E

‖∇Gℓ(y)‖E→dom(A)‖δXx0

ts ‖E

≤ C sup
y∈E

‖∇2Gp(y)‖(2),0→0‖δXx0

ts ‖E(1 + ‖Xx0‖0,dom(A))

+ C sup
y∈E

‖∇Gp(y)‖ sup
y∈E

‖∇Gℓ(y)‖E→dom(A)‖δXx0

ts ‖E ,
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‖I6,p,ℓ(t)− I6,p,ℓ(s)‖E ≤ ‖∇2Gp(X
x0

t )(F (Xx0

t ), Gℓ(X
x0

t ))−∇2Gp(X
x0

s )(F (Xx0

t ), Gℓ(X
x0

t ))‖E

+ ‖∇2Gp(X
x0

s )(F (Xx0

t ), Gℓ(X
x0

t ))−∇2Gp(X
x0

s )(F (Xx0

s ), Gℓ(X
x0

s ))‖E

≤ C sup
y∈E

‖∇3Gp(y)‖(3),0→0‖δXx0

ts ‖E(1 + ‖Xx0‖0,0)2

+ C sup
y∈E

|∇2Gp(y)‖(2),0→0‖δXx0

ts ‖2E ,

‖I7,p,ℓ(t)− I7,p,ℓ(s)‖E ≤ ‖∇Gp(X
x0

t )∇F (Xx0

t )Gℓ(X
x0

t )−∇Gp(X
x0

s )∇F (Xx0

t )Gℓ(X
x0

t )‖E

+ ‖∇Gp(X
x0

s )∇F (Xx0

t )Gℓ(X
x0

t )−∇Gp(X
x0

s )∇F (Xx0

s )Gℓ(X
x0

s )‖E

≤ C sup
y∈E

‖∇2Gp(y)‖(2),0→0‖δXx0

ts ‖E sup
y∈E

‖∇F (y)‖(1 + ‖Xx0‖0,0)

+ C sup
y∈E

‖∇2F (y)‖(2),0→0‖δXx0

ts ‖E(1 + ‖Xx0‖0,0)

+ C sup
y∈E

‖∇F (y)‖‖δXx0

ts ‖E .

This shows that (3.15) holds true for vector fields of the [G0, Gp]; p = 1, 2, . . . .

A similar computation also shows (3.15) for vector fields of the form [Gj, Gp]; j, p =

1, 2, . . . . This shows that (3.12) holds for vectors fields V ∈ V1. By using (3.16) and

(3.17) and iterating the argument, we recover (3.15) for vector fields V ∈ Vn;n ≥ 0

and hence we conclude the proof.

3.2 Doob-Meyer-type decomposition

Let us now turn our attention to a Doob-Meyer decomposition in the framework

of integral equations involving a trace-class FBM. This will play a key step in the proof

of the existence of density of Theorem 0.0.4. We recall the parameters γ̃, δ, λ are fixed

according to (2.17). In a rather general situation, Friz and Schekar [16] have developed

the concept of true roughness which plays a key role in determining the uniqueness of

the Gubinelli’s derivative in rough path theory. For sake of completeness, we recall the

following concepts borrowed from [17] and adapted to our infinite-dimensional setting.
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For a given g ∈ W γ̃,δ,∞
λ,T , we write

Gt =
∞
∑

j=1

√

λjejg
j
t ; 0 ≤ t ≤ T.

Of course, G ∈ C γ̃
1 (U) for every g ∈ W γ̃,δ,∞

λ,T .

Definition 3.2.1 Given a path G ∈ C γ̃
1 (U), we say that Y ∈ C γ̃

1 (R) is controlled by

G if there exists Y ′ ∈ C γ̃
1 (U

∗) so that the remainder term given implicitly through the

relation

δYts = Y ′
sδGts +RY

ts, s < t

satisfies ‖RY ‖2γ̃ <∞.

In our context, we restrict the analysis to the following class of derivatives. Let

C
β,∞
1 be the set of all sequences of real-valued functions on [0, T ], (fi)

∞
i=1 such that

supi≥1 ‖δfi‖β < ∞ for 0 < β ≤ 1. Let Y ′ : [0, T ] → U∗ be a U∗-valued path such that

(Y ′i)∞i=1 ∈ C
γ̃,∞
1 where Y ′i = Y ′(ei); i ≥ 1 . We then observe if

δYts = Y ′
sδGts +RY

ts, s < t (3.18)

then, δYts =
∫ t

s
Y ′
rdGr =

∑∞
i=1

√
λi
∫ t

s
Y ′i
r dg

i
r is a well defined Young integral, where

the remainder is characterized by

RY
ts =

∞
∑

j=1

√

λj

∫ t

s

(

Y ′j
r − Y ′j

s

)

dgjr

and ‖RZ‖2γ̃ < ∞ due to Young-Loeve inequality. The class of all pairs (Y, Y ′)

of the form (3.18) constitutes a subset of controlled paths which we denote it by

D
2γ̃
G
([0, T ];U∗). Next, we recall the following concept of truly rough.

Definition 3.2.2 For a fixed s ∈ (0, T ], we call a 1
γ̃
-rough path G : [0, T ] → U , ”rough

at time s” if

∀v∗ ∈ U∗ non-null : lim sup
t↓s

|〈v∗, δGts〉|
|t− s|2γ̃ = +∞.

If G is rough on some dense subset of [0, T ], then we call it truly rough.

Lemma 3.2.3 The U-valued trace-class FBM given by (1.9) is truly rough.
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Proof. The proof follows the same lines of Example 2 in [16] together with the law

of iterated logarithm for Gaussian processes as described by Th 7.2.15 in [28]. We left

the details to the reader.

The following result is given by Th. 6.5 in Friz and Hairer [15].

Theorem 3.2.4 Assume that G is a truly rough path. Let (Y, Y ′) and (Ỹ , Ỹ ′) be

controlled paths in D
2γ̃
G
([0, T ];U∗) and let N, Ñ be a pair of real-valued continuous

paths. Assume that

∫ ·

0

Y dG+

∫ ·

0

Ndt =

∫ ·

0

Ỹ dG+

∫ ·

0

Ñdt

on [0, T ]. Then,
(

Y, Y ′
)

=
(

Ỹ , Ỹ ′
)

and N = Ñ on [0, T ].

3.3 Main Result: Proof of Theorem 0.0.4

We are now in position to proof the main result of this thesis.

Proof. Fix x0 ∈ dom(A∞) ⊂ E and t ∈ (0, T ]. By Lemma 3.1.6,

γt =
(

T ◦ J0→t(x0)
)

Ct
(

T ◦ J0→t(x0)
)∗

so that it is sufficient to prove that γt is positive definite a.s. For this purpose, we start

by noticing that

〈γtb, b〉Rd =
〈

Ct
(

T ◦ J0→t(x0)
)∗
b,
(

T ◦ J0→t(x0)
)∗
b
〉

E
; b ∈ R

d.

We observe that
(

T ◦ J0→t(x0)
)∗

is one-to-one. By assumption, KerT ∗ = {0} and

clearly KerJ∗
0→t(x0) = {0}. Indeed, if y ∈ kerJ∗

0→t(x0), then for every x ∈ E

〈y, S(t)x〉E = 〈y,J0→t(x0)J
+
0→t(x0)S(t)x〉E

= 〈J+,∗
0→t(x0)J

∗
0→t(x0)y, S(t)x〉S(t)E = 0.

This implies y ∈
(

S(t)E
)⊥

= {0} (the orthogonal complement in E). Therefore, it is

sufficient to check

Ct is positive definite a.s. (3.19)
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This follows from the classical argument in the Brownian motion setting (see e.g Th

2.3.2 in [31] or Th 6.1 in [38]) combined with Theorem 3.2.4. For completeness, we

provide the details. We argue by contradiction. Let us suppose there exists ϕ0 6= 0

such that

P
{

〈Ctϕ0, ϕ0〉E = 0
}

> 0. (3.20)

Take ϕ ∈ E. By (3.7), we have

〈Ctϕ, ϕ〉E = αH

∞
∑

ℓ=1

∫ t

0

∫ t

0

〈

J
+
0→u(x0)Gℓ(X

x0

u ), ϕ
〉

E

〈

J
+
0→v(x0)Gℓ(X

x0

v ), ϕ
〉

E

|u− v|2H−2dudv. (3.21)

Let us define

Ks = span{J+
0→r(x0)Gℓ(X

x0
r ); 0 ≤ r ≤ s, ℓ ∈ N}; 0 < s ≤ T,

and we set K0+ = ∩s>0Ks. The Brownian filtration F allows us to make use of the

Blumental zero-one law to infer that K0+ is deterministic1 a.s. Let N > 0 be a

natural number and let Ns be the (possibly infinite) dimension of the quotient space

Ks

K0+
. Consider the non-decreasing adapted process

{

min{N,Ns}, 0 < s ≤ T
}

and the

stopping time

S = inf
{

0 < s ≤ T ;min {N,Ns} > 0
}

.

One should notice that S > 0 a.s. If S = 0 on a set A of positive probability, then for

every ǫ > 0 there exists 0 < s ≤ T such that

ǫ > s > 0 and min{Ns, N} > 0

on A. This means that we should have Ns > 0 for every s ∈ (0, T ] on A. This implies

that with a positive probability the dimension of Ks

K0+
is strictly positive which is a

contradiction.

We now claim that K0+ is a proper subset of E. Otherwise, K0+ = E which

implies Ks = E for every 0 < s ≤ T . In this case, if ϕ ∈ E is such that 〈Ctϕ, ϕ〉E = 0

1We say that a random subset A ⊂ Eκ is deterministic a.s when all random elements a ∈ A are

constant a.s
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with positive probability, then
〈

J
+
0→r(x0)Gℓ(X

x0

r ), ϕ
〉

E
= 0 for every r ∈ [0, s] and

ℓ ∈ N with positive probability which in turn would imply that ϕ ∈ K⊥
s = E⊥ so

that ϕ = 0. This contradicts (3.20) (see (3.21)). Now we are able to select a non-null

ϕ ∈ E∗ such that K0+ ⊂ Kerϕ. At first, we observe ϕ(Ks) = 0 for every 0 ≤ s < S so

that

〈J+
0→sGℓ(X

x0

s ), ϕ〉E = 0 ∀ℓ ≥ 1 and 0 ≤ s < S. (3.22)

We claim

〈J+
0→s(x0)V (Xx0

s ), ϕ〉E = 0 for every 0 ≤ s < S, V ∈ Vk, k ≥ 0, (3.23)

where we observe V in (3.23) takes values on S(T )E. We show (3.23) by induction.

For k = 0, (3.22) implies (3.23). Let us assume (3.23) holds for k − 1. Let V ∈ Vk−1.

By Proposition 3.1.8,

0 = 〈J+
0→s(x0)V (Xx0

s ), ϕ〉E

= 〈V (x0), ϕ〉E +

∫ s

0

〈J+
0→r(x0)[G0, V ](Xx0

r ), ϕ〉Edr

+
∞
∑

ℓ=1

√

λℓ

∫ s

0

〈J+
0→r(x0)[Gℓ, V ](Xx0

r ), ϕ〉Edβℓ
r

where 〈V (x0), ϕ〉E = 0 by the induction hypothesis. By Theorem 3.2.4, we must have

〈J+
0→r(x0)[G0, V ](Xx0

r ), ϕ〉E = 〈J+
0→r(x0)[Gℓ, V ](Xx0

r ), ϕ〉E = 0

for every 0 ≤ r ≤ s and 0 ≤ s < S and ℓ ≥ 1. This proves (3.23). Clearly, (3.23)

implies

ϕ(Vk(x0)) = 0 for every non-negative integer k (3.24)

and hence the Hörmander’s bracket condition implies ϕ = 0. By Lemma 3.1.7, this

concludes the proof.

Remark 3.3.1 The assumption that S(t)E is dense in E seems a bit restrictive but

it covers a rather general class of examples. For instance, if (A, dom (A)) is a densely
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defined self-adjoint operator such that

sup
x∈dom(A)/{0}

〈x,Ax〉E
‖x‖E

<∞

then (A, dom A) is the generator of a self-adjoint analytic semigroup (see Th 7.3.4 and

Example 7.4.5 in [5]). Since analytic semigroups are one-to-one, S∗(t) is one-to-one

for every t ≥ 0 and hence, S(t)E is dense in E for every t ≥ 0. The heat semigroup on

L2 has dense range (see [13]). More generally, assume there exists a separable Hilbert

space W densely and continuously embedded into E with compact imbedding. Assume

that

• A : W → W ∗ is continuous and its restriction to W , AE : dom(AE) → E where

dom(AE) = {u ∈ W ;Au ∈ E} and AEu = Au; u ∈ dom(AE), is a self-adjoint

operator.

• There exists λ ∈ R and η > 0 such that

(

Au, u
)

W,W ∗
+ λ‖u‖2E ≥ η‖u‖2W

for each u ∈ W .

Then, S(t)E is dense in E for every t ∈ [0, T ]. See e.g [3] for further details.
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