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Resumo

Nesta tese, nés provamos o teorema de Hormander para uma equacgao de evolugao
estocastica dada por um movimento Browniano fracionério de classe trago com o ex-

$ < H < 1 ¢ um semigrupo analitico {S(t);¢ > 0} em um espaco

poente de Hurst
de Hilbert separavel E. Ao contrario do caso classico de dimensao finita, o operador
Jacobiano em EDPs estocésticas parabolicas é tipicamente nao invertivel, o que causa
uma grande dificuldade em expressar a matriz de Malliavin em termos de um processo
adaptado. Através de uma condi¢ao de Hérmander sobre os colchetes de Lie aplicados
aos campos da equagdo e uma suposi¢ao adicional de que S(¢)E é denso, provamos
que a lei das projecoes finito-dimensionais da EDP estocéstica no tempo ¢ admite uma
densidade com respeito a medida de Lebesgue. O argumento baseia-se em técnicas de

"rough path" no sentido de Gubinelli (Controlling rough paths. J. Funct. Anal (2004))

e uma analise do espaco Gaussiano do movimento Browniano fracionario.

Palavras-chave: Equacao de evolugao estocéstica, Movimento Browniano fracionario,

Calculo de Malliavin, Teorema de Hormander.
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Abstract

In this thesis, we prove the Héormander’s theorem for a stochastic evolution equation
driven by a trace-class fractional Brownian motion with Hurst exponent % < H <
1 and an analytical semigroup {S(¢);t > 0} on a given separable Hilbert space E.
In contrast to the classical finite-dimensional case, the Jacobian operator in typical
parabolic stochastic PDEs is not invertible which causes a severe difficulty in expressing
the Malliavin matrix in terms of an adapted process. Under Hérmander’s bracket
condition on the vector fields of the stochastic PDE and the additional assumption that
S(t)E is dense, we prove the law of finite-dimensional projections of the stochastic PDE
at time ¢ has a density w.r.t Lebesgue measure. The argument is based on rough path
techniques in the sense of Gubinelli (Controlling rough paths. J. Funct. Anal (2004))

and a suitable analysis on the Gaussian space of the fractional Brownian motion.

Keywords: Stochastic evolution equation, Fractional Brownian motion, Malliavin

calculus, Hormander’s theorem.
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Introduction

Let Ag, Ay, ..., A, be C'-vector fields on R?. Let V : R? — R? be a second-order

differential operator of the following form
pol i A2+ A
23 Z "

For a given function f, under elliptic conditions on the vector fields, it had been known

for some time that

%—?(t,x) =Vu(t,z); ift>0,z¢eR?

1
uw(0,2) = f(x); ifz € R? )

admits a smooth fundamental solution. In the celebrated 1967’s paper, Lars Horman-
der introduced a much weaker condition on the vector fields in such way that (1) admits
a smooth C'*°-solution. This important result had an immediate and profound impact
on Probability theory, more specifically, on the study of the infinitesimal behavior of
Markov processes defined via the so-called stochastic differential equations (henceforth
abbreviated by SDEs) previously introduced by Kiyoshi Itd in 1942. After Horman-
der’s fundamental work, probabilists made use of purely analytical arguments to infer
smoothness of Feller’s semigroups associated with strong Markov processes driven by
second order differential operators.

This was the situation until Paul Malliavin has published his groundbreaking
work [27] on what he called a stochastic calculus of variations and nowadays known

as Malliavin calculus. His motivation was to investigate the existence of smooth den-



sities for laws of Markov diffusions by using purely probabilistic techniques. In this
direction, based on previous works by Leonard Gross [21] on the so-called Abstract
Wiener spaces, Malliavin has introduced a differential structure on the Wiener space
in such way that typical functionals of the Brownian motion are naturally smooth (in
the sense of Malliavin calculus) although not Frechét differentiable like solutions of
SDEs. The main insight was the observation that typical functionals of the Brownian
motion are differentiable in certain directions (the Cameron-Martin space) whose shifts
are equivalent to the Wiener measure. More importantly, the so-called Gross-Sobolev
(Malliavin) derivative D admits an adjoint operator which lies at the heart of the suc-
cess of the Malliavin calculus via integration by parts formula. His method was based
on the infinite-dimensional Ornstein-Uhlenbeck semigroup and was rather elaborate.
It has since been simplified and extended by many authors and has become a powerful
tool in stochastic analysis.

In order to illustrate the main argument based on Malliavin calculus and later
highlight the main obstacles in dealing with stochastic partial differential equations
(henceforth abbreviated by SPDEs) driven by the fractional Brownian motion, let
us briefly recall the classical case: Let X be a finite-dimensional SDE written in

Stratonovich form

dX, = Vo(X))dt + ) " Vi(X,) 0 dW (2)
j=1
where Vg, ..., V, are smooth vector fields and (W;)!, is a standard n-dimensional

Brownian motion on a probability space (€2, F,P). Roughly speaking, the Hormander’s
theorem for the SDE (2) is a statement on the relation between smoothness of the law
A P(X; € A) of X; and a geometric condition on the vector fields Vg, ..., V, which
ensures that the solution spreads over the entire space. The first central argument
towards the Hormander’s theorem for the SDE (2) is to find weaker conditions on the
vector fields (beyond ellipticity) to get invertibility of a certain random matrix involving
D. This is achieved by the so-called parabolic Hormander’s bracket condition: In the

sequel, [U, V] denotes the Lie bracket between two smooth vector fields U, V.

Definition 0.0.1 Given an SDE (2), define a family of vector fields ¥ by

Yo ={Vi1<i<n}, Yn="%U{UV;U€E¥% and0<j<n}



Let us also define ¥, (x) = span{V (x);V € ¥.}. We say that (2) satisfies the parabolic

Hérmander condition if Uy ¥%(z) = R? for every x € RY.

Let .#, be the Malliavin matrix

My = (DX, DY Xy) 20 17

1<i,j<n (3)

at a time ¢ > 0, where D’X, is the Gross-Sobolev derivative of X, w.r.t the j-th

Brownian motion. The following result is the basis for the Hérmander’s theorem.

Theorem 0.0.2 Given xg € R? and t € (0,T], assume that X; is smooth in Malliavin

sense with integrable Gross-Sobolev derivatives of all orders and for every p > 1

1
(o) < o 4
det A, p) = 4)
Then, X, has a C*-density w.r.t Lebesque in RY.

The proof of Hérmander’s Theorem 0.0.3 below is based on Theorem 0.0.2, a suitable
linearization of the SDE (2) w.r.t its initial conditions and a quantitative version of
Doob-Meyer decomposition, the so-called Norris’s lemma (|34]). Denote by @, the
(random) solution map to (2) so that X; = ®,(z). It is known that under Assumption
1 below, we do have a flow of smooth maps, namely a two parameter family of maps
O, such that X; = ®,,(X;) for every s < ¢ and such that &, o &;;, = &, and
®, = ®y,. For a given initial condition xy, we then denote by J,; the derivative of ®,,

evaluated at X;. The chain rule implies J,, = J;,Js+ and

dJos = DVo(X¢)Josdt + > DVy(X;)Jog 0 dWY5  Jog =1

Jj=1

where [ is the identity matrix. Higher order derivatives Jé? w.r.t initial conditions can
be defined similarly.
By the composition property Jo: = Js:Jos, we can write Js; = J07tJ(i81, where

the inverse J; ! can be found by solving

dJy) = —Jo ! DVo(Xy)dt — Y~ J5 DVi(X,) o dW; .

Jj=1



Assumption 1 The vector fields Vy, ..., V, are smooth and all their derivatives grow

at most polynomially at infinity. Moreover,

E sup | X <oo, E sup |J0t]p<oo and E sup ]J )|p<oo
0<t<T 0< 0<

for every k > 1, for every initial condition xo, every terminal time T and every p > 1.

The Hérmander’s theorem for the SDE (2) is given by the following result.

Theorem 0.0.3 If the vector fields Vy,...,V, satisfy the Hormander’s bracket con-
ditions and Assumption 1 is satisfied, then the law of X; has a smooth density w.r.t

Lebesgue for every t > 0.

Let us now outline the classical proof of Theorem 0.0.3. The Malliavin matrix associ-

ated with the X; is given by
(&, M) Z/ (€, JoaVi(X,)ds; € € R

Let V' be the d x n-matrix-valued function obtained by concatenating the vector fields

Vj for j =1,...,n. One can check
My = JoCi Ty, (5)

where

t
C = / ToaV(X)V*(X) (J5d) " ds.

0
Representation (5) is due to the fundamental relation J;; = Jo.tJo. 31 so that the invert-
ibility of .#; is equivalent to the invertibility of the so-called reduced Malliavin matrix
C; given by the following quadratic form

(€6.6) = Z/wo X,)ds;€ € R
At this point, a well-known trick (see e.g Lemma 2.3.1 in Nualart [31]) says that

if

Sup, P{(£, Ci§) < e} = O(€") (6)



for every p > 1 and € > 0, then (4) holds true. In order to investigate (6) or even
the simpler question of invertibility, it is important to notice that working with the
reduced Malliavin matrix C; is much simpler than .#;. The reason is that the integrand
in {(&, Jy.Vi(X,))%0 < s < t} is adapted w.r.t driving Brownian motion noise along

2 is not adapted which

a given time interval [0,¢]. In strong contrast, (&, Js,V;(X5))
prevents us to make use of standard stochastic calculus techniques. Working with
C; yields the following argument: For a given smooth vector field G, let us define

Za(t) = (&, Jo, G(Xy)). In this case, Jensen’s inequality yields

ec =3 [ 1zmeias = [ 1761s) )

for a constant C' which only depends on t. By Ito’s formula, the process Zg has the

nice property that it solves the SDE written in Itd’s form

dZq(s) = (Z{QVO](S) + Z §Z[[G,V7-],vj](5)> ds + Z Z[GV‘/j](S)dW] (s). (8)
=1 j=1

At this point, the standard argument is the following: If (£, C;£) is small, then (7) jointly
with Norris’s Lemma ([34]) and (8) ensure that {[V}, Vol, [V}, Vi), Vil, [V}, Vils 1 < k <
n,1 < j < n} is small too. Since Hérmander’s bracket condition ensures that these

quantities cannot be small simultaneously, then (6) must follow.

Discussion of the literature

The goal of this thesis is to prove the Hérmander’s theorem for a SPDE driven
by a trace-class fractional Brownian motion with Hurst exponent % < H < 1. The
novelty of our work is to handle the infinite-dimensional case jointly with the fractional
case which requires a new set of ideas. For fractional Brownian motion driving noise
with H > % and under ellipticity assumptions on the vector fields {V;;0 < i < n},
the existence and smoothness of the density for SDEs are shown by Hu and Nualart
[24] and Nualart and Saussereau [32]. The hypoelliptic case for H > 1 is treated by

Baudoin and Hairer [1] based on previous papers of Nualart and Saussereau [33] and

the integrability of the Jacobian given by Hu and Nualart [24]. When } < H < %,



integrability of the Jacobian given by Cass, Litterer and Lyons |7] yields smoothness of
densities in the elliptic case. The hypoelliptic case was treated in a series of works by
Cass and Friz |8], Cass, Friz and Victoir [9] and culminating with Cass, Hairer, Litterer
and Tindel [7] who provide smoothness of densities for a wide class of Gaussian noises
including FBM with %‘ < H< %

The main technical problem with the generalization of Hormander’s theorem to
parabolic SPDEs is the fact that the Jacobian Jy; is typically not invertible regardless
the type of noise. The existence of densities for images of SPDEs solutions through
linear functionals and driven by Brownian motion was firstly tackled by Baudoin and
Teichmann [2| where the linear part of the SPDE generates a group of bounded linear
operators on a Hilbert space. In this case, the Jacobian becomes invertible. Shamarova
[38] studies the existence of densities for a stochastic evolution equation driven by
Brownian motion in 2-smooth Banach spaces. Recently, based on a pathwise Fubini
theorem for rough path integrals, Gerasimovics and Hairer [20] overcome the lack of
invertbility of the Jacobian for SPDEs driven by Brownian motion. They show that
the Malliavin matrix is invertible on every finite-dimensional subspace and jointly with
a purely pathwise Norris’s lemma developed by Cass, Gerasimovics and Hairer [20],
they prove that laws of finite-dimensional projections of SPDE solutions driven by
Brownian motion admit smooth densities w.r.t Lebesgue measure. In contrast to [2],
the authors are able to prove existence and smoothness of densities for truly parabolic
systems generated by semigroups and SPDEs driven by Brownian motion under a

priory integrability conditions on the Jacobian.

Main contributions

In this thesis, we investigate the existence of densities for finite-dimensional pro-
jections of SPDEs driven by fractional Brownian motion (henceforth abbreviated by

FBM) with Hurst parameter % < H < 1. More precisely, let
dX, = (A(Xy) + F(Xy))dt + G(X,;)dB, (9)

be a SPDE taking values on a separable Hilbert space E, where (A, dom(A)) is the

infinitesimal generator of an analytic semigroup {S(t);t > 0} on E, B is a trace-



class fractional Brownian motion taking values a separale Hilbert space U with Hurst

parameter % < H < 1 and F,G are smooth coefficients. Let 7 : E — R be a
bounded and surjective linear operator. The goal is to prove, under Hormander’s

bracket conditions, that the law of
T(X:) has a density w.r.t Lebesgue

for every t > 0. In this thesis, we obtain the proof of this result under the additional
assumption that the analytical semigroup has a dense range in £ at a given time ¢ > 0.
To the best of our knowledge, this is the first result of hypoellipticity for SPDEs driven
by FBM. The result is build on a carefully analysis of the It6 map (solution map)

B+ X(B)

defined on a suitable abstract Wiener space associated with a trace-class FBM B with
parameter % < H < 1 and taking values on suitable space of increments. By means of
rough path techniques, it is shown that B — X (B) is Frechét differentiable and hence
differentiable in sense of Malliavin calculus. Even though the noise B is more regular
than Brownian motion (in the sense of Holder regularity), the rough path formalism
in the sense of Gubinelli [17, 18] allows us to obtain better estimates for the Itd6 map
compared to the classical Riemann sum approach [39] or other more sophisticated
frameworks based on fractional calculus [29).
Let us define
Go(z) := Az + F(x); x € dom(A™).

where dom(A*) = N,>;dom(A"™) is equipped with the projective limit topology asso-
ciated with the graph norm of dom(A). Given the SPDE (9), define a collection of
vector fields V, by

Vo ={Gsi>1}, Vi =V, U{[G;,U};U €V}, and j > 0}.

where G;(z) = G(n;)(x) for some orthonormal basis (1;)%2, of Q2 (U), where Q a trace-

class linear operator on U. We also define the vector spaces Vi (x¢) := span{V (z¢); V €



Vi } and we set

D(xo) = UkZlvk(xo)
for each xy € dom(A>). Let us now state the main result of this work.

Theorem 0.0.4 Fiz xy € dom(A>) and assume that D(xy) is a dense subset of E and
S(t)E is a dense subset of E for a given t € (0,T). Under H1-A1-A2-A3-B1-B2-C1-
C2-C3, if T : E — R? is a bounded linear surjective operator, then the law of T (X°)

has a density w.r.t Lebesque measure in R,

Outline of the thesis: In chapter 1, we establish some preliminary results on the
Gaussian space of trace-class FBM and the associated Malliavin calculus. Chapter 2
presents the main technical results concerning the Malliavin (actually Frechét regular-
ity) of the It6 map and the existence of the right-inverse of the Jacobian. Chapter 3
presents the proof of Theorem 0.0.4.



Chapter 1

Preliminaries on the Gaussian space of

fractional Brownian motion

1.1 The fractional Brownian motion

The fractional Brownian motion (henceforth abbreviated by FBM) with Hurst

parameter 0 < H < 1 is a centered Gaussian process with covariance

Rp(t,s) = = ("7 + 27 — |t — s|*).

DN | —

Throughout this paper, we fix £ < H < 1. Let 8 = {;0 < ¢ < T} be a FBM defined
on a complete probability space (2, F,[P). Let £ be the set of all step functions on
[0, T] equipped with the inner product

(Ljo,g, Ljo,) 2 = Rul(t, s).

One can check (see e.g Chapter 5 in [31] or Chapter 1 in [30]) for every ¢, ¢ € &, we

have

() 0)n = an / / I — 212 () () dur (1.1)

where ay := H(2H — 1). Let H be the reproducing kernel Hilbert space associated
with FBM, i.e., the closure of £ w.r.t (1.1). The mapping 1y, — f; can be extended
to an isometry between H and the first chaos {5(¢);p € H}. We shall write this



isometry as ().

Let us define the following kernel
1 t 3 1
Ky(t,s) = cHs2H/ (u—s)?2u"2du; s < t, (1.2)

H(2H—-1)
beta(2—2H,H—1)

for s > t. From (1.2), we have

where cy = < ) * and beta denotes the Beta function. We set K (t,s) =0

221, 5) = cH<§>H_;(t RS

Nl

Consider the linear operator K3, : £ — L*([0,T]; R) defined by

(K59)(s) = / 028 o< <

We observe (Kj1py)(s) = Ku(t,s)Lpg(s). It is well-known (see e.g [31]) that K7j

can be extended to an isometric isomorphism between H and L?([0, T]; R). Moreover,

Blp) = / (K (t)duwg: o € H, (1.3)

where

we = B((K5) ™ (L)) (1.4)

is a real-valued Brownian motion. From (1.3),
t
B = / Ki(t,$)dw, 0 <t < T,
0

and (1.4) implies both 8 and w generate the same filtration. Lastly, we recall that H is
a linear space of distributions of negative order. In order to obtain a space of functions

contained in #H, we consider the linear space |H| as the space of measurable functions

f:[0,7] — R such that

112 = an / / OIIF ()l — sP"2dsdt < oo, (15)

for a constant ay > 0. The space |H| is a Banach space with the norm (1.5) and

10



isometric to a subspace of H which is not complete under the inner product (1.1).

Moreover, £ is dense in |H|. The following inclusions hold true
L7 ([0, T];R) = [H] = H. (1.6)
and

ng—aH/ / — o2 () g v)dudv (1.7)

for f,g € L#([0,T]; R). Moreover, there exists a constant C' such that

Il =c [ 1 sk (18)

1
2

where 17{{_ is the right-sided fractional integral given by

H-1L1

I f(x) == 1)/:f@)(S—x)H—%ds;ogng.

I'(H -1

See Lemma 1.6.6 and (1.6.14) in [30].

1.2 Malliavin Calculus on Hilbert spaces

Throughout this thesis, we fix a self-adjoint, non-negative and trace-class operator
Q@ : U — U defined on a separable Hilbert space U. Then, there exists an orthonotmal
basis {e;;7 > 1} of U and eigenvalues {\;;i > 1} such that

Qei = Nieg;i > 1

and trace Q =Y ;- Ay < +00 such that A\, > 0 for every k > 1. Let Uy := Q2(U) be

the linear space equipped with the inner product

_1 _1
(U0, v0)o = (Q 2ug, Q™ 2wy, )u; U, vo € Uy

where Q% is the inverse of Q2. Then, (U, (-, -)o) is a separable Hilbert space with an
orthonormal basis {v/Ageg; k£ > 1}.

11



Let W be a @)-Brownian motion given by

Wt = Z\/Xkekwf;t Z 0

k>1

where (w"*);>1 is a sequence of independent real-valued Brownian motions. Let (8%)3>1

be a sequence of independent FBM where 3% is associated with w* via (1.3), i.e.,

t
BE = / Ky(t,s)dw®;0<t<T.
0

We then set
B, := Z Ve 0 <t <T. (1.9)
k=1

For separable Hilbert spaces E; and Es, let us denote Lo(F1; Ey) as the space of all
Hilbert-Schmidt operators from F; to Fs equipped with the usual inner product. Let F
be the sigma-field generated by {B(¢); p € H® L2(Up, R)} where B : H® Lo(Uy,R) —
L?(Q, F,P) is the linear operator defined by

B(®) := /T d(t)dB, = i /T(K}}@’“)(t)dwf; d € H® Ly(Up,R),
0 =1 Y0

where

=D/ Ney)i > 1.

We recall that H® Lo(Up, R) is isomorphic to L2(Uy, H). The elements of H® Lo(Up, R)
are described by

Z amj \/)\—mem X hj

m,j=1

where (am;)m; € (*(N?), (h;) is an orthonormal basis for H and we denote
e®@h:yelUy— (e, y)yh.

It is easy to check that E[B(®)B(¥)] = (@, V),w,n) for every &,V € Lo(Up, H).
In this case, (Q, F,P; Loy(Uy, ’H)) is the Gaussian space associated with the isonormal
Guassian process B.

For Hilbert spaces FE; and Es, let C;f(El; E») be the space of all f : E; — F5 such

12



that f and all its derivatives has polynomial growth. Let P be the set of all cylindrical

random variables of the form

F=f(B(p).- .., Blom)) (1.10)

where f € C°(R™;R) an ¢; € Ly(Up,H). The Malliavin derivative of an element of
F € P of the form (1.10) over the Gaussian space (Q,_'F, P; Lo(Uy, 7-[)) is defined by

We observe

0
<DF7 h>£2(U0,H) = Z a_xkf(B“Ol% ) B(gpm))(gok, h>ﬁ2(UO7H)
k=1
d
= &f(B(QOl) + E<901> h>£2(U0,H)7 SR 7B(‘10m) + 6(907717 h)ﬁz(Uo,H)) |€=0'

The k-th derivative is naturally defined as the iterated derivative D¥F for F € P
as a random variable with values in (L£2(Uy, H))®*. For a given separable Hilbert space

E, let P(E) be the set of all cylindrical E-valued random variables of the form

F =Y Fjh,
j=1
where F; € P and hj € Efor j =1,...,n and n > 1. We then define

D'F = DFF@hjk > 1

j=1
A routine exercise yields the following result.

Lemma 1.2.1 The operator D¥ : P(E) C LP(Q; E) — LP(Q; (L2(Up, H))®* ® E) is

closable and densely defined for every p > 1.

For an integer £k > 1 and p > 1, let D*?(E) be the completion of P(E) w.r.t the

semi-norm
k 1/p

1Ellproce) = |EIFIG + Y EIDFI, 4 seien

J=1

13



One can check the family of seminorms satisfies the properties of monotonicity and
compatibility (see Section 1.2, Chapter 2 in [31]). Moreover, D*"1P(E) C D¥4(E) for
p>qand k > 0.

Let us now devote our attention to some criteria for checking when a given func-

tional I : Q — F belongs to the Sobolev spaces D¥?P(E) for p > 1 and k > 1.

Lemma 1.2.2 Let p > 1 and F € L} (4 E) be such that for every x € E one has

loc

(F,z)p € D,P(R). If there exists £ € LY, (2 Lo(Up; H) @ E) such that

loc loc

<D<F, W g, h>£2(UO;H) — (€(u), h) 2y locally (1.11)

for every u € B, h € Lo(Up; H), then F € DP(E) and DF = €.

Proof. Consider the Gaussian space (Q, F,P; Lo(Uy, 7-[)), take a localizing sequence
(Q,, F,) € F x DY4(R) such that F,, = (F,u)g on Q, and €, 1+ Q as n — +o00. Then,
apply Theorem 3.3 given by [36]. =

In view of the Holder path regularity of the underlying noise, it will be useful to
play with Fréchet and Malliavin derivatives. In this case, it is convenient to realize P
as a Gaussian probability measure defined on a suitable Holder-type separable Banach
space equipped with a Cameron-Martin space which supports infinitely many indepen-
dent FBMs. Let Cg°(R;) be the space of smooth functions w : [0,00) — R satisfying
w(0) = 0 and having compact support. Given v € (0,1) and § € (0,1), we define for

every w € C°(R,), the norm

w(t) —w(s)
Wl == sup )
lwlbws := S0 G R e + s

Let W0 be the completion of C°(Ry) w.r.t || - [[yre. We also write WJ° when we
restrict the arguments to the interval [0, T']. It should be noted that ||- Hw%ﬁ is equivalent

to the y-Holder norm on [0, 7] given by

|f|0 + |f|’Y7

We observe L2(Up, H® E) = L2(Ug, H) @ E = E @ Uy @ H = Lo E; L2(Ug; H))
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where

[f(t) = f(s)] 1
= sup —0———, = <7y<L
171 0§s<$§T it — s 2 =7
Moreover, W%’(S is a separable Banach space. Let A = (\;)°; be the sequence of

strictly positive eigenvalues of (). In addition to trace Q@ = > .., A < oo, let us
assume » .o, VA < 00, Let W'z 2 be the vector space of functions g : N — W such
that

o0
gy = D VAillg' g < o0
i=1

Clearly, W,z 92 is a normed space.
Lemma 1.2.3 VVWSOO is a separable Banach space equipped with the norm || - ||y, .6..
T

Proof. Let ||g, — gm||W1,§,oo — 0 as n,m — 4o00. Then, for € > 0, there exists N ()

such that

o0
D VAlg = gl <€
=1

for every n,m > N(¢). Since W%’é is complete, then there exists g : N — W%’5 defined

by ¢ := lim, . g, in WJ° for each i > 1. By construction, we observe that

Y VAl s < Z VNG = ghllwzs + D Vil gl
=1 L =1
< Z \/_ 5 s sl

(ZA) \/_e+sup||gn||wwoo < 0.

For separability, let [@5.0:1 W%"s} = {f : N = W2 || fll2 < oo} be the lr-direct sum
2

of the Banach spaces W;.* where

=

17112 = <Z Hf]HWw>

Since trace () < oo, then

1
| - HW;:(sT,oo < (trace Q)z|| - ||2- (1.12)
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Of course, Uy,>1 ©f_; W%’(S C GB‘;‘;Q/V%’(S and clearly U,>1 ©}_; W]J‘s is a dense subset of

[ &7 Wil
v,0,00

separable and hence (1.12) implies W)’7™ is separable as well. =

. S - . I
,- Since Wy is separable, the previous argument shows [ 72 Wr ]2 is

Lemma 1.2.4 If v € (%,H) and v+ € (H, 1), then there exists a Gaussian prob-

ability measure p>; on W:\Y”%OO. Therefore, there exists a separable Hilbert space H
continuously imbedded into Wl’%oo such that (Wl’%oo,H,,ugf’&) is an abstract Wiener

space.

Proof. From Lemma 4.1 in [23], we know there exists a probability measure i, on
W%"S such that the canonical process is a FBM with Hurst parameter % < H<1as
long as v € (3, H) and v+ 6 € (H,1). Let W™ := [1s1 W2° be the countable
product of the Banach spaces W%"S equipped with the product topology which makes
W%’é’oo as a topological vector space. Let u>% be the product probability measure

@11y, over W equipped with the usual product sigma-algebra. Then, 1 is a

Gaussian probability measure (see e.g Example 2.3.8 in [4]). Moreover, we observe
00 ,6,00
:u'y,(s (W;\/,T ) =L

Indeed, by construction, we can take a sequence of pi s-independent FBMs %;i > 1.
By using the modulus of continuity of FBM, it is well-known that E, || ,BiHW%,,; =

EuwHﬁlHW;,a < oo for every i > 1. Therefore,

& oo
]Ell«f,f’(; Z \/)‘_ZHBZ”W%é = E“%(;HBlHW%,B Z v )\Z < 0

and this proves that 1% is a Gaussian probability measure on the Banach space W;’;’oo.

This shows that we have an abstract Wiener space structure for u>%. =
In the sequel, with a slight abuse of notation, we define K3, : £ ® L5(Up, R) —
L2([0,T); £5(Uy,R)) as follows

T
0
K (h @ o) (s) = / h(t) - Knlt,s)tg; b € E.p € L3(U, ).
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Clearly,

(K5 (h1 ® 1), K(ha ® 02)) r2(j0,11:20(00,R) = ((h1 @ 1), (ha @ ©2))nersUsR)

for every hi,hy € € and 1,92 € Lo(Up,R) and hence we can extend Kj, to an
isometric isomorphism from H ® L£5(Up, R) to L2([0, T]; L2(Us,R)). Let us also denote
Kp : L*([0,T]; £2(Uo,R)) — H by

Kuf(t) = \/A_i/olt Kp(t,s)fo(e;)ds;0 <t <T,i>1,

for f € Lz([O, T); Lo(Up, R)), where H := Range Ky is the Hilbert space equipped with

the norm
T 00 oo
1K f Iz = /0 1ol Zawomyds = D Al F(elFaqomm = Y AllKuaf (el
i=1 =1
where H := Range K and
t
Krag(t) == / Ky(t,s)g(s)ds;0 <t <T,
0
for g € L*([0, T]; R). We recall (see Th 3.6 [37]) there exists a constant C' such that
K1l < Cllgllzagoms
for every g € L*([0,T];R). Therefore, Cauchy-Schwartz inequality yields
Ik fllyygse < (trace Q)2 (K f|lu

for every f € LQ([O, T); Lo(Uy, ]R)) Let us set P = ;5% and Q = Wz”;’oo. Summing up
the above computations, we conclude H is the Cameron-Martin space associated with

P in Lemma 1.2.4, namely
/ exp(i(w, 2)g,0+ ) P(dw) = e 2l e (1.13)
Q
where €2* is the topological dual of 2.
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By applying Prop. 4.1.3 in [31] (see also [22]), we arrive at the following result. Let
Ry := Ky o Kj; be the injection of Lo(Up; H) into Q. We observe Ry : Lo(Up; H) —

is a bounded operator with dense range.

Corollary 1.2.5 If a random variable Y : Q0 — R is Frechet differentiable along di-

rections in the Cameron-Martin space H, then
h—Y(w+ Ry(h))
is Fréchet differentiable for each w € Q, Y € D %(R) and

VY()(RHh) = <DK h>52(UO,H)

locally, for every h € Lo(Uy, H).
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Chapter 2

Malliavin differentiability of solutions

In this chapter, we discuss differentiability in Malliavin sense (on the probability

space defined on Lemma 1.2.4) of SPDE mild F-adapted solutions
dX, = (A(Xy) + F(Xy))dt + G(X,)dB, (2.1)

in a separable Hilbert space E, where FF is the filtration generated by a U-valued FBM

B with trace class covariance operator () : U — U on a separable Hilbert space U
oo
By = Z Ve By
i=1

where trace Q = Y ;- i < oo and additional regularity conditions, namely Y o= v/A; <
oo and \; > 0 for all i > 1. Here, (A,dom(A)) is the infinitesimal generator of an an-

alytic semigroup {S(¢);t > 0} on E satisfying
1S(t)|| < Me™ for some constants A\, M > 0 and for all ¢ > 0.

This allows us to define fractional power ((—A)* Dom((—A)*)) for any o € R (see
Sections 2.5 and 2.6 in [35]). The coefficients F' : £ — F and G : E — L(U; E)
will satisfy suitable minimal regularity conditions (see Assumption H1) to ensure well-

posedness of (2.1). Let us define G;(z) := G(x)(e;) for the orthonormal basis (e;);>1 of



U. Then, we view the solution as
t t
Xy = S(t)xo + / S(t—s)F(Xs)ds + / S(t — s)G(Xs)dBs (2.2)
0 0

where the dB differential is understood in Young’s sense |39, 18]

/t S(t — $)G(X,)dB,y = i \/X./t St —8)Gi(X)df0<t<T

where the convergence of the sum is understood P-a.s in E' in the sense of Lemma 2.1.2.

The solution of (2.2) will take values on the domains Dom((—A)%) of the fractional
powers (—A)%;d > 0. To keep notation simple, we denote E, := Dom((—A)%) for a > 0
equipped with the norm |z|, := ||(—A)%z||g which is equivalent to the graph norm of
(—A)*. If @ <0, let E, be the completion of E w.r.t to the norm |z|, := ||[(—4)%z||g.
If « =0, we set £, = E. Then, (E,)acr is a family of separable Hilbert spaces such
that Es — FE, whenever § > a. Moreover, S(t) may be extended to E, as bounded
linear operators for @ < 0 and ¢t > 0. Moreover, S(t) maps E, to Ej for every a € R
and 6 > 0. To keep notation simple, we denote || - |3 as the norm operator of the
space of bounded linear operator L(Ejs, E,) from Ej to E, and we set || - || = || - [o-o-
The space of bounded multilinear operators from the n-fold space E” to E, is equipped
with the usual norm || - [|(n),a—a for a > 0.

In order to prove differentiability in Frechét sense, it is crucial to play with linear
SPDE solutions living in Banach spaces which are "sensible" to the Holder -type norm
of the noise space W}% For this purpose, we make use of the algebraic/analytic
formalism developed by [17] in the framework of rough paths. Even though we are
working with a regular noise % < H < 1, the techniques developed by [17, 18] allow us
to derive better estimates than usual Riemman’s sum approach or fractional calculus

given by [29].

2.1 Algebraic integration

For completeness of presentation, let us summarize the basic objects of |17, 18]

which will be important for us. At first, we fix some notation. We denote by Cp(V)
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the set of continuous functions g : [0, T ]k — V such that g, ; = 0 whenever t; = ¢,

for some i < k — 1. We define § : C,(V) — C,41(V) by

(OF),

Il
—
—
N
<.
e
=
“

1y-obn1

where fj means that this particular argument is omitted. We are mostly going to use

the two special cases:

If FFeCi(V), then
(0F) = F, — Fy; (t,s) € [0,T)%.
If € Cy(V), then
(6F) sy = —Fyu + Fyy — Fi; (t, s,u) € [0, T3

We measure the size of the increments by Hélder norms defined as follows: For f &€
Co(V) and p > 0, let
[s
£l = sup L2

steor) |t —s|#

and we denote C5(V) := {f € Co(V); || fllx < oo} and C{'(V') == {f € C1(V); [|of]l,. <

oo}. In the same way, for h € C3(V), we set

|htus|
h ‘= sup
|| ||’Y:P s,u,t€[0,T] |t - U|p|8 - u|7

and

Il = in { 3

where the last infimum is taken over all sequences {h; € C3(V')} such that h = >, h;

pisi—piy V= Zhi,O < pi < M}»

and for all choices of numbers p; € (0, ). Then, || - ||, is a norm on the space C3(V),
and we set

C5(V) == {h € C3(V); |||, < oo}

Let us denote ZCi (V') := Cr(V) N Kerd|c,(vy and BCy(V') := Cx(V)) N Range 6lc, , (v
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We have ZCy11(V) = BCxi1 (V) for k > 1.

The convolutional increments will be defined as follows. Let S,, = {(t1,...,t,); T >
ty >ty > ...t, > 0}. For a Banach space V, én(V) denotes the space of continuous
functions from §,, to V. We also need a modified version of basic increments distorted

by the semigroup as follows: Let 0 : Cp(E) — Cpy1(E) given by

~

(5F)t = (5F)t1 — Qo Pty 1,

1seebnt1 yeebn41

where a4, := S(t; — t2) — Id for (t1,t2) € So.

Hélder-type space of increments. We need to define Holder-type subspaces of C), for
1 < k < 3 associated with F,;a € R. For 0 < u < 1 and g € ég(Ea), we define the

norm

19lle = sup A%1lo
t,s€ES2 |t - S|'u

and the spaces

€5 = {g € Co(Ba): | gllue < o0}

and

CAlma = {f € él(Ea)§ Hgf”ma < 00}7
Cr o= {f € Ci(Ea); 16 lpa < 00}.

We denote €2 := C,(E,) equipped with the norm
[fllo. == sup |fila-
0<t<T

We also equip C** and C"* with the norms given, respectively, by

[fllege = 1 fllo.a + 0] s

and

[ fllgwe = 11fllo.a + N10f1] .0
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We observe that
Clt — 0 (2.3)

for every p € (0,1) due to the following estimate: For A > p,

16£11s0 < W8Nl + CIT#[1fllo (2.4)

whenever f € C/* (see Lemma 2.4 in [12]).

Let us now consider the 3-increment spaces. If h € C3(E,), we define

|htus|a
h ‘= sup
|| ||77»paa t7u75683 t _ u|7]|u _ S|p

and
1] s, := inf { Z 12l 1 i prai B = Z hi, 0 < pi < M}

where the last infimum is taken over all sequences h; such that h = )" h; and for all

choices of the numbers p; € (0, ;). One can check || - ||, it is a norm and we define
Ci := {h € C3(Ea); ||h||ya < o0}.

We also need Hélder-type spaces for operator-valued increments. For 0 < p < 1 and

a, € R, we set

~

CELO = Cy (L(Eg; Ea)) = {f + S = L(Eg; Ea)i [l fllupa < 00}

where

| fesllg—a
= Su —_—.
HfHMvﬁ‘ml t,segz ’t _ S|,u

In order to work with the convolution sewing map, we define
Auva .—— Auva < e —
ZCP" = C" Nker 5\(3],,] =2,3.
We recall Range 5|C}- = Ker 5|C}+1;j > 1. Let E8* := Necpns-CH " where e < uA 1™

means € € [0, u] N[0, 1).
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Infinite-dimensional reqularized noise: We define
X5 = S(t — 8)(62)) s/ Ni; (t,5) € Sa, (2.5)

for z = (2%);>1 € Wl’%oo and 1 <~y < H <1,7+6 € (H,1). Let us now collect some

important properties of the regularized noise.

Lemma 2.1.1 The following properties hold true: X®' & Cﬂ}ﬁﬁ:a forv > 1 and for
every (o, B) € R? such that B > «. Moreover, there exists a constant C' which depends
on (a, B) such that

X' g
sup 1 N < OV e (2.6)

(twes, |L—s[

for every i > 1. Moreover, the following algebraic condition holds
(SXx’i)tsu = (X™')gu; (t, 8,u) € Ss (2.7)

where ag, = S(s —u) — Id; (s,u) € Ss.

Proof. We observe if # > «a, then there exists C, g such that supgc,<7 [[S(r)[/sma <

Co,p < 0o. This is obviously true for & = 3. In case, 8 > «, we observe if x € Fjg, then

[S(r)ala = 1(=A)*S(r)zlle = |S(r)(—=A)*z|le = |S(r)(=A)* 7 (=A)
< 18(r)(=A)*llo—sol[s

because (—A)* 7 is a bounded operator on E (see Section 2.6 in [35]) whenever >
a. Therefore, [|S(r)lsa < [S(r)(=A4)*lloo < [1S() ool (=A)*P[lo—so for every

€ [0, 7. This proves our first claim. Therefore,

IX5 s < NSt = 8)llpsalai — 25|V A
which implies (2.6). By definition,

(SXI’i)tsu - thdi - Xféi - S(t - S)X:di
= S(t— )z} — 2)V/A — S(t - 5)(zl — 2)V/A;
= S(t—)[S(s — u) = Id)(x} — x}) /N

24



= Xy = (X®)4y; (t,5,u) € Ss.

This shows (2.7). m

Lemma 2.1.2 Let us fiv x = (2%);> € W;\Y”:‘;’OO and $ <y < H <1,v+0 € (H,1).

Assume z = (2');>1 satisfies sup;s, ||2* ¢ns < 00 forn+vy>1. Then

Tutaldrz) i= Y VAKX, + 3 VAAXT6),
i=1 i=1
satisfies:

(i) There exists a constant C' such that
167 (dz2)ll.a < Cllllyg s sup{ll="llos + 102" la,6}

for a < p.

(it)
e’} t1
Toin(dz) = 5" v/N / S(ty — u)7da, in B,
i=1 12

for each (t1,t3) € Ss.

Proof. In the sequel, C is a constant which may defer from line to line and we fix

a < . At first, the algebraic property (2.7) yields
SX T = —Xx’i(gzi;i > 1.
Indeed,

_Xac,zgzz — _Xz,i5Zi+Xm,iaZi

= X 4 (6XP) 2 = — XTI 4 (6X )2 — a XA
On the other hand, Lemma 3.2 in [18] yields

5XIE,'LZ'L — (5X$,7,Zl _ aXx,’LZ'L
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= (0X")2" — X5z — aX ™'

which implies dX%izi = —X%i§z. We also observe —X%ijzi € ZCW* for p > 1.
Indeed, let us take n +y > 1. Then,

X558 (02 ) tata o < KT, 5500220, 15

< OV sl =t 1102 g 1tz — ta]”-

Therefore,

L X0 (54 ; i
||X$’Z5Zz||w77a _ sup ’ t1t2< >t2t3’a < C\/EHI’L“W%*‘SHéZZH”]:B‘ (2.8)

(tta,t3)€Ss |T1 — t2|T[ta — t3]"

By taking 1 = v +n > 1, we conclude X%z € ZC4* for each i > 1. The Sewing
property yields 5[&(5)( “z’) = X2 and hence

5()(”“2Z — /A\(—X“cgzz)> =0

so that X%z —I—JA\(X“(?Z’) € Ker|s, = Range 5|él. Therefore, there exists f € C; such
that

~

= (Id — Ad) X ™20 > 1. (2.9)

The Sewing map yields A(X%52%) € £ and we observe
X5 2o < OVl s [t = s7112"]lo5 (2.10)

so the best we can get is X%¢z¢ + A(X“gz‘) € é;“ The Sewing property (Th. 3.5
in [18]) and (2.8) yield

R(X75) o < CIX52malt — s < OV/Ne sl st — 5757 (2.10)
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Therefore, (2.10) and (2.11) imply

10f ly.a < Cllz" sV Al g + CVAill2 g6 102 |5

Therefore, we conclude (i). In order to check (ii), we just need to apply Corollary 3.6
in [18] and observe (2.9). Then, for each (¢, s) € Sy, we have

(0f )es = Hnlsltﬂlo S(t =) (X0, 20
€llst
\/ (t—7)7 (02")s 00,
||HstHﬁ‘0 ; TJ x ) j+1T5
Tj st

where convergence holds (for each i > 1) in E, as the mesh [II|y of the partition of

[s,t] vanishes. Therefore,
~ . t . .
e / S(t—w)zida: (ts) € Sp,i > 1. (2.12)

Representation (ii) is a consequence of (i) and (2.12). This concludes the proof. m

2.2 The It6 map

For a given yy = ¢ € E, the It6 map x + y is defined as the solution of the

equation
t A
Yy =St —s)ys + / S(t —u)F(yu)du + Jis(dxG(y)); (¢, 5) € Sa
which can be rewritten in terms of the increment operator 5 ,

(5y)es = / S(t — W) F(ya)du + Ton(d2G(1)): yo = 0. (2.13)

Next, we list the basic assumptions needed for the existence and uniqueness of the
SPDE solution. Before that, let us check that we may choose the correct set of param-

eters.

Lemma 2.2.1 For given % < H <1 and% > K >

1

1, there emwist 7, ko satisfying
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> ko> K> 5 withy+k>1,5— k> Ky such that
X® e CJLO ney L (2.14)

for every i > 1.

Proof. From Lemma 2.1.1 and the definition of the spaces W%"S, there exists a constant

C' (which does not depend on ¢ > 1) such that

1X* 1-c0msn < CV/A 2 e

and

X" | —p o < CV Al |y

for every K > 0, e € (0,H),n € (0,H) and 6 > 0 such that H —e + ¢ € (H,1) and
H—n+0 € (H,1). Foragiven ; < H <land i > > 1. Choose e = ¢(x, H) € (0, H)
such that

H—e+r>1. (2.15)

Choose n = n(e, H) such that
1
77>§+€ and H — Kk > . (2.16)

Of course, (2.16) implies %+ e <n < H — k. Choose ¢ accordingly to these conditions.
We then set 4 = H — €, ko = H — 1 where € and 7 satisfy (2.15) and (2.16). Then, by
construction  + k = H — e+ x > 1 due to (2.15) and 5 > kg > £ > 7 due to (2.16).

Moreover, n — € > % > K> % so that

Y >1> >1
— K — K —.
Y 0 5 1

Finally, we stress the choice of ¢ and n does not depend on the index ¢ > 1. This

concludes the proof. m

Let us assume the following regularity assumptions on F, G:
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Assumption H1: For % > K > }L, we assume that F,G; : F., — E, is Lipschitz

(uniformly in 7 > 1) and they have linear growth
Gi(2)]« < C(L+|aly),  [F(2)ls < C(+z]); 2 € B,

for every ¢ > 1. Furthermore, we suppose that F,G; can also be seen as maps from
E to E, and when considered as such, it holds that F,G; are Lipschitz (uniformly in
i>1).

In the sequel, recall C{"" is the subspace of C;(E,) such that
Illgpr = [1llo.s + 1102l < 00
In what follows, x € Wi’%oo where 5 + 6 € (H,1),5 <5 < H,

1
i>m0>m>1 (2.17)

and ¥+ Kk > 1,5 — Kk > Kg. By Lemma 2.2.1, X7 satisfies (2.14). By using Assumption
H1, the following result is a straightforward application of Theorem 4.3 in [18|.

Proposition 2.2.2 Under Assumption H1 and the choice of indexes (2.17), for each
W € E, there exists a unique global solution to (2.18) in CI™".

By noticing (see Lemma 1.2.4) that (8%);>1 € ijp’oo a.s, Proposition 2.2.2 yields the

following result.

Proposition 2.2.3 Under Assumption HI and the choice of indexes (2.17), for each

wmatial condition xg € E,, there exists a unique adapted process X which is solution to

(2.1).

2.3 Fréchet differentiability

Let us now devote our attention to the Fréchet differentiability of the 1t6 map

o : W:\Y”%OO —C" ey
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where y is the mild solution of (2.13) driven by x € W}ﬁ“ where the indices 7, d, kg, &

satisfy (2.17). Then, the Fréchet derivative is a mapping
Vo WX — LW CP).

The importance of Fréchet differentiability lies on the following argument: Once we
have Fréchet differentiability of the [t6 map = — y, we shall use the Fréchet derivative
chain rule to infer that (X, h)g is Fréchet differentiable along the direction of the
Cameron-Martin space H for a given h € E and t € [0,7]. Hence, Corollary 1.2.5
implies

(Xe.h) e € Dyge(R).

Then, we must use Lemma 1.2.2 and try to conclude a representation. We follow the
idea contained in the work of Nualart and Saussereau [33|. At first, we list a set of

assumptions on the vector fields which will be important in this section.

Assumption Al: The vector fields, G;, F' : E,, — E, are Fréchet differentiable

and also differentiable when considering from E to E. Moreover,

SUp SUP [V Gi(2) lxs + SUP [|VF(@)]|ms < 00

i>1 x€FEy RIS D

and sup;>, sup,ep [|[VGi(2)]| + sup,ep [[VF ()] < oo,

Assumption A2:

sup sup ||v(2)G2(g)||(2),q—>q + sup ||v(2)F(f)||(2),m—m < 00,
i>1 geE feE

for ¢ = 0, k and there exists a constant C' such that

sup [VG(f) = VGi(g)|| +sup [V Gi(f) = VO Ci(9)] 00 < CIF — 9l

i>1 i>1

for every f,g € E.

At first, it is necessary to investigate flow properties of linear equations. We start
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with the following corollary whose proof is entirely analogous to Proposition 2.2.2, so

we omit the details.
Corollary 2.3.1 Suppose F,G satisfy Assumptions Al and H1 and let us fix (x,y) €

Wj,’%oo X éf'f and to € [0,T]. Then, for every n € éf,n;

t
v =i+ / S(t — )V F (y)vsds + Ty (A2 G(1)0)

to
admits a unique solution in v € C™ on the interval [to, T).

The following lemma plays a key role on the Fréchet differentiability of the Ito

map.

Lemma 2.3.2 Let [sg, to] be a subset of [0,T] and let

t
7y = Z \/T/ S(t — s)zidr’; s <t < tg
S0

i>1

where x € Wi’%’oo and assume sup;s ||2'|lo, + sup;s, 102%]|c.pa < 00 on the interval

[S0,to] for some n >0 where 0 < o < min((,n), 0 < <5 and 5+ > 1. Then, there

exists a constant C' which depends on n and 7 such that
16205 < Cllelhygaed sup 120y + 1o — 5ol sup 627} (218)
) i>1 i>1
and
162l < Cllzlhygam {0 = sol™sup |2l + lfo — 50"~ sup 6270} (219)
AT i>1 i>1

on the interval [so, to).

Proof. In the sequel, C' is a constant which may defer from line to line. To keep
notation simple, without loss of generality, we set s = 0,ty = T. We observe (SZ Vs =

D i1 Vi [1S(t — u)zidal,. From the proof of Lemma 2.1.2, we know that

t
/ S(t — u)idat, = X232+ A(XP62) : (t.5) € S,
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where X% € (f;ﬁ’?’" due to Lemma 2.1.1. Then, checking the proof of Lemma 2.1.2,

we have X@i§z € Z(?gH’G for § < n — a. Now,

t
‘Z\/)\_,/ S(t—wu)zldr| <
i>1 s K

<Y VNIXE sl A(xmi62),,
1>1 i>1
That is,
Z\/ / St—uzdx <CH5’7HWMw|t—SPSUpHZ HOn
i>1
A(X"402"), | 5 (L 5) € S (2.20)
n

i>1

By applying the "convolution” Sewing lemma (Th 3.5 in [18]), there exists a constant
Ce¢45 such that

||/AX_X:"”Z(§Z’z ||C+'§/—e,9+e < Ceyse ||Xg“$zl ”C-&-‘Yﬁ

for every € € [0, + 4] N[0,1). Take # =n — o and € = a.. Then,

‘/A\(X‘”’igzi)t < Crpn o | X102 | cpm0lt — s|FT7<. (2.21)

Sn=0+¢

On the other hand, (X®§z') is a 3-increment where
X762 s = 08 {37 Byl cormpy ot X702 = 3 B0 < gy < €7
J J

and the last infimum is taken over all sequences h; such that X Biga =3 ; Ij and for

all choices of the numbers p; € (0,( + %) and we recall for any 3-increment f, we have

o |ftus|77—a
||f||pj7C+”7—pjm—a - tﬂilslg&g |t _ u|pj |U _ S|§+ﬁfpj :

Take h; = X%62" and p; = 7. By definition, (X*02%)y,s = X[2'02%,, then
N X552 X2l alB2ily
X TG . S sup tu uslin < sup n—a—n— us
X0 ersne < S0 Pl — sk = Bt — ullu— sk
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< Ol 187 o

Then, (2.21) yields

A(X#4627),

S Cealt = o g sup |65 o (222)
1>1 ’ 1>1

Finally, we shall plug (2.22) into (2.20) and we conclude the proof of (2.18). By
observing (2.22) and (2.20), we conclude (2.19). m

Lemma 2.3.3 Let y be the solution of (2.13) driven by x € Wi’%oo and assume As-
sumption (A1-A2) hold true. Then, the mapping

L W™ x Cp — G
defined by
¢
(x,y) — L(z,y); =y, — Sytp — / S(t — s)F(ys)ds — Ty (d(m)G(y))
0

is Fréchet differentiable. In particular, for each (x,y) € WWSOO x C" and (q,v) €

Wz’;’oo x CP" | we have
ViL(z,y)(q): = —Tro (czqG(y)) (2.23)
and
t A~
VoL(z,y)(v); = vy — / S(t — s)VF(ys)vsds — T (dzVG(y)v);0 <t < T.  (2.24)
0

Moreover, for each x € WWsOO the mapping VyL(z, ®(x)) : CP™ — CI" is a homeo-

morphism.

Proof. In the sequel, C' is a constant which may defer form line to line. By the very

definition,
¢
Lz +h,y+v); — L(z,y): = (y: +v;) = S(t)y — / St —u)F(yu + vu)du
0
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—E:VF:/S%—S (W + 0)d(, + i) — g, + S0

/St—u yudu+z\/_/5t—u i(yu)do
=y — /OS(t—u)[F(yu+vu)— (Yu) du—gf/ (t = u)(Gilyu + va))dl,
_gfj (t —u)(Gilyu + va) — Gily))d,

Let us write the increments in terms of the Taylor formula (see e.g [10]),

F(yu + Uu) - F(?JU) - VF(yu)Uu + ZU(ya U)
Gi(Yu + vu) = Gi(yu) = VGi(yu)vu + ¢,(y, )

Gz(yu + Uu) = Gz(yu) + 6;(y7 U)

where

2u(y,v) = (/0 (1—7r)VOF(y, + Tvu)dr> (Vy, V)

CZ(y? U) = (/0 (1 - T)V(Z)Gz(yu + Tvu)dr> (Uua Uu)

el (y,v) : (/ VGi( yu+rvu)dr)vu

for i > 1 and 0 < u < t. Therefore,

L(z+h,y+v),—L(x,y);—V1L(x,y)(h);—Va2L(z,y)(v); = Ri(y,v)i+Ra(y, v)¢+R3(y,v);

where

Ry(y,v): ::—/ S(t —u)zy(y, v)du
Z\/_/ t_u y? )d

1>1

Z\/_/ (t —u)el (y, v)dhi.

1>1
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We need to check

[R1(y,v) + Ro(y,v) + Rs(y, v)llgrn = o(|[2] + |1l ) (2.25)

2
7,8,00
W)\,T

The first term is easy. Indeed, if the second order derivative of F' is bounded, then
the norm of the bilinear form z,(y,v) can be estimated as follows ||z, (y, v)||(2)xor <

Clu, |2 < C’HUHgAH,K. Therefore,
1
||R1(U,'U)||éilc,n S CH”H%'{““
Then,

(LR e L) e

1= 1
(T S L (LT

< Cllvfigx- (2.26)
Let us now estimate Ry(y,v). At first, since Ry(y,v)o = 0, then

1Ra(y, 0)llgs e < (24 T Ra (Y, v) e (2.27)
where

_(5R2(y,v))ts = Z \/X/ S(t — u)c;(y,v)dxz = Tis (czxc(y, v))

i>1
so that [|0Ry(y, v)|xr = ||j(dxc(y,v)) llss- By Lemma 2.3.2, there exists a constant
C' such that

17 (dre(y, 0) e < Cllzlygas{ sup €y, )l +sup 136y, v)llwo - (228)
d i>1 i>1
By definition,
(6¢(y,0))es = €4y, 0) — iy, v) + iy, v) = S(t — 8)ci(y, v); (¢, 5) € Sp.

By viewing V@G, : E, x E,, — E,. as a bounded bilinear form where x > 0, we observe

c(y,v) € B, and this little gain of spatial regularity allows us to estimate

~

10¢" (y, v))esll < 10 (y, v))asl| + (S = 5) = 1d) e (y, V) (2.29)
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where (see e.g Th 6.13 in [35])

1(S(t =) —1d)ci(y, 0)| < Clt = s|*lei(y, )]

< Ot = sl"lvsfz < Clt = s"[lvllg (2.30)

and the estimate (2.30) is due to the boundedness sup;s, sup,cp, VP Gi(a)l|(2)xn
0.
We now observe for each ¢ > 1 and u € [0,¢], fol(l — r)VAG(y, + rv,)dr

FE x F — FE is a bounded bilinear form so that we shall estimate

lew(y. v) = ey 0| <

o) = ([ =196+ v ) )
([ 009G+ g ) - |
( / VG (yy + rv,)dr )(vu/,vu/)

(/ 1 - 1)V G(yu+rvu)dr>(vu,vu

— VG, (yw + 10w )}dr) (Vyr, V)

(/ (1—r)\VOGi(y, + Tvu)dr)( — Uy, V)
([

(1—-r) V(2 Gi(yu + rvu)dr> (Vy, Uy — )

+ H (/ (1= 1) [VOG;(y + rva)

+ H (/ (1—r) [V(Q)Gi(yu +rvy) — V(Q)Gi(yu’ + rvu/)}dr) (Vo V1)
0

< Cllow = vullfJvw|] + Cllow — vul[[lvu]

1
+/ (I—r) ||V i(Yu +10,) — V(Q)Gi(yu/—krvu,)
0

d?”||’Uu/||2.

(2),0—-0

By using the Lipschitz property on the bilinear form V®G;, we have

dr

(2),0—0

1
/ (I—r HV (Y +10,) — V(Q)Gi(yu/ + TUy)
0

1
<0 [0l —wellr+ [ 0=l — wolar
0 0
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Now, we observe C*" < CI° (see (2.4)) and E, < E. Therefore,

c(y,v) —c,(y,v Vy — Uy Uy — Uy
len(y,v) = ey, v)|l SOH HH owl] + I HH ol
lu — /" lu — /| u— /|
L C “yu — Yu|| i [|vu _Uu’H ||Uu’H2
lu — u'|" lu — u'|"
< C’2||v||cm +C’||v||cm (2.31)

By assumption, sup;s; sup,cp, [|V?Gi(p)|l(2)0—n < 00 so that
sup [|¢ (4, v) [lo.e < Cllv]|Zex- (2.32)
i>1 A

Plugging (2.32), (2.31), (2.30) and (2.29) into (2.28), we conclude from (2.27) that
1Ra(y, 0)llegn < Cllvllge.s-
Let us now estimate R3(y,v). Similar to (2.27), from Lemma 2.3.2, we know

there exists a constant C' such that
17 (dreCy,0)) s < Ol goe{ 50 !0 0) o + 510 186 (s, D)o (2:33)
Clearly, Assumption Al yields
Sup le*(y, V) lloe < Cllvllon < Cllvllrs (2.34)

Similar to (2.29) and (2.30), we observe

~

10" (y, v))asll < 11(3€" (5, ))esll + 1(S( = 5) = Id) el (y, )| (2.35)

where

1(S(t = 5) —Td)es(y, v) |l < Clt = s[*[ex(y, V)

< Clt = s|*|vs|x < Clt = s|™[|v]lox; (E, 5) € So. (2.36)

The boundedness and the Lipschitz property on VG, (Assumption A2) allow us
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to estimate

H€Z<ya U) - ef/(ya U)H S

(/01 VGi(yu + Tvu)dr) (v — )

1
+ (/ VGi(yy + 1rvy) — VGi(yw + rvu/)]dr) o
0

< Cllow = vl + Clloarll{ v = el + llow = vl }.

Then, (2.4) yields

et (y, v) — et (y,v)|
lu — u'|*

< Cllovllno + llollezs{l0yllso + [16v]lso}

< Cllollgen + lollem {glles + Nollgse}.  (237)

By using (2.33), (2.34), (2.35), (2.36) and (2.37), we infer

||j(dx6(y,v))‘|n,n = O(thwifpm X HUHCTK)

One can check (x,y) — ViL(z,y) € £(W§,’§IO°;CAT’”) and (x,y) — VoL(z,y) €
L(CP™,C") are both continuous. Summing up all the above steps, we conclude L is
Fréchet differentiable and formulas (2.23) and (2.24) hold true. It remains to check
VoL(z, ®(x)) is a C;"" - homeomorphism. By open mapping theorem, this is an immedi-
ate consequence of Corollary 2.3.1 (which proves it is an isomorphism). The continuity
can be easily checked so we left the details of this point to the reader. m

By applying implicit function theorem, x — ®(z) is continuously Fréchet differ-

entiable and the following formula holds true
Vo(z) = ~VoL(z, ®(x)) " o ViL(z, ®(z));z € WH™ (2.38)
The inverse operator yields VoL(z, ®(x))(VoL(z, ®(x)) ™ (v)) = v so that

VoL (z, ®(x)) ' (v); = v, + /0 St —u)VF(®(x),)VoL(z, () (v)du

+) \/X-/Ot S(t — u) VG, (9(2),) Vo L(z, ®(z)) L (v),dal;0 <t <T

1>1
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for each v € CP*. Therefore, for cach z, h € Wi’%’oo, V®(x)(h) is the unique solution
of

Ve = 3V [ 8- u)Gi(@().)ar,

VA /0 S(t — u) VG, (®(2),) V(@) (h)ud

i>1

+ /t St —u)VF(®(2),) VO (x)(h)udu;0 < t < T (2.39)

Now, by Corollary 2.3.1, for each v € (0,T),z € Wj”%’oo and ¢ > 1, the mapping
t— U} (z) given by

\Ifiu(x) = S(t— u)Gz(q)(x)u) + Z \/)\_]/ S(t—4)VG, (@(x)g) \If}u(x)dx;

+ / tS(t — OVF(®(x)) Wy, (x)dl (2.40)

where W} (x) = 0 for u > t, it is a well-defined element of Cr" over [u,T]. Let us

denote I

T ,u,u’

(t) ==}, (x) =¥} ,(x) for 0 <o’ <u <t <T. It is simple to check that

D (8) = S(t = w) | W, (2) = Wi, ()]

+3 VN /u t S(t = OVG(P(2))T,, . (0)dx;

Jj>1
t
+ / S(t— E)VF(@(x)g)FfE’u,u, (0)de.
The following technical lemma is important to derive an alternative representation for
@' (z)(h).
Lemma 2.3.4 For each x € Wi’;’oo there exists a positive constant C' which only

depends on ||z||\y5.000 and |[0®(x)]|x such that
AT

U ()] < C1W, () = T, ()]

z,u,u’

forevery 0 <u' <u<t<T andi>1.
Proof. Fix 0 < v <u <T,i>1, 0 < a < min{k,n} for n > 0. Let us denote
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O = [Who(2) = Wi ()], In the sequel, C'is a constant which may defer form line

to line. Of course,

’(Srfr,u,u’ ||H,77 < ||5S( - u)gpi,u,u’H'fﬁl

‘/  — OVGH(D(2) )T (0]

7j>1

é/ﬁc—@VF<<>W@uwme

K,T]

+ :Z]1+]2+]3.

a2yl

At first, we observe S(t —u)pl, , ., — S(t — 5)S(s —u)pl, ., = 0 so that [; = 0.

By Lemma 2.3.2 (see (2.19)), we observe there exists a constant C' such that

j>1 KyM

ol = T~ = 1T = = sup 325, -0 }

<cwxmwam{amnz
J=

z,u,u’

() =VG;(®(x),)T%, (). Let us take n = k = a. We observe

where z -

zuu’(

127w (O S NVGH(P(@)e) il Ty ()

so that the boundedness assumption on the gradient VG, yields

acuu

Triangle inequality yields

102 )es |l < VG5 (@ <>)—VGA¢@xﬂmwu wE
+ H[Id S(t (

P nu
< [[vG; (@) - ( (x) )mﬁﬂrmw Ol
+HVGA®a0)%edK P )is 2

(
+[|[Id = S(t = $)]VG; (®(@)s)Th s ()| p = La + L5 + I,
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where VG (®(z),)I"

z,u,u’

(s) € E,. We observe

Ty < Clt = 5"V G ((2).) T (5]

< Ot — 87T, ok

T,U,U

The imbedding (2.4) yields

Is < C|I0T o )es 2

z,u,u’

< Ot = s"{1I0T gy e + [To s lloe} = Clt = "I

We observe

Iy < Cll0®() |l nlt = 81T o

T,U,U

Summing up (2.44), (2.43) and (2.42), we have

182 llno < €1+ 150(2)

T,

This shows that

I < Ollllyyssce TG llmn | T = ul 7= 4 T — a7 (14 [0 (2) [l .n ) IT
\,T 1

We notice that

Lo sp 1St OVF@@ILL,,(Od.

u<s<t<T |t — s|”

Summing up the above inequalities, we have

107 e < Cllalygae{ CIT = ul = (14 00 (@) e ) IT

z,u,u’

+ O ol T — ="
Therefore,

”Fi,u,u’”(ff"‘ < ||S< - u)gpfv,u,u’ “075

+ Clallyg s { CIT = ul ™™ (1 4+ 00 (@) | ) IT

41
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n,n) ||Px,u,u’ ”C'f’H :

z,u,u’ _ CHF

Nl

i
RTRTE

||c”f*”}

(2.42)

(2.43)

(2.44)

(2.45)

||éf*“}'

loe| T = ul* .

(2.46)



+ C|IT% o T — " (2.47)

where [|S(- — u)@l , wllox < Cl@h, ] Finally, by working on a small interval and

performing a standard patching argument, the estimate (2.47) allows us to conclude

% i
HFz,u,u’ HCT‘” < C$791T|(¢0a¢,u,u’|ﬁ

where C, , 7 = Z|| 5.6, [[0®(2)]|re, T') for a function g : R2 — R, growing with
Y g Wl , g T + 8 g

its arguments. This implies

’F;u,u’ (t)‘ﬁ - ‘\Ijllf,u(x) - \Iji,u’ (‘CU)‘H < OI7y7T’\IJi,u($) - \Ilflu,u’(x)‘ .

K

We are now in position to state the main result of this section. Let Cg5 be the

subset of Wj’:‘;’oo composed by functions g : N — C¢°.

Theorem 2.3.5 Under Assumptions (H1-A1-A2), the It6 map x — ®(x) is continu-
ously Fréchet differentiable and for each z, h € Wi’%oo, V&(x)(h) is the unique solution

of the equation (2.39). In addition, the following representation formula holds true

Vo), = S VA [ Wil € o<t < (249

i>1
for each (z,h) € W;Y:%OO x C3S-

Proof. The fact that x — ®(x) is continuously Fréchet differentiable and it satisfies

(2.39) are consequences of (2.38). Obviously,

> VA /O U (2)dhl, =YV /O S(t — u)Gi(®(x),)dhi,

i>1 i>1

+3 VA /0 t / t S(t — ONVF (®(x)) i, () dedh,

i>1
t t
FS VAV [ [ (=096, (00 i w)drlar;
i>1 §>1 u
0<t<T.
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Let us fix ¢ > 1 and x € W:\Y%OO By Lemma 2.3.4 and noticing

W, (@) = W, (7)) = Gi(q)(x)u) = S(u— U’)G'(‘P(fv)u')

j>1

- / S(u—OVF(®(x)) V), (2)d;0 <u' <u<T;i>1, (2.49)

’

we clearly have u — W} () is continuous, so that we shall apply Fubini’s theorem to

get

t t t 0
/0 / St — OVF(D(x),) Yy, (x)dldh;, = /0 /0 St — OVE(®(x)) Yy, (x)dhi,dl

and

t t ) ) t Y4 ) ) ‘

/ / St —OVG;(®(2)) ¥y, (z)dx)dhl, = / / St — O)VG;(P(x),) ¥, (x)dhl,d);
0 [ 0 0
0<t<T,i>1

Therefore,

t
VA [ Wi = VA / (t — )G (D (x).) dh,
0
+/5( \/_/ 0 () dhide
0
+Z\/_/St— )VG;( \/_/ v (z)dhldz);
ji>1

0<t<T.

At this point, in order to complete the proof of representation (2.48), we only
need to check

sup sup [|U] [|o, < . (2.50)
i>1 0<t<T

Since W' is the solution of the linear equation (2.40), a completely similar argument as
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detailed in the proof of Lemma 2.3.4 yields

’\Ij;,u(x)‘ﬁ < Ca?,y,T sup ’S(T - U)Gl((b(x)u)‘ﬁ

0<r<T

for each 0 < u <t < T, where C, v = g(||x||W1,%oc, 109 (2)||sx, T') for a function
g:R3 — R, growing with its arguments. This comi)letes the proof. m

Let us now check Malliavin differentiability. Let us fix t € [0,7], ¢ € E and
we now look the mapping WZ’%OO >z (P(x),9)r € R. We can represent ®(z); =
7(®(x)) where 7, : C" — E is the evaluation map which is a bounded linear operator
for every t € [0,7]. Then the Fréchet derivative of z — ®(z); equals to the linear
operator

WS 2 f s VO(z)(f): € B, C E.
Similarly, the Fréchet derivative of x — (®(x)¢, g) g equals to

[ (Vo) (i, 9) e

We must find an L9(Uy, H)-valued random element w — a(w) such that

(VO()(Ruh)i 9) e = (a(-), M) eowom) a-s

for each h € Lo(Up; H). If this is the case, then a = D.(X;, g) g a.s.

Lemma 2.3.6 Ifh € C° and ¢ € Lo(Up; R), then
Ru(h @) € Coy,
Proof. By definition, if (h ® ¢) € C5° ® L2(Uy.R), then
K5 (h @ @)(v/ Aie:) = \/_/ ts)dtgp(ez)izl

where
1

aKH tH_Q H*é,
i (ts) = H(§> (t—s)H 35 <t,
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Ru(he o) = v | Kl ) K (h ® 0).(e)ds

= \/_/ / aKH (u, s) K5, (h ® p)s (ei)ds>du;i > 1. (2.51)

We observe
“OKy

u +—
0 au

(u, ) K7 (h ® ¢)s(e;)ds

is continuous (hence bounded) and this implies that

" OK
Z A sup / 2w, $) K5 (h @ ¢)4(e;)ds
0 611,

i>1 0<u<T
“ K K
=> "\ sup 0 2w, 5) / h(t)8 (1, 5)dt.p(e;)ds
= o<usr | Jo ou s ot
“OKy T 0Ky
=Y " \iple: —(u, h(t) ==L (t, s)dtd
= S lete) o | [ S ) [ n0 T spavas

Y OKy T 0Ky
o w.s) / (t) 5 2 (1 )dtds|.

1
< (trace Q) (¢l cowom) sup
0<u=T

Corollary 2.3.7 Under the probability space given in Lemma 1.2.4, the random vari-
able (X;,9)p € D2(R) and D(Xy, 9)p € Lo(Uo; H) is the Hilbert-Schmidt linear oper-

loc

ator defined by

D(X:, 9) (v Nier) := (v/A Ui 9)E a.s
for everyt € [0,T] and g € E.

Proof. Let us fix t € [0,7] and g € E. By Lemma 1.2.4, we shall represent X;(w) =
O (w)y; (w, t) € WZ’%OO x [0,T]. Since H C Wl’%oo, then

f = <Xt(f)7g>E = <<I>(f)tvg>E

is Fréchet differentiable at all vectors f € H. In this case, Corollary 1.2.5 yields
<Xt7 > DlloiGR) and

(VO()(Ruv)s, 9)E = (D(Xt, 9) £, V) £, (Uo:1) locally in
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for each v € Lo(Up; H). Let us take v = (h ® ¢) € C5° @ Lo(Up.R). By using (2.48)

(VORuv)g) =D VA < / Jd(Ryv' >u,g> . (2552)

i>1 E

From (2.51), we have

Rt = [ 52 ) Ky ). e)ds

Therefore,

[ vwaran. = x [ ( | aﬁ(w)@(hw)s(ei)ds)du
-V / Wi, (2) ( | G ¢>s<ei>ds> du
- [ " Ky (h® (e ( / O, s)\v;umdu) ds.

Then,

(VO(Ruv)i, 9)r = i Ai /OT Ky(h® 90)5(61)K?1<<‘1’i,.79>15>8d5

=S M2 9)(e. (¥ a)s),
—i<h®so (Vier), (VAT L g) >

where we observe (recall that this function is continuous (except at one point) for
every z € Q) (VAV} (2),9)5 € L7 ([0,T];R) C [H|. The candidate is then the linear

operator defined by

D(X;, ¢) (v Nies) = ( \/_\Ilt L GVE Q.S. (2.53)

We observe (2.53) provides a well-defined Hilbert-Schmidt operator from Uy to H be-
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cause

ZA/ |G (W (@), g)p) [ds = Y / ’/ KA (1, 5)(} (), g) ] ds
=1
0K |
/ (/ 2 u,sﬂdu) dslglf} sup W] ()] Trace @ < o0

for each w € Q. This concludes the proof. m

We are now able to state the main result of this section.
Theorem 2.3.8 If assumptions H1-A1-A2 hold true, then X, € D2(E) for each t €

[0,T] and the following formula holds

D,X; = S(t —s)G(X;) + /t S(t —r)VF(X,)D,X,dr
+ i \/x‘/t S(t —r)VGi(X,)D X, dB, (2.54)

where D,X; =0 for s > t.

Proof. At first, we observe the postulated object DX, takes values on H® Lo(Up; R) ®
E = L5(Up;H ® E). Let us compute

<D<Xt, 9)E, U>

L2(UosH)

for a given g € E and v = (¢ ® h) € L5(Uy; H). By definition,

(P01}, 0 = (VAW b (00 D/R)),

S,

Let us define a Hilbert-Schmidt operator U, .(w) : Uy — L# ([0,T]; E) = H® E

as follows

W) (VNies) == VAT (w);w € Q.
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By (1.6), we observe

ZII‘I% (Vhier) ||H®E<CZH\I/15 (Vxe)l?

L7 ([0,T};E)

< C’Z)\ [0} [13 . < C’sup||\lf§ l|o.s-trace @ < oo a.s.

=1

We claim that X, € D,)>(E) and
DX, =Y, as. (2.55)
Indeed, we observe U, satisfies

U, = S(t — 8)G(X,) + / t S(t — r)VF(X,) U, dr

[e'e] t
3V [ Sl VG
i=1 s

where ¥, , = 0 for ¢t < s. Moreover,

(DXegper), = §;¢<ei>xi<<w;,g>& )

Z<\Ift (VNiei), g (el-)\/)\_ih>7{

= (DX19,9) £, (0m) @-5.

By applying Lemma 1.2.2 and Corollary 2.3.7, we conclude the proof. m

2.4 The right inverse of the Jacobian of the SPDE

solution

From now on, it will be useful to make clear the dependence on the initial condi-
tions of (2.1). Let us write XV as the solution of (2.1) for an initial condition y € E,.
In previous section, we made use of the éf "-topology to get differentiability of X
(in Malliavin’s sense) for each initial condition at xy € E,. Even though we are

interested in establishing the existence of densities 7 (X;®) for initial conditions on
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dom (A®) C E,, it is important to work with the solution map E — C*° given by
y— XY ecr (2.56)

for some aw > 1 — H. One drawback to keep the flow from E to éf“ is that X™° does
not belong to C;* and the best we can get is X% € Cf"” a.s. For this purpose, we need
to impose further regularity assumptions as described in Th 3.2 in [29], which we list

here for the sake of preciseness:

Assumption A3: There exists 71,7, € (0,2H — 1) and ¢; such that

IS(rG ()] < :—(1 +[zllz)

and
15 (Gla) = G| < e = yls

for every x,y € E. Furthermore, for « > 1— H, a < min (%(1 —M), %(1 —72)), assume

there exist constants ¢,0 <n<1—a,f € (v, %) such that

IVS(r) E@)[| + [IVS(r)Gi(z)]] < e
IVS(r)F(z) = VS(r)F(y)l| + IVS(r)Gi(z) = VS(r)Gi(y)]| < 7%III —ylle,

IV(S(r) — S(s))F ()| + [V (S(r) — 5(s)) Gil@)|| < ealr — 5)°s7

for every r € (0,T],0 < s <r,z,y € F and i > 1.

Under these conditions, the map (2.56) is well-defined (see Th 3.2 in [29]). More-
over, it is not difficult to check the map E > y — XV € C{ ' is Fréchet differentiable.
In other words,

J0—>t(y§ 'U) = VyXiy(U)

for each ¢t € [0, T] and y,v € E. The proof of this fact is quite standard and the main
arguments do not defer too much from the classical Brownian motion driving case (see

e.g Th. 3.9 in [19]), so we left the details to the reader. Moreover, (see [32]) there
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exists a € (1 — H, %) and Kk € (%, }1) satisfying

CiY c Wee(0,T; E)

where W®>(0,T; E) is the space of all measurable functions f : [0,7] — E such that

”fHa,oo = ‘f‘oo—i— sup / Hft_8‘1+a H>

0<t<T

Therefore, under Assumptions H1 and A3, the uniqueness of the flow described in
Th 3.2 in [29] and (2.3) imply that all solutions XV generated by Proposition 2.2.2
coincides with the ones given by [29] for every y € E,. In addition, by applying Th 3.2

in [29], Jo_:(y; v) satisfies the following linear equation

Jooi(y;v) = S(t)v + /0 S(t—s)VE(X))Jos(y;v)ds

+ Z \/T/O S(t = $)VGi(XY)Ioms(y; v)dB,. (2.57)

Of course, v — Jo(y;v) € L(E; E) for each t € [0,T] and y € E. Then, we shall see

t — Jo_:(y) as an operator-valued process as follows

t
Jooaly) = S(0) + [ St~ 5)VF(XTou0)ds
0
00 t
+ VA [ 8- VG T 0 <L < T,

i=1 0
Remark 2.4.1 Recall that infinitesimal generators of analytic semigroups are sectorial
(see e.g Prop 3.16 [25]). Then, it is known that (see e.g Corollary 2.1.7 in [26]) that

S(t) is one-to-one for every t > 0. We also observe the left-inverse linear operator

S(—t) of S(t) defined on the subspace S(t)E is, in general, unbounded.

Example 2.4.2 Let E = L?*(0,1) with Dirichlet boundary conditions. Take the or-
thonormal basis

en(z) = V2sin(mnz);0 < x < 1,

with eigenvalues N, = 7n. Then the heat semigroup generated by the Laplacian A = A
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s given by
f Z 7)% en E€n

for f € E. This is an analytic semigroup where

g—ze (9, €n)Een

forge S(H)E

In order to obtain a right-inverse operator-valued process for the Jacobian, we
need to assume the following regularity conditions. In the sequel, we denote S~ (t) :=

S(—t);t > 0 where S(—t) stands the left-inverse linear operator on S(t)F

Assumption B1: Let @ > 1 — H be a constant as defined in Assumption A3. For
each path f € C{°,

sup {157V Gi()Sllogo + 105 VG f)Slloo } < 00

i>1

for p+% > 1 where 1 <5 < H satisfies (2.17).
Assumption B2: For each path f € C*°, [|S"VF(£)S]|0.0-0 < 0.

In Assumptions B1-B2, we assume
VF(w)z € S(T)E and VG;(w)z € S(T)E (2.58)

for every w,z € E and i > 1.

Remark 2.4.3 Since S(T)z = S(t)S(T —t)z for every 0 <t < T and z € E, then
S(T)E C S(t)Es for every 0 <t <T and > 0.

Remark 2.4.4 We implicitly assume in Assumptions B1-B2 that VF(f;)S(t)x € S(t)E
and VG;(f)S(t)x € S(t)E for everyt >0, x € E and i > 1. This property holds true
under (2.58) due to Remark 2.4.53. In this case, taking into account that S is a differ-
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entiable semigroup, then (see e.q Prop 3.12 in [25]) we have VF(w)z € N2, dom(A™)
and VGi(w)z € N2 dom(A™) for every w,z € E and i > 1.

In the sequel, we freeze an initial condition y € E,. Let us now investigate the

existence of an operator-valued process Ji ,,(y) such that
Joo (I (y) =Td a.s;0 <t < T

where Id is the identity operator on S(t)E. We start the analysis with the following

equation

Uily) = — /Ot [Id + U, (y)] S(=r)VF(XY)S(r)dr
-2V /0 [l + U, ()] S(—r)VGL(X)S(r) " (2.50)

Let C*7° be the linear space of £(F; E)-valued functions r — f, such that

[fllewo—0 := [[fllo,0=0 + 16|00 < 0.

Lemma 2.4.5 Under Assumptions B1-B2, there exists a unique adapted solution U(y)
of (2.59) such that U(y) € C*°7° a.s for p+75>1 and 0 < pu < 7.

Proof. For a given g € WZ’:‘;’OO and w € "%, let us define I' : C/*°7% — ¢1*°70 by

LU) :=— /Ot [Id + Ur} S(=r)VF(w,)S(r)dr
- Z \/)‘_z/o [Id + U, ] S(=r)VGi(w,)S(r)dg,.

We claim that I' is a contraction map on a small interval [0,7]. Indeed, for U,V €

Ci7 if g = T(U); — T(V);, then

¢ = / [V, = U,)S(=r)V F(w,)S(r)dr

o) t e .
+ VA [V~ VIS0 VGiw)S()ds = ol + 3 ai
i=1 =1
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Assumption B2 implies the existence of a constant C'r such that

T
la'loa-0 = sup ] < [ [V = IS VE@)SO)| dr
0<t<T 0

0—0

< CpT||U = Vo0-0 (2.60)

and

lg; — aill

it — s < Cp||lU = Vlooolt = s|'™ < CpT MU = Vljo,0-0-

Then,
18 [l,,00 < CRT MU = Vjo,050- (2.61)

Young-Loeve’s inequality yields

|3 e

< et 2 IV = VIS TGSl VA gl =

+ZH[V;—US] $)VGi(w,)S(s) || (6gi) v/ A

< WZH&V U)S~VGi(w )S||M7OQO\/X||91‘HW@OO|¢—s|ﬂ+ﬁ

+ Z IV = US (=) VGiw) S6)[lg It = sT VA (2:62)
where by linearity,

o[V — U]S_VGi(w)SHMO_)o < |ISTVGi(w)S|lo,0-0ll6(V = U)ll 00
+ |V = Ulloo-0l|6S™ VGi(w.)S||.0-0
< CollV = Ullgpoo, (2.63)

for a constant Cg coming from Assumption Bl. Summing up (2.62) and (2.63), we

have

0o
| > o0
- 1,0—0
i=1

< Cg|lV - U]

Cit,O—)DT;?HgHW;\'y:}},oo + Cq||V — UHc;f,o—mHgHW;y:%ooTﬁ’*ﬂ
(2.64)
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where we recall 4 > p. In addition, (2.62) yields

S CallV = Ullgposo T glpgse + CallV = Ullegr=rllglpgs=T"

, 0,0
i=1
(2.65)
Summing up (2.60), (2.61), (2.64) and (2.65), we conclude

lallggo-o < [CH(T' " +T)+(Callglygan) @TT+TT 2+ T9)| [T~V

Cib,0—>0 . (266)

where ¢ = I'(U) — I'(V). By making 7" small in (2.66), we conclude there exists a
unique fixed point for I' on small interval [0, 7] whose size does not depend on the
initial condition. The construction of a global unique solution from the solution in
[0, 7] is standard and it is left to the reader for sake of conciseness. This pathwise
argument clearly provides a unique adapted process U realizing (2.59). =

Now, we set R;(y) = U(y) + Id and we observe that

Ri(y) = 1d - / R.(y)S(—5)VF(X?)S(s)ds

—Z\/_/ —s)VGi(XY)S(s)dB;0 <t <T. (2.67)

We the arrive at the following result which will play a key role in representing the

Malliavin matrix.

Proposition 2.4.6 If Assumptions HI1-A1-A2-A3-B1-B2 hold then, for each initial
condition y € Ey, the Jacobian Jo_(y) admits a right-inverse adapted process J§ ., (y)

which satisfies

Tg () = S(—t) - / 3¢ () VE(XY)S(s — t)ds

- Z f/ FLLVGI(XNS(s —t)dB0 <t < T. (2.68)
Proof. The candidate is J§ ,,(y) := R(y)S™(¢) defined on S(t)E. At first, we observe

S(s)S(—t)=S(s—t)on S(t)E C S(t —s)E
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for every s < t. Then, (2.68) is well-defined in view of Assumptions B1-B2. Let us
check it is the right-inverse. Let

= /0 t S(—=s)VF(XY)S(s)[1d + Vi(y)]ds

+ i @/Ot S(—5)VG(X¥)S(s)[Id + Vi(y)]dBL50 <t <T.  (2.69)

By following a similar proof of Lemma 2.4.5, we can safely state there exists a unique
adapted solution V (y) of (2.69) such that V(y) € C!**7% a.s for p < 4 and p+ 5 > 1.
Let us define P,(y) = Vi(y) + Id and notice that S(¢)S(—s) = S(t — s) on S(s)E for

every t > s > 0. Then,

P =1+ [ ' S(—s)VF(XD)S($)P.(y)ds

VA S(-)GLXD)S(5) Py (2.70)

and therefore Jo_,;(y) = S(t)P:(y). Equations (2.67), (2.70) and integration by parts

in Hilbert spaces yield

(P(y)Re(y)w, '), = (Ri(y)w, P} (y)w') , = <w,w’>E+/0 (dR(y)w, P} (y)w'),
4 / (Ruy)w, dP; (y)ur)

for each w,w’ € E where P* is the adjoint. To keep notation simple, we set [; =

IN (dRs(y)w, Pr(y)w') , and I, = Iy (Ry(y)w, dP; (y)w ") ;- We observe

_ /0 t (Ry(y)S(~5)VF(XY)S(s)w, P (y)w') ds
_ 2 VA /0 t (Ry(y)S(—s)VGi{(XY)S(s)w, P (y)w") dB,
_ /O Py Ruly)S(=s) V(XS (s)w, '), ds
. i [ (PRSI VGXD)S (s)w, 0 5
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In addition, Assumption B1 allows us to represent
I = / (Ruy)w, (S(~)VE(X2)S(s)Pu(y)) ") pds
=3 VA [ (R, (S TGS P0) w5,
:/0 <S(—S)VF(X§’)S(S)Ps(y)Rs(y)w,w/>Eds
+ VA [ (S TFODS(5) P R ')

This shows that

PR =10+ [ SE)VEODS6) PR
+ fj VA [ SCVGODSE )RS
- [ PRSI VRRS s
- fj VA / P R(4)S (=) VGH(X?)S(5)d5: (2.71)

We now observe there exists a unique solution of (2.71). To see this, let Q;(y) =

P,(y)Ri(y) — Id and from (2.71), we have

Q) = [ SEIVFODSEQs+ VA [ SVGXSEQ. 1)
- [ QwSEaTFEDSEE = 30 VA [ QuSVGxS ()

(2.72)

The same argument of the proof of Lemma 2.4.5 yields the existence of a unique solution
of equation (2.72). This obviously implies that (2.71) admits only one solution. Since
Id solves (2.71), we do have Pi(y)R;(y) = Id for every t € [0,T] and we conclude
Jooe(W)Iooi(y) = SO P(y) Re(y)S~(t) = 1d a.s. m
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Chapter 3

Existence of densities under

Hormander’s bracket condition

Here, we examine the existence of the densities for random variables of the form

T(X;°) for a bounded linear operator T : E — R? for a given ¢t € (0, T,

3.1 The Hormander’s bracket condition

Throughout this section, we fix a set of parameters x, kg, 7, d, A as described in
(2.17). In order to state a Hormander’s bracket condition, we need to work with smooth

vector fields F,G;;1 > 1. Let

dom(A™) :={h € E;h € dom(A™ ') and A" 'h € dom(A)},
1l Zemear) = D 1A,
i=0

dom(A*) := Ny ,dom(A").

We observe dom(A™) is a Frechét space equipped with the family of seminorms
| - ldom(any; 7 > 0. In the sequel, for each t € [0, 7], we equip S(t)E with the following

inner product

Sz, Sty swe = (x,y)m; v,y € E. (3.1)



Notice that this is a well-defined inner product due to the injectivity of the semigroup.
One can easily check S(t)FE is a separable Hilbert space equipped with the norm asso-
ciated with (3.1). Moreover, for each zy € E, and t € [0,T], Jg_,(z0) : SO)E — F
admits an adjoint as a bounded linear operator from E to S(t)E. Indeed, let J.%,(20) :

E — S(t)E be the linear operator defined by

y = Jou(@o)y = S(6)R; (o)y.

Then,
(Toi(@0)S(t)z, y) = (Re(w0) S(—t)S(t)z, )
= <$7 R;: (‘To)y>E = <S<t)$a Jg_jt(xo)y>5(t)E
where [|J573,(x0)yllsir = R (xo)ylle < ||R;(zo)|||lyllz- This proves our claim. We

observe Rf(zo) = Id + Uj(xo) where

U (20) = — /0 t (S(=r)VF(X)S(r)) (Id + Uy (o)) dr
- Z Vi / PV G(X2)S(r)) (1 + Uy (x0)) d5:
so that
R (z¢) = 1d — /Ot (S(=r)VF(X)S(r)) Ri(wo)dr
- 2 e /0 t (S(=r)VGi(X[)S(r)) Ry (w0)dB;. (3.2)
In other words,

Tisan) = S(0) = [ SO(SnVFX)S(0)) B ol

—Z\/_/ S(t PVG(X7)S(r)) R (x0)dBi.

Definition 3.1.1 A wvector field V' on an open subset U C M of a Fréchet space M is
a smooth map V : U — M.
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Let us recall the concept of Lie brackets (see e.g [14]) between two vector fields

Vi, Vo - dom(A*) — dom(A™)
V1, Va](r) = VVa(r)Vi(r) — VVi(r)Va(r)

for each r € dom(A>). We observe [V, V5] : dom(A>®) — dom(A™) is a well-defined
vector field whenever Vi, V5 are vector fields on dom(A>). Moreover, }1 < Kk < 1 implies

dom(A) C dom(—A)” so that dom(A*>) C E.,.
Assumption C1: G : E — L5(Uy; S(T)E) satisfies
(i) z — G;(z) is an S(T")dom(A)-valued continuous mapping for each i > 1. Moreover,

(i) .
E/ HG(XfO)H%ﬂUo,S(T)E)dr < 00.
0

Assumption C2: F, G, : E — dom(A>) are smooth mappings with bounded deriva-
tives for every ¢ > 1 with the property that

supsup || V"Ge(y)|| (n), E—dom(am) < 00,
0>1 yeE

for every n,m > 1. There exists a constant C' such that

1Ge(¥) laom(a) < C(1 + [|yllaom(a)), v € dom(A)

for every £ > 1. Moreover, if V = F, G;;i > 1 : dom(A*) — dom(A*) are C>-
bounded for every k > 1, i.e., for a given k > 1, each derivative V/V : dom(A*) —
L (domZ(Ak); dom(AF)) is a bounded function for every ¢ > 1, where dom®(A*) =
dom(A*) x - - x dom(A¥*) (¢-fold).

Assumption C3: For every n > 1, V'G,(z)v € S(T)dom(A) and V"F(z)v €
S(T)dom(A) for every z € dom(A) and v € dom"(A).
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Under Assumption C2, if we assume that 2y € dom(A>), then we can construct
a solution process with a-Holder continuous trajectories in dom(A). This is true be-
cause the Picard approximation procedure converges in every Hilbert space dom(A™),
and the topology of dom(A>) is the projective limit of the ones on dom(A™). We

summarize this fact into the following remark.

Remark 3.1.2 Under Assumption C2, for each initial condition xo € dom(A), (2.1)
has a unique strong solution. If x € dom(A>) then we can construct a solution of (2.1)

taking values on dom(A>) and such that
[6X7 || o, dom(am) < 00

for every m > 1.

Remark 3.1.3 Assumption C8 plays a rule in constructing the argument towards the

existence of densities which requires

[Go, VI(X{?) € S(H)E
in order to belong to the domain of J§ ,,(zo) for every V.€ Vi; k > 0 (see (3.11)),
where Gy is the vector field given by (3.10).

The following elementary result is useful.

Lemma 3.1.4 IfV : E — dom(A™) is a smooth mapping with bounded derivatives,
then

sup || V"V (y) | (n),00 < 00.
yer

Proof. The n-th Fréchet derivative of V' viewed as a map from E to dom(A) is given

by V'V : E — L, (E";dom(A)), where
IV*V (@) (B s ) laomay < VPV (@) ), 2domay[Ball <X [ 2
Then,

V"V (x)(hi, ..., ho)|le < ||V"V(2)(ha, ..., hy)|ldom(a)
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< IV*V(@) ), modomea 1l X X ([l

< sup V"V (W)l n), E=domy |21l X .. X (||
ye

and hence [|V*V(2)|(n),00 < subyer V'V (Y)|l(n),—dom(a) for every z € E. =
Let us now investigate the existence of densities for the SPDE (2.1). We start

with some preliminary results.

Lemma 3.1.5 Under Assumptions H1-A1-A2-A3-B1-B2-C1-C2, for each xo € dom(A),
we have

D, X7 = Joi(w0)J i, (20)G(X?) a.s (3.3)

for every r < t. Therefore,
D, T(X7) =T (Jooe(z0)I§ ., (20) G(X)) a.s (3.4)

for every r < t.

Proof. On one hand, Remark 3.1.2 and (2.54) yields
t © ot .
D, X% = G(X™) + / VF(X{)D,Xpodl+ ) / VG{(XP)D, Xdg,  (3.5)
s i=1 s

for 0 < r < t. On the other hand, Assumption C2 implies that (2.57) has a strong
solution for y = zy € dom(A) and for each v = G;(X?°). Having said that, let us fix
0 <r <t and a positive integer j > 1. The fact that G,;(E) C S(T')E and Remark
2.4.3 yield

(X7 / V(X7 Too(w0) T, (20) G5 (X70)dl
+Z / VG (X7)Tomsew) T (20) G (X205
XIO </ VF Jo_w(l‘())dg

+ Z/ VGi(X JO—%(”UO)CZ@) Jo—w(xO)Gj(Xfo)
= GH(X7) + (Joos) = Tooss(w0) ) I (0) G (X
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= Joos(20)J 4o (20) G5 (X°) a.s

By invoking (2.55), (2.49), Lemma 2.3.4, (3.5) and Assumption C1(i), we know
that both (r,t) — D, X and (r,t) — Jo_(70)Jd_,, (20)G;(XT) are jointly continuous
a.s on the simplex {(r,);0 < r <t < T}. This fact combined with the uniqueness of

the SPDE solution of (3.5) (for each fixed r) implies that they are indistinguishable

(D.X™) (v/Aje;) = Joo (20)I¢,.(20) G (X™) a.s

for each 7 > 1. Assumption C1 (ii) implies
r Jos(20) I8, (20) G(XH) € Ly(Up; L7 ([0,T]; E)) C Lo(Uy; H® E) acs

for every t € (0,7]. Summing up the above arguments, we shall conclude (3.3) holds
true. The chain rule yields representation (3.4). =

In what follows, let us denote

7= ((DTU(X), DT (X)) (3.6)

CQ(UOQH)> 1<i,j<d

where 7 = (T1,...7;) : E — R In order to investigate non-degeneracy of the
Malliavin derivative, it is convenient to work with a reduced Malliavin operator. Let

us define the self-adjoint linear operator C; : E — E by the following quadratic form

@wE—wz//umm@ 20), ) (T (20) Ge( X2, y)
lu — v|*" 2 dudv

=§:H £ (20) Go(X™) y>EH ZH(G (X7), T (@0)) o0 5

2

L, (3D

forye Eand 0 <t <T. In (3.7), the norm in H is computed over [0,¢]. We observe

C; is a well-defined bounded linear operator due to Assumption C1 (i) and & < 2.

Lemma 3.1.6 Under Assumptions H1-A2-A2-A3-B1-B2-C1-C2, we have for each xq €
dom(A),
Tt = (TO J0—>t('7;0)) Ct (TO J()_ng(l’o))*.
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Proof. In one hand, Lemma 3.1.5 and (1.7) yield

W = (DTi(X[°), DT;(X/") >£2(U0 M)

_Z<DT )(VAeer), DT (X, \/_€g>
//D’T V(v Aeed) DT (X5 (v Aeer) [u — v 2dudy

Mgu

o /u Ti(Jo-0(@0) 0 (20) Ge(X0)) T (Josa (20) T (0) Ge( X))

~
Il

1

lu — v|*" " 2dudv. (3.8)
On the other hand, if (b;){_, is the canonical orthonormal basis of R%, we observe

((ToJoulwe)) € (Todou(wo) bisbs ) = (Co (Todooswo) bis (Todooslw0) bi)
(3.9)

Now, use the definition (3.7) and the polarization formula

<Ct%y>E = %{<Ct(1’ +y)(x+y > <Ct$ x>E <Cty’y>E}

to conclude (3.9) equals to (3.8). =
Let us now investigate the existence of densities. At first, we recall the following

result which is an immediate consequence of the classical result in Malliavin calculus.

See e.g Th 2.1.1 in [31].

Lemma 3.1.7 Assume T;(X{°) € D2(R) fori=1,...,d and v, is invertible a.s for
an initial condition xo € dom(A) andt € (0,T]. Then, the law of T(X;°) has a density

w.r.t Lebesque measure in R,

We can now turn to our first main result of this paper. Let us define
Go(z) := Az + F(x);z € dom(A™). (3.10)
Given the SPDE (2.1), define a collection of vector fields V;, by

VO = {GZ,Z 2 1}, Vk—i—l = Vk U {[Gj, V], Ve Vk andj Z 0} (3.11)
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We also define the vector spaces Vi (zo) := span{V(z¢); V € V;} and we set
D(SEO) = UkZlvk(iE)

for each xy € dom(A>).
Note that under Assumption C2, all the Lie brackets in (3.11) are well-defined as
vector fields dom(A*) — dom(A>).

Proposition 3.1.8 If Assumptions HI-A1-A2-A3-B1-B2-C1-C2-C8 hold true, then

for each xy € dom(A>), we have
t
T VX = Vo) + [ 34 (a0 Go, VICE)ds
0
% ¢
+ Z \/)\_5/ I, (20)[Ge, VI(XT)dB 0<t < T,  (3.12)
=1 0

where V€V, form=20,1,2,... .

Proof. At first, we take V' € V,. Assumptions C2-C3 yield V(X*) € S(T)E,,
[Go, V](X?*) € S(T)E, and [Gy, V](X™) € S(T)E a.s. Moreover, change of variables
for Young integrals yields

Ve = Vi + [ VV(XO)Go(X)ds + " v/ [ vveemaieenas 613

where Go(X¥0) = A(X?0) + F(X);0 < s <T. We observe Young-Loeve’s inequality
and A1-A2-A3 allow us to state the Young integral in (3.13) is well-defined. Recall
the Lie bracket [Go, V](X0) = VV (X20)Gy(X) — VG (XZ)V(X20), so that we can

actually rewrite
t
V) = Vi) + [ (TGo(mve) + (6o Vi) )ds
0

£V [ IvemGi s
=1 0

where VGo(X2)V (X)) = A(V(X?°)) + VF(XX)V(X¥);0 < s < T. This implies
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that V' (X®) can be written as the mild solution of

V(X) = S0V (z0) + / S(t — 5)(VE(XP)V(X2) + [Go, V](X2))ds

VA / St — )V (XY Gy(X0)d!
—1 0

so that
t
SOVXE) = Vieo) + [ S(=5) (TPOXIVX) +(Go. V(X)) ds
+ Z \/—/ S)VV(X™)G(X™)dBL0 <t <T.  (3.14)
The adjoint operator Ji%,(x0) yields
(Tom(@)V(XT),y) e = (V(XP®), IgZu(zo)y)se = (S(=O)V(X]°), Ry (z0)y) e
for a given y € E. Hence, integration by parts yields
t
(T (20) V(X)) y) e = (V(zo), ¥) b +/ (dS(=s)V(XE0), Bi(x0)y) e
0
t
+/ (S(=s)V(X20),dR:(x0)y)p;0 <t < T.
0

By combining (3.14) and (3.2), we conclude that (3.12) holds true for V € V,. Now,
we take V = [G;,G,] or V =[Gy, G,] for p,i = 1,2,... . In this case, C2-C3 yield
V(X*) e S(T)E, [Gy, V](X?*) € S(T)E, and [G,, V](X*) € S(T)E. From the above
argument for vector fields in Vj, we learn that in order to prove (3.12), it is sufficient

to ensure that the Young integral in the right-hand side of (3.13) is well-defined, i.e.,

sup [[6VV (X)) Gp(X™) |0 < 00 a.s. (3.15)

£>1

At first, we observe if W : dom(A*>) — dom(A>) is smooth, then

VI[Go, W](z)(h) = V*W (z)(h, Az) + VW (2)A(h) + VW (z)(h, F(z))
+ VW (x)VF(x)h — AVW (x2)h
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— V2F(2)(h, W (x)) — VF(x)VW (2)h; h € dom(A>),  (3.16)
and

VG, W(x)(h) = VW (2)(h, Gp(2)) + VW (2)VGy(z)(h)
— V26, (2)(h, W(z)) — VG,(x) VW (z)(h) (3.17)

for h € dom(A>) and p > 1. If V =[Gy, G,], we observe

VV(XP)G(X{®) = —AVG,(X[°)Ge(X°) — VEF(X[)(G,(X(°), Ge(X["))
— V(X[ )VG,(X[*)Go(X[®) + V2Gy(X[)(AXP®, Go(X))
+ VG (X{°)AG(X[") + VIG,(X{°)(F(X[°), Go(X]"))
+ VG (X)) VE(X)Go(X[7)

7

=3 L),

i=1

Since F,G; : E — dom(A>) has bounded derivatives of all orders (by C2), we shall

use Lemma 3.1.4 to get

H1p.6(t) = Lipe(s)l| 2 < IVGR(X)Go(XE?) = VG(X)Ge(XP) laom(a)
+ [AVG (X)) Ge(X0) — AVG, (X)) Ge(XE0) |

< sup VG ()| = dom(a) |Ge(X3°) — Ge(X3°) || B
ye

+1Gp(X7°) = Gp(XE0) B dom(a) |Ge(XE) | 2

< Csup [[VGy(Y)|| E—dom(a) 10X |
yeE

+051€12||VG (WD E=dom(a) 10X |2(1 4 | X]0,0),
Yy

Hop,e(t) = Lape(s)lle < [V2F(XF)(Gp(Xi0), Ge(X[?)) = VEF(X{0)(Gp(X{®), Ge(X())
+ [ VEF(XT0)(Gp(X[?), Ge(X{®)) = VAF(X{)(Gp(X0), Ge(X[")) Il
+[IVEF(XI0)(Gp(X10), Ge(X[?)) = VPF(X)(Gp(XE0), Ge(XE) | e

< [VPE(X0) = V2E(XE0) | (2).0-0lGp (X | Il Ge(XE0) | 2
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+ V2 F (X5 (2),0-0llGp(X7) = Gp( X3 Bl|Ge (X7 |

+ VP (X2)[l(2),0-0llGe(X7°) = Go(X )| | Gp(X2°) ||
2

0,0)

+2C sup IV?F ()l 2),0-0(1 + | X
ye

S OoX2 e+ (X

00)[16X:5 |2,

H3.p.6(t) = I3 pe(s)| 2 < (IVE(X[)VGH(X)Go(X[0) = VE(XS) VG (X)Go(X) | 2
+IVEXE) VG (X Go(X[0) = VE(X) VG (X)) Ge(X0) | 2
+ IVE(XE) VG (X Go(X[0) = VE(XP) VG (X)) Ge(XE0) |

< Csug IV?F(y)|(2),0-0ll6 X2 2(1 + [ X™lo,0)
ye

+ Csup [[VE(y)|[ sup [V2Gp(y) [l 2),0-0 10X |2 (1 + | X7 [l0,0),
yeE yeE

Hape(t) = Lipe(s)llp < [[V2Gp(Xi)(AX®, Go(X[)) — V2Gp(XT)(AXY®, Go(X{°)
+ [ V2GH(XP0)(AX], Go(X[°)) = VEGH(XT)(AXT, Go(X[)) ||

+ [ V2GH(XP)(AX, Go(X[°)) = VEG(XT)(AXD, Go(X1)) ||

< sup IV2Go()ll3),0-50 18X £ 1 X7 [lo.dom(ay (1 + X lo,0)

ye
+ sup IV2Go(W)ll2),0-0 10 X 2| dom(ay (1 + 1| X*[|0,0)
ye

sup IV2G() 2,000 X (1 + X lo,dom( )
Y

H5.0.6(t) = Is pe(t) ]| 2 < IVGR(XFP)AGHXT?) = VG (X)) AGHX) |
HIVGH (XSO AGHX[) = VG (X5 AGH(XS°) |

< Csup IV2Gp()l2),0-50 10X I B Ge(X i) lldomiay
Y
+ Csup [[VGp(y)l| sup [[VGe(y) | 5dom(a) 10X || 2
yelE yel
< Csup IV2Gp () 2),0-50 10X (1 + | X ™ lo,dom( )
Y

+ C'sup VG (y) [ sup [[VGe(y) | 5 dom(a) 16 X5 2
yeE yelE

67



Hop,e(t) = Is pe(s)lle < [V2Gp(X{)(F(X0), Ge(X[?)) = VEG(XT)(F(X{°), Ge(X())
+ [ VEGH(XP)(F(X[?), Ge(X[°)) = V2GH (X0 (F(X0), Ge(X())ll

< ngg IV Gl 3),0-50 10X (1 + [1X*l0,0)?
Y

+ Csup [V2Gp(y)ll (2,000 X5 |1
yeE

H7p,6(t) = Tz pe(s)| 2 < [VGH(X)VE(X)Go(X(?) = VG (X)) VE (X)) Go(Xi) ||
+ VG (XSO VE(X)Go(X0) = VG (X)) VE(XS)Go(XS0) |

< Csup [ V3G (1)l 2,000 X5 |2 sup [V E ()| (1 + 1X*lo,0)
yer yeE

+ Csug IV2E ()l 2,0-0 10 X5 [ 2(1 + [ X7 0,0)
ye

+ Csup [VF()[[[0X5 | -
yeE

This shows that (3.15) holds true for vector fields of the [Go,Gpl;p = 1,2,... .
A similar computation also shows (3.15) for vector fields of the form [G;, G,l;j,p =
1,2,... . This shows that (3.12) holds for vectors fields V' € V;. By using (3.16) and
(3.17) and iterating the argument, we recover (3.15) for vector fields V € V,;n > 0

and hence we conclude the proof. m

3.2 Doob-Meyer-type decomposition

Let us now turn our attention to a Doob-Meyer decomposition in the framework
of integral equations involving a trace-class FBM. This will play a key step in the proof
of the existence of density of Theorem 0.0.4. We recall the parameters 7, d, A are fixed
according to (2.17). In a rather general situation, Friz and Schekar [16] have developed
the concept of true roughness which plays a key role in determining the uniqueness of
the Gubinelli’s derivative in rough path theory. For sake of completeness, we recall the

following concepts borrowed from [17] and adapted to our infinite-dimensional setting.

68



. 7,9,00 :
For a given g € W'z, we write

Gi=> VAejghi0<t<T.
j=1

Of course, G € C; (U) for every g € W;f%oo

Definition 3.2.1 Given a path G € C](U), we say that Y € C](R) is controlled by
G if there exists Y' € C](U*) so that the remainder term gien implicitly through the

relation

§Yie = Y/6G + R}, s < t

satisfies ||[RY |25 < 0.

In our context, we restrict the analysis to the following class of derivatives. Let
7> be the set of all sequences of real-valued functions on [0,7], (f;)22, such that
sup;sy [|0fillsg < oo for 0 < B < 1. Let Y’ : [0,T] — U* be a U*-valued path such that
(Y2, € C7>° where Y = Y'(e;);i > 1 . We then observe if

§Y,s =Y/6G, + R, s <t (3.18)

then, 6V, = [[V/dG, = 320, Vi [ V/idg! is a well defined Young integral, where

the remainder is characterized by
R= S [ v
Jj=1 5

and ||R?|lss < oo due to Young-Loeve inequality. The class of all pairs (YY)
of the form (3.18) constitutes a subset of controlled paths which we denote it by
93;’([0, T]; U*). Next, we recall the following concept of truly rough.

Definition 3.2.2 For a fized s € (0,T], we call a %—rough path G : [0,T] — U, "rough
at time s” if

Yo* € U* non-null : lim SUPW

s \t - 812”7 = +00.

If G is rough on some dense subset of [0,T], then we call it truly rough.
Lemma 3.2.3 The U-valued trace-class FBM given by (1.9) is truly rough.
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Proof. The proof follows the same lines of Example 2 in [16] together with the law
of iterated logarithm for Gaussian processes as described by Th 7.2.15 in [28]. We left
the details to the reader. m

The following result is given by Th. 6.5 in Friz and Hairer [15].

Theorem 3.2.4 Assume that G is a truly rough path. Let (Y,Y') and (Y,Y') be
controlled paths in .@éﬁ([O,T];U*) and let N,N be a pair of real-valued continuous

/YdG+/th:/f/dG+/th
0 0 0 0

on [0,T]. Then, (Y,Y") = (Y,Y’) and N = N on [0,T].

paths. Assume that

3.3 Main Result: Proof of Theorem 0.0.4

We are now in position to proof the main result of this thesis.

Proof. Fix zy € dom(A*) C F and t € (0,7]. By Lemma 3.1.6,

= (’To Joﬁt(xo)) C; (TO J0—>t($0))*

so that it is sufficient to prove that ~; is positive definite a.s. For this purpose, we start

by noticing that
(b, Bgs = (Ci(T 0 Joa(o)) b, (T 0 Joi()) b) : be R

We observe that (7 o Joﬁt(xg))* is one-to-one. By assumption, Ker7* = {0} and
clearly KerJ§ ., (zo) = {0}. Indeed, if y € kerJ§_,,(xo), then for every x € F

(y, S(O)2) e = (Y, Joos(w0) T (0) S()7)

(T35 (@0)T5 i (0)y, S(t)x) sy = 0.

This implies y € (S (if)E)L = {0} (the orthogonal complement in £). Therefore, it is
sufficient to check

C; is positive definite a.s. (3.19)
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This follows from the classical argument in the Brownian motion setting (see e.g Th
2.3.2 in [31] or Th 6.1 in [38]) combined with Theorem 3.2.4. For completeness, we
provide the details. We argue by contradiction. Let us suppose there exists ¢y # 0
such that

P{(Cip0,00)z = 0} > 0. (3.20)

Take ¢ € E. By (3.7), we have

Copphp=ony / / (T4 (20) G(X20), ) (T (20) Ge(X70), ) |
=170 /0

lu — v[*2dudv. (3.21)

Let us define

K, = span{J{,, (70)Ge(X7°);0 <r < s, eN}0<s<T,

and we set Ky, = NgoKs. The Brownian filtration F allows us to make use of the
Blumental zero-one law to infer that Ky, is deterministic! a.s. Let N > 0 be a

natural number and let Ny be the (possibly infinite) dimension of the quotient space

K,
Koy~

Consider the non-decreasing adapted process {min{N ,Ng}H0< s < T} and the
stopping time
S =inf {0 < s <T;min {N,N;} >0}.

One should notice that S > 0 a.s. If S =0 on a set A of positive probability, then for
every € > 0 there exists 0 < s < T such that

€ >s>0and min{N,, N} >0

on A. This means that we should have Ny > 0 for every s € (0,7] on A. This implies

K
Ko+

that with a positive probability the dimension of is strictly positive which is a
contradiction.
We now claim that Ky, is a proper subset of E. Otherwise, Ky, = E which

implies Ky = F for every 0 < s < T In this case, if ¢ € F is such that (Cip, p)g =0

We say that a random subset A C E, is deterministic a.s when all random elements a € A are
constant a.s
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with positive probability, then (Ji,, (20)G¢(X2°),¢), = 0 for every r € [0,s] and

E
¢ € N with positive probability which in turn would imply that ¢ € K& = E* so

that ¢ = 0. This contradicts (3.20) (see (3.21)). Now we are able to select a non-null
¢ € E* such that Ky, C Kerp. At first, we observe p(K) = 0 for every 0 < s < S so
that

(34, Go(X7), )p=0V(>T1and 0 < s < S. (3.22)

We claim
(T4 (20)V(XP), 0)p =0 for every 0 < s < S,V € Vi, k >0, (3.23)

where we observe V' in (3.23) takes values on S(T)E. We show (3.23) by induction.
For k = 0, (3.22) implies (3.23). Let us assume (3.23) holds for £ — 1. Let V € Vj_;.
By Proposition 3.1.8,

0= (I, (20)V(X{°), ) p

= (V(z0). o) + / (3 (20) [Go, VI(XT), ) e

+Zf/ T (30)[Ge, VI(XE), ) B,

where (V(z0), ¢)r = 0 by the induction hypothesis. By Theorem 3.2.4, we must have
<J6F—>r<x0)[G07 V] (ero)v 90>E = <JE)F—>T(I0)[GZ7 V] (Xmo) >E =0

for every 0 < r < sand 0 < s < S and ¢ > 1. This proves (3.23). Clearly, (3.23)
implies
©(Vi(xg)) = 0 for every non-negative integer k (3.24)

and hence the Hormander’s bracket condition implies ¢ = 0. By Lemma 3.1.7, this

concludes the proof. m

Remark 3.3.1 The assumption that S(t)E is dense in E seems a bit restrictive but

it covers a rather general class of examples. For instance, if (A, dom (A)) is a densely
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defined self-adjoint operator such that

r, Ar) g
medofnl(lg)/{o} < HHTHE> =
then (A, dom A) is the generator of a self-adjoint analytic semigroup (see Th 7.3.4 and
Example 7.4.5 in [5]). Since analytic semigroups are one-to-one, S*(t) is one-to-one
for everyt > 0 and hence, S(t)E is dense in E for everyt > 0. The heat semigroup on
L? has dense range (see [13]). More generally, assume there exists a separable Hilbert

space W densely and continuously embedded into E with compact imbedding. Assume

that

o A: W — W* is continuous and its restriction to W, Ag : dom(Ag) — E where
dom(Ag) = {u € W;Au € E} and Apu = Au;u € dom(Ag), is a self-adjoint

operator.

o There exists A € R and n > 0 such that

(Au 1)y e+ AllullT > nl|ully

for each uw e W.

Then, S(t)E is dense in E for every t € [0,T]. See e.g [3] for further details.
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