Universidade Federal da Paraiba
Universidade Federal de Campina Grande
Programa Associado de P6s-Graduacao em Matematica

Doutorado em Matematica

p—parabolic submanifolds in certain
spacetimes: rigidity, uniqueness and
non-existence results

por

Fernanda Roing

Joao Pessoa - PB

Fevereiro/2019



p—parabolic submanifolds in certain
spacetimes: rigidity, uniqueness and
non-existence results

por

Fernanda Roing |

sob orientacao de

Prof. Dr. Eraldo Almeida Lima Junior

Tese apresentada ao Corpo Docente do Programa
Associado de Pos-Graduacao em Mateméatica -
UFPB/UFCG, como requisito parcial para obtencao do

titulo de Doutor em Matemética.

Joao Pessoa - PB
Fevereiro/2019

tEste trabalho contou com apoio financeiro da CAPES

i



Catalogagdo na publicagéao
Segdo de Catalogagdo e Classificagao

R741p Roing, Fernanda.
p-parabolic submanifolds in certain spacetimes:
rigidity, uniqueness and non-existence results /
Fernanda Roing. - Joao Pessoa, 2019.
79 f.

Orientacdo: Eraldo Almeida Lima Junior.
Tese (Doutorado) — UFPB/CCEN.

1. p-parabolic manifolds, stable manifolds. I. Lima
Junior, Eraldo Almeida. II. Titulo.

UFPB/CCEN




Universidade Federal da Paraiba
Universidade Federal de Campina Grande
Programa Associado de P6s-Graduagao em Matematica

Doutorado em Matematica

Area de Concentracao: Geometria

bdds Albviiade Jioma Zimis

Prof. Dr. Eraldo Almeida Lima Junior (Orientador)
Universidade Federal da Paraiba (UFPB)

Azlh(’/vw v de Medinm

Prof. Dr. Adriano Alves de Medeiros

iversidade Federal da/Paraiba (UFPB)
A AW

Prof. Dr. Fabio Reis dos Santos
Universidade Federal da Paraiba (UFPB)

LR Te—

Prof. Dr. Gregoério Pacelli Feitosa Bessa

Universidade Federal do Ceara (UFC)

A BIL Ll

Prof. Dr. Marcio Henrique Batista da Silva
Universidade Federal de Alagoas (UFAL)

Tese apresentada ao Corpo Docente do Programa Associado de Pés-Graduacio
em Matematica - UFPB/UFCG, como requisito parcial para obtencao do titulo de

Doutor em Matematica.

22 de Fevereiro de 2019



iv

Dedico este trabalho ao meu pai

Guillermo



“Take these broken wings and learn

to fly” (Paul McCartney)



Abstract

In this work we present rigidity and uniqueness results for parabolic and stable
constant mean curvature hypersurfaces immersed in Generalized Robertson-Walker and
Standard Static spacetimes. We obtained some conditions under which a hypersurface
in these ambiences must be parabolic, as well as stable. In order to achieve the unique-
ness results, we used some cut-off functions coming from the parabolicity jointly with
the stability operator. Also, we introduced the concept of totally trapped submani-
fold and obtained some uniqueness and non-existence results when the submanifold is
p-parabolic. We also presented a lemma of type Nishikawa in order to obtain Calabi-
Berstein type results for surfaces in Robertson-Walker Generalized spacetimes.

Keywords: p-parabolic manifolds, GRW spacetimes, stable hypersurfaces, CMC

hypersurfaces.



Resumo

Neste trabalho nos apresentamos resultados de rigidez e unicidade para hiper-
fices de curvatura média constante parabolicas e estaveis imersas em espagos-tempo
Robertson Walker e Standard Static. Nos obtivemos algumas condigoes sob as quais
uma hiperféie nestes ambientes deve ser parabélica, bem como estavel. A fim de obter
os resultados de unicidade, usamos algumas funcoes corte provenientes da paraboli-
cidade juntamente com o operador estabilidade. Também, introduzimos o conceito
de subvariedades totalmente presas e obtivemos alguns resultados de unicidade e nao-
existéncia quando a subvariedade é p-parabolica. Também apresentamos um lema do
tipo Nishikawa a fim de obter resultados do tipo Calabi-Berstein para superficies no
Robertson Walker generalizado.

Palavras-chave: variedades p-parabolicas, GRW espacos-tempo, hiperficies es-

taveis, hiperficies CMC.
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Introduction

The study of warped product spacetimes is important from both geometrical and
physical point of view, specially in Lorentzian geometry and General Relativity, since

they comprise a wide variety of exact solutions to Einstein’s field equations

Ri; — %gin + giA = 8:_4GTij>
where R;; is the Ricci curvature tensor, R is the scalar curvature, g;; is the metric
tensor, A is the cosmological constant, GG is Newton’s gravitational constant, ¢ is the
speed of light in vacuum, and T;; is the stress-energy tensor.

In this thesis we focus on two classes of spacetimes, namelly the Generalized
Robertson-Walker spacetimes (GRW) and the Standard Static spacetimes (SSST). The
notion of GRW spacetimes as a family of cosmological models of the universe was
firstly studied in |15] and [16] by Aledo, Romero and Salamanca. The SSST are a
generalization of Einstein static universe which is the first relativistic cosmological
model. Some classical and important examples of SSST are the anti-de Sitter space,
the exterior Schwarzschild spacetime, the Minkowski spacetime, the Finstein static
universe and some regions of the Reissner-Nordstrom spacetime, see for instance [21]
and [38]. In [2] Allison made a deep approach about energy conditions in this ambient.

Spacelike constant mean curvature hypersurfaces are very important on General
Relativity, since they are critical points of the area functional under certain volume
constraint [16]. More reasons that justify the study of these hypersurfaces can be
found on [48|. In particular, maximal hypersurfaces describes the transition between
expanding and contracting phases of the universe. Also, they reflect properties of the

ambient. The most expressive result about maximal hypersurfaces is the well known



Calabi-Bernstein theorem that asserts: The only complete maximal hypersurfaces in
the Lorentz-Minkowski spacetime are the spacelike planes.

In Chapters 2 and 3 we deal with parabolic and stable CMC hypersurfaces and
obtain some constraints under which they must have constant support function. In
addition, we obtain some Calabi-Berstein type results. It is important to emphasize
that when the ambient is a SSST, every CMC hypersurface immersed is stable (see
Lemma 1.5.7). Our technique is based on the use of some cut-off functions directly
related to the parabolicity jointly to the stability operator.

In Chapter 4 we introduce the concept of totally trapped submanifolds and obtain
some uniqueness and non-existence results for p—parabolic totally trapped surfaces in
SSST.

In Chapter 5, outside of the setting of the parabolic hypersurfaces, we prove a

Nishikawa type principle in order to obtain Calabi-Berstein type results.



Chapter 1

Some Preliminaries

1.1 The Generalized Robertson Walker (GRW) space-

time
1.1.1 Some elements and basic results

Consider an n-dimensional connected manifold M™, I an open interval of the real
line R and p: I — R a positive smooth function. The Generalized Robertson Walker
(GRW) spacetime is denoted by —I x, M™ and defined as the Lorentzian product

manifold —I x, M"™ endowed with the metric

(,)=—mp(dt*) + p*my, ((, Dn)-

A GRW spacetime is said to be a Lorentzian product if its warping function is constant.
If the warping function is non-locally constant, the GRW spacetime is said to be proper.

An important tool used in GRW spacetimes is the Proposition 7.35 of [51], where
we write V for the Levi-Civita connection of —I X, M™ and VM for the Levi-Civita

connection of M™.

Proposition 1.1.1 Let —Ix,M" be a Lorentzian warped product, 0; € TR and X,Y €
TM then:

(Z) vat(()t - 0

(ii) Vo X =Vx0, = 5 X



(iii) (VxY,0) = —(X,Y)upp'
(iv) (VxY)" =V¥Y.

Let ¢ : X" — —I x, M™ be a spacelike hypersurface, i.e., a hypersurface whose
metric induced by the immersion is Riemannian. Since every spacetime is time-
oriented, let us say 0, the canonical timelike direction, we can take N as the only
globally defined vector field normal to " in the same time-orientation of J;, that is,

(N, 0;) < 0. This vector field will be called Gauss map.
Let X be a tangent vector of —I x, M" and

its tangential component to the fiber M. A direct application of Corollary 7.43 of
[51] provides the following relation between the Ricci tensor of the fiber and the Ricci

tensor of the ambient:
Ric(X) = Ric”(X*) — (n — 1)(log p)"| X*|* + n%ﬁ|X\2. (1.2)
The shape operator corresponding to N is given by
AX = —VxN. (1.3)

In the case of A =0 we say that the immersion is totally geodesic.
The Gauss-Kronecker curvature of X" is defined as Kz = —det A and the mean cur-

vature of the immersion is defined by
H=—(1/n)tr(A).

If H is constant, we say that X" is a CMC hypersurface. If H = 0, we say that " is
a maximal hypersurface, due to the fact that these hypersurfaces maximize locally the

area functional.

1.1.2 The height and the suport functions

Let us define the height function of ¢ : ¥* — —I x, M™ by h = g 0. From a

simple calculation, we obtain
77@ = —<v7TR, 8t>3t = —at.
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Then setting V the Levi-Civita conection of X" we get:
Vh=-9," = -0, — (N,0,)N. (1.4)
Setting N* the tangential component as (1.1) we have
P*IN*|? = |[Vh|* = =1+ (N, 0;)*. (1.5)

Observe that (NN, 0;) is the opposite of the hyperbolic angle between N and 0;. The
function (N, d;) is also called the hyperbolic angle of ™. If h is constant we say that
" is contained in a slice {to} x M. In this case from (1.4) we must have N = J;. From

(1.3) and Proposition 1.1.1, a spacelike slice has shape operator

/

AX = —Vyo, = -2 X, (1.6)
P

/
therefore mean curvature H = %.

Computing the divergence of (1.4), making use of the Gauss formula and Corollary

7.43 in [51] we have the following expression for the Laplacian of the height function:

Ah = =20 1) — 0 N, 9. (1.7)
p(h)
From a straightforward computation of (1.7) we obtain:
o p(h)lQ " 2 /
Ap(h) = —n= a5+ p(h)(log p(R)V'IVAI” = np (M H(N, 1), (1.8)

The support function is defined as p(N, 0;).

Proceeding to the calculation of the gradient of the support function we have:

(V(N,pdp), X) = X(N,pdy)
= (VxN,pdy) 4+ (N,V xpdy)
= <AX7 _PatT>
= (pAVh,X).
Since X is arbitrary, we get

V(N, pd,) = pA(Vh). (1.9)

The following lemma is computed in [13] eq. (12). It gives us an expression for the

Laplacian of the support function.



Lemma 1.1.2 Let ¢ : ¥" — —I x, M" be a spacelike hypersurface with Gauss map

N. Suppose that the mean curvature H is constant. Then,
A(N, p3)) = (N, p)(Ric(N) + [A[2) + n(Hp' + (N, 0,)), (1.10)
where Ric is the Ricci curvature of the ambient and |A| is the Hilbert—Schmidt norm

of the shape operator A of X",

Notice that since N and 0, are timelike,
(N, 0y) = —cosh 6,

where 6 is the hyperbolic angle between N and 0;. Then from (1.5) we get that
|Vh|?> = sinh?#. We have as corollary of a Lemma 1.1.2 version for the Laplacian of
the hyperbolic angle of ¥ in Lorentzian products:

Corollary 1.1.3 Let ¢ : X" — —1 x M™ be a spacelike hypersurface with Gauss map

N. Suppose that the mean curvature H is constant. Then,
A(N, ;) = (N, ;) (Ric(N) + |AJ]*), (1.11)

where Ric is the Ricci curvature of the ambient and |A| is the Hilbert—Schmidt norm
of the shape operator A of X".

1.1.3 Vertical graphs in GRW spacetimes

Let 2 C M be a domain and u € C*(2) be a smooth function. A vertical graph

over ) is

Y"u) = {(u(z),z);x € Q} C =1 x, M".

The metric induced on  from the Lorentzian metric on the ambient space via X" (u)

() = —du® + p(w)*(, ). (1.12)

The graph is said to be entire if Q@ = M. If X" (u) is a hypersurface with constant mean
curvature H we say that ¥"(u) is an H-graph.

With a straightforward computation we can see that the vector field

1
N(z) = )20 () o) + Du(x)), © € M,
() OV RS (P(0)*0h] (u(w).0) + Dulz)) , @ €




defines the future-pointing Gauss map of X" (u).
We can see that ¥"(u) is a spacelike surface if, and only if, |Du| < p(u).
The height and angle functions are defined as above. From 1.5:

. Vul|?
PN = [0 = T
Observe that a graph is a slice if, and only if, u is constant. Notice also that in the case
of Lorentzian products, a graph is of constant angle if, and only if, | Du| is constant.
In counterpart of the Riemannian case, where any entire graph is necessarilly
complete, it is not true for Lorentzian ambients. We can find some examples of non-
complete entire maximal graphs in —R x H? in [1]. Alfonso Romero got a reasonable
assumption under which an entire spacelike graph must be complete.
Lemma 1.1.4 Let ¥"(u) be an entire spacelike graph in Mt =1 X, M"™. Suppose

that for M™ is a complete Riemannian manifold such that p > ¢ > 0, whre ¢ is a
constant. If the height function of ¥"(u) satisfies

VA" < T(r),
where 1 is the distance function and T’ a continuous function, then ¥"(u) is complete.

Proof. Suppose by contradiction that ¥"(u) is not complete, then there is a divergent

curve v : [0,00) = X(u) with finite length L, = a < co. Therefore
Lpjy < Ly = a,

that implies |Vh|? < C' < oo. Hence,

2|Vh|? C
Duf? = -2 < 2 = bp*.
|Dul 1+|Vhy2—1+cp P

Without loss of generality we assume the projection v, of v on M is parametrized by

the arc length. By (1.12) we have,
L, = / \/p2 — (Du, ~},)2dt
0
> / Vp? = |Duldt
0
> V1-— b/ pdt > cv1—0bL,,,.
0

Therefore L., is finite that is an absurd since v,; is also divergent in M™ because

Ym

the composition of the projection 7y, and the inclusion of ¥"(u) in —R x M™ is a

diffeomorphism. m



1.2 The Standard Static Spacetime (SSST)

1.2.1 Some elements and basic results

Let 3" be an (n + k + 1)-dimensional Lorentz manifold endowed with a

timelike Killing vector field K. Suppose that the distribution D orthogonal to K is

ik the flow

of rank constant and integrable. We denote by ¥ : M™*F x T — M
generated by K, where M™** is an arbitrarily fixed spacelike integral leaf of D labeled
as t = 0, which we will suppose to be connected, and T is the maximal interval of
definition. Without loss of generality, in what follows we will also consider I = R. In

this setting, M can be regarded as the standard static spacetime M™% x, Ry,

that is, the product manifold M"** x R, endowed with the warping metric

(, ) =mu (( da) = (pomu)mg (dt?), (1.13)

where 7, and mr denote the canonical projections from M x R onto each factor,
( , Yar is the induced Riemannian metric on the Riemannian base M™% R, is the
manifold R endowed with the metric —dt? and the warping function p € C°°(M) is
given by p = |K| = \/—(K, K). Let us consider a connected spacelike submanifold
Yo X" — M immersed in a standard static spacetime M =yt X, Ry,
which means that the metric induced on X" via v is a Riemannian one. Let us denote
by V and V the Levi-Civita connections in M and 3", respectively. The Gauss

formula for ¥ in 7 is given by
VxY =VxY —a(X,Y)
for every tangent vector fields X,Y € X(X), where
a: X)) x X(X) = XY
denotes the vector valued second fundamental form of >3; that is
a(X,Y) = —(VxY)".

The mean curvature vector field H of ¥ is defined by

n

| 1
H=—tr(0) ==Y a(B;, E),
trle) = 2 3ol B



where {E;} , is a local frame on 3.

On the other hand, the Weingarten formula is given by
AeX = Vi€& —Vx¢ (1.14)
for every tangent vector field X € X(3) and normal vector field £ € X (X)), where
A1 X(X) = X(%)
denotes the shape operator (or Weingarten endomorphism) defined by
(AeX,Y) = (a(X,Y),8), X, Y € X(2). (1.15)
From (1.14) and (1.15) we have that
(VxK*Y) = (a(X,Y),K), (1.16)

for X,Y € X(2).
A submanifold ¥ is totally umbilic with respect to a normal direction £ if A¢ is

a multiple of the identity operator. A submanifold ¥ is totally umbilic if there exists
Z € X(X)* such that

a(X,Y) = (X,Y)Z VX,Y € X(%).

In this case we have that the submanifold is totally umbilic with respect to any normal
direction ¢ € X(X)*.

For the particular case of spacelike hypersurfaces ¢ : ¥" — M" x, Ry, there
exists a unique unitary timelike normal vector field N globally defined on »" which is
in the same time-orientation of K, that is, the support function © = (N, K) is negative
on X". Let us compute the gradient of the support function ©. Let X be a tangent
vector field in X™. Then

(VO,X) = X(N,K)
= (VxN,K)+ (N,VxK)
= (-AX,K") — (X,VyK)
= (X, -AK") + (X, ~(VyK)"),



where ()" denotes the tangential component of a vector field in X(M) along ¥". Hence
we conclude that VO = —AKT — (VyK)T.
Computing the divergence of the gradient above, we obtain the Laplacian of the

support function, as we see in Proposition 3.1 of [18]:
A® = (Ric(N) + |A])6, (1.17)

where |A| = /tr(A?2) is the Hilbert-Schimidt norm of the shape operator A.
For our purposes, we will study the (vertical) height function h = g 0 ¢». When
the height function is constant, we say that the hypersurface is contained in a slice

{to} x M™. From the decomposition K = K" — ©N we obtain

1 @2_ 2
Vh=-=K' and [Vh}?=—1. (1.18)
P P
Let N* be the orthogonal projection of N onto T'M. Then
1 1 /©6?
2 *|2 __
|Vh|* = ?’N |* = ? <F — 1) (1.19)

1.2.2 Killing graphs in SSST

We define the entire Killing graph ¥"(u) associated to a smooth function u €

C*®(M) as the hypersurface given by
Yu) = {(z,u(z)) :xe M"} C M" x,R;.

In this case we consider M"™ endowed with the metric induced from the Lorentzian

metric (1.13) in ¥"(u) which is given by
() =1, ) — pPdu’. (1.20)

We have that X" (u) is spacelike if, and only if, | Du|3; < 7, where Du denotes the
gradient of a function u with respect to the metric (, ) of M™ and v = p~2. Indeed,

if 3"(u) is spacelike, then
0< <D’U,, Du>u = <D’U,, Du>]\/f - p2<DU, Du>?\47

hence we conclude that p?|Dul3, < 1. Conversely, if p*|Dul3, < 1 and X is a vector

field tangent to ¥"(u), we obtain from Cauchy-Schwarz inequality,
<X7X>u = <X*7X*>M - IO2<DU7 X*ﬁu > <X*7 X*>M<1 - p2|Du’?\/I)v

10



where X* is the orthogonal projection of X onto T'M. Thus, (X,X), > 0 and
(X, X), = 0if, and only if, X = 0.

The function g : M™ x Ry — R given by g(z,t) = u(x) — t is such that X" (u) =
¥(g71(0)). Thus, for all vector field X tangent to M™ x, Ry, we have

1 1
X(g) = X*(Q) - E<X7 at>at<g) = <Eat + DU,X)-
Thus,
vg = %&t + Du
p

is a normal vector field on ¢~'(0) and, consequently,

z%:%ﬁm:%K+mwm

is a normal timelike vector field on X(u). Since,

(1 — p?|Dulf,)"?
p )

|No| =

it follows that
Ny 1

- = 2
~INo|  p(1 = p2|Dul3,)V? (K + p™¢.(Du))

defines the future-pointing Gauss map of ¥"(u) such that its angle function is given by

N

N - p
©=(N,K)= T ADaE) " < 0. (1.21)

Moreover, for all vector field X tangent to M", the shape operator A of ¥"(u) with

respect to IV is given by

3 2 2
p p*(Dx Du, Du) p*(Dp, X)|Dul3,
AX = -— Dy Du — Du —
(1= 2[Dul ) 2 X T (U= 2Dul, )2 7" (1= 2| Dul?,))?
(Dp, X) (Du, X)
— Du — Dp.
(1= 2DulZ ) 27" ™ (1= 2| Dul?,) 72

So, it follows from above that the mean curvature H, of a spacelike entire Killing

graph 3"(u) is given by

D Du, D
nHu:Div< Py ) (Du, Dp)

(1= p*|Dul3)'?) (1= p?Dul3)"?
where Div stands for the divergence operator on M™ with respect to the metric (, ).

In particular, an entire Killing graph ¥"(u) is maximal if, and only if, the function u €

11



C>°(M™) satisfies the following elliptic partial differential equation of the divergence

form
| pDu (Du, D) |
D =0 M™
" ((1 - pQrDuml/?) =gy E "
(1.22)
p*|Dul3, < 1.
We also note that,
«(D
N =N-Nt=PeDY
(1= p?|Dul3,)?
since we have
2 2
x p*|Duly,
N*2 = —M_ 1.23
and, consequently, we get from (1.18) and (1.23) the following relation
Du3
Vh|* = _|Duly 1.24
VA 1 — p?|Dul3, (1:24)

Notice that if p and the support function © are constant in a Killing graph, then |Du|
is constant. A spacelike Killing graph is a slice if, and only if, u is constant. Also,
using (1.21) n = % is automatically bounded, provided p?|Dul? < 1.

1.3 Energy conditions in spacetimes

There are several references and physical interpretations about the energy condi-
tions in spacetimes. See for instance [11], [57]. In General Relativity the Ricci tensor

is related to the energy-momentum tensor via Einstein’s field equations

S 1 8rG
Rici; — §gin + giA = 7Tij,

where mij is the Ricci curvature tensor of the ambient, R is the scalar curvature,
gi; is the metric tensor, A is the cosmological constant, G is Newton’s gravitational
constant, c is the speed of light in vacuum, and T;; is the stress-energy tensor. Then
the energy conditions may be guaranteed under some constraints on the Ricci tensor
of the ambient. We will give a brief introduction about this theme. A spacetime obeys

the Timelike Convergence Condition (TCC) if its Ricci tensor satisfies
Ric(Z) > 0,

12



for any timelike vector Z.

Physically, the TCC mean that the gravity, on average, attracts. Also, if a
spacetime satisfies the Einstein equations with cosmological constant zero, then it
obeys TCC.

A spacetime obeys the Null Convergence Condition (NCC) if its Ricci tensor
satisfies

Ric(Z) > 0,
for any lightlike vector Z.

It is not difficult to check that TCC holds on a GRW if, and only if, NCC holds
and p” < 0.

When the ambient is a GRW spacetime, we can apply equation (1.2) to any
lightlike vector in order to obtain that the GRW spacetime —I x, M"™ obeys NCC if

the Ricci tensor of the fiber satisfies
Ric” > (n — 1)p*(log p)"{, Var. (1.25)
In particular, a GRW spacetime M’ with a 2-dimensional fiber obeys NCC if and only
if
BM (log p)” >0 (1.26)
p* o '

where ks 1s the Gauss curvature of the fiber.
When the ambient is a SSST, Allison (see [2]) provided some conditions under
which a SSST obeys the TCC. Namely: If M™ x, Ry (n > 2) is a SSST such that the

Ricci curvature of the base M™ is non-negative and the warping function satisfies:
g]\/[(w7 w)Ap - Hessp(w, U)) > 07 (127)

for all w tangent to M", then TCC holds on M™ x, R;.
A SSST obeys the weak timelike convergence condition if condition (1.27) holds

true.

1.4 Parabolicity of manifolds

A manifold M is said to be p—parabolic provided there is no non-constant positive

smooth function u : M — R satisfying Ayu < 0, where Ayu = div(|Vu|P~2Vu). For

13



2—parabolic manifolds we say just parabolic. In fact, the p-Laplacian is the Euler-
Lagrange operator associated to the energy functional (see [63], [24]). In [27] Colding

and Minicozzi have proved that a complete surface M? satisfying quadratic area growth
Vol(B,) < Cr? (1.28)

must be parabolic, where B, denote an intrinsic (geodesic) ball in M?2. Furthermore,
it was showed in [30] by Cao and Zhou that in a schrinking gradient Ricci soliton
there exists a uniform constant C' > 0 that satisfies (1.28). Therefore all 2-dimensional
schrinking gradient Ricci solitons M? must be parabolic. When a complete manifold
is p-parabolic, it means that the growth of the volume of the geodesic balls is bounded
by a polynomial of degree at most p in the distance function. Compact manifolds
are trivially p-parabolics for all 1 < p < oo, as well complete with finite volume
manifolds. The case p = 2 has been extensively studied linking several mathematical
areas, namely geometry, analysis and probability (|34| provides a deep survey on this
topic). In [62], Troyanov studied an invariant of Riemannian manifolds related to
the non-linear potential theory of the p-Laplacian and which is called its parabolic or
hyperbolic type.

Let M™ be a Riemannian manifold and B, a geodesic ball of radius r about a

fixed point a. For 0 < r < R let A, r be the geodesic annulus:
-Ar,R = Br — E

Consider the boundary problem

pr = 0 in Ar,R
w = 0 ondB, (1.29)
1 on 0Bk,

w

and we denote w = w, p the solution of (1.29) which is called p-harmonic measure of

0Bpr with respect to A, . The p—capacity of the annulus is defined by:

C’appAnR = / ‘VU)T,R‘;D. (130)
R
We say that M™ is p—parabolic if, and only if
}%i_rgo Cap,(r, R) = 0.
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In what follows we enunciate Proposition 4.1 of [62], where Troyanov provides
an equivalence to the p—parabolicity with the possibility of aproximate the function 1
by functions with compact support and small p—energy. This equivalence will be an

important tool for our results.

Proposition 1.4.1 A manifold M is p-parabolic if, and only if, there exists a sequence
of functions u; € C3(M) such that 0 < u; < 1, u; — 1 uniformly on every compact
subset of M and

M

In addition, in Theorem 4.2 of the same paper, Troyanov proved that a manifold
is p—parabolic provided there is no non-constant positive p—superharmonic function.

This last equivalence is the most known definition about p—parabolicity.

1.4.1 A Liouvile type result for p—parabolic manifolds

Results of parabolicity have been studied for many authors such as Grigoryan
[34] and Pigola, Rigoli, and Setti [54|. In [61] Schoen and Yau proved that if M is
a oriented, complete, non-compact manifold with non-negative Ricci curvature and

u: M — R is a non-negative, integrable, smooth function such that
1 2
ulAu > §|Vu| on M, (1.31)

then u is identically zero. Recalling that the class of p-parabolic manifolds contain the
compact ones, we proved a Schoen-Yau type theorem for the complementary part of
the manifolds that satisfies (1.31) as we present below in Theorem 1.4.3. It is worth
to emphasize that we could drop out some hipothesis in cmparison to the Schoen and

Yau result. For the proof we were inspired in the ideas of Alfas and Palmer [12].

Lemma 1.4.2 Let M be a Riemannian manifold and let uw € C*(M) be a function that
satisfies
ulApu >0

on M. Then for 0 <r < R
/ ulu < (p—1)P"*Cap,(r, R) sup u?,
B, Bgr

where 1 < p < oco.
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Proof. We consider £ € C§°(Bg). Then,
0 = / Div(£%u|Vul[P?Vu)dBg
Br

= Eulju + E*(Vu, Vu) | VulP~2 + a* 1u|VuP~2(VE, Vu).

Br

This implies

Eulyu+ 0 VulP = —a [ €7(VE, |VulP?Vu)

Br Br

< a / €| | VuP2(VE, Va)
Br

< a / L VulP Ve,
Br

Using Yang inequality, we obtain

q
ulu + £ VulP < i/ up\vg\u%/ cla=Da|7y|r
q JBg

Br pBP Jp,

Hence

q
Cubu < / PIVEP + / Vuf? <%g<al>q_ga)
Br p/@p Br Br q

= [ wewep s [ v (Cei 1) s

1-p

Taking « = p and = (p—1) 7 the last term of (1.32) vanishes. Thus,

Eulu < (p— 1)# D / PIVEP < (p— 1P supu? / Ve,
Br

Br Br Br

Define ¢ by
1, z € B,
l—w.g, x€AR

Note that £ is not smooth, but it can be approximated by a smooth function. So,

/ ul,u < (p—1)P"*Cap,(r, R) sup u”

Br

as desired. m
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Theorem 1.4.3 Let M be a p—parabolic Riemannian manifold. If u € C*(M) is such
that supg,, uP < oo satisfying
ulApu > o Vulf

for some a > 0 and 1 < p < 0o, then u must be constant on B,.
Proof. We consider 0 < r < R. Since uAyu > «|VulP > 0 we have by Lemma 1.4.2,

a/ |VulP §/ < a(p—1)P"'Cap,(r, R) sup u?.
T r Bgr

Taking R — oo and using that M is p—parabolic and supg, u” < oo, we obtain

/ |VulP = 0.

Therefore, u is constant on B,. m

1.4.2 A p-parabolicity criterium for hypersurfaces in GRW

A GRW spacetime is spatially parabolic covered if its universal Lorentzian covering
is spatially parabolic. Notice that if M is the universal Riemannian cover of the fiber
M, then —1I x, M is the universal Lorentzian covering of of —I X, M.

The next result (Theorem 3 of [57]) provides some conditions that transmit the

parabolicity of the fiber to the hypersurface.

Theorem 1.4.4 Let ¢ : X" — —I x, M"™ be a complete hypersurface in a spatially
parabolic GRW spacetime. If the hyperbolic angle of X" is bounded and the warping

function on X" satisfies:
(1) sup p < oo and
(11) inf p > 0;
then, ™ s parabolic.
Inspired in this result we were encouraged to make a p—parabolicity criterium for

hypersurfaces immersed in GRW. For this let us present terminology of Rirmannian

manifold approached in [62].

Definition 1.4.5 A Riemannian manifold has bounded geometry if it is has a positive

ingectivity radius and its Ricci curvature is bounded from bellow.
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Example 1.4.6 Compact manifolds, and any Riemann covering space of a manifold
with bounded geometry have also bounded geometry. In particular, if M is a manifold

with bounded geometry, then M is necessarily complete.

Recall that given two Riemannian manifolds (M,g) and (M’,¢'), a difeomorphism

w: M — M'is a quasi-isometry if there exists a constant ¢ > 1 such that
cHolg < [dp(v)]y < clol,

for all v € T,M, p € M. Item (D) of Theorem 6.2 of [62]| that claims that if two mani-
folds are quasi-isometric and have bounded geometry, then one of them is p—parabolic
if so is the another one. Then it is sufficient to prove that X" and M" are quasi-
isometric in order to obtain the below result. But this quasi-isometri is assured by

hypothesis and Lemma 4.1 of [56].

Theorem 1.4.7 Let v : ¥ — —I x, M" be a complete hypersurface immersed in
a GRW spacetime whose fiber as bounded geometry. If the hyperbolic angle of X" s

bounded and the warping function on X" satisfies:
(1) sup p < oo and
(11) inf p > 0;

then, X" is p—parabolic if, and only if, so is M".

Corollary 1.4.8 Let ¢ : ¥ — —I x, M"™ be a spacelike compact hypersurface such
that inf p > 0 on it. Suppose M"™ has bounded geometry. Then M™ is p-parabolic for
every (p > 1).

Proof. Since compact manifolds are p—parabolic for p > 1 (see [62]) the result follows

from Theorem 1.4.11. m

Corollary 1.4.9 Let ) : X" — L™ where L™ is the Lorentz-Minkowski space, be a
spacelike hypersurface with bounded geometry and bounded hyperbolic angle. Then "
18 p—parabolic for all p > n.

Proof. Since L"*+1 = R*"** x R; and R"** is p-parabolic for all p > n + k, it follows

from Theorem 1.4.7. m
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1.4.3 A p-parabolicity criterium for submanifolds in SSST

In what follows we enunciate Theorem 1 of [31] that provides a criterium for a

hypersurface immersed in a spatially parabolic SSST to be parabolic.

Theorem 1.4.10 Let M" x, Ry be a spatially parabolic SSST. If 1 : X" — M"™ x, Ry

(N, K)
p

18 bounded on

15 a complete spacelike hypersurface such that the function n =

it, then M™ is complete and X™ is parabolic.

As in Theorem 1.4.7, we just need to prove the existence of a quasi-isometry between
Y™ and M™* to obtain the following theorem:
Theorem 1.4.11 Let ¢ : X" — M x , R, be a spacelike hypersurface such that the

function p*|Vh|? is bounded on it. Suppose that X" and M™ have bounded geometry.
Then ™ us p-parabolic if and only if M 1is p-parabolic.

Proof. Consider 7 : mp;01 : " — M", where 75, : M™HF X, Ry — M is the canonical
projection on the base M. For any tangent vector v € X (X), using the Cauchy-Schwarz

inequality we have:

(v,v) = (mu, V) — PP (v, hoV)r
> (maw, o)y — p° | VR (v, 0),

then
1

> 00
w0) 2 T
where ¢ = supy(1 + p?|VA|?). On the other hand,

(v, V) oy > c_l(w*v, TWU) M

(v,v) = (mv, mv)ar — p*(hav, hyv)r < (T, Tov) .

Therefore X" and M™ are quasi-isometric. m Similarlly to Corollary 1.4.8 we have:

Corollary 1.4.12 Let ¢ : ¥ — M"*F X, Ry be a spacelike compact submanifold.
Suppose M™ has bounded geometry. Then M™ is p-parabolic for every (p > 1).

Observe that Corollary 1.4.9 may also be obtained from Theorem 1.4.11.
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1.5 Stability of hypersurfaces in spacetimes

Questions about stability were introduced in the Riemannian setting by Barbosa
and do Carmo in [19] and |20]. In this last paper, they proved that spheres are the
only stable critical points for the area functional. For the Lorentzian setting, the
concept of stability was introduced by Barros, Brasil and Caminha in [18]. In [22]
the authors proved that CMC spacelike hypersurfaces are critical points of volume-
preserving variations.

Let M be a spacetime and z : X" — M be a spacelike hypersurface and N
its future direct Gauss map.

A variation of z is a smooth map X : X" X (—¢,¢) — at satisfying:

(i) For t € (—¢,¢), the map X; : ¥ — M given by X,(p) = X(p,t) is a immersion

such that Xy = x;

(ii) If 0¥ # 0, X;|ox = z|ox for all t € (—¢,€).

The variational vector field associated to the variation X is the vector field %—f =

X (0,). Setting g = —(ZX N), we get

ot
0X oxX\ "
W'E—gf”(W) -

We can associate the area functional for the variation X with
A(t) = A(X,) = / a5,
b
and the balance of the volume functional with
V(t) / X*(dTT),
£x[0,1]

where d¥; is the volume element of ¥ with the metric induced by X, and dM is the
volume element of """, We say that a variation is volume preserving if V(¢) = V(0)

for all t € (—¢,€). We have the well known first variation formulae for area and volume

A(0) =n /E Hgdy (1.33)

V'(0) = / gdX. (1.34)
N
It is well known that the condition
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Js fdX =0, feC>®(X), f=0o0n 0%

is necessary and sufficient for the existence of a volume preserving variation X whose
variational field is £ = fIN. Also, it is known that X" has constant mean curvature if,
and only if, A’(0) = 0 for all volume preserving variations (see [22]).

We wish to extend our analysis about the critical points of the area functional
for all variations (not just the ones which preserve volume). In this setting, we define

the Jacobi functional of a variation X given by
Ia(t) = A(t) — nAV ().

Proposition 2.3 in [20] claims that X has constant mean curvature H if and only
if J5;(0) = 0 for all variations.

Among all critical points of the Jacobi functional, we consider those which are
local maximizing. In this case, the second derivative J7;(0) must be non-positive. The

following Proposition found in [18] gives an expression for J7;(0).

Proposition 1.5.1 Let M be a Lorentzian manifold and x : X" — M be a closed

spacelike hypersurface having constant mean curvature H. If X : X" X (—¢€,€) — M

18 a variation of x, then
Ty0) = [ FAF = (RGE(N) + AP £z, (1.35)
b

where Ric is the Ricci tensor of MnH, A is the shape operator of the immersion and
|A| is the Hilbert-Schmidt norm of A and f is the normal component of the variational
field related to the variation.

The previously stated results and definitions led us the stability definition:

Definition 1.5.2 Let ¢ : X" — M be an immersion with constant mean curvature
H. We say that ¢ is stable if for every function f € C$°(X) the following inequality
holds:

/EfAf — (RIC(N) + |AP) 25 < 0. (1.36)
Remark 1.5.3 Along the manuscript we will set
Q = Ric(N) + |A]%
If Q > 0, then it is straightforward that the stability inequality (1.36) holds true.
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The next lemma appears in [45] Lemma 1. For sake of completeness we will give

a proof of it.

Lemma 1.5.4 Let ¥ — M be a CMC spacelike hypersurface, where M s a

Lorentzian manifold. If there exists a positive smooth function u € C*(X) such that
Au — (Ric(N) + |AP*)u <0, (1.37)
then X" s stable.

Proof. Let ¢ € C3°(X) and set @ = Ric(N) + |A|2. We can choose n € C5°(%) such
that ¢ = nu. Hence,

/ PAp — Qp*dY = / nuA(nu) — Qn*u*dS
>

%

nu(nAu + uAn + 2(Vu, V1)) — Qn*u*d%

u(Au — Qu) + nu*An + 2nu(Vu, Vn)de

Il
—r—

u(Au — Qu) + nu*An + %(VuQ, Vn?)dx.
Observing that
Div(u?*Vn?) = (Vu?, Vn?) + u*An?
= (Vu?, Vn?) + 2nu®An + 2u*|Vn|?,

and using the divergence Theorem, we can replace the last term of (1.41) and use

hypothesis in order to get:

/ PAp — Qp*dS < / nuAn — nu?An — u?|Vnl?de < 0.
) )
Therefore, X" is stable. m

Proposition 1.5.5 Let ¢ : X" — M be a CMC parabolic spacelike hypersurface,
where M is a Lorentzian manifold. Then we can use any bounded function f €
C>°(M) in the stability criteria (1.36).

Proof. Let u; be the sequence obtained from Proposition 1.4.1 and f; = fu;. Then
we can apply f; in the stability inequality,

0 = [ 1) - afs
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By the Green Theorem:

= [ 158uas+ [ (Vi) Vuyas
) >

So, replacing the first term of (1.38),

0 2 [ ~(VUELT) + AL+ 265{Vuy, V1) - QS
>
= —f2<Vuj, VU]> + ijjAf — Qf]?dZ (139)
>
Since f is bounded, [, |Vu;[*dX — 0 and u; — 1, taking the limit in (1.39), the first

term goes to 0 and by the Dominated Convergence Theorem it provides:

/ FAf — QS <0,
>

as desired. =

1.5.1 Stability criterium for CMC hypersurfaces in GRW

The following result is a generalization of Theorem 3.3 in [41]|, which give us a

criteria for a CMC hypersurface in a GRW space to be stable.

Theorem 1.5.6 Let X" — —1 x, M"™ be a CMC hypersurface.
(1) If Hp' + p"(N,0;) > 0, then X" is stable;
(11) If 3" is parabolic, p(N, ;) is bounded and
Hp' + p"(N,0;) <0,
then X" is stable if, and only if, Hp' + p"(N,0;) = 0;
(7ii) If X" is parabolic, p(N, ;) is bounded and
Hp' + p"(N,d;) <0,

then X" must not be stable.
Proof. For item 1, let f = —p(N, ;). Using Lemma 1.1.2 and the hypothesis,

Af—Qf = —n(Hp' + p"(N,d,)) < 0.
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Therefore, since f is positive, Lemma 1.5.4 provides that X" is stable.
For item 2, since p(N, d;) is bounded and X" is parabolic, we can use p(N,J;) in

the stability criteria (Proposition 1.5.5). Making use of Lemma 1.1.2, we get

0= [ JA7 QS = [ pIN.2)n(H + (V. 0))E. (1.40)

From hypothesis, we conclude that Hp' 4+ p”"(N,0;) = 0. The converse follows from
item 1.

Finally, item 3 follows from (1.40). =

1.5.2 Stability criterium for CMC hypersurfaces in SSST

The following Lemma provides us the stability as a tool to work with CMC
hypersurfaces in standard static spacetimes. Notice that this fact was already proved

in [45], Corollary 7.

Lemma 1.5.7 Let v : X" — M" x,R; be a CMC hypersurface. Then X" is stable.
Proof. Let ¢ € C§°(X). We can choose n € C§°(X) such that ¢ = n7O. Hence,
[eae—agtis = [ noane) - qrietas
= /En@(nA@ + OAn +2(VO,Vn)) — Qn*e*dy
= /EUQG(A@ — QO) +1n0*An + 29O(VO, Vn)dS
= /Enz@(A@ —QO) +n0*An + %(V@Q, Vn?)dy. (1.41)
Observing that

Div(©*Vn?) = (VO? Vn?) + 0%An?
= (VO? Vn?) + 2n0%An + 20%|Vn|?,

and using the Divergence Theorem, we can replace in (1.41) and use equation (1.1.3)

in order to get:
/ PpAp — Qp*dY < / nO2An — nO2An — ©2|Vn|*dL < 0.
b )
Therefore, X is stable. m
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1.6 Some auxiliary lemmas

In what follows, we present an algebric lemma that will be helpfull for the proof

of our results.

Lemma 1.6.1 For a traceless symmetric n X n real matric ® and a vector v in the

same dimension. We have that

n—1 2
@o < (“0) e

The equality holds if, and only if, ® =0 orv =0 or v = Aey where e 1s the eigenvector

associated to the biggest eigenvalue, also in absolute value, oy of ®. In particular, the

ergenspace associated to this eigenvalue is unidimensional and we can write ® as

n—1 0
@ — |®| n -
0 el

Proof. Let us consider {e;} an orthonormal frame diagonalizing ®, that is, ®e; = ase;

for some o}s and v = Z Aie;. Initially let us assume without loss of generality that
i

|®| = 1 assume also that «; is the biggest eigenvalue of ® in absolute value and positive

when possible. Denote |v]? = |[v]? — v? and Q% = |®|> — al.

Observe that using that ® is traceless and the Cauchy-Schwarz inequality we

obtain
- 1
jon| =Y il < (n—1)2Qs (1.42)
i—2
Equivalently
02 < (n—1)(1 — a2) = a2 < "1 (1.43)
1 = 1 1> n .
Since af > £ we get
1 n-1

G -1-atsi-o -
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Therefore
(Pv,v) = Zaivf

7
2 2
= 041111+E Q;v;
i#1

< o+ Q)2
In—1 In—1
< 2 P 1.44
> n vy + n vl < )
—1
< A/l
n

(1.45)

For the equality suppose |®| = 1 and n > 2. Assume (v,v;) # 0, by the inequality
(1.44) we must have oy = (/=1 and therefore occurs the equality in (1.42) which

occurs if, and only if, all /s otherwise than «; are equal. Therefore if v ¢ ej then

o 0
P =+ -
0 —Vamnla

In particular V; is unidimensional. Moreover v € (e;), otherwhise |v[? > 0 then Q; =
2=1 that means af = 1 an absurd since of = =1,

Affirmation: v € ei does not occur unless v = 0. Notice that v is orthogonal to
any space associated the biggest eigenvalue of ® in absolute value, otherwise we would
proceed as before. In this case we have |v]? > 0 and therefore Q; = \/g it means
a? = % and as a consequence a? = % what is a contradiction since v is orthogonal to
all eigenvectors associated to the eigenvalues with maximum absolute value. m

The next result is an auxiliary lemma which is an extension of Hopf’s theorem on
a complete Riemannian manifold due to Yau in [65]. In what follows, £!(3) denotes
the space of Lebesgue integrable functions on »".

Lemma 1.6.2 Let u be a smooth function defined on a complete Riemannian manifold
", such that Au does not change sign on X", If |Vu| € LX), then Au vanishes
wdentically on X",

The following Lemma was obtained in [53] by Pigola, Rigoli and Setti.

Lemma 1.6.3 Let M be a p— parabolic manifold. If f satisfies A,f > 0 and |V f] €
LP(M), then f is constant.
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Chapter 2

Rigidity of parabolic and stable CMC

hypersurfaces in GRW spacetimes

The goal of this chapter is to study the support function p(N, 9;) of a hypersurface
immersed in GRW spacetime —I x, M", where p is the warping function, NV is the
normal vector field to the hypersurface and 0; is the natural unit timelike vector field.
The vector fields N and 0; are two families of instantaneous observers and the quantity

N*
cosh 6’

where N* is the projection on the fiber and 6 is the hyperbolic angle between N and
0, denotes the velocity that 0; measures for N. Along this chapter we will suppose the
support function is bounded. Physically, this suposition means that the relative speed
function |v| = tanh @ does not approach to the light speed in the vacuum.

In order to make a study about the support function of parabolic and stable
hypersurfaces, we use some cut-off functions obtained from the parabolicity (see [62])

joint with the stability operator.

2.1 Hypersurfaces in GRW spacetimes

In what follows, we present a result that gives us a criterium for a hypersurface
immersed in —I x, M™ to be a slice. This result is related with Theorem 1.1 in [7],

where the authors proved that given a GRW spatially closed spacetime whose fiber has



sectional curvature positive, — log p is convex and Hp' < 0, then every hypersurface

immersed must be a totally geodesic slice.

Proposition 2.1.1 Let ¢ : X" — —I x, M™ be a CMC parabolic spacelike hypersur-
face. If (logp)” <0 and p'H <0, then p is constant on X". In addition, if —1 <, M™

1s a proper GRW spacetime, then X" is contained in a slice.

Proof. From (1.8) and the hypothesis,

/2

Ap = —n’% + p(log p)"|Vh|* = np'H(N,d;) <0.

Since X" is parabolic, we conclude that p is constant on ¥X". If —I x, M™ is proper, p’

does not vanish in a non-degenerated interval, therefore X" must be a slice. m

Theorem 2.1.2 Let ¢ : X" — —I x, M"™ be a CMC parabolic spacelike hypersurface.
Suppose that X" is stable, the support function p(N,dy) is bounded,

/ (Ric(N) + [A]2)pM (N, )5 > 0, (2.1)
>
and

p'H+ p"(N,d;) <0. (2.2)

Then the support function is constant. In addition, if Ko # 0, then X" is contained in
a slice M x {to} such that p'(ty) # 0.

Proof. Item 2 of Theorem 1.5.6 yields p’H + p”(N, ;) = 0. Setting f = p*(N, 9;)?

and using Lemma 1.1.2 we have that
Af = 2fQ +2f[Vp(N, 3,2 (2.3)
Using Proposition 1.5.5 and equation (1.36) we obtain:
0 = [ rar-qpas
= [ Pa+219p.0)Fas (2.4
Using hypothesis (2.1), we conclude that
[V(p(N,8))| = 0.

Therefore, ¥™ has constant support function.
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For the second claim of the theorem, suppose that Kg # 0. In this case, A is
invertible. Using (1.9) we get

0= V(p(N,0)) = pAVh.

Then we conclude that VA = 0, therefore h is constant and X" is contained in a slice
M x{to}. Recalling that the shape operator of a slice in —I x,M™ is given by A = —%]I,
we conclude that p'(tp) #0. =

In Theorem 2.1.2 we assumed condition (2.1) which is weaker than TCC. In the
next theorem we assume TCC and obtain a stronger result, since from equation (1.9)

totally geodesic hypersurfaces have constant support function.

Theorem 2.1.3 Let ¢ : X" — —1 x, M" be a CMC parabolic spacelike hypersurface.
Suppose that TCC holds on the ambient, the support function p(N, ;) is bounded and

p'H+ p'(N,d) <0.
Then X" 1s totally geodesic and consequently the support function is constant.
Proof. Since TCC holds, from Remark 1.5.3, X" is stable. Following the same rea-
soning as in Theorem 2.1.2, we obtain p'H + p"(N, 0;) = 0 and from equation (2.4) we

get
02 [ JAR£+ 2V (p(N. 0))Pas 2 0.
>

Hence, X" is totally geodesic. The second claim follows from (1.9). =

Corollary 2.1.4 Let v : X" — —1I x, M"™ be a CMC spacelike hypersurface immersed
wnto a spatially parabolic GRW spacetime. Suppose that TCC holds on the ambient, the

hyperbolic angle between the normal N and 0y is bounded and
(i) sup p < oo,
(i7) infp >0 and
(1i1) p'H + p"(N,0;) <0,
then X" is totally geodesic and consequently the support function is constant.
Proof. Items (1) and (2) jointly with the fact that the hyperbolic angle is bounded

provides (Theorem 1.4.4) that 3" is parabolic. The result follows from Theorem 2.1.3.
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2.2 Hypersurfaces in Lorentzian products

In this section, we present some corollaries from the results presented in the
previous section for CMC hypersurfaces immersed in Lorentzian products —I x M".
Recall that from Remark 1.5.3, every CMC hypersurface in this ambient is stable.
Thus, the stability condition can be dropped out of the hypothesis in this section.
In addition, from Theorem 1.4.4 it is enough to assume that the hyperbolic angle is
bounded and that the GRW is spatially parabolic to guarantee the parabolicity of the

hypersurface.

Corollary 2.2.1 Letv : X" — —IxM"™ be a CMC spacelike hypersurface in a spatially
parabolic Lorentzian product. Suppose that the hyperbolic angle between N and O, is
bounded and

/(RicM(N*) + |APP)(N, 9,)*d% > 0. (2.5)
b
Then X™ is a constant angle hypersurface and Kg = 0.

Proof. From Theorem 1.4.4 we get that X" is parabolic. Equation (1.2) provides that
Ric(N) = Ric™ (N*).

Therefore the hypothesis of Theorem 2.1.2 are satisfied. Thus »" is a constant angle
hypersurface. If we had Kg # 0, the shape operator A would be invertible, and from
(1.11) ™ would be a slice. But from (1.6), in the Lorentzian products the slices
are totally geodesic, a contradiction with the assumption. Therefore Ko = 0. m A

straightforward consequence of the above Theorem 2.1.3:

Corollary 2.2.2 Let ¢ : ¥2 — L3 be a CMC spacelike hypersurface with bounded
hyperbolic angle. Then it must be a plane.

The following corollary provides a complementary result related to item 2 of Theorem
3.7 of [40], where the authors studied complete CMC hypersurfaces in a Lorentzian

product —I x M" satisfying
alAP?
(n—1)k?’

where 0 < av < 1, and Ky > —k?, where K, is the setional curvature of the fiber. In

VA" <

this same work the authors exhibited an example that shows that this result cannot be
extended for a = 1. For this case we make an approach assuming that the hypersurface

is parabolic, as follows:
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Corollary 2.2.3 Let ¢ : X" — —1 x M™ be a CMC parabolic spacelike hypersurface
such that the sectional curvature of its Riemannian fiber M™ satisfies Ky > —k? for

some constant k and

|Vh|? < _1AF (2.6)
~ (n—1)k* '
then X" is a constant angle hypersurface and Kg = 0.
Proof. From a straightforward computation we have
Ric(N) = Ric”(N*) > —k*(n — 1)|N*|* = —k*(n — 1)|Vh|*.
Using the hypothesis
Ric(N) 4 |A]* > —(n — 1)K*|VhA|* + |A]* > 0. (2.7)

From Remark 1.5.3, ¥" is stable and condition (2.5) is verified. Then the result follows
from Corollary 2.2.1. m

Corollary 2.2.4 Let ¢ : X" — —1 x M™ be a CMC compact spacelike hypersurface.
Suppose that

/(RicM(N*) + |AP)(N, 0,)*d% > 0.

Then, X" is contained in a slice of —1 x M™.

Proof. From [62] compact manifolds are parabolic. Since ¥" is compact, the hyper-
bolic angle between N and 0, is bounded. By Corollary 3.1.2 we conclude that X" is a
constant angle hypersurface. Furthermore, there exists a point x € X where h attains

a maximum. Hence,

Vh(x) = 0.

Since

’Vh‘z - —1 + <N, (9t>2,
and (N, 0;) is constant, we conclude that |[Vh| = 0, and X" is contained in a slice. ®

Remark 2.2.5 Example 6.0.6 shows that the compacity cannot be dropped out of the

hypothesis in the above corollary.

Corollary 2.2.6 Let ¢ : X" — —1 X M™ be a CMC spacelike hypersurface immersed
wnto a spatially parabolic GRW spacetime. Suppose that TCC holds on the ambient and
the hyperbolic angle between N and O; is bounded. Then X" is totally geodesic and has
constant angle. In addition, if there is a point xo € X" such that RicM(:co) > 0, then

X" 4s contained in a slice.
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Proof. The first claim of the corollary above is a straight consequence of Theorem

2.1.3. For the second claim we observe that from (1.11)
V(N,0;) = AVh = 0.
Then, using Lemma 1.1.2 and equation (1.2),

0 = A(N,0)
= Ric(N)(N,d,)
= Ric™(N*)(N,0,). (2.8)

Since by hypothesis there is a point zy € X" such that Ric™(z¢) > 0, then there is
a neighborhood U of xy such that Ric™ > 0 in U. Equation (2.8) yields N* = 0 in
U. By the Unique Continuation Principle (see Theorem 1.8 of [39]) we conclude that
N* =0 in X", therefore X" is contained in a slice. ®

Corollary 2.2.7 Let v : ¥2 — L2 be a complete spacelike surface with bounded geom-
etry and bounded hyperbolic angle. Then Y? must be a plane.

Proof. Since Y2 has bounded geometry, from Corollary 1.4.9 we get that Y? is
parabolic. From Theorem 2.1.3 we conclude that 3? must be totally geodesic, therefore

maximal. From the well known Calabi-Berstein Theorem [55], it must be a plane. m

2.3 Surfaces in —1 x M?

In this section, we discuss about CMC surfaces immersed in a spatially parabolic
Lorentzian product space —I x M?2. Before we present the corollaries, let us make a
brief discussion about Gauss equation for surfaces in —1 x M?2.

The Gauss curvature of a spacelike surface X2 in —I x M? is described in terms
of the shape operator A and the curvature of —I x M? by the Gauss equation, which

is given by
Ky = K + K¢, (2.9)

where K (p), p € X% denotes the sectional curvature in —I x M? of the tangent plane
dy,(T,(Y)), Ky stands for the Gauss curvature of ¥ and K¢ the Gauss-Kronecker

curvature.
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We also have the well known equation
|A]? = 4H? — 2Kg. (2.10)
This equality joint with Corollary 2.2.1 provides this straight corollary:

Corollary 2.3.1 Lett) : ¥2 — —IxM? be a mazimal surface immersed into a spatially
parabolic Lorentzian product. Suppose that the hyperbolic angle between N and Oy is
bounded and

/(F(N) + |AP)(N, 9,)*d% > 0. (2.11)

then Y2 is a totally geodesic surface and consequently the hyperbolic angle between N

and Oy 18 constant.

In [3] A. L. Albujer and L. J. Alfas proved that when the Riemannian surface
M? has non-negative Gauss curvature, any complete maximal surface in —I x M?
must be totally geodesic. Besides, if M? is non-flat, the authors concluded that such a
surface must be a slice. In what follows, we obtained a similar result for CMC complete
surfaces. We can replace the maximality by boundeness on the hyperbolic angle and

obtain the same thesis.

Corollary 2.3.2 Let ¢ : X2 — —I x M? be a CMC complete surface. Suppose that
Ky > 0 and the hyperbolic angle between N and 0, is bounded. Then Y2 is a totally
geodesic surface and the hyperbolic angle is constant. In addition, if M? is non-flat,

then X2 is contained in a slice.

Proof. From [36] complete surfaces with non-negative Gauss curvature are parabolic,

then M? is parabolic. Since (N, d;) is bounded, Corollary 2.2.6 provides the result. =
The following corollary presents an alternative result to Theorem 4.2 in |44] for

the parabolic setting.

Corollary 2.3.3 Let 1) : X2 — —I x M? be a mazimal parabolic surface such that the

Gauss curvature of its Riemannian fiber M? satisfies Ky > —k?* for some constant k

and

Al?
IVh? < TER (2.12)

then X2 is contained in a slice of —1 x M?.

Proof. Since (2.12) implies in condition (2.11), we have from Corollary 2.3.1 that 32
is a totally geodesic surface. From condition (2.12) we have that Vh = 0, hence 3?2 is

contained in a slice. m
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2.4 Non-parametric and Calabi-Berstein type results

for hypersurfaces in GRW

The discussion in Section 1.1.3 allows us to get the following non-parametric

versions of some results presented in the previous section.

Corollary 2.4.1 Let ¥X"(u) be a spacelike parabolic H-graph over M. Suppose that
¥"(u) is stable, the support function p(N,0;) is bounded,

/ (RIG(N) + |AP)p (N, 9,)*dS > 0, (2.13)

and
p'H+ p"(N,d;) <0.

Then 3™ (u) has constant support function. In addition, if Kg # 0, then u is constant.

Corollary 2.4.2 Let X" (u) be parabolic spacelike H-graph over M™. Suppose that TCC
holds on —1I x, M, the support function p(N,0) is bounded and

p'H+ p"(N,0;) <0.
Then X" (u) is totally geodesic and consequently the support function is constant.

Corollary 2.4.3 Let ¥"(u) be parabolic spacelike H-graph over M™ immersed into a
spatially parabolic GRW spacetime. Suppose that TCC holds on
—1 x, M, the hyperbolic angle between the normal N and 0O, is bounded and

(i) sup p < oo;
(ii) infp >0 and
(iii) p'H + p"(N,0;) <0.
Then 3™ (u) is totally geodesic and consequently the support function is constant.

Corollary 2.4.4 Let ¥X"(u) be a parabolic spacelike H— graph over M™. Let us suppose
that M™ satisfies Ky > —k? for some constant k and

Al?
e |
Vil S e v

then |Vu| is constant.

Corollary 2.4.5 Let ¥X"(u) be a compact spacelike H—graph over M™. If ¥"(u) is
stable and
[ ) + AN, 0y 2 .
)

Then, u 1s constant.
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Now we consider the following versions for graphs in —I x M?2.

Corollary 2.4.6 Let ¥%(u) be a parabolic mazimal graph over M?. Suppose that the
hyperbolic angle between N and 0y is bounded and

/ KMM + [A]* ) (N, 9,)*d% > 0. (2.14)
5 1 —|Vul? ’ -

then ¥2(u) is a totally geodesic hypersurface.

Corollary 2.4.7 Let ¥%(u) be a parabolic mazimal graph over M?. Suppose that the
Gauss curvature of its Riemannian fiber M? satisfies Ky > —k for some positive
constant k and
2 2
Vel _ AP
1—1|Vul2 = k

(2.15)

then u 1s constant.
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Chapter 3

Hypersurfaces in SSST

In this chapter we make a study of the support function (N, K) related to a
hypersurface ¢ : X" — M™" x, Ry using a similar technique to the one of Chapter
2. It is important to emphasize that as we saw in Lemma 1.5.7, in SSST every CMC
hypersurface is stable. Then, this condition can be dropped out of the hypothesis in
this chapter.

3.1 Rigidity of parabolic hypersurfaces in SSST

In Theorem 3.1 of [26] the authors dealt with parabolic hypersurfaces immersed

in Riemannian Killing warped product satisfying

VA < ———|AP,
02

k?(n —1)
with 0 < a < 1. We obtained a counterpart of this result for hypersurfaces immersed

in SSST.

Theorem 3.1.1 Let ¢ : X" — M" x, Ry be a CMC parabolic hypersurface immersed
i a SSST that obeys the TCC. Suppose that the sectional curvature of the base M" is

bounded from below by —k?, where k is a nonzero constant. If

|Vh]? < = Al? (3.1)

(n— 1)/12’

for some constant 0 < «a < 1, then X" is contained in a totally geodesic slice of
M" Xp ]Rl.



Proof. Taking w = N* in the weak TCC condition (1.27) and (1.19) we obtain

0 < |N*]PAp — Hessp(N*)

@2
= (? - 1) Ap — Hessp(N™).

Using that from Proposition 3.1 of 2] Ap > 0 we obtain:

—lHess(,o)(N*) + @2% > ap

3.2
p pPPTp (3:2)

From Corollary 7.43 in [51] we have that
Ric(N) = Ric™ (N*) — —Hess(p)(N*) + ©°— > 0.
p p
Using (3.2) in equation above we get

Ric(N) > Ric”(N*).

Replacing equation above on (1.1.3), making a straightforward computation and using

hypothesis we obtain

A® > (=k*(n—1)p°|Vh] +|AP)©
> (1-a)lA]?6. (3.3)
> 0.

Since ©® < 0 and X" is parabolic, it follows that © must be constant, therefore its
Laplacian must vanish. Coming back to (3.3) we have that X" is totally geodesic.
Hypothesis (3.1) yields that 3" is a slice. m

Example 4.4 of [32] shows that this theorem cannot be extended if we set v =1
in the constraint (3.1). For this case we obtained a corollary with a weaker thesis, that

the support function is constant, as follows we see in Corollary 3.1.4 below.

Theorem 3.1.2 Let ¢ : X" — M" x,R; be a CMC parabolic spacelike hypersurface.
Suppose that © is bounded and

/(m(N) + |A2)*dE > 0. (3.4)

Then O is constant.
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Proof. Set f = ©2 Using (1.1.3) we obtain
Af =2Qf +2|VO[? (3.5)

Since f is bounded and " is parabolic, from Proposition 1.5.5 we can set f in the

stability criteria (1.36). Recalling (3.5) we get
0 = [ ar-Qpas
= /EQfQ + 2f|VO*dx. (3.6)
Using hypothesis, we conclude that VO = 0, therefore © is constant. m

Remark 3.1.3 Observe that condition (3.4) is weaker than TCC.

Corollary 3.1.4 Let ¢ : X" — M" x, Ry be a CMC parabolic spacelike hypersurface
wmersed in a SSST that obeys TCC. Suppose that the sectional curvature of the base
M™ is bounded from below by —k?, where k is a nonzero constant. If
Al?

2
<
VIS 1

(3.7)

then © is constant.

Proof. Following the initial steps of the proof of Theorem 3.1.1 and using hypothesis
and (1.19) we obtain

Q = Ric(N)+|A]?

= Ric”(N*) — 1Hes.s(p)(]\f*) +©? Ap

p ra + A7

1 A
> —k2(n— 1)|N*[> = “Hess(p) (N") + @=L + AP
p p
2 2 s 1 * 2 Ap 2
> —k*p*(n—1)|Vh|* — ;Hess(p)(N )+ © 3 + A
> 0.

From Theorem 3.1.2, © is constant. m

Corollary 3.1.5 Let ¢ : X" — M" x,R; be a CMC complete spacelike hypersurface
immersed into a SSST whose Riemannian base M"™ is spatially parabolic. Suppose that

n= %7 p are bounded and
/(ﬁ(N) + |A]»)e*ds > 0.
b
Then M™ s complete and © 1s constant.
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Proof. From Theorem 1 of [31] we have that X" is parabolic and M" is complete.
Since 1 and p are bounded, it follows that © is bounded. Theorem 3.1.2 implies that

O is constant. m

Lemma 3.1.6 Let ¢ : X" — M" x, Ry be a CMC spacelike hypersurface. If © 1is
constant and X" is totally geodesic, then p and the hyperbolic angle between N and K
are constant.

Proof. Let X be a vector field in . Since p? = —(K, K) and using that K is a Killing

vector field we get

— 1 —
<X,Vp> = _;<VXK7K>
(g
P
Hence
= VK
Vp:vI; . (3.8)

Since . is totally geodesic, from Proposition 1.1.1 we get

X(0) = (N, ViK)
(X, K)
2

= (N,Vx:K)— (N, VkK)

_ %<X,vp><N,K> (X, K)(N,Vp)

_ 1
P
Therefore
1 — —
Ve = ;(@Vp — (N, Vp)K). (3.9)
Multiplying (3.9) by K and using that © is constant we obtain
Vi K Vi K
o = o))

Since K is a killing vector field, (Vi K, K) = 0, then we get (N, VK) = 0. Therefore

recalling (3.9) we obtain

1 —
0=VO =-6Vp.
p
Hence p = /—(K, K) is constant. Since © = (N, K) is constant, from the relation:
(N,K) =|N||K|cosh,

where 6 is the hyperbolic angle between N and K, we conclude that 6 is constant. m

The following theorem is similar to Theorem 2 of [31] for the Riemannian setting.
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Theorem 3.1.7 Let ¢ : X" — M" x,R; be a CMC parabolic spacelike hypersurface.
If TCC holds on the ambient and © is bounded, then 3" is totally geodesic. In addition,
p and the hyperbolic angle between N and K are constant. Furthermore, if there is a
point p € X" such that Ric™ (p) > 0, then X" is contained in a slice of M™ x, R;.

Proof. From Theorem 3.1.2, © is constant. Since Ric is non-negative, equation (3.6)
provides |A| = 0, therefore X" is totally geodesic. From Lemma 3.1.6 we have that
p and the hyperbolic angle between N and K are constant. From Corollary 7.43 in
[51] we have that Ric(N) = Ric™(N*). Hence, if there is a point p € ¥ such that
Ric”(p) > 0, then

0 = A® = Ric™(N*(p))O,

it yields N*(p) = 0. Therefore using (1.19), since |Vh| is constant,
1
|Vh|* = —QIN*IQ =0,
P
then X" is contained in a slice of M"™ x,R;. m

Corollary 3.1.8 Let ¢ : X" — M" x, Ry be a CMC spacelike hypersurface immersed
n a spatially parabolic SSST. If TCC holds on the ambient, the functions n and p
are bounded, then X" 1s totally geodesic and M™ is complete. In addition, p and the
hyperbolic angle between N and K are constant. Furthermore, if there is a point p € 3"
such that Ric™ (p) > 0, then X" is contained in a slice of M™ x, R;.

Proof. From Theorem 1 of [31] it follows that X" is parabolic and M™ is complete.
Since n and p are bounded, it follows that © is bounded. Theorem 3.1.7 provides the

further claims. =

3.2 Non-parametric and Calabi-Berstein type results

for hypersurfaces in SSST

The discussion in Section 1.2.2 allows us to get the following non-parametric

versions of some results presented in the previous section.

Corollary 3.2.1 Let ¥"(u) be a CMC parabolic spacelike Killing graph in a SSST that
obeys the weak TCC. Suppose that the sectional curvature of the base M™ is bounded
from below by —k?, where k is a nonzero constant. If

alAP?
p?(K*(n —1) + alA]?)

for some constant 0 < o < 1, then u s constant.

| Dul* <
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Corollary 3.2.2 Let ¥"(u) be a CMC spacelike Killing graph in a spatially parabolic
SSST. If TCC holds on the ambient and p is bounded, then X" (u) is totally geodesic
and M™ is complete. In addition, |Dul| is constant. Furthermore, if there is a point
p € ¥"(u) such that Ric™ (p) > 0, then u is constant.
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Chapter 4

Submanifolds in SSST

Based on the causal orientation of the mean curvature vector field, Penrose |52
firstly introduced the concept of codimension 2 trapped surfaces immersed in space-
times, that plays an important role on General Relativity in the theory of cosmic black
holes. In [8] the authors made a generalization of this concept for codimension 2 n-
submanifolds. In what follows, we will introduce a generalization for high codimenion
submanifolds, as well the notion of totally trapped submanifolds. This last concept is
based on the causal orientation of the image of the shape operator a.

Recall that a vector field X tangent to a spacetime is causal if it is lightlike
(X # 0 and (X, X) = 0) or timelike ((X, X) < 0). The timelike Killing vector field K
defines a time orientation as follows: a causal vector field X tangent to M™% x , R, is
said to be future direct if (X, K) < 0, and X is said to be past direct if (X, K) > 0.

Namelly, a spacelike submanifold ¥ of M x ,R; is said to be future (resp. past)
trapped if H is causal and future (resp. past) direct.

A spacelike submanifold 3 of M™% x , R, is said to be totally future (resp. past)
trapped if o(X,Y) is causal and future (resp. past) direct for all X, Y tangent to X.

A spacelike submanifold X of M"™* x, R, is said to be totally trapped if it is
totally future trapped or totally past trapped.

For the particular case when H=0we say that X is minimal.

Accordingly to the terminology of [5] we say that a submanifold immersed in a

SSST is said to be bounded from the future infinity provided its height function is upper



bounded. Analogously, a submanifold immersed in a SSST is said to be bounded from
the past infinity provided its height function is lower bounded. We say that a subman-
ifold in a SSST lies in a slab provided its height function is bounded. The purpose of
this chapter is to obtain uniqueness and non-existence results for p—parabolic totally

trapped hypersurfaces immersed in SSST by means of the study of the heght function.

4.1 Trapped submanifolds contained in slices

Let ¢ : ¥ — Mtk X, Ry be an immersed submanifold of codimension & + 1.
The height function of X" defined by h = 7|y, = 7y 0 ¢ as above.

Observe that the gradient on M™% x , Ry of the projection 7/(¢,q) = ¢ is given
by

_ — K\ K 1 =
VW]:—<V7T], >

1
— )= =——(Vr, K)K = ——=K.
AN
Then, the gradient of h on ¥" is given by

Vh = —%KT. (4.1)

When the height function is constant, we say that the submanifold is contained
in a slice M™* x {t;}. Let us analyse the shape operator of submanifolds contained
in slices.

Let ¢ : ¥" — M"™* be a submanifold immersed into M"**. Define ¢, : ¥" —
M"F x {to} by ¢o(p) = (¢(p), to). The metric induced in ¥ via ¢q is the same as the
one induced by .

On the other hand, given a spacelike submanifold ¢ : ¥ — M"™* x ,R; contained
in a slice M™% x{t,}, we have that ¢ = my0t) : X" — M™* where my; : M™% Ry —
M"** is the canonical projection on M, is such that 1 (p) = (©(p),to) = wo(p).

Let o be the shape operator of . Setting V = %, the shape operator aq of ¢q

is given by:

(X,Y) = ap(X, )M — (a(X,Y), V)V
= o(X,)Y) - (AyX,Y)V, (4.2)

where ao(X,Y)M stands for the tangent part to M.
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Since V%V = 0, using the Weingarten formula (1.14) and Proposition 7.35 of [51]

we achieve:

X(p)
p

Ay X = ViV = — V.

Coming back to (4.2), we obtain:
X
a0(X,Y) = a(X,Y) + <¥V,Y> v

Taking a local ortonormal frame {Ey,--- , E,} on X, we have that the mean curvature
of 3 with respect to g is

HO = —tl"O./O
n
n

1 — 1
= — E, E;) + — Ei(p)V,E;)V
n;a( )+np;< PV, E;)

1 ] —
= —t —§ ENV,E)\V
nroz-i—np i:1<Vp, ) )

- 1
= H—|— —3<Vp, K>K
np

where H is the mean curvature of ¥ with respect to ¢ and V stands for the Levi-Civita
connection of 3.
Then we have that
7 712 1 2
(Ho, Ho) = [H|" — nQ—pAVp, K)*.
Therefore a submanifold ¢ : ¥ — M7tk X, Ry contained in a slice is trapped if,

and only if, the mean curvature of my; 0 1) : X" — M"** satisfies:

" 1
AP < = (V. K0 = (T, V) (4.3
In addition, since
= 1
Hy, K = —— K
< 05 > np<va >7
= L(vp,vh), (4.4)

we have that X" is future (resp. past) trapped if, and only if, (4.3) holds and (Vp, Vh) <
0 (resp. (Vp,Vh) > 0).
In particular, when p is constant, we obtain that a trapped submanifold contained

in a slice must be minimal.
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4.2 Uniqueness and non-existence results for p-parabolic
submanifolds in SSST

Our purpose is to obtain uniqueness and non-existence results for trapped p—parabolic
submanifolds immersed in M"** x , R, by means of the study of the height function

associated to the submanifold. Let us compute the p—laplacian of the height function.

Lemma 4.2.1 Let ¢ : ¥" — M" ™ x ,R; be a spacelike submanifold. Then for p > 2:

_ . p—2 2p(p _ 1)

- <O‘(|Vv’ll;|fh> + . S, K>} . (4.5)

1

Proof. By definition of p-Laplacian

A,h = div(|Vh[P~2Vh)
1 1
— _ p=2)__ — - 4.
(p —2)|Vh| { |Vh|2Hessh(Vh, Vh) + - 2Ah} : (4.6)

Let us compute Hessh(Vh, Vh) and Ah. Using the Gauss formula we have
VxKT =VxK™ +a(X,K").
Since KT = —p?Vh, equation above provides:

1 1o 1
VyVh = X(—E>KT — VK - <a(X,K)

P P
2 1= 1
= S(Vp, X)K' - SVxK' — a(X,K"). (4.7)
P P P
Taking a local orthonormal tangent frame {E;,--- | E,} on X", applying in equation

(4.7), using that K is a Killing vector field and equation (1.16) we get:

Ah = Y (Vg Vh Ej)

j=1
P 1 o

= EZ(VP7E]><KTaEJ>+EZ<O{<E17EJ%K>
j=1 Jj=1

2 n, -

p2

—

- _%wp, Vh) + %(H, K). (4.8)
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Taking X = Vh in the equation (4.7) and again using (1.16) we obtain

Hessh(Vh,Vh) = (Ve,Vh,Vh)
2 1 —
= E(vpv Vh) <KT7vh‘> + ?<VVhKT7Vh‘>

2 1
= —;(Vp, Vh)|Vh|? + ?m(w, Vh), K). (4.9)

Thus, replacing (4.8) and (4.9) in (4.6) we obtain the desired expression (4.5). =

In [31] the authors make a study of parabolic spacelike hypersurfaces in SSST.
Inspired in their ideas we obtained the below uniqueness results for p—parabolic (p > 2)
submanifolds with high codimension immersed in SSST.
Theorem 4.2.2 Lett) : X" — Mk X Ry be a complete spacelike trapped submanifold.
Suppose that (Vp,Vh) and (F[,K) have opposite sign. If |[Vh| € LX), then X" is a

minimal submanifold. In addition, if X" is parabolic and bounded from the future or
from the past infinity, then X" is a submanifold of a slice M™™* x {tq}.

Proof. Since (Vp, Vh) and (ﬁ,K) have opposite sign, we have from equation (4.8)
that
2 n -
Ah=—=(Vp,Vh) + —(H, K)
p p

does not change sign. Since |Vh| € £!(2), Lemma 1.6.2 provides that Au must be in
fact harmonic, therefore (F[, K) = 0. Since H is causal or zero, it must be zero, and
3™ is minimal.

In addition, if ¥™ is parabolic and h is bounded from above or from below, it
must be constant, therefore X" is contained in a slice. m

Theorem 1 of [47] asserts that a spacetime endowed with a timelike Killing vector
field does not admit closed trapped imbedded submanifolds. Another proof of this
result for the setting of SSST is in a preprint of H. F. de Lima, A. Freitas, E. A. Lima
and M. Santos. In what follows we obtained an extension to this non-existence result
for p—parabolic submanifolds in SSST.
Theorem 4.2.3 There exists no p-parabolic spacelike submanifold X" immersed in

M™* x, Ry such that (Vp,Vh) >0 (resp. (Vp,Vh) <0), " is bounded away from
the past (resp. future) infinity and totally future (resp. past ) trapped.

Proof. Let us assume the first case. Since X" is totally future trapped, a(Vh, Vh)

is causal future direct and so is H = L tra. Then equation (4.5) provides Ayh > 0.

T n
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Since X" is bounded from the past infinity and p-parabolic, it follows that A must be
constant, therefore a slice. But (4.4) and hypothesis provide

0> (H K)=

SRS

(Vp,Vh) >0,

and achieve a contradiction. m
In the next results we will work with the shape operator Ax .. Recall that from

(1.15)
(A X,Y) = (a(X,Y), K). (4.10)

Then tr(Ag.) = n(ﬁ, K).
We can compare the two theorems below with the first case of Theorem 4.2.3. In
this last one we assumed X to be totally future trapped. In the below cases we assumed

> to be future trapped, a weaker hypothesis.

Theorem 4.2.4 There exists no p-parabolic spacelike submanifold X" immersed in
M™% Ry bounded away from the past infinity and future trapped such that (Vp, Vh) >
0 and

1

1\ 2 _9 .

(” ) @) < ~ 2P 20 ), (4.11)
n p—2

where ® = Ap1 — (ﬁ, K)I is the traceless shape operator of X" related to K+ and
|®| = \/tr(D?) is the Hilbert-Schimidt norm.

Proof. We will prove that A,h < 0. Using Lemma 1.6.1 and hypothesis, we obtain

a(Vh,Vh) no - (A Vh,Vh) [

H K = H K 4.12
< viE  Tp-2 > vip Tyt R 1)
(OVh,VE) ntp—2 -

VAP p—2

IA
Y
S
—_
N——
L=
S
+
i~
[\)
=
=

< 0.

From (4.5) we get that A,h < 0. Taking into account that X" is bounded away from
the past infinity (h is lower bounnded) and X" is p-parabolic, we conclude that h must
be constant, therefore " must be a submanifold of a slice of M™% x ;R;. We conclude

the proof as in Theorem 4.2.3. =
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Remark 4.2.5 Notice that in the theorem above we just need (ﬁ, K) <0, independly
ofﬁ to be causal.

If equality holds in (4.11) for a spacelike submanifold ¢ : X" — M™% xRy
immersed into M™% x , Ry whose height function is non-constant, p—harmonic and
(Vp,Vh) > 0, then from Lemma 1.6.1 we have that X" is totally umbilic or Vh is

eigenvector of ® associated to the biggest eigenvalue of ®.

The following corollary is a straightforward consequence of Theorem 4.2.4.

Corollary 4.2.6 There exists no p-parabolic spacelike submanifold X" immersed in
M™% Ry bounded away from the past infinity and future trapped such that (Vp, Vh) >
0 and totally umbilic with respect to the direction K=.

Remark 4.2.7 Notice that in equation (4.12) we could use the Cauchy-Schwarz in-
equality and put the condition

n

p_ 2<H7K>’

|Ags| < —

in Theorem 4.2.4; But observing that |®> = |Ax.|? — n(H, K)? it is not difficult to

verify that this constraint is more restrictive than (2.3.1).

Taking Lemma 1.6.3 into accout, the boundedness of A in the above results of
this chapter can be replaced by |Vh| € LP(M). We can see the integrability on |Vh|

as an extension to the compact case, as well the p—parabolicity.
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Chapter 5

Nishikawa approach to uniqueness of

maximal surfaces in GRW

Albujer and Alias established Calabi-Bernstein results for complete maximal sur-
faces in a Lorentzian product spacetime —R x M? see [3] and [4]. In particular, when
the Riemannian surface M? has non-negative Gauss curvature, they proved that any
complete maximal surface must be totally geodesic. Besides, if M? is non-flat, the
authors concluded that it must be a slice {t} x M?. The necessity of the assumption
on the Gauss curvature can be observed from the examples of maximal surfaces in
—R x H?, where H? is the hyperbolic plane, constructed in [1]. In [46], G. Li and 1.
Salavessa generalized such results of [4] to higher dimension and codimension.

Eraldo A. Lima Jr and H.F. de Lima exhibit in [40] an example of a (non totally
geodesic) complete spacelike surface of constant mean curvature (CMC) in —R x H?
whose hyperbolic angle function is constant.

More recently, in [29], M. Caballero, A. Romero and M. Rubio worked in 3-
dimensional Generalized Robertson-Walker (GRW) spacetimes considering maximal
surfaces with uniqueness results for the case the fibre has non-negative Gauss curvature
generalizing results from Albujer and Alias.

They proved uniqueness results for surfaces in GRW spaces using an estimative
involving the capacity of anulus in the surfaces assuming physical conditions like the

Timelike Convergence Condiction (TCC).



Furthermore Albujer, de Lima and Camargo proved uniqueness results for CMC
spacelike hypersurfaces in a GRW spacetime of arbitrary dimension considering a prior:
growth estimates for the height function. They actually considered Robertson-Walker
spacetimes, i.e., —R x, M?® whose fibre M? has constant sectional curvature k. See
[10].

Albujer in [1] has shown that there are complete maximal surfaces which are
not totally geodesic in —R x H?, nevertheless in [40] and [44] the authors presented
suitable conditions in order to guarantee that such surfaces are trivial slices. The

natural question:

“there exist maximal surfaces in the ambient —R x, H? for some non-trivial function
p and what are the needed assumptions to conclude that a complete maximal surface

in —R x, M?, where K, > —r, is totally geodesic or a slice?”

encouraged us to make a survey on this topic.

Our technique is based on a proper extension of a result due to Nishikawa in [49]
and relies within the applications of the generalized maximum principle due to Yau
[64] to complete Riemannian manifolds. In fact, we use an extension of Lemma 2 of
[49] to the case the Ricci curvature is no longer bounded by a constant but by a more

general function I'(r) of the distance r from a fixed point on the manifold.

5.1 A Nishikawa-Omori-Yau type lemma

We start with result that is a generalization of a lemma due to Nishikawa in [49].

Lemma 5.1.1 Let M n(> 2) be a complete Riemannian manifold such that Ric >

—I'(r), where r is the distance function, and T' such that
[0)>1, I">0 and I'"Y2 ¢ L0, 00).
If u e C®(M) is a non-negative function satisfying
Au > Sult™, for constants o, § > 0, (5.1)
then u = 0.

Proof. Under these assumptions M satisfies the Omori-Yau-Borbély generalized max-

imum principle [17]. Since v € C*°(M) is non negative, consider the following smooth
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function on M,
1

(1+w)f’
where 6 > 0 will be chosen latter, notice that satisfies ' > 0 and inf(F') > 0 whenever

6 > 0. Therefore

0—1
Vu=——7VF
F e
and
AF = —0F" Au+6(0 + 1)F7 |Vul>
Then
041 0+ 1|VF|?
AF = —0F 7+ A _—
[ R
therefore
2041 6+1

FAF = —0F % Au+ |VE]2 (5.2)

6

Thus using an Omori-Yau sequence we have

and

1
0<infF < F(py,) <inf F+ —.
m

By definition of F'; whenever 6 > 0 we have

lim F(p,)=infF < lim u(p,) = supu. (5.3)

m—r0o0 m—0o0
Combining it with (5.2) and (5.1) we obtain

1 o 2041 0+1 1
_EF(pm)—f_@ﬁu_F (pm)F 0 (pm)<7ﬁ7

that is,

1 u e (py) 6+1 1
__F _
m (pm) + 68 (1+ u(pm)) 2+ < 0 m2’

then choosing 20 = a we get lim,, o u(p,,) = 0 and therefore u =0. m

ol



5.2 (Gauss equation

The Gauss curvature Ky, of a spacelike surface Y2 in M’ is described in terms of

A and the curvature of M~ by the Gauss equation, which is given by
Ks =K + Kg, (5.4)

where K(p), p € ¥ denotes the sectional curvature in M of the tangent plane
diy, (T,(X)) and K¢ = —det A is the Gauss-Kronecker curvature of ¥. We can also
write K in terms of the Gauss curvature of M as

/2
K:/ﬁwtp
p

7
(14 |Vh]) — %|Vh\2. (5.5)
Combining equations (5.4) and (5.5) we obtain

//

Ky + p’2

Ky = —QcoshQH— p—SiHh2(9+Kg, (5.6)
p p
or equivalently
/2
Ky = % + Hp—]\; sinh?# — (log p)”sinh® @ + Kg, (5.7)

where 6 is the hyperbolic angle between N and 9,. We also have the well-known relation
|A]> = 2H? + 2(H? + Kg). (5.8)

If we assume ky; > —k for some positive constant x, then (5.7) gives the following

inequality
/2 /!

Ky > ﬂCOShQQ— p—sinh29+Kg. (5.9)

p? p
5.3 Uniqueness of surfaces in GRW

We will make a study of the hyperbolic cossine of the angle  between N and 0;.
Recall that cosh® = —(N,d;). And then, from (1.5) we get that |[Vh|?> = sinh®6. Let

us compute the Laplacian of cosh # for a hypersurface immersed in a GRW spacetime.

Lemma 5.3.1 Let ¢ : X" — —1 x, M" be a spacelike mazimal surface. Then

1 p// p/Q
§A cosh®0 = ||A]? + Ricy (N*,N*) —n (— - —2) sinh? 0] cosh?6 (5.10)
P P

/
|AG P — 4% cosh 0(A9] 9, )
o o
+ (n + 3 cosh? 9) — sinh? 6 + n—.
P P
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Proof. Firstly we develop a formula for A(N, ), where £ = pd;. Notice initially that
& = pd, is a conformal vector field in —I x, M?, (see [18]). More precisely,

Vx(pd) = p'X.
So as obtained in (1.9):
V(N ) = —A¢T,
using Codazzi equation as in [15] we get
div(—A¢T) = n(VH, &) + Ric(¢ ", N) + np' H + (¢, N)|A]%,
that is,
A(N,§) = n(VH,§) +Ric(£', N) +np'H + (€, N)| A"

We also have the following

Ric(e". V) = (€, ) (ﬁ(NtN*) - (- wap) m(&g)) |

from Proposition 7.42 in [51] we obtain

Ric(¢,N) = (N,¢) (Riw(N*,N*) +INTP (% tin= 1)_Q>

‘|‘; (1 - <N, 8t> )p”) .

Since |[N*|* = —1 + (I, 9;)* we obtain

Ric(eT, N) = (N, &) (RicM(N*,N*) —(n—1) (%ﬂ _ %’j) yN*|2) ,

that is,
A(N,§) = (N,&) (Ricy (N, N*) — (n — 1)(log p)"|N"[*)

+n{VH, &) +np'H + (& N) A"
For the maximal case we obtain

SAMNE? = (V.6 (AP + Ricy (V' N*) — (n 1) (log )" [N"P)
+HAE].

Therefore observing that cosh®# = (N, d;)? and sinh® § = cosh®# — 1 through (1.8) we
get

1
§Ap2 sinh?0 = |AET 2 4 np”? — p? (log p)” sinh? § — p? sinh? §

+(N,6)? (JA]” + Riear (N, N*) = (n = 1) (log p)" IN"[?) .
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Now we evaluate the following Laplacian

1 1 1
§A(p2 cosh? ) = §p2A cosh? § + 3 cosh? 0Ap? + (Vp?, V cosh? ),

then
LAcosh?8 = 5 A(p? cosh?0) — — cosh? 9P — = (Vo2 V cosh? 0
g cos = o7 (p” cos )—2—/02008 p—;( p°, V cosh” 0)
= cosh? @ (JA]* + Ricp (N*, N*) — (n — 1) (log p)" [IN*|?)
p/2 pl2
+ n? — (log p)” sinh? § — i sinh? 0| cosh? 6
1
—?<V,02,Vcosh2 0) + |Ad, .
Since
1 1
V cosh? § = — V(N, £)? — - cosh? OV p?,
P P
we obtain
1 1
(Vp? Vcosh?f) = F(Vp2, V(N, £)?) — P cosh? 0|V p?|?
= 4pp(N,0,)(Ad,,0,") — 4p" sinh®  cosh? 4.
Thus we get
1 2 p” " 2 p” 2 2
§A cosh“f = [np2 — (log p)” sinh* 6 — i sinh 9] cosh” #

+cosh? 0 (|A|* + Ricp (N*,N*) — (n — 1) (log p)" |N*[?)
/ /2
+4 <_pp cosh0(A9,,8,) + /;—2 sinh? 6 cosh? 9> + |48/ 2.
Rearranging it

1 /
SAcosh?d = yAaJ|2—4%cosh9<Aaj,aj>+UA|?+R1CM(N*,N*)

/12 /2

+n/;—2 — n (log p)” sinh? § + 3pp—2 sinh? 9} cosh? 6.

From which it follows that the desired formula (5.10). =

From now on, I'(r), will denote the function described in Lemma 5.1.1.

Theorem 5.3.2 Let M~ = —I X, M? be a GRW spacetime whose fiber has Gauss
curvature Ky satisfying Ky > —k, for some positive constant k. Consider 1 : Y2 —

—1I x, M? be a mazimal complete surface such that

A 2
au (5.11)

Vh|? <
VAP < gate,

| Ot

where 0 < o < 1 is a constant, and C, = sup + 2(log ,0)”) > 0. If p is bounded

2
away from zero, (log p)” is bounded and Kg < T'(r), then X% is a totally geodesic slice.
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Proof. Consider equation (5.10) to the case of n = 2. Using that since 32 is maximal,

|AD]|> = 5|AI?|9] |2, we achieve:
1 9 O (19 . K ATk "o 12 2
§Acosh 6 > 6|A| + Ricp (N*, N*) — 2 (log p)” sinh” 0| cosh” 6

+ <2|A|2 — imw cosh 6 + (2 + 3 cosh?6) " sinh? f
3 V2 p p?
p/2

+2?.

Completing the square we accomplish:

1 9 D\ (19 |N*2 "o 12 2
§ACOSh 0 > 6|A| + ky—5— — 2 (log p)” sinh” | cosh™ ¢
P
2 I s
+ \/;|A|—\/§—cosh9 + 2= sinh? 0

p p
p/2
+2F.

Therefore, we have

5 N* 2
(1 — Oé)|A’2 + 6&’14‘2 + /€M| p2’

1
iA cosh?f > [ — 2 (log p)” sinh? 9} cosh? @

5
6
5
6

N* 2
> [ (1 —a)|A*+ C,|Vh|* + HM’ 5— — 2 (log p)” sinh? 9] cosh? 0(5.12)
P
1 _
> JCP sinh? 0 cosh? 6
o
> c¢sinh* 4.

Since A cosh? @ = Asinh? 6,
Asinh? 6 > 2¢sinh? 6.

In order to apply the Lemma 5.1.1, observe that from (5.9) and (5.11), we get
_ 12 1
Ky > H—tp cosh? 9 — L sinh?0 + K¢
p p

—% — {% + (log p)”} sinh? ¢ (5.13)

If p% + (log p)” is upper bounded by a non-positive constant, then (5.13) provides Ky,
is lower bounded by a constant. On the other hand, if =+ (log p)” is upper bounded

%)



by a positive constant C5, then using hypothesis we get

Ky > C; — Cysinh?6
5%e"
> (] —Cy—K
= 1 230p G
S
> — COy——I'(r).
> O ngc,p (7”)

Calling the Lemma 5.1.1, we conclude that X2 is a slice. In order to see that X2 is

totally geodesic, it is enough to recall that the shape operator of the slices are given

by A = —%]I and by hypothesis X2 is maximal. m

Remark 5.3.3 FEzample 6.0.4 below shows that condition (5.11) of Theorem 5.5.2 can-

not be withdraw.

Remark 5.3.4 In [7], they deal with CMC hypersurfaces in n-dimensional spatially
closed GRW spacetimes. In the main result they assume that the sectional curvature
of the fiber is non-negative and a logaritmic convexity on the warping function. Notice
that in our assumption it is possible Ky to be negative.

Also, we can compare Theorem 5.3.2 with Theorem 4.2 of [29]. In this last refer-
ence the fiber is allowed to have negative mean curvature. But notice that they do not

comprise the case when the ambient is —R X cosng H2, for example.

Remark 5.3.5 In the proof of Theorem 5.3.2 the assumption Ko < I'(r) is not nec-
essary if p—kg + (log p)” is upper bounded by a non-positive constant. Otherwise, the
assumption on Kg may not be removed, as evidenced in Erample (6.0.5). In Eram-
ple 3.3 of [1] it is showed that this graph is not complete. Taking Lemma 1.1.4 into
account, we see that condition Kg < T'(r) must not hold for this example.

When /% + (log p)" is upper bounded by a positive constant, the constraint on Kq

can be replaced by a upper bound on the hyperbolic angle, as we enunciate below.

Corollary 5.3.6 Let M = -1 X, M? be a GRW spacetime whose fiber has Gauss
curvature satisfying Ky > —k, for some positive constant k. Let X2 be a complete

maximal surface in M such that the hyperbolic angle between N and 0y is bounded. If
(5.11) holds, then ¥ must be a slice.

Proof. From equation (5.13) we have that the Gauss curvature of ¥? is bounded from
below, and then Lemma 5.1.1 can be called. m

Using Physical interpretation as well equation (1.26) we obtain
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Theorem 5.3.7 Let X% — —1 x, M? be a complete mazimal surface. Suppose that
—1I x, M? satisfies the TCC and

|Vh| < BIA]” (5.14)
for constants o, B > 0. If —”7” < TI(r), then X2 is a slice.

Proof. Applying it in (5.7) and hypothesis —%/ < I'(r) we obtain the condition of the
Lemma 5.1.1

/!
Ky > '% > —T(r),

which ensures the possibility of using Lemma 5.1.1.

Now, notice that the equality in Lemma 5.3.1 becomes the following:

%A cosh®d > [JAJ]* + (log p)” sinh? 6 — 2 (log p)” sinh? ] cosh® ¢

140, 2 — 42 cosh 049, 5))
P

12 2

p

+ (2 + 3 cosh? 9) p sinh? § + 2—2
P

ra
= [|A]* — (log p)" sinh® 6] cosh® ¢
/
140, 2 — 42 cosh 049, 8]
p
/2

/2
+ (2 + 3 cosh? 9) L sinh? 0 + 2p_

p? p*
Proceeding as in the proof of the previous theorem we obtain an inequality similar to

(5.12).
1 2 5 a2 Mo 12 2
§A cosh“6 > 6|A| — (log p)" sinh” 0| cosh” 0.
Again using the TCC we have —(log p)” > 0, therefore
1 2 5 a2 2
—Acosh®0 > —|A|*cosh”6.
2 6
Then by hypothesis (5.14) and A cosh?# = A sinh®§ we obtain
1 5 1
—Asinh®’0 > —— sinh?* 6.
2 6 pa

Therefore by Lemma 5.1.1 we get the desired result. =

The next result we assume a weaker energy condition that is the Null Convergence

Condition (NCC).
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Theorem 5.3.8 Let M = —1I X, M? be a GRW spacetime satisfying the NCOC. Con-
sider v : X% — —I x, M* be a mazimal complete hypersurface. If —%/ <T'(r) and

Al?
h2 < ‘
|V | — Op )

a (5.15)

| ot

where 0 < a < 1 4s constant, C, = sup{p”/p} > 0, then ¥? is a totally geodesic slice.

Proof. Analogouslly to Theorem 5.3.7 we get Ky, > —I'(r). Now following the proof
of Theorem 5.3.2, from (5.12) and using the NCC condition

1 N* 2
§A cosh?d > [g(l — a)|A]? + C,|Vh|* + r<aM| 2| — 2 (log p)"” sinh? 9] cosh? 6
p

E(l — Q)[AP + C,|VhP — (log p)" sinh? 9} cosh® 0

l—«

v

- C,|Vh|? cosh® 0

> ¢sinh?6.

Since A cosh?§ = Asinh®#6, we finish the proof using the Lemma 5.1.1. m

5.4 Calabi-Bersntein type results for maximal sur-
faces in GRW

The discussion in Section 1.1.3 led us in position to obtain some Calabi-Berstein

type results as corollaries of the results obtained in the previous section.

Corollary 5.4.1 Let M = -1 X, M? be a GRW spacetime whose fiber has Gauss
curvature satisfying Ky > —k, for some positive constant k. Let ¥(u) be an entire
graph in M such that Ko < L(r). If

Cp*|AP?
puf2 < =P 1A
Dl =1+ ClAPR’

Sa

where C' = 0, then u must be constant.

Corollary 5.4.2 Let u: M — —I x, M? be a mazimal entire graph. Suppose that
—1I x, M? satisfies the TCC and

62|A|2af2

puff < 2T
DUl < T e

for constants o, B > 0. If —%/ < T'(r), then u is constant.
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Corollary 5.4.3 Let u: M — —I x, M? be a mazimal entire graph. Suppose that
—1I x, M? satisfies the NCC. If —% <T(r) and

Cp*|AP?

Dul2 < 2P A
Dl =1+ ClAPR’

where C' = 657‘“, 0 < a <1 is constant, C, = sup{p”/p} > 0, then u is constant.
P
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Chapter 6

Examples

It follows two examples given by A. Albujer in [1] (see also [3]).

Example 6.0.4 Consider the upper half-plane model for the two-dimensional hyper-
bolic space H? = {(x,y) € R%y > 0} endowed with the complete metric

1
< s >H2 = E(dIQ + dy2>

In this example the function u : H? — R given by u(z,y) = aLog(z? + y?), and its

corresponding entire graph
S(u) = {(aLog(2* + y*),z,y) : y > 0} C —R x H*.

We have that Du(z,y) = 2a %(w, y) and, hence,
2 2 y?
D =4a* ——.
’ U(l‘,y)‘ a 72 +y2

1
27
—R x H?. This spacetime graph is maximal [1].

Notice that

If we take 0 < |a| < we have that X(u) will be a complete spacelike surface in

| Du(z,y)[?
1- |Du(x, y)|2

is bounded. A direct computation as made in [44] gives us Ay =0 and

[Vh|* =

4a?
B =0 S,

Therefore, inequality (2.12) does not hold for this example. Meanwhile, this graph is
not parabolic although it is stable, see [{1], therefore it does not satisfy the hypothesis

of our results.



The following example presented here is maximal but it is not complete [1].

Example 6.0.5 Here the function u is given by u(z,y) = Log(y + \/a + y?), for a a
positive constant. Consider these two tangent vector fields

X, =8, + (9,, N)N.

Observing that u depends only on y, in [{4] the authors obtained that (AX,, X,) =0,
as well (X, X,) = 0. Since the graph of u is mazimal, the norm of A is given by

|A]? = 2| X, | HAX,, X,)? = Wy%i. (6.1)
Since
2
1
o= T = L
we obtain .
[Vh|* = §|A|2'

Therefore inequality (2.12) holds for this example, in fact it is valid for any mazimal
graph in —R x H? such that u depends only on y. Since this graph is not a slice, we
see that parabolicity cannot be dropped out of the hypothesis in Corollary 2.5.5.

Example 6.0.6 Consider the smooth function u : H?> — R given by u(z,y) = aLogy,
a€R, a< 1. The graph of u:

%(u) = {aLogy, z,y);y > 0} C —R x H?

is the Abresch-Rosenberg surface which is detailed in [58]. We have that Vu(x,y) =
(0,ay) and hence
Vu(z,y)* = a]” < 1.

Then (u) is a complete spacelike surface in —R x H?. Moreover, the height function

satisfies:
Vul* _ |a?
1—|Vul2  1-—|a]?

[Vh|* =

Consequently,
1

VI=TaP

On the other hand, the mean curvature H of ¥.(u) is given by

<N,(9t) = —

O = Div | Y% ).
S = [V
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where Div is the divergence on H2. So, as Div = Div —%dy, where Divy denotes the

usual divergence on R?, we get
2H?r = r*y® Agu + 3° (yQ(u) + u, | Vould), (6.2)

where

r=+/1—|Vu]2=+V1-a?

and

Q(u) = vz, + 20Uy Uy + uzuyy

Furthermore, Ao, Vo and |-|o respectively are the Laplacian, the gradient and the norm

in the Buclidean metric. Replacing u(z,y) = aLogy in equation (6.2), we obtain

a

H= -t
2v/1 — a?

and since

<N7 at)

is constant, from Corollary (1.1.3) we get
0=A(N,0) = (JA]* = [Vh[*)(N, D).
Hence,
|Vh|? = |A]% (6.3)
Furthermore, by the well known equality
|A]? = 4H? — 2K,
we see that 0 = Kg = k1ko, where ki, ko are the eigenvalues of A. Therefore, supposing

ko = 0 and since

2 2

we obtain
a

V1+a?

The last example sheds light on the study of the uniqueness of stable CMC

k’lz

(non-maximal) hypersurfaces without the parabolicity assumption, which is strictly

necessary in the maximal case.

Example 6.0.7 We can obtain an example of constant angle graph immersed in —R X

H? of the type
u(z,y) = f (£> :
Yy
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Denoting r = % and C' = |Vul, since |Vu|> = y*|Voul§ we get:

C? = f'(r)*(1 +r?).

Integrating we obtain

f(r)y=Cln(vV1+r2+7r)+k

where k 1s a constant. In order to check if the mean curvature of the graph of u is

constant we make use of the following equation that can be found in [40]:

2HR? = R*y*Agu + y*(yQ(u) + uy|Voulo2)

where R = \/1 —|Vu|? = V1= C? and Q(u) = u2tze + 2uztytgy + uty,. Doing the
computations we obtain that
_rC(R* - C*r")
2R3V1+ 12

that is clearly non constant. For this it is enough evaluate in points of kind (0,y) and

(x,y). Also, observe that from [57], the graph is not parabolic.
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