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Resumo

Este trabalho desenvolve as teorias de cohomologia e homologia locais com respeito
a um conjunto arbitrario de ideais e generaliza varios dos resultados importantes das
teorias classicas. Também, introduz a categoria dos Z-moédulos quase-holonoémicos e
prova alguns resultados de finitude de cohomologia local que generalizam, em algum

sentido, os resultados de G. Lyubeznik.

Palavras-chave: Cohomologia local; Familia boa; Homologia local; Topologia linear;

Dualidade de Matlis; Z-modulos quase-holonémicos.
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Abstract

This work develops the theories of local cohomology and local homology with respect to
an arbitrary set of ideals and generalises most of the important results from the classical
theories. It also introduces the category of quasi-holonomic Z-modules and proves some
finiteness properties of local cohomology modules which generalise Lyubeznik’s results

in some sense.

Keywords: Local cohomology; Good family; Local homology; Linear topology; Matlis’

duality; Quasi-holonomic Z-modules.
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Introduction

The study of local cohomology has its roots in Algebraic Geometry and it serves
to general purposes in calculations of invariants in Commutative Algebra. Its starting
point can be determined in the work of J. P. Serre [Ser55| as an approach to the study
of projective varieties in terms of graded rings or complete local rings. It was then
presented in a seminar given by A. Grothendieck in the context of abelian sheaves
on an affine scheme, see [Har67]. Local cohomology was then thought as the right
derived functors of the assignation to sections of sheaves with support on a locally
closed subspace of said affine scheme. It is thus a specialisation of sheaf cohomology
defined by A. Grothendieck himself in [Gro57|. This theory of local cohomology defined
on a locally closed support would readily find a generalisation to an arbitrary family
of supports as it can be read in [Har66, p. 218] and it constitutes the main object of
study of this work by means of Commutative Algebra.

R. Hartshorne and R. Speiser posed in [HS77| the following question: When are
the local cohomology modules H:(R) Artinian or zero for large values of i? Regarding
the latter situation, A. Grothendieck proved for every d-dimensional R-module that
H{M) = 0 when i > d and that HZ(M) # 0 when M is finitely generated over
a local ring (see |Har66, Propositions 1.12 and 6.4, 4)] and |[BS98, Theorem 6.1.2]).
These results are nowadays known as Grothendieck’s Vanishing and Non-Vanishing
theorems. In this direction, another important result is the Lichtenbaum-Hartshorne
Vanishing Theorem which establishes a characterisation for the vanishing of H¢(M) in
terms of the m-adic completion.

For the former condition, Artinianness property for H:(M) was extensively stud-

ied by A. Grothendieck when dim(R/I) = 0 (see [Gro68]). For an arbitrary ideal I,



this property is only assured in the top dimension by studies of L. Melkersson (see
[Mel95]).

Recall that for an R-module 7', a prime ideal p € R is said to be an attached prime
ideal of T" if p = Anng(7'/N) for a proper submodule N of T. The theory of attached
primes and secondary representations of modules has been developed by 1. G. Mac-
donald in [Mac73], which is in a certain sense dual to the theory of associated prime
ideals and primary decompositions. It is well known that every Artinian module has a
secondary representation. The theory of attached primes and secondary representation
was successfully applied to the theory of local cohomology by I. G. Macdonald and
R. Y. Sharp in [MS72]. Thus there exists a secondary representation for the Artinian
module HY(M) and it makes sense to study its attached primes as done by R. Y. Sharp
in [Sha81]. M. Dibaei and S. Yassemi also studied this set of prime ideals in [DY05]
and deduced that the set of attached prime ideals of the top local cohomology module
HE(M) is actually a subset of the minimal prime ideals of M.

Many results on derived categories have motivated studies for the behaviour of
the local cohomology of a dualising sheaf of the n-dimensional affine scheme X, this is,
a sheaf wx such that the Serre’s duality H" (X, FY ®@wy) = H'(X, F)* holds for every
coherent sheaf F' on X. Matlis’ duality (—)” = Hompg(—, Er(R/m)) gives a translation
of this to homomorphic images of Gorenstein local rings in the context of Commuta-
tive Algebra. Namely, the local duality isomorphisms H{ (M) =2 Ext,*(M, R)" and
H(M)Y = Ext};"(M, R)", where (—)" denotes the m-adic completion, hold for ev-
ery finitely generated module M over the n-dimensional Gorenstein local ring (R, m),
giving the Artinian R-module H['(R) = Er(R/m) as a dualising module for R. Ideas
for generalising this concept of dualising module for arbitrary modules were thought
by P. Schenzel in [Sch93|. We use these ideas in order to generalise some results from
[ES12] related to endomorphism rings of top local cohomology modules with respect
to an arbitrary support.

E. Matlis investigated in [Mat58] some characterisations for Artinianness. Among
them, it is included, by one side, the antiequivalence relation between Artinian modules
and Noetherian ones. On the other hand, Ext’(R/m, M) is always finitely generated
for every Artinian R-module M. This situation motivated R. Hartshorne to define I-

cofinite complexes in |[Har70|, where I is an ideal of the local ring R. Later, C. Huneke



and J. Koh used this definition of cofiniteness in [HK91| in order to prove the finiteness
of Bass numbers of local cohomology modules on ideals of dimension 1.

E. Matlis studied in [Mat74] the left derived functors of the I-adic completion
functor A;(—) = @(—)@RR/I”, where the ideal I was generated by a regular sequence
in a local Noethe?iegn ring R. This functor is the Matlis dual of the local cohomology
functor. More precisely, the functor I';(—)Y is isomorphic to the functor A;((—)Y).

On the other hand, since the local cohomology functors can be defined via Ext as

Hi(—-) = ligExt%(R/[”, —), N. Cuong and T. Nam considered in [CNO1] a definition
for local IT(frjjlology via Tor, this is, H!(—) = @Torf(R/[”, —). In the same work it
was proved that these local homology functorgegre indeed the left derived functors of
the I-adic completion functor A;(—) in the category of Artinian R-modules.

Now consider a regular k-algebra R, where k is a field of characteristic zero, and
I be an ideal of R. In his seminal paper [Lyu93|, G. Lyubeznik uses the theory of Z-
modules over the ring of power series with coefficients in a field of characteristic zero

to study some finiteness properties of local cohomology modules, more specifically, he

proves the following statements:
(i) inj. dimp(H}(R)) < dimg(H}(R)).
(ii) The set of associated primes of H7(R) contained in every maximal ideal is finite.
(iii) All the Bass numbers of H7(R) are finite.

Recall that local cohomology modules with respect to I can be computed using Cech
complex of M which is described by localising M at generators of I. A key point in the
work of G. Lyubeznik relating the theory of Z-modules to local cohomology modules
is a non-trivial result due to J.-E. Bjork which establishes that holonomicity of Z-
modules over the ring of differential operators of the ring of power series is preserved
via localisation at elements of this ring. In the same direction, Z. Mebkhout and
L. Narvaez-Macarro prove in [MNM91], using the theory of Bernstein-Sato polynomials,
that localisation of holonomic modules over rings of differential operators of certain
more general rings are also holonomic. The rings considered in [MNM91| are those
commutative Noetherian regular algebras over a field k of characteristic zero having

the following properties:



(i) R is equidimensional of dimension n, that is, the height of any maximal ideal is

equal to n.

(ii) Every residual field with respect to a maximal ideal is an algebraic extension of

k.

(iii) There are k-linear derivations Dy,..., D, € Derg(R) and a4,...,a, € R such

that D;(a;) = 1if i = j and 0 otherwise.

This class of algebras led L. Nunez-Betancourt in [NB13| to define a more general class

of algebras substituting condition (iii) by the following one:

(iii)” Dery(R) is a finitely generated projective R-module of rank n and the canonical
map Ry, ®r Deri(R) — Deri(Ry) is an isomorphism for any maximal ideal

m C R.

For this kind of algebras, L. Ninez-Betancourt proves that localisations at an element of
R of holonomic Z-modules are holonomic. Here & is the ring of differential operators
of R. L. Nunez-Betancourt also uses this result to prove that the set of associated
primes of a holonomic Z-module is finite.

This work presents a generalisation of local cohomology functors for an arbitrary
support and proves some of their fundamental properties, including those of vanishing
and non-vanishing theorems as well as local duality theorems. In order to develop
this theory we define good families of a ring, that is, a set « of ideals which is stable
under multiplication and under inclusion, and for any R-module M, the a-torsion
module I', (M) as the set {x € M : Supp(Rz) C a}. The i-th right derived functors
are denoted by H'(—) and called the i-th local cohomology module with respect to a.

The first chapter defines the basic notions and notations to establish the functors
and proves some basic properties, including an improved version of the fundamental
Independence Theorem. Later, it studies the vanishing and non-vanishing of the local
cohomology modules with respect to a family and gives important generalisations of
Grothendieck’s Vanishing and Non-Vanishing and Lichtenbaum-Hartshorne Vanishing
Theorems. Closing this chapter, the third section describes some duality properties of

the local cohomology modules in the local case.



The second chapter is concerned with the properties of Artinianness of the top
local cohomology functors with respect to an arbitrary support and gives a suitable
definition of cohomological dimension of a module. It also studies the set of at-
tached primes of the top local cohomology module and gives another generalisation
of the Lichtenbaum-Hartshorne Vanishing Theorem which covers the one observed by
K. Divaani-Aazar, R. Naghipour and M. Tousi in [DANT02].

The third chapter investigates the first non-vanishing local cohomology modules
with respect to a family o and suggests a definition of a-cofiniteness. This number
is called the a-depth of a module. The notion of a-cofiniteness is introduced as an
extension of the notion of I-cofiniteness of [Har70]|, precisely, the R-module N is said
to be a-cofinite if Supp(N) C a and Extz(R/I, N) is finitely generated for every I € a
and every 7. The main result establishes the a-cofiniteness of the top local cohomology
modules. We also study the associated primes of HS (M), where ¢ is the a-depth of M.

Next, the fourth chapter deals with the modules of endomorphisms of local co-
homology modules and investigates them in two phases. The first one studies the
endomorphisms in the a-depth level, along with the special case when the a-depth
equals the cohomological dimension. This part basically extends some ideas from
[Mah13]. The second one takes care of the top local cohomology modules. It ex-
ploits the Lichtenbaum-Hartshorne Vanishing Theorem conditions and the Artinian
nature of said modules to obtain informations on the ring structure of their modules
of endomorphisms in an analogous way as done in [ES12].

The fifth chapter extends the notion of local homology with respect to an ideal
to a good family a as H(—) = @Torf(R/[,—). Since Hg(—) = lIm(R/I ®r —),
it also explores the linear topologgfeianduced by the family o which WeIECOE;H the a-adic
topology. The study includes dual versions of classical results from local cohomology as
the Independence Theorem, Vanishing and Non-Vanishing, acyclicity and Artinianness
criteria and Matlis’ duality with local cohomology.

The last chapter introduces the class of quasi-holonomic Z-modules which is
a full subcategory of Z-modules stable under submodules, quotients, extensions and
direct limits. This category extends the category of holonomic Z-modules. In fact,
holonomic Z-modules are exactly the finitely generated quasi-holonomic Z-modules.

We also prove that quasi-holonomicity is preserved via localisation on any multiplicative



set of R. We also prove that local cohomology modules, with respect to any family of
supports, of quasi-holonomic Z-modules are quasi-holonomic.

The main result of this work extends most of G. Lyubeznik’s finiteness properties
for Z-modules over rings of differential operators of the class of rings introduced by

L. Nufiez-Betancourt. Precisely, we prove the following statements:

(a) If dimg(H}(M)) = 0, then Hj(M) is an injective R-module. In particular,
HI (Hi(M)) is an injective R-module for every finite family {my,..., m,}

mp---mg

of maximal ideals of R and every pair of integers ¢ and j.

(b) If M is an quasi-holonomic Z-module and N is a finitely generated Z-submodule
of HJ(M), then the set of associated primes of N is finite.

(¢) If M is quasi-holonomic, then every finitely generated Z-submodule of H7(M)

has finite Bass numbers with respect to the maximal ideals.



Chapter 1

Foundations on local cohomology

1.1 Basic properties of local cohomology modules

In this section we define the local cohomology modules with respect to a pair
of families of ideals and prove some of their basic properties, including an improved
version of the fundamental Independence Theorem. Unless stated explicitly, all the

rings through this work are commutative with identity.

Definition 1.1. Any set of ideals will be called a family. A family « of R will be called

good when the following three conditions are satisfied:
(i) (Non-emptiness) R € a.

(ii) (Stability under inclusion) If I € « and J is an ideal of R containing I, then
J € a.

(iii) (Stability under multiplication) If {I,J} C «, then I.J € a.
We will say that a family a of R is trivial when o C {R}.

Definition 1.2. For any pair of families, ¢ and v, of R, we define the family
W(p, ) ={I<R:IT+Jecgforal Jeci}.

Example 1.3. The most important examples of families we will consider in this work

are the following: for any ideal I of R, we set

Z:={J<QR:J2DI" for some integer n > 1}.



It can be seen that 7 is a good family. If I, . . ., I, are ideals of R, we define W(I,, ..., I,)
inductively as follows: for s = 1, we set W (I;) = Zy; for s > 2, set

W(l,...,I,) =WW (), W(I_1,...,I)).

If s = 2, the family W (ly,I;) coincides with the family defined in [TYY09, Defini-

tion 3.1] for a pair of ideals.

Remark 1.4. Let o be a non-empty family of R. We define the family
(o) ={K<R:KDI---I, for some [; € a}.

When « = (), («) is defined as the trivial family { R}. Any family («) defines a subspace

of Spec R which is stable under specialisation, more exactly,
() NSpec R = | JV(I). (1.1)
Iea

Conversely, if Z is a subspace of Spec R which is stable under specialisation, then
Z =|JV(p) and the family Z = (Z) = {K < R: K D p;---p, for some p; € Z} is a

pez
good family of R such that Z N Spec R = Z.

It can also be seen that («) is the smallest good family containing a. In fact, «

is a good family if and only if (a) = a.

If I is an ideal of R and 1) is any family of R, we denote W (W (I), 1)) by W (I, ).
In the same form, we denote W (p, W (J)) by W (e, J) for any ideal J of R and any
family ¢. Next we state without proof some basic properties of the family W(gp, V).

Lemma 1.5. Let I and J be ideals of R and @, @', 1 and 1’ be families of R.
(i) W(p, )+ C @, wherea+p :={I+J:1€a,Jec B} Thus W(p, )N C .

(i) If ¢ C ¢, then W(p,1p) C W(gp’,w). In particular, W(I,@b) C W(J, W) every
time I DO J.

(iii) If » C @', then W, 1) D W(gp,zp’). In particular, W(p, 1) D W(p, J) every
time I DO J.

(iv) W(@,zﬁ) N W(¢’,¢) = W(gp N, Y). In particular,

W(IL,)NW(J, ) =W+ J,1).

(v) W(p, ) "W (p,¢') = W(p, 0 U).

(vi) o =W (e, {(0)}).



(vii) If ¢ is a good family, then W(gp,w) is also a good family and ¢ C W(gp,@b). In
particular, W (I,v) is a good family and W (I) C W (I, ).

(viii) If ¢ is a good family, then Wi(p, 1) = W(gp, (¥)). In particular,
W(e, )N W (g, J) = W(e,1J)
when @ is a good family.

We now define the main object of this work.

Definition 1.6. Let M be an R-module and ¢ and ¢ be families of R. The (¢, v)-
torsion subset of M is the set I'y, ,,(M) = {x € M : Supp(Rz) C W ({g), @b)}

We will also use the notations I'r , (M), 'y s (M) and I'z, 1, (M) for Uy (M),

Uy wn(M) and Ty 1 yirr, ;. ny (M) respectively.

Let ¢ and v be families of R. For every morphism f : M — N between objects
in R-mod, we define 'y ,(f) = f[r,,)-
Proposition 1.7. The assignation I'y, ,(—) : R-mod — R-mod is a left-ezact R-linear

functor.

Proof. If ¢ and ¢ are families of R and M is an R-module, then I', (M) is an R-
submodule of M because W((),1) is a good family by Lemma 1.5, (vii), and the
relations Ann(x — y) O Ann(z) Ann(y) and Ann(ax) 2 Ann(z) hold for every a € R,
x,y € M. For every homomorphism of R-modules f : M — N, the application

Lou(f) : Dpyp(M) = Ty y(N)

is well defined as I', ,,(f)(z) = f(z) because Ann(f(z)) 2 Ann(x) for every x € M.

More than this, every time f is injective, we have that Ann(f(z)) = Ann(z) for every

x and this equality suggests the left-exactness of I'y, ;,(—). O

For any pair of families, ¢ and v, we can define the right derived functors of
I'y(—) and we shall denote them by H! ,(—) for every i > 0. For any R-module M,
the module ij,w(M) will be called the i-th local cohomology module of M with respect
to (¢,9). Due to the left-exactness of 'y (=), we have that H) (=) = ', ,(—). More-
over, every short exact sequence of R-modules 0 — L — M — N — 0 induces
a long exact sequence of R-modules 0 — 'y (L) — Ty (M) — Ty y(N) —



Remark 1.8. Tt is worth to notice that whenever ¢ is a system of ideals as defined
in [BZ79, p. 403] and (0) € (¢), then the functor H} ,(—) coincides with the functor
H!(—) defined in [BZ79, p. 405] for every i in the Noetherian case. So we will use the
notation Hy, (M) instead of H}, (o, (M) for any family « and every i.

From now, the order relation considered in any family « of R will be the reverse

inclusion. Recall that W (@, ) "W (p,J) = W (p, 1.J) for every pair of ideals, I and J,
of R when ¢ is a good family by Lemma 1.5, (viii). This implies that, whenever 1 is
stable under multiplication, the projective system {I', ;(M), LJJ/}JEw is stable under

finite intersections. Thus we have the following statement.

Lemma 1.9. Let ¢ and ¢ be families of R and M be an R-module. Then
F%w(M) - m F%J(M> = M F%J(M)-
Jey JE()

Proof. If v € Ty, (M), then J+p € (p) for every J € ¢ and every p € Supp(Rx). Let
I be an element of W(J). Then I D J* and I +p D J"+p D (J +p)" € (). Hence
every p € Supp(Rx) satisfies that p € W ({y), J) and we deduce that = € T, ;(M)
for every J € 1. The converse is clear because J € W(J) for every ideal J of R. As
W (@), v) = W({(p), (¥)) by Lemma 1.5, (viii), we have that

Lou(M) = F%W)(M) = ﬂ Ly (M) = I&H Ly s (M).
Je() Je(¥)

The last isomorphism follows because the projective system {T'y (M), e} ;¢ 1S

stable under finite intersections. O

We can characterise good families in the Noetherian case by the following prop-
erty.
Lemma 1.10. Let ¢ be a family satisfying the following property for every ideal I of
R:
I € pifand only if V(I) C .
Then ¢ 1s a good family. The converse holds when R is Noetherian.

Proof. Let us suppose that ¢ is a family such that [ € ¢ if and only if V(1) C ¢.
Since V(IJ) = V(1) U V(J) for any ideals, I and J, of R, it follows that ¢ is closed
under multiplication. Moreover, V(J) C V(I) every time J D I; thus this family is
also good.

Now let us suppose that R is Noetherian and ¢ is a good family and let I be an
ideal of R such that V(I) C . Naming py,...,ps the minimal elements of V (1), we
have that I D (\/7>T =(p1N---Nps)" Dp;---p~ for some big enough r. Then I € .

The converse is straightforward. O]

10



The previous lemma concludes also that if o and 3 are families of the Noetherian
ring R such that (a) N Spec R C () N Spec R, then (a) C (). Thus there exists a
bijective correspondence between good families of a Noetherian ring and stable under

specialisation (abbr. s. u. s.) subspaces of its spectrum, namely,

{W CSpecR:Wiss. u. s.} < {a:aisagood family of R}
W = (W)
aNSpecR +— «

When « is stable under multiplication, reverse inclusion ordering defines an inductive
system {H}(M), i} },c, where of; « H{(M) — Hj,(M) is induced by the inclusion
[;(EY(M)) — Tp(EY(M)) whenever I O I’ for every non-negative integer i and any
injective resolution (E*(M),d") of M.

Theorem 1.11. For any pair of families, p and v, of a Noetherian ring R, every
R-module M and every i >0, H. (M) = lim H}(M). In particular,
TeW ({),¢)
HE(M) = iy H}(M)
Iea)

for every family o.

Proof. Allow us to call W = W ({y), ). For any ring R,
limg T (M) = | T(M) € T (M),
Iew Iew
If R is Noetherian, Lemma 1.10 says that [ € W if and only if V(I) € W. Thus

Lyp(M) C U I';/(M). For i > 0 and I € W, each short exact sequence of R-

Iew
modules 0 — L — M — N — 0 leads to a long exact sequence of R-modules

0 — HYL) — HY(M) — HY(N) — H}(L) — ---. Since W is a filtered small
category, 0 — th?(L) — th?(M) — @ HYN) — hg’l HYL) — -~ is
Iew Iew Iew Iew

an exact sequence and we conclude that (hg H}(—)) is a family of O-functors. If £
Iew
is an injective R-module, then Hi(E) = 0 for every i > 0 and every I € W; hence

lim H}(E) = 0 for i > 0. By [Rot09, Theorem 6.51] we have that there exists a unique
Iew

isomorphism of functors 7 : (hgq H}(—)) — (H ,(=)), whence

rew
H (M) = ling Hi(M)

for every R-module M. [

11



Remark 1.12. We say that the family « is cofinal to a family 5 (or simply that o and
B are cofinal) when, for every I € a, there exists J € § such that I O J and, for every
J € B, there exists K € a such that J O K. When a C § and they are cofinal, we will
also say that « is a cofinal subfamily of (. For any two cofinal families, o and f, of
R, we have that (o) = (f) and thus H, ,(M) = H} (M) for every i, every R-module
M and every family ¢ of R. We also must observe that any family « cofinal to a
good family ¢ (e.g., when « is stable under multiplication or « is a system of ideals as
defined in [BS98, Definition 2.1.10| among other examples) is necessarily a subfamily
of this and thus H!(—) = H.(—) = th}(—) for every i when R is Noetherian. It is

Ica
worth to notice that this statement is a refinement of the particular case considered in

Theorem 1.11.
Remark 1.13. Let F': A — B be a left-exact additive functor from an abelian category

A with enough injectives to another abelian category B. Recall that an object E in
A is called right F-acyclic (shortly, F-acyclic) when (R'F)(E) = 0 for every i > 0. It
is well known that, for every object M of A, the object (R'F)(M) can be calculated
via F-acyclic resolutions of M, see [Har77, Proposition 1.2A, p. 205]. In this way,
if R is a Noetherian ring, S is a commutative Noetherian R-algebra and FE is an
injective S-module, then F is a I',-acyclic R-module for every family « of R by [BS98,
Theorem 4.1.6] and Theorem 1.11.

Let f: R — R’ be a ring homomorphism and let us denote aR' := {JR': J € a}
for any family « of R. Viewing the R'-module N’ as an R-module via f, we may
observe that, for any pair of families, ¢ and v, of R, the R-module Iy, ;,(N’) is also
an R'-module. We can get more with some additional conditions and the outcome is a

generalisation for [TYY09, Theorem 2.7|.

Theorem 1.14. Consider two Noetherian rings, R and R', two families, ¢ and 1, of
R, a ring homomorphism [ : R — R’ and an R'-module M'. Suppose that f(J) = JR’
for every J € 1. Then the R'-modules H;W(M’) and H;R’,z/}R’(M/> are isomorphic for

every i.

Proof. By Remark 1.13 it is enough to show that 'y, ,(N') = I'or yr (N') for every
R'-module N’. If € N’ is such that V(Anng(x)) € W((¢), %), consider a prime
p € V(Anng:(x)). Then f~'(p) € V(Anng(z)), whence J + f~1(p) € (p) for every
J € . Tt follows that JR + f~'(p)R € (p)R' C (pR'), concluding for every ideal
J € 1 that JR +p € (pR') and p € W((¢R'),¥R’). Now consider z € N’ such that
Anng(z) € W({¢R'),¥R'). For each J € 9, there exist K,,..., K, € ¢ such that
JR + Anng:(z) O KR --- K;R'. Choose any (ki,...,ks) € Ky x -+- x K. Then
f(ky---ks) = j+ o' for some j € JR and r' € Anng:(z). Since f(J) = JR', we
have that f(k;---ks — j) =1’ for some j € J. Thus k;--- ks — j € Anng(x), leading
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to Ky--- K, C J+ Anng(z), whence Anng(z) € W((p),%) and we conclude that
Lo (N) = Torrpr (N'). O

The following consequence appears in [DANT02, Remark 2.5, (ii)] for a special
kind of families.
Corollary 1.15 (Independence Theorem). Let R and R’ be Noetherian rings, o be a

family of R, f : R — R’ be a ring homomorphism and M’ be an R'-module. For every
i we have the isomorphism of R -modules H.,(M') = H' ,,(M’).

Remark 1.16. For any ideal I of R and any ring homomorphism f : R — R/, we
have that (W(I)R') = {K < R': K D (IR')" for some integer n > 1}. The previous
result gives also the isomorphism of R'-modules Hj ,(M') = Hjg (M) for every i.

Furthermore:

Corollary 1.17. Let R and R’ be Noetherian rings, I, ..., I, be ideals of R and [ be

a family of R such that { <U W > If a ring homomorphism f : R — R’

satisfies f(I;) = LR and f(K) = KR’ for every K € f3, then, for every R'-module
M' and every non-negative i, the R'-modules Hj , (M') and Hj g ; p(M') are

77777777777

1somorphic.

Proof. We will show inductively at a first stage that the family W (I,_y,..., ;)R is
coﬁnal to W(IS (RS, [1R). We will also assume without loss of generality that

U W(I;,I,_1). When s = 2, we have that the family W (I;)R’ is cofinal to

W(IlR’) by Remark 1.16. Consider now s > 2 and an ideal a € W([s,l,...,fl).
Then, for every ideal J € W (I,_s,...,I) there exists a positive integer n; such that
a+.J DI, whence aR' € W(I,_,R',W(I,_s,...,I;)R). By induction hypothesis we
have that W(I,_s,...,11)R is cofinal to the good family W (I,_,R', ..., R') because

UW —1) € . Thus
W, R W (I_s,...,]1))R) = WU, R, W(I,_2R,....,LR)
= W(,.\R,....LR)
and aR' € W(I,_1R',...,,R'), giving us that
W(l,_,....,I;)R CW(I,_1R,...,I,R).

Consider now b € W(Is_lR’, ..., [1R"). By similar arguments used in order to prove
Theorem 1.14, we get that a = f~'(b) is an ideal in W (I,_1,...,I;) such that b D aR’.
It has been stated now that (W (I,_y,...,[,)R) = W(I,_1R,..., I, R").

13



Finally, we can apply the Theorem 1.14 to ¢ = W(IS) and o = W(I,_q,... )
because W(I,_y,...,I}) C W(I,_1,I,_5) C B. ]

It is also obtained a generalised version of the Flat Base Change Theorem (cf.

[Lyu93, Lemma 3.1]) which we shall now state.

Lemma 1.18 (Flat Base Change). Let R’ be a commutative Noetherian algebra over
a Noetherian ring R, « be a family of R and M’ be an R'-module which is flat over R.
Then there exists an isomorphism of functors (H p/(— ®r M')) = (H!(—) ®@r M').

Proof. At a first stage, allow us to recall that if F'is an exact functor between two
abelian categories, A and B, and (Ci,0.) is a complex in A, then the isomorphism
H;(F(C,)) = F(H;(C,)) holds for every i. Indeed, for every i we obtain the iso-
morphisms F(ker 0;) = ker F(0;) and F(im0;y1) = im F(0;41). Thus the claimed
isomorphism follows.

Next, recall that I',(N) = lim Homp (R/I,N) for every R-module N by Theo-
Ie(a)
rem 1.11. Since M’ is a flat R-module, we have the natural isomorphism

HOH]R<R/], N) QR M/ = HOH]R(R/],N QR M/)

for every I € (), see [AK12, Proposition 9.14]. Hence we have a natural isomorphism
of R-modules I'y(N)®@r M' = T (N @g M') for every R-module N. Observe now that
if F is an injective R-module, then F ®p M’ is I',-acyclic: in fact, Theorem 1.11 gives
that H'(N) = lim Ext%(R/I, N) for every R-module N and every i. On the other

Ie(a)
hand, denoting by P,(L) a projective resolution of an R-module L, we have that

Ext(R/I,E ®r M') = H'(Homg(P.(R/I),E ®r M'))
~ H'(Hompg(P.(R/I),E) ®r M)
~ H'(Hompg(P.(R/I),E)) @ M’
=0
for every I € (o) and every i > 0. Hence H'(E ®@r M') = 0 for every i > 0. We have

thus the following isomorphisms of R-modules for every R-module M, every family «

of R and every i:

H (M)®r M = H T (E*(M))) @z M’
= H'(To(E*(M))@r M)
>~ H' (T (E*(M)®r M)

~ H'(M®gM).

Here E*(N) is an injective resolution of an R-module N. Finally, Corollary 1.15 says
that the R'-modules H! (M ®r M') and H' (M ®p M') are isomorphic. Hence the
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isomorphism of R-modules H' (M ®@rM') = H' (M)®g M’ holds for every R-module
M, every family « of R and every i. n

As in the usual terminology of local cohomology theory and its current extensions,
an R-module M will be called (p,v)-torsion when I', (M) = M (equivalently, when
Supp(M) € W ({),1)). From definition, we observe that T, (M) is (i, v))-torsion for
every R-module M and every pair of families, ¢ and v, of R. On the other hand, we
say that M is (¢, v)-torsion-free when I'y (M) = 0. If I,..., I, are ideals of R, we
say that M is (I4, ..., I,)-torsion when it is (W (I,), W (I, ..., I,))-torsion. Similarly,
M is (I4, ..., I,)-torsion-free when it is (W (I,), W (Is,..., I,))-torsion-free.

Remark 1.19. Tt is straightforward to see that (0) € W (¢, 1) if and only if 1) C . Thus
every R-module will be (¢, ¥)-torsion if and only if ¢ C () provided R is Noetherian.

Example 1.20. We list now two important examples for the development of the work:

(i) If p € Spec R, then R/p is (¢, 1h)-torsion if and only if p € W({(g),%). On the
other hand, R/p is (i, ¥)-torsion-free if and only if p ¢ W ((0), ).

(ii) Let N be an essential extension of the R-module M. Then I'y, (V) is an essential
extension of I'y, ,,(M). In particular, an R-module M is (¢, 1)-torsion-free if and
only if its injective hull E(M) is (¢, ¢)-torsion-free.

Proposition 1.21. Let ¢ and ¢ be families of R.

(i) Let 0 — L — M — N — 0 be an ezact sequence of R-modules. Then M is
(p, )-torsion if and only if L and N are (p,)-torsion.

(ii) Let s be a positive integer and I, ..., I be ideals of R. If M is an (Iy,...,Is)-
torsion R-module, then M is (11, ..., I;)-torsion for every even integer 2 < j < s.
If M is an (I, ..., I;)-torsion-free R-module, then M is (I, ..., I;)-torsion-free
for every odd integer 1 < j <'s.

(iii) The R-module H (M) is (@, )-torsion for every i > 0.
(iv) Ass(Tyu(M)) = Ass(M) N W ((@),) for every R-module M.

Proof. Ttem (i) follows because Supp(M) = Supp(N) U Supp(L).

Item (ii) follows from the inclusions
W(L) C WL, Ip, I5) € -+ C W(T, I, I, 1) € W(1, Io).

In order to prove (iii), we observe that H (M) is a sub-quotient of a (i, %))-
torsion module for every i, thus we have by (i) that H, ,(M) is (¢, v)-torsion for every

..
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We now prove (iv): consider p € Ass(I', (M)). Then p = Ann(z) for some
v € Tyy(M) and V(p) = Supp(Rz) € W((p >,w), whence p € Ass(M) N W ((@), ).
For the converse, consider p € Ass(M) N W ({(p),1). Then p = Ann(z) for some
z € M and p € W((g),®). Hence Supp(Rz) C W ((¢),?¢) and we conclude that
x €T, (M). O

Proposition 1.22. If ¢ and ¢ are families of a Noetherian ring R and M is a (@, 1)-
torsion finitely generated R-module, then M is I-torsion for some ideal I € W ({¢), ).

Proof. If {x1,...,x,} generates M, then Ann(M) = Ann(z;) N--- N Ann(z,). Since
M is (g, 1)-torsion, we have that Ann(z;) = I, € W({(p),) for every i. Set

I=1I-1, € W({g),v).
Then Ann(z) O Ann(M) D I for every x € M, whence x € I'f(M). O

Corollary 1.23. If a is a family of the Noetherian ring R and M is a finitely generated
R-module, then there exists I € (a) such that T'o(M) = T';/(M). If o is cofinal to a

good family, we can take I € «.

Proof. Since T',(M) is a finitely generated a-torsion R-module, by Proposition 1.22
there exists I € W({a), {(0)}) = () such that T';(T'y(M)) = T'o(M). By Definition 1.6
and by Lemma 1.5, (iv), I'1(I'a(M)) = DIy (1)ne (M) and, since W(I) C (a), we
conclude the statement. Now if « is cofinal to (a), then there exists J € « such that
J C 1. Hence I'/(M) CT (M) CTo(M)=T7(M). O

It is straightforward to check that torsion functors I', ,(—) commute with for-
mation of arbitrary direct sums. Hence local cohomology functors with respect to any
pair of families commute with formation of arbitrary direct sums. Moreover, we shall

observe that local cohomology functors with respect to a pair of families commute with

inductive limits in the Noetherian case.

Proposition 1.24. If R is a Noetherian ring and { My, fur},cn 5 an inductive system

of R-modules, then H (l& MA) lim H ¢(MA)

AEA AEA
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Proof. We have the following isomorphisms:

Hi, (@MA) =~ lig H! (MQMA) (Theorem 1.11)

AEA TeEW () ) AGA

12

ling th}(MQ) (|BS98, Theorem 3.4.10])
TeW ((¢);w) \AeA

12

lim lig  Hj (M)

ACA \ 1eW ({¢),¥)

@Hfo,w(M/\) (Theorem 1.11).
AeA

12

]

This section ends with a discussion about torsion and torsion-free modules and

establishes the main results of local cohomology theory related to these features.

Proposition 1.25. Let ¢ and ¢ be families of a Noetherian ring R and M be an

R-module. The following statements are equivalent:
(i) M is a (p,)-torsion R-module.
(ii) Ass(M) € W((g), ).

Proof. Since Ass(M) C Supp(M), the implication (i)=-(ii) is clear. Now R is Noethe-
rian, whence Supp(M) =
A

U V(p). On the other hand, W ({g),) is a good family.
ss(M)

pe
Hence (ii)=(i). O

As direct consequences, we have the following statements.

Corollary 1.26. Let ¢ and i be families of a Noetherian ring R and M be an R-

module.
(i) M is (p,)-torsion-free if and only if Ass(M) W ({p), 1) = 0.
(ii) M is (@,)-torsion if and only if its injective hull E(M) is (¢, )-torsion.

(iii) If M is (@, v)-torsion, then every term of any minimal injective resolution of M
is (p,)-torsion.

(iv) The R-module Eg (R/p) is (p,)-torsion when p € W((@),1)). On the other
hand, it is (@, )-torsion-free when p ¢ W ((p), ).
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Proof. Note that (i) follows from Proposition 1.21, (iv). Item (ii) follows because
Ass(E(M)) = Ass(M) and (iv) follows because Assg (Eg (R/p)) = Ass(R/p) = {p}
for every p € Spec R.

We now prove (iii): if (E*(M),d*) is a minimal injective resolution of M, we get
that E°(M) = E(M) and E*(M) = E(imd" ') for i > 1. Since homomorphic images of
(0, 1)-torsion modules are (@, 1))-torsion by Proposition 1.21, (i), the statement follows

in an inductive way. O]

Corollary 1.27. Let o be a family of a Noetherian ring R and M be a finitely generated
R-module. Then

(i) M is a-torsion-free if and only if every I € «a contains an M -reqular element.

(11) The R-modules R/p and Er (R/p) are a-torsion when I C p for some I € a. On
the other hand, they are a-torsion-free when I & p for every I € a.

From Corollary 1.26, we have the following result.

Proposition 1.28. Let ¢ and ¢ be families of a Noetherian ring R and M be an
R-module.

(i) If M is a (p,v)-torsion module, then H, (M) = 0 for every i > 0 (i.e., every
v, V)-torsion R-module is T, ,-acyclic).
e

(i) The R-module M /T, (M) is (p,v)-torsion-free and
Ho o (M) 2 Hyy, (M/To (M)
for every i > 0.

Proof. Note that (i) can be obtained from Corollary 1.26, (iii). For (ii), consider the
short exact sequence 0 — I'y, ,(M) — M — M/T', (M) — 0. This leads to the long
exact sequence 0 — Iy (M) — Ty (M) — Ty y (M/Ty (M) — H} \(Cypp(M)) —

H, (M) — H, (M/sz,(M)) — -+, being the first non-trivial arrow an isomor-
phism. Also, as H; ,(I';4(M)) = 0 for every i > 0 by the previous item, the result

follows. O

We will show later that the class of finitely generated I',-acyclic modules actually

coincides with the class of finitely generated a-torsion modules.

Corollary 1.29. Let ¢ and 1) be families of R and M be an R-module. If M is (p,1))-
torsion, then M/JM is @-torsion (i.e., M/JM is (¢,{(0)})-torsion) for every J € 1.
The converse holds when R is Noetherian and M is finitely generated.

In particular, if M is (Ih,...,1Is)-torsion, then M/JM is I -torsion for every
wdeal J € W(Iz, o 1;), where 2 < j < s is any even integer or j = s. Conversely,
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if R is Noetherian, M is finitely generated and M/JM is I -torsion for every ideal
JeW(,,...,1,), then M is (I, ... ,1;)-torsion for every even integer 2 < j < s and
for j =s.

Proof. If M is (i, v)-torsion, then Supp(M) C W({(¢),v). For every J € 9 it also
holds that V' (J) C (¢), thus

Supp (M/JM) € W ({p), &) N () = W (), (¥)) N (¥) € () = W (), {(0)}).
Hence M/JM is p-torsion for every J € 1.

For the converse, let us suppose that R is Noetherian and M is a finitely gen-
erated R-module such that M/JM is ¢-torsion for every J € 1. We have that
V(J + Ann(M)) C (p) when J € ¢ and J + Ann(z) € (p) for every x € M, whence
Ann(z) € W((p),¢) and M =T, (M). O

Proposition 1.30. Let a be a family of a Noetherian ring R and M be an R-module.
Then Ass(M) = Ass(I'o(M)) U Ass(M /T (M)), being the right term a disjoint union.

Proof. From Corollary 1.26, (i), and Proposition 1.28, (ii), we get that
Ass(To(M)) N Ass(M /T (M)) = 0.

Consider now the exact sequence 0 — I',(E(M)) - E(M) — E(M)/T'(E(M)) — 0.
By Theorem 1.11 we have that I',(E(M)) is an injective R-module, thus the sequence
splits and Ass(E(M)) = Ass(I'o(E(M))) U Ass(E(M)/To(E(M))). We have also a
natural monomorphism M /I (M) — E(M)/T',(E(M)) and this leads to

Ass(M /T (M)) C Ass(E(M)/To(E(M))) C Ass(E(M)) = Ass(M)
which concludes the statement. O

Proposition 1.31. Let ¢ and ¢ be families of R and M be an R-module which is
J-torsion for some J € (). Then I',(M) =T, ,(M). If in addition R is Noetherian,
then H,(M) = H, ,(M) for every i.

Proof. Note that T, (M) C T,,(M) because W((),{(0)}) = (p) C W({p),1) by
Lemma 1.5, (vi) and (vii). Since M is J-torsion, we have for every x € M that
V(Ann(z)) € V(J) C (¢). Consider now an element z € I',,(M). It follows that
V(Ann(z)) € W({p), ) N () C (o) and & € T, (M),

Suppose now that R is Noetherian. If M is J-torsion, then E*(M) is also J-torsion
for every injective E*(M) in a minimal injective resolution of M by Corollary 1.26, (iii).
We conclude that T',(E*(M)) = T'y 4 (E*(M)) and H,(M) = H., ,(M) for every i. [

Corollary 1.32. Let s be a positive integer, M be an R-module and I, ..., I, be ideals
of R. If M 1is J-torsion for some J € W([Q,...,Ij), where 2 < j < s is an even
(M) = T, (M). If in addition R is Noetherian, then

.....

------
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If a and b are ideals of the Noetherian ring R and FE is an injective R-module,

then as seen in [BS98, p. 53], the sequence
0 — Doo(E) — To(E) @ Th(E) — Dyrp(E) — 0 (1.2)

is exact. This result can be easily extended.

Proposition 1.33 (Mayer-Vietoris Sequence). For every pair of families, o and 3,
of a Noetherian ring R and every R-module M, there exists an exact sequence 0 —
Loy (M) = Ta(M) @ Ts(M) = Tavg(M) = Higy5 (M) — Ho(M) © H(M) —
Hp(M) — H<2a>ﬁ<5>(M) — -

Proof. Tt suffices to show that if E is an injective R-module, then the sequence of R-
modules 0 — 'y (E) — T'o(E) @ T'5(E) — T'aup(E) — 0 is exact. Exactness
at I'iynisy (E) and Ty (E) ® [g(E) is clear. Now if 2 € I'aup(E), then we have that
Amn(z) D I ---I,Jy - - - J, for some [; € o and J; € 5. Then x € I'j;(E) = ['jn;(E),
where I = I, --- I, € (o) and J = J;--- J; € (B) and exist 1 € I'[(F) C I',(E) and
xg € I'j(E) C T'g(E) such that xy — 29 = x by Equation (1.2). O

1.2 Vanishing and non-vanishing

In this section we establish generalised versions of the classic vanishing and non-
vanishing theorems from usual local cohomology theory.

From now on, we will assume that R is Noetherian. Every time E = @ E(R/p),
peA
where A is a family of prime ideals, we get that ', ,(E) = @ E (R/p) for every

PEANW ((),4)
pair of families, ¢ and 1, of R by Corollary 1.26, (iv).

For every R-module M, every prime ideal p and every non-negative integer 7, we
recall the definition of the i-th Bass number p'(p, M) of M with respect to p as the
cardinality of the set {A € A :py, = p} of indices of prime ideals of the decomposition

EY(M) = @ E (R/py) of the i-th term in a minimal injective resolution of M. It is
AEA
well known that the number u'(p, M) can be calculated also by the formula

Ml<p7 M) - dlmﬁ(p) EXt’é{p (’i(p)v Mp)7

where k(p) = R,/pR, is the residue field of the local ring R,.
Next we write extensions of some results of [TYY09]. The following characterises

the depth in terms of the non-vanishing of local cohomology modules.
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Proposition 1.34. If ¢ and ¥ are families of R and M 1is a finitely generated R-
module, then inf {i : H. (M) # 0} = inf {deptth(Mp) p € W((p),9) N Spec R}.

Proof. We set n = inf {depthR (M) :p € W({y

), 1) N Spec R} and a minimal injec-
tive resolution (E*(M),d*) of M. If p € W({g),%) N Spec R, then

n < depthp (M, p(p, M) #0} .

Hence we have that Ty, ,(E'(M)) = @ E(R/p)" M) — 0 for i < n and

'PGW(< ), ¥)NSpec R
Ly (E"(M)) # 0. It follows that H (M) =0 for i <n and

Hj (M) =kerT'y,(d") =Ty, (E"(M)) Nkerd" # 0
because E*(M) is an essential extension of ker d’ for each i. O

Corollary 1.35. If a is a family of R and M is a finitely generated R-module, then
inf {i: H, (M) #0} = }Ielf grade(I, M).

We also write a converse for Proposition 1.28, (i).

Corollary 1.36. Let M be a finitely generated R-module, ¢ be a non-trivial family
and ¢ be any family of R. Then, every time H;7w<M) = 0 for every 1 > 0, we have
that M is a (@, )-torsion R-module.

Proof. Let us assume first that R is a local ring with maximal ideal m. Setting
N = M/T, (M), we have by Proposition 1.28, (ii), that N is (¢, 1)-torsion-free and
H ,(N)= H (M) =0fori>0. Since ¢ is ~non—triviad, we have that W ((¢), ) is
also non-trivial by Lemma 1.5, (vii), and m € W ({y), 1), whence

inf {deptth(Np) p € W({p),4) N Spec R} < depth(NV).

If N # 0, then H} ,(N) # 0 for some 0 < ¢ < depth(N), which is absurd. Hence
Lyp(M) =M.

If R is any ring, then H%/((@ R (M,) = 0 for every i > 1 and every p € Spec R
’ P

by Lemma 1.18. Thus FW(<SO>7’¢')R|3(MP) = M, for every p € Spec R by the previous
arguments and I', (M) = M again by Lemma 1.18. O

Hence the class of finitely generated (i, 1))-torsion R-modules coincides with the
class of finitely generated I'y, 4-acyclic R-modules. Furthermore:

Corollary 1.37. Let M be a finitely generated R-module, ¢ be a non-trivial family

and ¢ be any family of R. The following conditions are equivalent:
(1) M is Iy -acyclic.

21



(i) M is (p,1))-torsion.
(iii) M is I-torsion for some I € W ({©),1)).

(iv) M is Tr-acyclic for some I € W({@),1)).

We inherit an upper bound from the usual local cohomology for the non-vanishing

of the cohomology modules.

Lemma 1.38. Consider two families, ¢ and i, of R and an R-module M. Then
H. (M) =0 for every i > dim M. In particular, H\,(M) =0 and Hj (M) =0 for
every © > dim M, every family o of R and ideals I, ..., I;.

Proof. For every I € W({(y),), Grothendieck’s Vanishing Theorem (see [BS98, The-

orem 6.1.2|) states that Hi(M) = 0 if ¢ > dim M. By Theorem 1.11, we have that

Hy (M) = ling Hj(M) = 0if i > dim M. O
TeW ({p),¥)

It is readily observed that the class of zero-dimensional R-modules is contained

in the class of [',-acyclic R-modules for any family « of R.

Lemma 1.39. Let n be a non-negative integer. If H;’w(R) =0 for every i > n, then
H (M) = H (R)®r M for every i >n and every R-module M.

Proof. Tf W ((p),1) is trivial, the statement holds in an obvious way. Then we may
assume that W ((p),1)) is non-trivial and let us suppose initially that M is finitely
generated. Then there exists a short exact sequence 0 — N — R™ — M — 0
where m is a positive integer and N is a finitely generated R-module. For each i,
this sequence induces the exact sequence H} ,(R™) — H}, (M) — H_[;(N). We
already observed that HY ,(M) = 0 when ¢ > dim M in Lemma 1.38. So, we may
assume the induction hypothesis: if 07, ,(R) = 0 for everyi > n+1, then H_, ,(M) = 0
for every © > n + 1. Thus HZ;(N) =0 and H (M) = 0ifi > n. If M is any R-
module, then it is the inductive limit of its finitely generated submodules; hence we
can conclude that HY, ,(M) = 0 for every i > n.

Now the functor H} ,(—) is R-linear, right-exact and preserves direct sums. Then
the R-modules H} (M) and H} ,(R) ®r M are isomorphic for every R-module M by
Watts’” Theorem (see [Rot09, Theorem 5.45]). O

The next result is a generalised version of the fundamental Grothendieck’s Van-
ishing Theorem.
Theorem 1.40. Let M be a finitely generated module over a local ring (R, m), ¢ be

any family and ¥ be a non-trivial family. Then H;w(M) = 0 for every integer number

i > supdim(M/JM).
Jeyp
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Proof. Again, if ¢ is trivial, the result is obviously satisfied. The statement will be

proved by induction on r = sup dim(M/JM). If r = —1, then M = 0 and H;W(M) =0
Jey
for any ¢ > 0.

Now assume r > 0. Let us suppose also that M = R is an integral domain and
H, ,(R) # 0 for some [ > 7. Then there exists q € Ass(H,,(R)). If q # (0), choose a

non-zero x € ¢. From the exact sequence

M

0 R R R/Rx —— 0

we get the exact sequence

H' )} (R/Rx) — HL ,(R) fe H. ,(R) .

As dim(R/(J + Rz)) <r —1<1—1 for every J € ¢, we have that H;;j (R/Rzx) = 0.
Thus z is H. ,(R)-regular, which is absurd because = € q € Ass(H., ,(R)). Then
Ass(H] ,(R)) = {(0)}. Since H. ,(R) is a (¢, 1)-torsion R-module, we may conclude
that (0) € W({¢),®) and any R-module is (g, 1))-torsion by Remark 1.19. This implies
that H? ,(R) = 0 for every i > 0 and this leads to a contradiction.

Now if R = M is not an integral domain, then the projection 7 : R — R/p leads
to H, , (R/p) = H;(R/p)ﬂ/)(R/p) (R/p) for every i and every p € Spec R by Theorem 1.14.
Finally, if M is any finitely generated R-module, then we have a filtration of R-modules
0=DM C M € - C M,y C My, =M such that M;/M;_y = R/p, for some
p; € Supp(M) and j = 1,...,s. For every i and every j, we obtain exact sequences
0 — M; -y — M; — R/p; — 0 and H} (M;_\) — H ,(M;) — H. , (R/p;).
Since dim(R/(J + p;)) < dim(R/(J + Ann(M))) = dim(M/JM) < r for every J € 1),
we have that H!, , (R/p;) = 0 for i > 7 and every j, making the first arrow surjective.
Hence we will have that H/ ,(M;) = 0 for every j. O

Corollary 1.41. Let (R,m) be a local ring, M be an R-module, ¢ be any family and
¢ be a non-trivial family. Then H! (M) =0 for every i > supdim(R/.J).
Jey

Proof. M is the inductive limit of all its finitely generated submodules {My},.,. Since
dim(My/JM,) < dim(R/J) for every A € A and every J € v, we have that

HY (M) = limg HY ,(My) = 0
AEA

when i > supdim(R/J). O
Jey

The upper bound considered in the Lemma 1.38 is slightly improved.

Proposition 1.42. Let M be a finitely generated R-module and ¢ and ¢ be families
of R. Then H, ,(M) =0 for every i > 1+ supdim(M/JM).
Jey
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Proof. We prove the statement by induction over r = sup dim(M/JM). Let us suppose
Jey

that r = —1. Then, for every J € 9, there exists a; € J such that (1+a;)M = 0. Thus
Jx = Rz for every J € ¢ and every x € M. From this, we have that J + Ann(z) D I
for every I € ¢ , every J € ¢ and every x € M, whence M is (¢, )-torsion and
H!, ,(M) = 0 for i > 0 by Proposition 1.28, (i). When r > 0, the arguments are the

same as those used in the proof of Theorem 1.40. O

Next we state a generalisation of the classic Grothendieck’s Non-Vanishing The-
orem. We recall the notation W(m) for the good family of all the ideals containing a

power of m.

Theorem 1.43. Let M be a finitely generated module over (R,m) and ¢ and ) be
non-trivial families of R such that ¢ 4+ 1 C W(m). Then

sup {4 : H,, ,(M) # 0} = sup dim(M/JM).
Jey

Proof. Tt suffices to show that H] (M) # 0 for r = sup dim(M/JM) by Theorem 1.40.
’ Jeip

Since [ + J € W(m) for every I € ¢ and every J € v, it is straightforward to see that
W({e),v) = W(m,v) and H (=) = H}, (=) for every i. Hence we may suppose
¢ = W(m). The exact sequence 0 — JM — M — M/JM — 0 induces the
exact sequence Hy (M) — Hy , (M/JM) — H;*J(JM) for each J € y. If J' € 9,
then dim(JM/J'JM) < dim(M/J'JM) = max {dim(M/JM),dim(M/J' M)} < r.
Thus H;J’J(JM) = 0 by Theorem 1.40. Since M/JM is J-torsion, we have by
Proposition 1.31 that HZ, (M/JM) = Hj (M/JM). Now if dim(M/JM) = r,
then H (M/JM) # 0 by Grothendieck’s Non-Vanishing Theorem (see [BS98, The-
orem 6.1.4]). We conclude that Hy (M) # 0, whence H, ,(M) # 0. O

Corollary 1.44. Let M be a finitely generated module over (R, m) and I, ..., I be ide-
als of R with Iy and Iy proper and 11+ is m-primary for every prime p € W([% 1),

Then sup {z D Hy g (M) # 0} = sup  dim(M/JM) for every even 2 < j <'s

.....

and for j = s.
Now we present a generalisation of the classic Lichtenbaum-Hartshorne Vanishing
Theorem.

Theorem 1.45. Let (R,m) be a local ring of dimension d and ¢ and 1) be non-trivial

families of R. The following conditions are equivalent:
(i) Hzﬂp(R) =0.

(ii) For each prime ideal p of R such that dim(R/p) = d and JR C p for some J € 1),
we have that diim(R/(IR +p)) > 0 for some I € .
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Proof. Let us suppose that Hg’w(R) = 0 and that there exists a prime ideal p of R
such that dim(R/p) = d, JR C p for some J € ¢ and dim(R/(IR + p)) < 0 for
every I € ¢. The first assumption gives Hg,w(fx’/p) = 0 because H_ ,(R) = 0 for
i > d—1 (see Corollary 1.41 and Lemma 1.39). On the other hand, the R-module
R/p is J-torsion, whence Hg’w(]:?/p) Hd(R/p) = R/p)(R/p) by Theorem 1.31
and Theorem 1.14. Since (IR + p)/p is an mR/p—prlmary ideal of the d-dimensional
local ring (R/p,mR/p) for every proper ideal I € ¢, it follows from Theorem 1.43 that

(R/p) mR/p(R/p) # 0 and this is a contradiction.

For the converse, let us suppose that Hfal,w( ) # 0 and the second condition.
From Lemma 1.39 and Corollary 1.41 we have that ng(}?) = H¢ ,(R) ®r R, hence
Hiw(}?) -+ 0 because R is a faithfully flat R-module. Consider a filtration

0=KyCK C---CK,1CK,=R

of ideals of R such that K;/K,_; = R/p; for some prime ideals p, of R. Thus we have
exact sequences HY ,(K; 1) — HE (K;) — Hg),w(f%/pj). If every p; is such that
Hz,w(}?/pj) =0, then Hiw(}?) = 0; hence there must be a prime ideal p of R such that
¢ ,(R/p) # 0. Now we shall consider two possibilities:

(i) There exists J € v such that JR C p as ﬁi/p is a J-torsion R-module, we

have that Hqub(f%/p) = Hg(l%/p) ~H R/p (R/p) by Theorem 1.31 and Theo-
rem 1.14. If dim(R/p) < d, then HZ(R/p)(R/p) = 0, which is a contradiction.
So dim(R/p) = d and dim(R/(IR +p)) > 0 for some I € ¢ by our assumption.
Consider the family ¢ = {I*.J; - - - J; for some J; € ¢, s > 1}. Observe that ¢’ is
stable under multiplication, whence ¢'(R/p) is also stable under multiplication.
By Lichtenbaum-Hartshorne Vanishing Theorem (see [BS98, Theorem 8.2.1]), we
get that Hd (R/p) 0 for every a € ¢/ because dim(R/(aR + p)) > 0. Now
(@'Y = (), Whence H! (=) = H, 5(—) for every family § and every i. Thus we
get from Theorem 1.14 and Remark 1.12 that

HY oy (RI9) = HE, 0 (1) = @H n (1/0) =

acp’

and this is a contradiction.

(ii) For all J € 1, we have that JR Z p: Setting R = R/(p N R), we have that R/p
is an R-module and that Hiw(}?i/p) =H @R ¢R(R/p) by Theorem 1.14. If J € 1,
we have that J ¢ p N R and thus dim(R/JR) < dim R < d. We conclude from
Corollary 1.41 that H«ZR ¢R(R/p) = 0 and this is another contradiction.

]

Corollary 1.46. Let o be a non-trivial family of the d-dimensional local ring (R, m).

The following statements are equivalent:
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(i) Hi(R) = 0.
(ii) For each prime ideal p of R such that dim(R/p) = dim R, there ezists I € a such
that dim(R/(IR + p)) > 0.
(iii) HY(R) = 0 for some proper I € a.

Proof. Since (a) = W({a),{(0)}) for any family o by Lemma 1.5, (vi), we apply the
previous theorem to the families ¢ = o and ¢ = {(0)} in order to obtain the equiv-
alence (i)<(ii). The equivalence (ii)<>(iii) is just the classic Lichtenbaum-Hartshorne

Vanishing Theorem. [

Corollary 1.47. Let (R, m) be a local Ting of dimension d and « and 3 be non-trivial
Jamilies of R such that o C (B). Then HI(R) = 0 implies Hj(R) = 0.

Corollary 1.48. Let (R, m) be a local ring of dimension d and Iy, ..., I be ideals of

R with Iy and I5 proper. The following conditions are equivalent:

77777

(ii) For each prime ideal p of R such that dim(R/p) = dim R and JR C p for some
J € W(]Q,...,[j), being 2 < 7 < s an even integer or j = s, we have that
dim(R/(ILR +p)) > 0.

Corollary 1.49. Let (R, m) be a local ring of dimension d and Iy, ..., I be ideals of
R with Iy and Is proper. Consider the following statements:

ety

~~~~~~

Then (i)=> (ii)= (iii).

1.3 Local duality

In this section we prove some results related to local duality for the local coho-

mology modules with respect to a pair of families.

Lemma 1.50. Let (R, m) be a Cohen-Macaulay local ring of dimension d and v be a
family of R. If there exists J € 1 contained in a perfect ideal I of grade t (this is,
gr(I, R) = proj.dim(R/I) =t), then htp > d — t for every prime ideal p € W (m, ).
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Proof. Since W (m, 1)) = W(m, (), we may assume that .J is a perfect ideal of grade
t. Observe also that W(m, 1) = ﬂ W(m,K) € W(m,J) by Lemma 1.9. Thus

Ke(w)
htp > d —t for every prime ideal p € W (m, ) by [TYY09, Lemma 5.2]. O

For any module M over a local ring (R, m), the Matlis dual of M, denoted by
MY, is the module Hompg (M, Er (R/m)). Tt can be seen that (—)" : R-mod — R-mod
is a contravariant exact R-linear functor.

We recall the definition of canonical module of a ring which is an important object

in classical local duality theory.

Definition 1.51. Let (R,m) be a local ring of dimension n. A finitely generated

R-module Kp is said to be a canonical module of R when Kg = H'(R)".

The following result gives a characterisation of the associated prime ideals of the

top local cohomology module of the canonical module.

Proposition 1.52. Let (R, m) be a Cohen-Macaulay local ring of dimension d with
canonical module Kr and ¢ be a family of R. Let us suppose that there exists J € 1

contained in a perfect ideal of grade t. Then
Ass(Hﬁ;Z(KR)) = {p € W(m,))NSpecR:htp =d — t} .

Proof. As W(m,v) = W(m, (¥)) by Lemma 1.5, (viii), we may suppose that .J is
a perfect ideal of grade t. Let (E*(Kg),0*) be a minimal injective resolution of

Kpg. Then for each i, E'(Kg) = @ E(R/p) by [BH98, Theorem 3.3.10], whence

pESpec R
ht p=1

Doy (EY(KR)) = B  E(R/p). Since htp > d —t for every p € W(m,v) by

pEW (m,¥)NSpec R
ht p=1

Lemma 1.50, we have that Hij(KR) = ker 0 'NT o (E4"Y(KR)) and there is an exact
sequence 0 — Hﬁ;j(KR) — @ E(R/p) — @ E(R/p). This

pEW (m,p)NSpec R pEW (m,p)NSpec R
ht p=d—t ht p=d—t+1
implies that Ass(HﬁTJ(KR)) C{peW(m,)NSpecR:htp=d— t}.

Conversely, if p € W (m, ) is a prime ideal such that htp = d — ¢, then we have
that (Hy [(Kg))y = Eg,(k(p)) 2 £(p). Hence p € Min(H{ /(Kr)) C Ass(Hy [(Kg))

and the statement is proved. O

(3
)

Now we prove the main result of this section.

Theorem 1.53. Let (R,m) be a Cohen-Macaulay complete local ring of dimension d

and v be a family of R. Consider t = d — supdim(R/J) and assume that there exists
Jey
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a perfect ideal J € b such that dim(R/J) = d — t. Then for any finitely generated
R-module M, there is a functorial isomorphism Hﬁj(i\/[)v >~ Extly (M, K) where
K =HL(R).

Proof. Setting T7(—) = Hﬁ;ﬁj(—)v, we shall show the isomorphism of functors
T9(—) = Exth(—, K).

There exists a perfect ideal J € ¢ such that dim(R/J) = d —t. We have an iso-
morphism Hﬁ‘J(M) = H\i;j(R) ®pr M for any R-module M by Corollary 1.41 and
Lemma 1.39, hence T°(M) = (M ®p HS /(R))Y = Hom(M,K). Every time we
have an exact sequence 0 — L — M — N — 0, we obtain the long exact
sequences --- — Hﬁ;j’l(N) — Hﬁ;;(L) — Hﬁj(M) — Hi;j(]\/) — 0 and
0 — T%N) — T°(M) — T°(L) — T'(N) —» ---. For any free R-module R"
we have that H‘ij_j(R”)V = (Hﬁj_j(R)V)” for j > 0 by Theorem 1.24 and [Rot09,
Theorem 2.31|. Thus Hﬁ;;_j(R")V = 0 because depthy (R,) = htp > d — ¢t for ev-
ery prime ideal p € W(m,1), see Proposition 1.34 and Lemma 1.50. Then there
exists a unique isomorphism 77(—) = Ext/,(—, K) for each j and the isomorphism
Hﬁj(M)v >~ Extly (M, H\‘ij(R)V) holds for every finitely generated R-module M. [

For any ring R, any ideal J of R and any R-module M, we denote the completion
for M with respect to the J-adic topology as M?.

Theorem 1.54. Let (R, m) be a Cohen-Macaulay local ring of dimension d with canon-

ical module Kr and 1 be a family of R. For every J € 1, there is a natural isomorphism
H\i,_wt(R)ﬁ ~ HY(KR)Y, where t = d — 31615 dim(R/J).

Proof. For every J € 1) and every n € N, we have the isomorphisms

Hy f(R)/JTHLZ(R) = H(R) @ R/J"
=~ Hy!(R/J") (by Lemma 1.39)
~ Ht(R/JM) (by Proposition 1.31)
>~ Exth (R/J", Kg)" (by [BS98, Theorem 12.1.20, (ii)]).
Thus
Hy f(R)) = 1'glExt%(1’%/J",KR)V

neN

neN

HY(KRg)Y (by [BS98, Theorem 1.3.8]).

\%
= <hg Ext’y (R/J", KR)> (by [Rot09, Proposition 5.26])

I
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For any pair of R-modules, M and N, and any family « of R, we can define the

generalised local cohomology as

HI(M,N) = limg Hj(M,N) = lig Extl (M/I"M,N) = lig Bxt}y (M/IM,N).

S IZ%E) Ie(a)

We generalise a result of [TYY09).

Proposition 1.55. Let (R,m) be a Gorenstein local ring of dimension d and ¢ be a
family such that R is J-adically complete for some J € . Then there is an isomor-
phism Ty (M) = H;Z(M, R)Y for every finitely generated R-module M.

Proof. The family ¢/ = {J*I; - -- I, for some I; € 1, s > 1} is cofinal to (¢)) and every
I € ¢/ is such that R is [-adically complete. Thus 'y (M) = H4(M, R) for every
I € ¢/ by [TYY09, Theorem 5.7] and

Fm,d)(M) = 1&1 FmJ(M) (Lemma 19)
Tew)
= im Iy (M)
ey’
= lim H} (M, R)"
ey’ y
= (hﬂ H{(M, R)) (JRot09, Proposition 5.26])
Iy Y
= (hg Hi (M, R>>
Te@W)

Il

HY(M,R)".
0

If the d-dimensional ring R admits Dy as a dualising complex, we denote by Ky,

the canonical module of the r-dimensional R-module M, which is defined as
Ky = H""(RHompg(M, Dg)).

We generalise another result of [TYYO09).

Proposition 1.56. Let (R,m) be a complete local ring, a be a family of R and M be

a finitely generated R-module of dimension r. Then we have an isomorphism

HI(M)Y 2Ty o(Ky).
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Proof.

\
(M) = (ga H;<M>>
Ie(a)

lin 1 (M)
Ie(a)
= 1ﬂlFm,J(KM)

Ie(a)
= Dnol(Ku).

I
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Chapter 2

Top local cohomology modules

2.1 Artinianness and cohomological dimension

As seen in [BS98, Chapter 7|, it is well known that H}'(M) is an Artinian R-
module for any n-dimensional R-module M and any ideal I of R. The purpose of
this section is exactly to show the same property for any family of R. Unless stated
explicitly, all the rings in the following sections are local Noetherian.

Lemma 2.1. Let M be a finitely generated R-module,  and ¢ be families of R and

set | = supdim(M/JM). Then H}, ,(M) = H_ , (R/Ann(M)) @g M for every i > I.
Jey

Proof. Set R = R/Ann(M). Thus H!

¢R,¢R(R) = 0 for i > supdim(R/JR) = I

Jey
by Theorem 1.40 and both sides of the claimed isomorphism are equal to zero, so

it suffices to prove it for i = [. By Lemma 1.39 we have the isomorphism of R-
modules H' (M) = H (R) ®z M and since M = M ®z R, we have that

_ 90vaR SORLwR
HLIE,@DR(R> ®p M = HclpR,wR(R> ®pr M . From Theor_em 1.14 We_get the isomorphisms
of R-modules H. ; -(M) = H] (M) and H] .(R) = H] ,(R). We conclude that

the R-modules H (M) and Hio,w(é) ®pg M are isomorphic. By reducing scalars we

obtain the statement. O

If W (), 1) C W((¢'),1), then we have natural maps HY, (=) = HY, (=) for
all 7. Moreover, the top cohomology functor Hgﬂp(—) displays a dual behaviour with
respect to H&w(—) in the following sense.

Theorem 2.2. Let M be a finitely generated R-module of dimension d and let o and 3
be families of R such that { R} C (a) C (B). Then the natural map HI(M) — HE(M) is

surjective. In particular HY(M) is Artinian, more precisely, it is a quotient of H(M).



Proof. The proof will be done in several steps.

Step 1: Suppose that R is complete Gorenstein of dimension d and M = R.
Then every element of a minimal injective resolution (E?,9") of R is of the form
E' = @ E(R/p), where E(R/p) is the injective hull of the R-module R/p. Since

ht p=1i
[,(E?) = E¢ when « is a non-trivial family and T, (E4') C T'5(E97!), we have that

im T, (0%71) Cim (0% 1) and the homomorphism
HY(R) = E*/imT,(0*") — E*/im[3(0"") = H(R)

is surjective.

Step 2: Suppose now that R is complete of dimension d and M = R. By Cohen
Structure Theorem there exists a complete regular (hence Gorenstein) local ring (S, n)
of dimension d and a surjective ring homomorphism ¢ : S — R. Then Theorem 1.14
says that HY(R) = H{ ., (R), where ¢~'(v) is the family {¢~'(I) : I € 7} of ideals
of S. Observe that Hg,l(a)(S) — Hg,l(ﬁ)(S) is surjective by the previous step. Thus
H)(S) ®s S/K — H{ . 5(S) ®s S/K is also surjective, where K = ker¢. Now
Hg,l(a)(R) = Hg,l(a)(5)®gS/K and H(‘Z (R) = Hg,l (S)®sS/K by Lemma 1.39.
Hence HZ(R) — H§(R) is surjective.

Step 3: Suppose that R is any ring of dimension d and M = R. Lemma 1.18
gives that HiR(R) >~ HYR) ®x R, where R is the m-adic completion of R, and the
surjectivity of HI(R) — Hg(R) comes from the surjectivity of the natural map of
R-modules H;lR(R) — HER(R) by step 2.

Step 4: Suppose that dim M = dim R = d. Then, by step 3, the natural map
HI(R) — H§(R) is surjective. It follows that HI(R) ® M — HE(R) ® M is also
surjective. Thus HJ(M) — H§(M) is surjective by Lemma 1.14.

Step 5: In general, we have that HY(M) = H? (M) for R = R/ Ann(M) and
every family « of ideals of R by Theorem 1.14. Hence we obtain that the natural map
HY(M) — Hg(M) is also surjective by step 4.

Finally, since « is a non-trivial family, we have that W(m) C («). Then the
natural map Hd(M) — H(M) is surjective and we conclude that H¢(M) is Artinian
because HZ(M) is Artinian by [BS98, Theorem 7.1.3|. O

B )

We shall observe that the Artinianness of the top local cohomology HY(M) was
proved in [DANTO02, Theorem 2.6].

Corollary 2.3. Let M be a finitely generated R-module of dimension d and let ¢, ¢,
Y and ¢ be families of R such that {R} C W ({¢),v) C W((¢'),%'). Then the natural
map HS (M) — HY (M) is surjective. In particular HS, (M) is Artinian, more
precisely, it is a quotient of H(M).
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The inclusion W ((p), 1) € W ({(¢'),1') holds whenever ¢ C (¢') and (1)) D ¥’

Thus we can state the following.

Corollary 2.4. Let M be a finitely generated R-module of dimension d, s < t be
positive integers and {1y, ..., I} and {J1,..., i} be two sets of ideals such that I and

J1 are proper.

o If s is odd, \/I, O \/J; for every odd 1 < i < s and \/Tj C \/J; for every even
(M) which
is surjective and Hf | (M) is a quotient of HE(M), hence Artinian.

o If s is even, \/J; C \/Tj for every even 2 < j < s and \/J; 2 \/I; for every odd
(M) which

-----

Proof. The first situation gives that W (m) C W(Iy,...,1,) C W(Ji,...,J;), while the
second one gives that W (m) C W(Jy,...,.J,)) CW(I,...,1,). O

For any R-module M, set [ = supdim(M/JM). The R-module H. (M) is not
Jep
always Artinian (see for example Proposition 1.52), but the following property holds.

Theorem 2.5. Let M be a finitely generated R-module, ¢ and i be families of R and

consider | = sup dim(M/JM). Then H. ,(M)/JH. (M) is Artinian for every J € ¢,
Jey

Proof. We shall prove the statement by induction on d = dim M. If d =0, then [ <0
and HL (M) is Artinian, whence H., ,(M)/JH. (M) is Artinian for every J € 1.

Suppose now that d > 0. Let us suppose first that M is -torsion-free, this is,
I'y(M) = 0. Then, for every J € 1 there exists an M-regular element x € J by
Corollary 1.27, (i). The exact sequence

Hax

0 M M M/xzM —— 0

leads to the exact sequence

Hax
wa (M) pr,w(M) - ij (M/xM) 0

by Theorem 1.40. Set N = M/xM and r = sup dim(N/KN). Then r < [ and
Key

H! ,(N)/KH],(N) is Artinian for every i > r and every K € ¢ by inductive hypoth-

esis. We also obtain the exact sequence

Hy (M) ., H (M) H, ,(N)
JHL (M) JHL (M) JHL ,(N)

and since € J we conclude that H. ,(M)/JH. (M) = H. (N)/JH, ,(N).
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Now if M is not 1-torsion-free, consider the following short exact sequence of
R-modules 0 — I'y,(M) — M — M /I';,(M) — 0. Consider also the integer num-
bers r = sup dim((M /T, (M))/K(M/T(M))) and k = sup dim(I",(M)/ KTy (M)).

Key Key
We observe that max{r,k} < [, thus we obtain the exact sequence of R-modules
. ,(Ty(M)) — H. (M) — HL ,(M/Ty(M)) — 0 which induces the exact se-

quence
H, (U (M)) H, (M) H, ,(M/Ty(M))

— —

JH, ,(Ty(M))  JH (M) JH ,(M/Ty(M))

for every J € . We also observe that dimI',(M) < [ by Proposition 1.21, (iv),
whence H. ,(T'y(M)) is Artinian by Theorem 2.2. Furthermore, the right-hand side of

equation (2.1) is Artinian by the previous case. Then the statement follows. O

—0 (2.1)

Corollary 2.6. Let M be a finitely generated R-module and I, ..., I, be ideals of

----------

| = sup {dim(M/JM) L JeW(, ... 11)}.

When s = 2, the above corollary was stated in [CW09, Theorem 2.3].

Theorem 2.7. Let M be a finitely generated R-module and o be a non-trivial family
of R. Then

inf {i : H.(M) is not Artinian} = inf {deptth(Mp) :p € (@) NSpec R — {m}}.

Proof. We set n = inf {deptth(Mp) :p € (@) NSpec R — {m}} and a minimal in-
jective resolution (E*(M),d*) of M. Thus To(Ei(M)) = E(R/m)* ™M for every
i < n by Corollary 1.26, (iv). Since E (R/m) is Artinian and p‘(m, M) is finite, we
have that T',(E*(M)) is Artinian too for ¢ < n and so is H’:(M). This implies that
inf {i : H' (M) is not Artinian} > n.

For the other inequality we observe that there exists a prime ideal ¢ # m in (@)
such that p"(q, M) > 0. Thus q € Assg(T'o(E™(M))) by Corollary 1.26, (iv). Then
Lo (E™(M)) is not Artinian. Now T',(E™(M)) is an essential extension of ker ', (d"),
leading to ker ', (d™) not being Artinian. On the other hand, im ', (d"~') is Artinian.
Thus the exact sequence 0 — im [ (d" ™) — ker [y (d") — H"(M) — 0 implies
that H"(M) is not Artinian. O

Corollary 2.8. Let M be a finitely generated R-module and ¢ and i be families of R.
Then

inf {i : wa)(M) is not Artinian} = inf {deptth(Mp) :p € W((p),) NSpec R — {m}} .

Corollary 2.9. Let M be a finitely generated R-module and o and [ be families of R
such that o C (). Then

inf {i : Hy(M) is not Artinian} < inf {i: H.(M) is not Artinian} .
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In particular,
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for every odd integer 1 <1 < s.

Corollary 2.10. Let M be a finitely generated R-module and o be a non-trivial family
of R. Then

inf {4 : H!,(M) is not Artinian} = inf {i : H\ (M) 2 Hy, (M)} .

Proof. Set n = inf {i : H' (M) is not Artinian}. Then T, (E*(M)) = T'w(E*(M)) for
every i < n by Theorem 2.7 and Corollary 1.26, (iv). Conversely, H(M) is not
Artinian while H(M) is and we conclude that H(M) 2 H(M). O

The next result generalises [CW09, Theorem 2.4 and Proposition 2.5].

Corollary 2.11. Let M be a finitely generated R-module and I, ..., I, be ideals of R.
Then

777777

(M) is not Artmian} = inf {deptth(Mp) peW(, ..., ) — {m}}
ey (M) 2 Hy (M)}

.....

where W (I, ..., 1)) = W(I,,...,I) N Spec R.

In the same fashion of local cohomology theory and its current extensions, we
define, for each R-module M and every family o of R, the cohomological dimension of
M with respect to a as cd(a, M) = sup{r: H. (M) # 0}.

When (a) = W((p), 1)) for some families, ¢ and ¢, of R, we denote cd(a, M) as
cd(p, v, M) and we call it the cohomological dimension of M with respect to the pair
(¢,1). Also, when W ({¢),v)) = W(I,, ..., I) for some ideals I,..., I, of R, we shall
write cd(p, ¥, M) as cd(Is,...,I1, M) and call it the cohomological dimension of M
with respect to the s-tuple (I, ..., Iy).

Let M be a finitely generated R-module. If (1)) D ¢/, Theorem 1.43 states that
cd(m, v, M) > cd(m,’', M). Thus cd(m, I,...,Is, M) < cd(m, Js,...,J;, M) every
time s is even, s < t, \/T] ) \/jj for every even integer 2 < j < s and /I; C /J; for
every odd integer 3 < i < s — 1. Similarly, ed(m, I, ..., I;, M) > cd(m, Jy, ..., J;, M)
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every time s is odd, s < t, \/J; 2 \/E for every even integer 2 < 7 < s — 1 and
V/J; € V/T; for every odd integer 3 < i < s (compare with Corollary 2.4).
We now establish some properties of this invariant by seeing first that the coho-

mological dimension of a finitely generated module only depends on its support.

Theorem 2.12. Let a be a family of R, M and N be finitely generated R-modules with
Supp(N) C Supp(M) and r be a non-negative integer number such that H, (R/p) =0
for every prime ideal p € Supp(M). Then

(i) Hi(N) = 0.
(11) cd (o, R/p) <1 for all p € Supp(M).

Proof. We now prove (i). If H: (R/p) = 0 for every p € Supp(M), then, for any
finitely generated R-module N such that Supp(N) C Supp(M) and any filtration
0=NyC Ny C---C Ny € Ny = N of submodules of N such that the isomorphism
N;/N;_1 = R/p; holds for some p; € Supp(N) and every j =1,...,¢, we obtain, from
the exact sequence H'(N;_1) — H.(N;) — H] (R/p,), that H.(N,) = 0 for every
j=1,... .t

In order to prove (ii), it suffices to show that H'™ (R/p) = 0 for every prime
ideal p € Supp(M). Otherwise there would exist a prime q € Assg (H.™ (R/pg)) for
some po € Supp(M). If q # po, we can choose = € q — po in order to obtain the exact

sequence

Hax

0

R/po

This leads to the exact sequence

R/po — R/(po + Rx)

Mz

H' (R/(po + Rx)) HM (R /po) H (R /po)

and, since Supp (R/(po + Rx)) C Supp (R/po) € Supp(M), we conclude by (i) that
H” (R/(po + Rz)) = 0 and x is H™' (R/py)-regular, which is absurd. Thus q = p.
Now, Assg (H-™ (R/po)) C (a) and py € (a). Then R/p,, being a po-torsion
module, is also a-torsion. Thus H!, (R/po) = 0 for every 7 > 0, which is a contradiction
and H"™ (R/p) = 0 for every p € Supp(M). O

Proposition 2.13. Let o be a non-trivial family of R and M and N be finitely gen-
erated R-modules such that Ann(M) C Ann(N). Then cd(a, N) < cd(a, M) and
cd(ls, ..., I1, N) <cd(ls,..., 11, M) for every s-tuple of ideals (Iy,...,Is).

Proof. We will show that every time H! (M) = 0 we get that H(N) = 0. Since
dim N < dim M, we will prove the statement only for cd(a, M) < ¢ < dim M. Since
N is an (R/ Ann(M))-module, there exists a filtration of R-modules

O0=NoCNC---CN 1N =N
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such that each N;/N;_; is an homomorphic image of a direct sum of finitely many
copies of M (see [Vas74, Theorem 4.1]). Let us suppose that ¢ = 1. Then there exists
an exact sequence 0 — L — M™ — N —— 0 where L is a finitely generated

R-module. This leads to the long exact sequence
oo — H(L) — H.(M™) — H\(N) — H." (L) — -

Since Ann(M) C Ann(L), we have that H.™'(L) = 0 by descending induction. If
H!(M) = 0, then H.(N) = 0. Now H! (N;/N;_1) = 0 and H'(N, ;) = 0, provided
H{(M) =0 and t > 1. We conclude that H:(N;) =0 and cd(a, N) < cd(a, M). [

Corollary 2.14. If M is a finitely generated R-module, then there exists a prime
ideal p € Min(M) such that cd(a, M) = cd(a, R/p). In particular, for every s-
tuple (I1,...,I5) of ideals of R, there erists a prime ideal p € Min(M) such that
cd(Is,..., 1, M) =cd(I,..., I, R/p).

Proof. Again, Theorem 2.12 gives us the inequality cd(a, M) < cd (o, R/p’) for some
p’ € Supp(M). Since Ann(M) C q for every q € Supp(M), we also have that
cd(a, M) > cd (o, R/q) for every q € Supp(M) by Proposition 2.13. Now there exists
p € Min(M) such that p C p’, whence

cd(a, M) < ced (o, R/p') < ced (o, R/p) < cd(a, M)

and we conclude the statement. O

The following result generalises [CW09, Corollary 3.3].
Corollary 2.15. For any finitely generated R-module M and any family o of R,
cd(o, M) = inf {i € N: H (R/p) =0 for all p € Supp(M)} — 1.

In particular, if I, ..., I are ideals of R, then

77777

Proof. Theorem 2.12 gives that
cd(o, M) <inf {i € N: H.(R/p) = 0 for all p € Supp(M)} — 1.

For the converse, we will show that H’ (R/p) = 0 for every p € Supp(M) and every
integer ¢ > cd(«, M). So consider p € Supp(M) and i > cd(a, M). It follows from
Proposition 2.13 that c¢d(«, R/p) < ed(a, M) < 4, whence H'(R/p) = 0. O

Corollary 2.16. For any family o of R and any exact sequence of finitely generated
R-modules 0 — L — M — N — 0, cd(o, M) = max{cd(e, L), cd(a, N)}.
In particular, cd(Is, ..., I, M) = max {cd(ls,..., I1,L),cd(Is,..., 11, N)} for every s-
tuple (I, ..., 1) of ideals of R.
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Proof. Since Ann(M) C Ann(L) N Ann(V), Proposition 2.13 gives that
max {cd(a, L), cd(a, N)} < cd(a, M).

For the converse, there exists an exact sequence H' (L) — H'(M) — H'(N). Then
H!(L) =0 and H.(N) =0 imply H'(M) = 0. O

Corollary 2.17. Suppose that M and N are finitely generated R-modules such that
Supp(N) C Supp(M) and consider a non-trivial family o of R. Then

cd(a, N) < cd(a, M)
and cd(Is, ..., I, N) < cd(Is,..., 11, M) for every s-tuple of ideals (I, ..., 1Is).

Proof. Let 0 = Ny C Ny C --- C Ny © Ny = N be a filtration of submodules of N
such that N;/N;_1 = R/p; for some p; € Supp(N) and for every i = 1,...,t. If t =1,
the statement follows directly from Proposition 2.13. If ¢ > 1, the exact sequence
0— Nyy —> Ny — Ny/N;_1 — 0 leads to

cd(ay, Ny) = max {cd(a, Ny—1), cd(e, N¢/Ni—1)} < ed(a, M)

and the statement is proved. O]

2.2 Attached primes of top local cohomology modules

Let M be an R-module. A prime ideal p is said to be an attached prime of M
when p = Ann(M/T) for some submodule T' of M. The concept of attached prime
ideal is closely related to a secondary representation of M (see [MacT73]).

There is a well-known property in usual local cohomology which says that the
attached primes of the n-th cohomology module of the n-dimensional finitely generated
R-module M is a subset of the minimal primes of M (see [DY05, Theorem A]). This

is also valid in a more general context as we can see in the following results.

Theorem 2.18. Let M be a finitely generated R-module of dimension d and « be a
non-trivial family of R. Then

Att(Hy(M)) = {p € Supp(M) : cd (o, R/p) = d} .
Proof. If d =0, then M has finite length and

Att(H2(M)) = Att(M) = {m} = Supp(M).
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Let us suppose that d > 0. By Corollary 2.15, we obtain that H4(M) = 0 if and
only if Hd(R/p) = 0 for every p € Supp(M). Thus Att(HI(M)) = 0 if and only if
{p € Supp(M) : cd (o, R/p) = d} = 0. Hence we may assume that H2(M) # 0.

Assume first that every non-trivial submodule of M has cohomological dimension
with respect to a equal to d. We claim that Ass(M) = {p € Supp(M) : cd(«, R/p) = d}.
Indeed, if p € Ass(M), then R/p is isomorphic to a non-trivial submodule of M,
thus cd(a, R/p) = d. For the converse, observe that if p € Supp(M) is such that
cd(a, R/p) = d, then d < dim(R/p) < dim(M) = d, whence p € Ass(M) and the claim
is proved. Thus we shall prove that Att(H(M)) = Ass(M).

Let r € R be an M-regular element. Then the exact sequence

M

0 M M M/rM —— 0

induces the exact sequence

Hr

He (M) Hy(M) —— Hy (M/rM) .

Now HY(M/rM) = 0 by Lemma 1.38, thus u, : HI(M) — HZI(M) is surjective,
hence r ¢ U p. Therefore, U p C U p and, for every prime

pEAtt(HI(M)) pEAtL(HI(M)) - pEAss(M)
ideal p € Att(HI(M)), there exists q € Ass(M) such that p C gq. We also have

that Ann(M) C Ann(HZ(M)) C p for every p € Att(H4(M)). Then we get the
inequalities d = cd (o, R/q) < dim(R/q) < dim(R/p) < d and p = q, implying the
relation Att(H%(M)) C Ass(M). For the converse consider a prime ideal p € Ass(M).
Then there exists a p-primary submodule T" of M such that Ass (M/T) = {p}. Hence
Corollary 2.14 implies that cd (o, M/T) = cd (e, R/p) = d. Since Ass(L/T) = {p}
for every submodule L of M such that L 2 T, we have that cd (a, L/T) = d. Thus
every non-trivial submodule of M /T has also cohomological dimension with respect to
o equal to d. Hence, we obtain as before that Att (HZ (M/T)) C Ass(M/T) and this
implies that Att (HZ(M/T)) = Ass(M/T). Finally the exact sequence of R-modules
HY(M) — HI(M/T) — 0 leads to Att (HZ (M/T)) C Att(H%(M)). By varying T

over all the primary submodules of M we get that

Ass(M) = |_JAss (M/T) = | Att (HY (M/T)) C Att(HE(M)) € Ass(M).

Suppose now that M has a non-trivial submodule with cohomological dimen-
sion with respect to o lower than d. We claim that there is a unique maximal sub-
module N of M, with respect to inclusion, such that cd(a, N) < d — 1. In fact,
existence of maximal submodules with this property is assured since M is finitely gen-
erated. Now uniqueness follows because if M; and M, are submodules of M such
that max {cd(a, M;),cd(a, M)} < d — 1, then the short exact sequence of R-modules
0 — My, — My + My — (M + Ms)/M; — 0 and Corollary 2.16 give that
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cd(a, My + Ms) = max {cd(a, M), cd (a, My /(My N Ms))} < d—1. Hence the claim is
stated.

From the exact sequence 0 — N — M — M/N — 0 we get by Corol-
lary 2.16 that cd(a, M) = cd (o, M/N). The exact sequence

HE(N) — Hy(M) — Hg (M/N) — HZH(N)

gives the isomorphism H4(M) = H? (M/N). Observe now that the R-module M/N
has no non-trivial submodules with cohomological dimension with respect to o lower

than d. Hence the result follows from the previous case. O

We can get a refinement of the previous result when (a) = W ({(), ).

Theorem 2.19. Let M be a finitely generated R-module of dimension d and ¢ and

be non-trivial families of R. Then

AtH(HZ (M) = {p € Supp(M) 1 (&) : ed (g, B/fp) = d}

Proof. Consider R = R/ Ann(M). By Theorem 1.14 we get that HY, ,(M) = H;R,wR(M)
and H,, (R/p) = H 5 (R/p) for every i and every p € Suppp(M). Thus we may

assume that M is faithful, so that dim R = dim M = d.
Recall that (a) N Spec R = U V(I) for any family « of R (see equation (1.1)).

Iea

Thus the prime ideal p ¢ (¢) if and only if J ¢ p for every J € ¢. In this case
dim(R/(p + J)) < d — 1 for every J € ¢ and H{ , (R/p) = 0 for every prime
ideal p ¢ (¢) by Lemma 1.38. If p € (¢), we conclude from Proposition 1.31
that H) , (R/p) = H,(R/p) for every i. We also have from Corollary 2.15 that
cd(p, 9, M) = inf {i € N: H, , (R/p) =0 forall p € Supp(M)} — 1. In this way we
obtain that HZ ,(M) = 0 if and only if {p € Supp(M) N (¥) : cd (@, R/p) = d} = 0.
Let us consider p € Att(H? ,(M)). Then H , (M/pM) = H (M)/pHE (M) # 0 by
Lemma 1.39. By Theorem 1.40, there exists J € 1 such that

d < dim((M/pM)/J(M/pM)) = dim(R/(p + J)) < d,

whence J C p and dim(R/p) = d. From this we have that M/pM is J-torsion and
HZ, (M/pM) = HZ (M/pM) by Proposition 1.31. Since M is faithful, we also conclude

that /Ann(M/pM) = p and

d < cd(p Rfp)
< cd (e, M/pM) (by Proposition 2.13)
< dim(M/pM) (by Lemma 1.38)
= dim(R/p)
= d.
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In sum, we have that p € Supp(M) N (¢) and cd(p, R/p) = d. Conversely let
us consider a prime ideal p € Supp(M) N () such that cd(p, R/p) = d. Then
Proposition 1.31 states that H , (M/pM) = H (M/pM) for every i. Observe that
Attr (HZ (M/pM)) = {q € Suppg (M/pM) : cd (¢, R/q) = d} by Theorem 2.18. Then
p € Attg (HE (M/pM)) = Attg (HE,, (M/pM)). Since the isomorphism of R-modules
H?, (M/pM) = H} ,(M)/pH¢ (M) holds by Lemma 1.39, we get that

Attp (ng (M/pM)) C Att(Hng(M)).
Therefore, p € Att(HZ,,(M)). O

Corollary 2.20. Let M be a d-dimensional finitely generated R-module and ¢ and ¢
be non-trivial families of R such that ¢ + 1 C W(m) Then

Att(Hg ,(M)) = {p € Supp(M) N () : dim(R/p) = d} .
Proof. Tt was proved in Theorem 1.43 that cd(p,®, N) = supdim(N/JN) for any
Jey

finitely generated R-module N. Now the prime ideal p € () if and only if there exists
J € 1 such that J C p by equation (1.1). Thus

sup dim((R/p)/J(R/p)) = sup dim(R/(J + p)) = dim(R/p).
Jey Jeyp
By the previous theorem we get the statement. O]

The next result generalises [Chull, Theorem 2.2|.

Corollary 2.21. Let M be a d-dimensional finitely generated R-module and I, . .., I
be ideals of R. Suppose that Iy + p is m-primary for every prime p € W(IQ, oo 1),
Then Att(H{, (M) = {p € Supp(M)NW (I, ..., 1I;) : dim(R/p) = d} for every
even integer 2 < j < s and for j = s.

Theorem 2.22. Let M be a finitely generated R-module of dimension d and ¢ and
be families of R. Suppose that HZ (M) # 0. Then there exists a quotient M/N such

that Supp (M/N) C (), dim(M/N) = d and H? ,(M) = H¢ (M/N).

Proof. If p € Supp(M) is such that cd (¢, R/p) = d, then dim(R/p) = d. Then
Att(HE,,(M)) € Min(M) by Theorem 2.19. There exists a submodule N of M such
that Ass(N) = Ass(M) — Att(HZ,,(M)) and Ass (M/N) = Att(HZ ,(M)) by [Bous89,
Proposition 4, p. 263, see also Lemma A.3. Consider now the short exact sequence
H? ,(N) — H (M) — HZ , (M/N) — 0. If H! ,(N) # 0, then there exists
p € Supp(N) N () such that cd(p, R/p) = d. Therefore p € Att(HZ ,(M)) by
Theorem 2.19 and p € Ass(N) N Ass (M/N) = (. We conclude that HY ,(N) = 0 and
hence HY (M) = H,, (M/N). Notice that Ass (M/N) C (¢) by Theorem 2.19. Then
M/N is y-torsion and Supp(M/N) C (¢p), whence M /N is J-torsion for some J € (1))
by Proposition 1.22. Thus we get that H¢ , (M/N) = HE(M/N) by Proposition 1.31.
Since H¢ (M) # 0, we conclude that HE (M/N) # 0, whence dim(M/N) = d. O
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The next result generalises [Chull, Theorem 2.3].

Corollary 2.23. Let M be a finitely generated R-module of dimension d and I, ..., I
be ideals of R. Suppose that H{ (M) # 0. Then there exists an (I,_1,. .., I))-torsion

.....

.....

Proposition 2.24. Let M be a d-dimensional finitely generated R-module and ¢ and
Y be families of R. Then there exists J € () such that

Att(HY (M) = Attg (HL (M/JM)) .

Proof. We have that Att(HZ ,(M)) = {p € Supp(M) N () : cd (¢, R/p) = d} by The-
orem 2.19 and Attg (HZ (M/KM)) = {p € Supp(M) NV (K) : cd (¢, R/p) = d} for
every ideal K such that dim(M/KM) = d by Theorem 2.18. If dim(M/KM) < d,
then Attg (HE(M/KM)) = 0. From equation (1.1), we get that

Att(HE (M) = | Attg (HE (M/K M) (2.2)

Key
and this union actually runs on the ideals K € ¢ such that dim(M/KM) = d.
Since Att(H{ ,(M)) is a finite subset {pi,...,ps} of (), there exists a subfamily
{J1,...,Js} of ¢ such that p; € V(J;) for each i by equation (1.1). Consider now
the ideal J = J;---J; € (¢). Then dim(M/JM) = d by equation (2.2). By

S

Theorem 2.18, we have that Attp (HZ(M/JM)) = | JAtty (HE(M/J;M)). Hence
=1

Attr (HE(M/JM)) C Att(HE,,(M)) by equation (2.2). Conversely, for every i we
have that p; € Attp (HE(M/J;M)). Then

and the proof is complete. O

We state now another generalisation of Lichtenbaum-Hartshorne Vanishing The-

orem. For this goal, we shall first translate a result of [DANT02] to the present terms.

Proposition 2.25. Let M be a finitely generated R-module of dimension d and let o

be a non-triwial family of R. The following statements are equivalent:

(i) He(M) = 0.

(ii) For each prime ideal p € R such that dim(R/p) = d and p € Suppy(M), there
exists I € o such that dim(R/(IR +p)) > 0.
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Proof. If (ii) is satisfied, then condition (iii) of [DANTO02, Theorem 2.8| is satisfied for
® = (). Hence H (M) = H%(M) = 0.

Now, if HY(M) = 0, then, for each prime ideal p € R such that dim(R/p) = d
and p € Supps(M), there exists I € (a) such that dim(R/(IR + p)) > 0 again by
[IDANTO02, Theorem 2.8|. Thus there exist [y,...,Is € a such that I D [;---I;. Tt
follows that 0 < dim(R/(IR +p)) < max {dimu%/(flziz 4 p)),..., dim(R/(I,R + p))}

and condition (ii) of this statement is true. O

Theorem 2.26. Let M be a finitely generated R-module of dimension d and let p and

Y be non-trivial families of R. The following statements are equivalent:
(i) Hng(M) =0.

(ii) For each prime ideal p € R such that dim(R/p) = d and p € Supp (M /JM) for
some J € v, we have that dim(R/(IR +p)) > 0 for some I € .

Proof. If H. (M) =0, then HZ(M/JM) = 0 for every J € ¢ by equation (2.2). If
p € Spec R is such that dim(R/p) = d and p € Suppz(M/JM) for some J € 1, then
dim(R/(IR + p)) > 0 for some I € ¢ by Proposition 2.25.

For the converse, by Theorem 2.12, it is enough to prove that H? , (R/q) = 0 for
every q € Supp(M). If q ¢ (), then H?,, (R/q) = 0 because dim(R/(q+ J)) < d — 1
for every J € 1. So let us assume that q € Supp(M) N (). If Hz’w (R/q) # 0,
then q € Att(HZ ,(M)) by Theorem 2.19, whence q € Att (HZ (M/JM)) for some
J € 1 by equation (2.2). We also have that dim(R/q) = d, whence dim(R/qR) = d.
Consider p € Supps(R/qR) such that dim(R/p) = d. Since J C q € Supp(M),
we have that p € SuppR(M/JM). By assumption, there exists I € ¢ such that
dim(R/(IR + p)) > 0. By Proposition 1.31 and Proposition 2.25 we conclude that
H{, (R/q) = H(R/q) =0. O

©p

Corollary 2.27. Let M be a finitely generated R-module of dimension d and o be a
non-trivial family of R. Then HY(M) = 0 if and only if H}(M) = 0 for some proper
I €a.
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Chapter 3

The a-depth

3.1 Cofiniteness and local cohomology modules

Here we present a proposal to define a-cofiniteness. We recall the assumption
that R is a Noetherian ring.

Definition 3.1. Let o be a family of R. The R-module N is said to be a-cofinite if
Supp(N) C (a) and Ext',(R/I, N) is finitely generated for every I € a and every i.

For the sake of completeness, here we show some statements from [DM97].

Proposition 3.2. Let M be a finitely generated R-module, N be an arbitrary R-module
and p be a non-negative integer. Suppose that Ext'(M, N) is finitely generated for
every i < p. Then, for any finitely generated R-module L with Ann(M) C Ann(L),
Ext’ (L, N) is finitely generated for every i < p.

Proof. Using induction on p, we may suppose that Ext% (L, N) is finitely generated for
every ¢ < p and every finitely generated R-module L such that Ann(M) C Ann(L).
Since L is an (R/ Ann(M))-module, we have by Gruson’s Theorem that there exists
a finite filtration 0 = Lo € L; € --- C L,y € L, = L of submodules of L such
that L;/L;_; is an homomorphic image of a direct sum of finitely many copies of
M for every j. Let us assume first that n = 1. Then we have an exact sequence
0 — K — M* — L — 0 for some non-negative integer k and some finitely generated

module K. Thus we have an exact sequence
-+ — BExt% (K, N) — Exth(L, N) — Extb(M* N) — -
Now Exth,(M* N) = Ext?(M,N)* is finitely generated and Ann(M) C Ann(K),

whence Ext? '(K, N) is also finitely generated. Hence Ext’ (L, N) is finitely gener-
ated.



Finally, for n > 1, the exact sequence 0 — L,y — L, — L,/L,—1 — 0 induces
the exact sequence - -+ — Ext%(L,,/L,,—1, N) = Ext}(L,, N) = Exth(L,—1,N) — - -
Hence, the finiteness of Ext?(L,,—y, N) and Ext%(L,,/L,,—1, N) implies the finiteness of
Ext? (L, N). O

Corollary 3.3. Let M be a finitely generated R-module, N be an arbitrary R-module
and p be a non-negative integer. Suppose that Ext'(M, N) is finitely generated for every
i < p. Then, for any finitely generated R-module L such that Supp(L) C Supp(M),
Ext’ (L, N) is finitely generated for every i < p.

Proof. As in the first part of the proof of the previous statement, consider a finite
filtration 0 = Lo € L; € --- C L,y € L, = L of submodules of L such that
L;/L;_y is isomorphic to R/p; for some p; € Supp(L) C Supp(M) and every j. Now
Ann(L;/L; 1) 2 Ann(M), whence Ext%(L;/L; 1, N) is finitely generated for every
i < p and every j. Thus Ext’ (L, N) is finitely generated for every i < p. O

Corollary 3.4. Let I be an ideal of R and N be an R-module. The following conditions

are equivalent:
(i) Ext(R/I, N) is finitely generated for every i < p.
(i) Exty(R/J,N) is finitely generated for every i < p and every ideal J D I.
(iii) Ext»(R/p, N) is finitely generated for everyi < p and every primep € Min(R/I).

Proof. It is enough to show that statement (iii) implies statement (i). Consider the set
{p1,...,pn} of minimal primes of R/I. Hence, Supp(R/I) = Supp(R/p1®--- D R/p,)
and Exth(R/I, N) is finitely generated for every i < p by Corollary 3.3. O

We obtain in these lines that the concept of a-cofiniteness only depends on the

good family (o) and not on a particular set of generators.

Lemma 3.5. Let N be an R-module and p be a non-negative integer. Then the collec-
tion of all the ideals of R such that Extly(R/I, N) is finitely generated for every i < p is
a good family. Furthermore, the collection of all the ideals of R such that Ext'y(R/I, N)

18 finitely generated for every i 1s a good family.

Proof. By Corollary 3.4, this collection is closed under inclusion. If I and J are ideals
of R such that Exty(R/I, N) and Ext(R/J, N) are finitely generated for every i < p,
then Exto(R/I ® R/J,N) = Ext%(R/I,N) @ Ext,(R/J, N) is finitely generated for
every ¢ < p. On the other hand,

Supp(R/1.7) = Supp(R/I) USupp(R/.J) = Supp(R/I & R/.J),

45



hence Ext’(R/1.J, N) is finitely generated for every i < p and the family is also closed
under multiplication.

Calling ¢(p) = {I 9 R : Exty(R/I, N) is finitely generated for every i < p} and
¢ ={I < R:Exty(R/I,N) is finitely generated for every i}, we get that ¢ = ﬂ »(p).

peN
Thus the collection of all the ideals of R such that Ext,(R/I, N) is finitely generated

for every i is a good family. ]

Remark 3.6. If M is a finitely generated a-torsion R-module and N is any a-torsion-
free R-module, then Ass(Hompg(M,N)) = Supp(M) N Ass(N) = 0. In general, for
every a-torsion R-module M we have that M = ligM,\ where each M) is a finitely
generated submodule of M. Since M, is a-torsion, we get that Hompg (M), N) = 0 for
every A. Hence Homg(M,N) = @HomR(MA,N) = 0. For every R-module N the
exact sequence 0 — I',(N) - N — N/T',(N) — 0 implies that

Homp(M, N) 2 Homp(M, To(N)) (3.1)

for every a-torsion R-module M.

Consider now an R-module M and a family a of R. Setting the R-modules
E = EM/Ty(M)) and L = E/(M/T',(M)), we have that E is a-torsion-free and
Hompg(R/I,E) = 0 for every I € a. Furthermore, the exact sequence of R-modules
0 — M/T,(M) — E — L — 0 leads to the isomorphisms of R-modules
Exth(R/1, L) = Ext ! (R/I, M/T,(M)) and H: (L) = H*Y(M) for every i because E
is injective.

The number ¢ = inf {i : H.(M) # 0} is called the a-depth of the R-module M and
it is denoted as depth(a, M). When H' (M) = 0 for every i, define depth(a, M) = co.
Observe that depth(a, M) = }nf grade(l, M) when M is finitely generated as seen in

Ea
Corollary 1.35.

Proposition 3.7. Let « be a family of R, M be an R-module and set t = depth(a, M).
Then Homp(R/I, HL(M)) = Exts(R/I, M) for every I € a.

Proof. For every ideal I € a and every R-module N there is an isomorphism of R-
modules Homg(R/I, N) = Hompg(R/I,T'4(N)). Since I'y(E) is injective for every
injective R-module E, it is true by [Rot09, Theorem 10.47] that

Exth,(R/I, HI(N)) = Exti, /(R/I, N). (3.2)

Now HI(M) = 0 for every j < t. Hence Homg(R/I, H,(M)) = Exth(R/I, M) for
every I € a. ]

Recall that a canonical module of the d-dimensional local ring (R, m) is a finitely

generated R-module Kp such that K} = Homp(Kg, Er(R/m)) = HL(R).
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Corollary 3.8. Let R be a Gorenstein local ring of dimension d and o be a family of
R. Consider t = depth(c, R) and I € « such that ht I =t. Then Homg(R/I, H/(R))

is isomorphic to the canonical module Kg)r of R/1.

Proof. Since R = R/I is the image of a Gorenstein local ring and dim R = d — ¢, we

get the isomorphisms

Kgryr = Homp(HY!(R/I), Ex(R/mR))
>~ Hompg(HE'(R/I), Er(R/m))
>~ Exth(R/I,R)

and the statement follows. O

Proposition 3.9. Let R be a Gorenstein local ring of dimension d and « be a family
of R. Consider an ideal I € « such that ht I =t = depth(a, R) and R/I is Cohen-
Macaulay. If HI(R) = 0 for every j & {t,t + 1}, then Extyp(R/I, H.(R)) = 0 and
Exth(R/I, HY(R)) = Ext?(R/1, H! (R)) for every i.

Proof. Observe that Ext',(R/I, R) = 0 for every integer i # t: since grade(I,R) = t,
we have that Exth(R/I,R) = 0 for every i < t. On the other hand, since R/I
is a Cohen-Macaulay ring of dimension d — ¢, Hr‘iﬁ_i(R/]) = 0 for ¢ > 0. Thus
Ext(R/I,R) = 0 for every i > 0 by Matlis’ duality. Now HI(R) = 0 for every
integer j ¢ {t,t+ 1} and we get from [Rot09, Proposition 10.28] the long exact se-
quence --- — Ext? ‘(R/I, H'(R)) — BExth(R/I,R) — Extl, " (R/I, H"(R)) —
Ext’, "™ (R/I, H! (R)) — ---. Then the statement follows. O

Theorem 3.10. Consider a non-negative integer t, a family o of R and an ideal I € .
Let M be an R-module such that Extb(R/I, M) is finitely generated and H.(M) is a-
cofinite for everyi < t. If N C H.(M) is such that Exti(R/I, N) is finitely generated,
then Hompg(R/I, HL,(M)/N) is finitely generated.

Proof. Observe that the exact sequence 0 — N — H! (M) — H!(M)/N — 0

leads to an exact sequence
Hompg(R/I, H,,(M)) — Homg(R/I, H (M)/N) — Exty(R/I, N). (3.3)

So if we proved the statement for N = 0, it also holds for the general case. Assume
then that N = 0.

Consider first ¢ = 0. Then Hompg(R/I,T4(M)) = Hompg(R/I, M) by equa-
tion (3.1), thus the left member of sequence (3.3) will be finitely generated.

Suppose now that ¢ > 0. Then [, (M) = H2(M) is a-cofinite, whence the R-
module Exti(R/I,T(M)) is finitely generated for every i. The exact sequence of R-
modules 0 — (M) — M — M/T(M) — 0 gives that Ext’(R/I, M/T(M))

47



is also finitely generated. Setting £ = E(M/Ty(M)) and L = E/(M/T,(M)) as
in Remark 3.6, we also observe that Ext%(R/I,L) = Exti{'(R/I,M/T,(M)) and
H!(L) = H(M) for every i. Thus Extly'(R/I, L) is also finitely generated and
H! (L) is a-cofinite for every i < t — 1. Thus Homg(R/I, H; (L)) is finitely generated
which implies that Homg(R/I, H.(M)) is also finitely generated. O

Theorem 3.11. Let a be a family of R, t be a non-negative integer and M be an
R-module such that H' (M) is a-cofinite for every i < t. Then

(i) if Ext'T(R/I, M) is finitely generated for some I € «, then Extyh(R/I, HL(M))
18 finitely generated.

(i) if BExth(R/I, M) is finitely generated for some I € a and every i, then the R-
module Homp(R/I, HLT (M) is finitely generated if and only if the R-module
Exth(R/1, H! (M)) is finitely generated.

Proof. We prove (1) by induction on t. When ¢t = 0, the exact sequence of R-modules
0 — To(M) — M —s MJTo(M) — 0 gives that Extp(R/I,To(M)) is finitely
generated.

Suppose now that ¢ > 0. Since I',(M) = H2(M) is a-cofinite, we have that
Ext’%(R/I,T,(M)) s finitely generated for every I € a and every i. Thus the former ex-
act sequence implies that Extt ' (R/I, M/T,(M)) is finitely generated. Taking E and L
as in Remark 3.6 we obtain that H’ (L) is a-cofinite for every i < t—1 and Ext(R/I, L)
is also finitely generated when Ext%'(R/I, M) is. Hence Extp(R/I, H."*(L)) is finitely
generated and this implies that Ext},(R/I, H! (M)) is also finitely generated.

In order to prove (2), consider an ideal I € a such that Ext’%(R/I, M) is finitely
generated for every i and Homg(R/I, H:™(M)) is finitely generated. Assume first that

t = 0. We have thus an exact sequence
Exty(R/I,M/T(M)) — Ext%(R/I,To(M)) — Exty(R/I, M).
Taking L = E(M/To(M))/(M/T,(M)) as in Remark 3.6 we get the isomorphisms

Extp(R/I,M/To(M)) = Homg(R/I,L)
Hompg(R/I, T4 (L))
~ Homg(R/I, H:(M))

12

and this implies that Ext%(R/I,To(M)) is finitely generated.

When ¢ > 0 we have that T',(M) = H2(M) is a-cofinite, hence the R-module
Ext’%(R/I,T,(M)) is finitely generated for every i. Thus Ext’(R/I, M/T,(M)) is
finitely generated for every i. Hence Ext’%(R/I, L) is also finitely generated for ev-
ery i, as well as Homgp(R/I, H. (L)) = Hompg(R/I, H;"'(M)). Then the R-module
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Ext%(R/I,H! V(L)) is finitely generated, implying that Exth(R/I, H.(M)) is also
finitely generated.

Conversely, suppose that the R-module Exth(R/I, H.(M)) is finitely generated
and assume again that ¢ = 0. Then we have an exact sequence of R-modules

Exty(R/I, M) — Extp(R/I, M/To(M)) — Exth(R/I,To(M))

and this immediately implies that Ext},(R/I, M/T',(M)) is finitely generated. Hence
Homg(R/I,L) =~ Homg(R/I,T (L)) = Homg(R/I, H:(M)) is finitely generated.
When ¢t > 0 we have that Ext%(R/I, H!"'(L)) and Ext%(R/I, L) are finitely
generated for each ¢. Thus Homg(R/I, H! (L)) = Homg(R/I, H;™(M)) is also finitely
generated. O]

Corollary 3.12. Let M be a finitely generated R-module, o be a family of R and
consider t = depth(a, M). Then

(i) the R-module Extp(R/I, HL,(M)) is finitely generated for every I € a.

(ii) for every I € o the R-module Ext%(R/I, H,(M)) is finitely generated if and only
if Homg(R/I, HPY(M)) s finitely generated.

Let us recall some basic facts.

Proposition 3.13. Let o be a family of R and M be a finitely generated R-module
such that depth(a, M) =t = cd(a, M). If (E{(M), d") is a minimal injective resolution
of M, then (To(E™(M)),To(d™) is a minimal injective resolution of HL(M). If
inj. dim(M) = d, then inj. dim(HE(M)) < d —t. In particular, if R is local Gorenstein
of dimension d, then inj.dim(H!(R)) =d —t.

Proof. Since t = inf {i : p'(p, M) # 0 for some p € (a) N Spec R} by Proposition 1.34,
we have for every j < t that T'o(E?(M)) = 0. Thus H! (M) = kerT',,(d") C T (E*(M)).
Now HI(M) = 0 for every j # t. Thus we obtain an exact sequence of R-modules
0 — H. (M) — To(EY(M)) — T, (E™(M)) — --- which happens to be a
minimal injective resolution of HY (M) because I'n(E7(M)) is the injective hull of

[y(kerd’) = kerT'(d’) for every j. The second statement is a direct consequence
of the first one. The third statement follows because E'(R) = @ Er(R/p) for

pESpec R
ht p=1

every i, hence I'(E7(R)) # 0 exactly when t < j < d. O

Proposition 3.14. Let R be a Gorenstein local ring of dimension d and o be a non-
trivial family of R. If HI(R) = 0 for every j # d — 1, then, for every I € «,
Exty(R/I, H7Y(R)) = Tw(R/I)Y and Extt(R/I, H'(R)) = 0 for every i > 1.
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Proof. Observe that HY1(R) # 0. We get that inj. dim(H2*(R)) = 1 from Proposi-
tion 3.13. Thus Ext% (N, Hi"'(R)) = 0 for every R-module N and every i > 1. Since
H4(R) # 0 only when ¢ = d — 1, we obtain the isomorphisms

Extp(R/1, HY'(R)) = Ext}(R/1, R) = Ha(R/T)"
for every I € a by [Rot09, Proposition 10.21] and Matlis’ duality. ]

Lemma 3.15. Let (R,m) be a Gorenstein local ring of dimension d, « be a family
of R such that sIupdim(R/I) =1 and HYR) = 0. If N is a submodule of a finitely
generated free R—i}iodule F, then Hompg(N, HSY(R)) is a-cofinite.

Proof. By Lemma 3.5, it is enough to show that Ext’(R/p, Homgp(N, H"(R))) is
finitely generated for every prime ideal p € (a) and every i. By Proposition 3.14 we
get that Exth(R/I, H"'(R)) = 0 for every I € (a) and every i > 1. If in addi-
tion I is a prime ideal such that dim(R/I) = 1, we get that I',(R/I) = 0, whence
Ext%(R/I, HIY(R)) = 0 for every i > 0 by Proposition 3.14. For such I, the con-
travariant functor Homp(—, H37*(R)) sends projective R-modules to Homg(R/I, —)-
acyclic modules: in fact, if P is a projective R-module and P, is a projective resolution

of R/, then

Extr(R/I, Homg(P, H{™'(R))) = H'(Homg(P,, Homg(P, H{(R))))
H'(Homp(P,Homp(P., H. *(R))))
>~ Hompg(P, H (Homg(P,, H'(R))))
=~ Hompg(P,ExthL(R/I, H(R)))

I

for every i. Noting .#(—) = Homp(R/I,Homp(—, H4"1(R))), we obtain the spec-
tral sequence Exth,(R/I, ExtL(N, H7Y(R))) = (RPT9.Z)(N). We also have exact se-
quences Ext%(F, H"Y(R)) — ExtL(N, H='(R)) — Ext%™'(F/N, H4'(R)). Con-
sider ¢ > 0. Since F is free, we have that Ext%(F, HS"1(R)) = 0. Now Proposi-
tion 3.13 gives that inj. dim(H¢'(R)) = 1, whence Ext% ' (F/N, HS"Y(R)) = 0. So
Ext%L(N, HI7Y(R)) = 0 for every ¢ > 0 and the spectral sequence collapses to produce
isomorphisms Extf,(R/I,Homg(N, HI"Y(R))) = (RP.Z)(N) for every p.

We affirm that (RP.Z)(N) is finitely generated for every p. In fact, consider a
projective resolution F, of N. Then

(RP.F)(N) = HP(Hompg(F,, Homg(R/I, H"(R)))).

By Corollary 3.8 we get that Hompg(R/I, H"'(R)) = Kpg/r, thus the isomorphism
(RPF)(N) = Exth(N, Kgyr) holds. Hence the affirmation is true and the R-module
Ext’(R/I,Homgz(N, H*"'(R))) is finitely generated for every i and every prime ideal
I € (a) such that dim(R/I) = 1.

Finally, Lemma 3.5 guarantees that Ext’(R/m, Homg(N, HI"Y(R))) is finitely
generated for every i. Thus Homg(N, HI"}(R)) is a-cofinite. O
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We regard now some properties of change of rings.

Proposition 3.16. Let f : R — S be a surjective homomorphism of rings, o be a
family of R and M be an S-module. Then M 1is a-cofinite if and only if M is oS-

cofinite.
Proof. First, observe that Suppgp(M) C («) if and only if Suppg(M) C (aS). For
every I € «, |[Rot09, Theorem 10.62] gives a spectral sequence

EY? = Bxt(Torl (S, R/I), M) = Ext}, (R/I, M).

If M is aS-cofinite, then F5° = Ext%(S/IS, M) is finitely generated for every p. Now
Supp(Tor[ (S, R/I)) C Supp(S/1S) for every . Hence EL is finitely generated for ev-
ery p and every ¢. Since the spectral sequence is bounded, we obtain that Extl,(R/I, M)
is finitely generated for every p. Thus M is a-cofinite.

For the converse, observe that EY° = Homg(S/IS, M) = Hompg(R/I, M) is
finitely generated. Suppose now that n > 0 and that ESO is finitely generated for
every p < n. Hence EBF? is finitely generated for every ¢ and every p < m. Since
H" = Ext}(R/I, M) is finitely generated, we get that EY° is finitely generated by
[DM97, Lemma 1]|. Thus Ext§(1/1S, M) is finitely generated for every n and every
I € a, whence M is a.S-cofinite. n
Lemma 3.17. Let o be a family of a local ring (R, m), M be an R-module and denote
by R the m-adic completion of R. Then H! (M) is a-cofinite if and only if HQR(M®R)

S aR-coﬁnite.
Proof. Recall that there exists a natural homomorphism
Hompg(L, M) ® N — Hompg(L, M ® N)

which is an isomorphism if N is flat and L is finitely presented. Then, for every j,
Ext’(R/IR, H (M ® R)) = Ext’.(R/I ® R, H\(M) ® R) = Ext},(R/I, H\(M)) ® R
and we conclude the statement. O

Let (R, m) be a local ring and M be an R-module. Recall that a prime p is called
a coassociated prime ideal of M when p is an associated prime ideal of its Matlis dual
MY = Hompg(M, Er(R/m)). Observe that Coass(M &g N) = Supp(M )N Coass(N) for
every finitely generated R-module M and every R-module N, see [DM97, Remark 1].
In particular Coass(H2(M)) = Supp(M) N Coass(H}(R)) when n > cd(a, R).

Proposition 3.18. Let (R, m) be a complete local ring, o be a non-trivial family of R
and M be a finitely generated R-module of dimension n > 0. Then

Coass(HL(M)) = {p € Supp(M) : dim(R/p) = n and I +p € W (m) for every I € a}
= ﬂ Coass(HT (M)).

Ica—{R}
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Proof. Set R = R/ Ann(M) and E = Eg(R/m). Then Ez(R/mR) = Homg(R, E) and
Homy(H!z(M),Homg(R, E)) 2 Homp(H"z(M) ®p R, E) = Homg(H! (M), E).

Hence we can assume that M is faithful and n = dim(R). In this case, we also have
that Coass(H!(M)) = Coass(H}(R)), so it is enough to suppose M = R. Suppose
that H'(R) # 0 for both sets of the statement are empty when H(R) = 0. Consider
q € Coass(H"(R)). Then H"(R/q) # 0. Hence dim(R/q) = n and I +q € W(m)
for every I € a by Corollary 1.46. The converse also holds: if dim(R/q) = n and
I + q is m-primary for every proper I € «a, then H?(R) ®g R/q = H'(R/q) # 0. If
p € Coass(H!(R/q)), then p D q and p € Coass(H}(R)). But dim(R/p) = n. Hence
q € Coass(H"(R)) when dim(R/q) = n and I + q € W (m) for every I € a. O

When (o) = W({¢), %), we get a refinement of the previous result.

Corollary 3.19. Let (R, m) be a complete local ring, ¢ and ¢ be non-trivial families
of R and M be a finitely generated R-module of dimension n > 0. Then

Coass(H, ,(M)) = {p € Supp(M) N () : dim(R/p) = n and I +p € W(m) for every I € 90} .

Proof. We will show that the right-hand term of the statement is equal to the right-hand
term of Proposition 3.18. Indeed, if p € Supp(M) N (1)) is such that I +p € W (m) for
every I € ¢, consider K € W ({(¢),1). Thus K +p € (¢) and there exist Iy, ..., I, € ¢
such that K +p D I, - -- I,. Since I; +p € W (m) for every i, we get that K +p € W (m)
and thus p € Coass(H ,(M)).

For the converse, consider a prime ideal p € Supp(M) such that I +p € W (m)
for every ideal I € W({p),%). If p & (¥), then J & p for every J € 1. Hence
dim(R/(J +p)) < dim(R/p) < n for every J € ¢ and H} ,(R/p) = 0. Thus we obtain
that V(p) N Coass(H] ,(R)) = Coass(H} ,(R/p)) = 0 and p ¢ Coass(H ,(R)). So
pe (). If I €y, then I +p € W(m) because ¢ C W((g),?) and the statement is
proved. O

Theorem 3.20. Let R be a local ring, o be a family of R and M be a finitely generated
R-module of dimension n. Then H"(M) is a-cofinite. Moreover, Ext(R/I, H"(M))
has finite length for every I € o and every i.

Proof. By Lemma 3.17, we can suppose that R is complete. The R-module H!(M)
is Artinian, whence the R-module H}(M)Y is finitely generated. Consider the finite
set Coass(H"(M)) = {p1,...,ps}- Then Supp(H(M)V) = V(p1 N ---Nps). Now,
for each I € a and every i, the R-module Tor®(R/I, H"(M)") is finitely generated.

Furthermore,

Suppg(Tor; (R/1, Hy(M)Y)) C V(I) N Supp(H;(M)Y)
V)N V(prNe-Nps)
{m}.

N
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Thus Tor!(R/I, H?(M)V) has finite length. Also,
Tor;*(R/1, Hy(M)")" = Extp(R/1, Hi(M))

for every i (see [HK91, Remark 2.1]). Hence Ext(R/I, H?(M)) has finite length for
every I € a and every ¢ by Matlis’ duality. O]

3.2 Associated primes of local cohomology modules

In this section we investigate the associated prime ideals of the first non-zero local
cohomology modules. We improve some results appearing in [TT10].

Observe that Ass(H.(M)) C U Ass(Hi(M)) for every family o of R, every
Ie(a)

R-module M and every i. In fact, if p € Ass(H.(M)), then pR, € Ass(HL(M),)
and Hompg, (Ry/pRy, Hi,(M),) # 0. Hence lim Hompg, (R, /pRy, Hy(M),) # 0 and this

Ie(a)

implies that p € Ass(H4(M)) for some I € ().
Moreover, Ass(H!(M)) C U Ass(HY(M)) when M is finitely generated

Ie(a)
grade(I,M)=t

and ¢t = depth(«, M). This follows because ¢ < grade(I, M) for every I € {(a), hence
HY(M) = 0 when grade(I, M) > t. We have thus a relation between families.

Lemma 3.21. Let M be a finitely generated R-module, o and [ be families of R
such that § C (o) and set t = depth(a, M). Then Ass(HjZ(M)) € Ass(HL(M)). In
particular, Ass(H! (M)) = U Ass(HL(M)).

Ie(a)
grade(I,M)=t

Proof. Observe that depth(S, M) > t. First statement follows for if (E*(M),d") is a

minimal injective resolution of M, then
HE(M) =ker T'3(0") C ker[',(0") = H!,(M).

Second statement follows because grade(I, M) = depth(I, M) > depth(c, M) for every
Ie (o). O

We can improve the second statement of the previous result.

Proposition 3.22. Let M be a finitely generated R-module and o be a family of R.
Consider t = depth(a, M). Then

Ass(HL(M) = | Ass(Hy(M))= | J Ass(H}(M)).

pe(a)NSpec R Iea
grade(p,M)=t grade(I,M)=t
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Proof. In order to prove that Ass(H!(M)) C U Ass(H,(M)) it is enough to

pe(a)nNSpec R
grade(p,M)=t

show that Ass(H!(M)) C U Ass(Hy(M)). Consider a minimal injective res-
pe(a)nNSpec R

olution (E*(M),0*) of M. Then H!(M) = T,(kerd"). If p € Ass(HL(M)), then
p = Ann(z) for some element x € I'y(ker 0°). Thus p € (o) and x € H,(M). Now if
p € Ass(H;(M)) for some prime ideal q € (a), then grade(q, M) = ¢ and there exists an
ideal I € « such that I C q. Hence t < grade(I, M) < grade(q, M) = t. All of this im-
ply that Hy(M) = I'y(ker9") C I';(ker 0') = Hj(M) and p € Ass(Hj(M)). Finally, the
relation U Ass(H}(M)) C Ass(H!(M)) follows readily from Lemma 3.21. [

Ica
grade(I,M)=t

We remark an additional fact that was proved in the previous result.

Corollary 3.23. Let M be a finitely generated R-module and o be a family of R.
Consider t = depth(a, M). Then Ass(H.(M)) C {p € (a) : grade(p, M) = t}.

Corollary 3.24. Let a be a family of R, M be a finitely generated R-module and
consider t = depth(a, M). If I € (a) is such that Homg(R/I, H.(M)) # 0, then
grade(I, M) = t.

Proof. If I € («), then grade(l, M) = depth(/, M) > depth(c, M) = t. On the other
hand, if the prime p € Ass(Homg(R/I, H:(M))), then I C p and

grade(l, M) < grade(p, M) = t.
Hence grade(I, M) = t. O
In general, the first non-zero local cohomology module is not Artinian as we shall

see next.

Corollary 3.25. Let (R,m) be a local ring and M be a Cohen-Macaulay R-module.
Consider a family o of R such that dim(M/IM) > 0 for some ideal I € () and set
t = depth(a, M). Then m ¢ Ass(HL(M)).

Proof. If m € Ass(HL/(M)), then grade(m, M) = ¢t. On the other hand, there exists
I € («) such that grade(I, M) = dim(M) — dim(M/IM) < depth(M) and this is a

contradiction. ]
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Chapter 4

Endomorphism modules

Unless stated otherwise, all the rings in this chapter are Noetherian. Rings are
also assumed local where the Matlis dual functor (=) = Hompg(—, F) is used (here E
always denotes the injective hull of the residual field of the local ring R).

In this chapter, we are concerned with the modules of endomorphisms of local
cohomology modules and we investigate them in two phases. The first section studies
the endomorphisms of first local cohomology modules, along with the special case
when the cohomological depth equals the cohomological dimension. This part basically
extends some ideas from [Mah13|.

The second one takes care of the top local cohomology modules. It exploits the
Lichtenbaum-Hartshorne Vanishing Theorem conditions and the Artinian nature of
said modules to obtain informations on the ring structure of their modules of endo-

morphisms in an analogous way as done in [ES12].

4.1 On a-depth level
Recall that there exists a natural transformation
HOIIlR<N, P) ®RM—>HOHIR(HOIHR<M,N>,P) (41)

which is an isomorphism when M is finitely generated and P is injective (see [Rot09,

Lemma 9.71]). Hence M®r NY = Hompg(M, N)V for every finitely generated R-module



M. Furthermore, if M is a-torsion, then
M @prTo(N)Y =M ®r NV (4.2)

for every R-module N by equation (3.1). Observe that the natural isomorphism (4.1)
suggests that Hompg(7,J) is a flat R-module for every pair of injective R-modules [
and J. In particular, the Matlis dual of any injective R-module is flat.

Notice that the composite functor G = I',(—)Y is right exact contravariant.
Hence, it makes sense to talk about its left derived functors (L;G) by taking injec-
tive resolutions of R-modules. Since I',(—) is left exact and (—)" is contravariant
exact, it is readily seen that (L;G)(M) = H' (M) for every R-module M and every i.
Similar to right derived functors, we say that an R-module M is left G-acyclic exactly
when (L;G)(M) = 0 for every i > 1. In order to put in clearer evidence the dual rela-
tion between Tor and Ext, we use a modification of Grothendieck’s spectral sequences
(Theorem A.1) in order to prove the following statement.

Proposition 4.1. Let o be a family of R, M be a finitely generated R-module and set
¢ = depth(a, M). Suppose that N is an a-torsion R-module. Then

(i) There is an isomorphism ExtG(N, M) = Homg(N, HS(M)) and Extl,(N, M) = 0

for every i < c.

(ii) There is an isomorphism Tor®(N, MV) = N ®x H(M)" and Tor (N, M") = 0

for every i < c.

Proof. The proof of the first part of (i) is similar to that of Proposition 3.7. For
the second part, just observe that if (E*(M)) = (E*(M));>o is a minimal injective
resolution of a finitely generated R-module M, then E*(M) is a-torsion-free for i < c,
see Proposition 1.34 or Proposition 3.13. Thus Homz(N, E{(M)) = 0 for i < ¢ by
equation (3.1).

Now we prove (ii): regarding N as an inductive limit of its finitely generated
submodules, we obtain that N @ g o (M)Y = N ®g M"Y for any R-module M by equa-
tion (4.2). Since the Matlis dual of every injective module is flat, we obtain a spectral
sequence Tor)} (N, HL(M)") = TorX, (N, M") by Theorem A.1. Now HZ(M)" = 0 for

p+q

every ¢ < c. Thus N @ HS(M)Y = Tor (N, MV). On the other hand,
N @p E(M)" 2= N @z To(E{(M))" =0

for every i < ¢ when (E*(M)) is a minimal injective resolution of a finitely generated
R-module M. Thus Tor/'(N, M") = 0 for every i < c because (E*(M)");>¢ is a flat

resolution of MV. O
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In this way, we obtain a dual characterisation for depth in terms of Tor functors.

Corollary 4.2. For every finitely generated module M over a local ring R,
depth(c, M) = inf {i : Tor[(R/I,M") # 0 for some I € a}.

Proof. Set ¢ = depth(a, M) = }nf grade(I, M) by Corollary 1.35. We already know
ca

that Tor(R/I, MY) = 0 for every I € a and every i < c by the previous proposition.
Now Tor®(R/I, MY) = R/I @ H(M)" for every I € a. Lemma A.2, (ii), gives that
R/I @p HS(M)Y = Homp(R/I, HS(M))Y. Thus Tor®(R/I, MY) = Ext%(R/I, M)
for every I € a. In this way, if Tor®(R/I, MY) = 0 for every I € a, we have that

lim Extf (R/, M)Y = 0, but this means that HS(M)"Y = 0, which is an absurd.
Ie(a)
Hence ¢ > inf {2 : Tor®(R/I,MY) # 0 for some I € a}. Conversely, apply the previous

arguments to each family {/} C « in order to obtain
grade(I, M) = inf {i : Tor/(R/I,M") # 0},

as seen in [MZ14]. Hence ¢ < inf {i : Tor/(R/I, M") # 0 for some I € a}. O

We state now an extension of the Local Duality Theorem which serves as a gen-

eralisation to [Mah13|.

Theorem 4.3. Let a be a family of a local ring R. Assume that o is cohomologically
complete intersection (this is, depth(a, R) = n = c¢d(«, R)). Then, for every R-module

M and every integer 1,
(i) Tor,_,(M, H}(R)) = H},(M).
(ii) H.(M)Y = Ext}y (M, HY(R)V).

Proof. Tt is enough to prove (i) because of Lemma A.2. Noting Tj(—) = HZ 7 (—),
we shall show the isomorphism of O-functors Tor®(—, H"(R)) = Ti(—) for i > 0.
Since n = cd(a, R), we have that H}(M) = M ®gr H!(R) for every R-module M
by Lemma 1.39. Thus Tory(—, H"(R)) = Ty(—). Suppose now that M is free and

i > 0. Hence Tor (M, H"(R)) = 0 = T;(M). Thus the desired isomorphism follows by
[Rot09, Theorem 6.36]. O

Lemma 4.4. Let R be a complete local ring of dimension n and o be a family of R.
Consider a finitely generated R-module M and set ¢ = depth(a, M). Then

(1) There is an isomorphism Hompg(HS(M), HS(M)) = Homg(HE(M)Y, HS(M)Y).

(1) The natural homomorphism R — Hompg(HS(M), HS(M)) is an isomorphism if
and only if the natural homomorphism R — Hompg(HS(M)Y, HS(M)Y) is an
isomorphism if and only if the natural homomorphism HS(M) @r HE(M)Y — E

18 an 1somorphism.
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Proof. There is an isomorphism Hompg(HS(M)Y, HE(M)Y) = (HE(M)Y ®@p HE(M))Y
by Lemma A.2 and the module on the right side is isomorphic to Tor®(HS(M), MY)Y
by Proposition 4.1 which, in turn, is isomorphic to Extf(HS(M), MYY) again by
Lemma A.2. Since R is complete, we have that M"Y = M and statement (i) follows.
We now prove the equivalences in (ii): observe that the natural homomorphism
R — Hompg(HS(M), HS(M)) is an isomorphism if and only if the natural homomor-
phism R — Hompg(HS(M)Y, HS(M)Y) is an isomorphism by (i). By Matlis’” duality, a
homomorphism is an isomorphism if and only if its induced homomorphism in the duals
is an isomorphism. Hence the natural homomorphism HS(M) ®g HS(M)Y — E'is an
isomorphism if and only if the natural homomorphism EY — Hompg(HS (M), HS(M))

is an isomorphism. Thus the statement follows by completeness of R. n

Lemma 4.5. Let o be a family of ideals of a complete local ring R. Consider a finitely
generated R-module M such that depth(a, M) = ¢ = cd(a, M). Then, for every integer
i # ¢, the following statements hold:

(i) There exist isomorphisms:
1. Extiy*(HE(M), H5(M)) & Extiy(H(M), M).
2. Tori ((HG(M), H(M)Y) = Torj (HG(M), MY).
(ii) These statements are equivalent:
1. Extly “(HS(M), HS(M)) = 0.
2. BExty “(HL(M)Y, H(M)Y) = 0.
3. Torjt (Hg (M), Hy(M)") = 0.

Proof. Consider a minimal injective resolution (E*(M)) = (E‘(M));>o of M. By
Proposition 3.13, (T (E™¢(M)));>o is a minimal injective resolution of HS(M). Since

HE(M) is a-torsion, we get an isomorphism
Exty, “(Ha(M), H (M) 22 Exty(Hg (M), M)
as follows: for every integer j there are isomorphisms

Exty,(HS(M), Hi(M)) = H(Hompg(HS(M),To(E™(M))))
= HI(Hompg(HE(M), E*°(M)))
= Ext}(HS(M), M).

Qo Qo

So we obtained the first isomorphism of (i). By applying the Matlis dual to the minimal
injective resolutions of M and HS(M) we obtain flat resolutions of M"Y and HS(M)Y.
Now we have natural isomorphisms HE(M) ®@g Ty (EY(M)) = HS(M) ®@p E'(M) for
every i. Hence Tor® (HS(M), HE(M)V) = Tor(HS (M), MVY).
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We now prove the equivalences in (ii): there exists an isomorphism
Extl, “(Hq(M)", Hy(M)") = Tori® (Hg(M)", H(M))"
by Lemma A.2. Together with Matlis’ duality, we also get the isomorphism
Torf (HE(M), M)Y = Extly “(HE (M), M).
Then the equivalences follow from these isomorphisms and those of (i). O

Proposition 4.6. Let R be a local ring of dimension n and o C (B) be two families of
R. Set ¢ = depth(B, M), where M is a finitely generated R-module. Then

(i) There exists a natural homomorphism

Hom p(HS(M), H5(M)) — Homp(HE(M), HE(M)).

(1t) Suppose in addition that (aRy) = (BRy) for every p € (B) N Supp(M) such that
depthp (M) = c. Then the homomorphism in (1) is an isomorphism.

(iii) Suppose now that R is complete. Then there exists a natural homomorphism
Hompg(HE(M)", H5(M)") — Homg(Hg(M)", HS(M)") which turns out to be an

isomorphism when the additional condition of (ii) is satisfied.

Proof. Notice that HS(M) = 0 when depth(«, M) # c¢. Similar to Lemma 3.21, we
obtain a natural injection Hg (M) — Hg(M), for instance, by taking a minimal injective

resolution of M. Hence we have a natural homomorphism
Hompg(Hg(M), M) — Hompg(HS (M), M).

By Proposition 4.1, (i), the natural homomorphism of the first part of the present
statement follows.

In order to prove (ii), recall that T, (E*(M)) = @ E(R/p)* ®M for every
. pe({y)NSpec R
family v of R and every term E'(M) of a minimal injective resolution of M and

that if y'(p, M) # 0, then p € Supp(M) and depthp (M,) < i. We shall show that
Lo(E“(M)) = Ts(E°(M)) for a minimal injective resolution (E*(M)) of M. This
situation will imply that the natural injection HS (M) — Hg(M) is an isomorphism.
So consider z € I'g(E°(M)). Then x € E(R/p) for some p € (#) N Supp(M) such that
pe(p, M) # 0. Thus this p also satisfies that ¢ < grade(p, M) < depthp (M,) < c. Now
v € E(R/p) C Tgr,(E°(My)) = Tar, (£°(M,)) by hypothesis. We conclude in this way
that x € I',(E°(M)) and the statement follows.

Finally, statement (iii) follows by Lemma 4.4. ]

Observe that locality in the first two items can be dropped.
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4.2 On top local cohomology modules

In this section R always denotes a local ring and R is its completion with respect

to the linear topology induced by its maximal ideal, as usual.

Definition 4.7. Let a be a family of ideals of R and M be a d-dimensional finitely
generated R-module. Consider the disjoint sets

Us(M) ={p € Ass(M) : dim(R/p) = d and dim(R/(I +p)) <0 for every I € a}

and V(M) = Ass(M) — U,(M). Explicitly, V, (M) is the set of associated primes p of
M such that dim(R/p) < d or dim(R/p) = d and dim(R/(I +p)) > 0 for some [ € a.
Of course, if (o) = (), then U, (M) = Ug(M) and V(M) = Vz(M), so we shall denote
these sets shortly by U and V respectively if no confusion arise. For a minimal primary
decomposition of 0 = ﬂQZ(M) in M, denote Q. (M) = ﬂ Qi(M). It U = 0, put

i=1 p,eU

Qo(M) = M.
Lemma 4.8. Ass(Qn.(M)) =V and Ass(M/Q.(M)) =U.
Proof. Tt is a straightforward consequence of [Sch07, Lemma 2.7|, see Lemma A.3. [

Theorem 4.9. Let « be a non-trivial family of (R, m). Consider a finitely generated

R-module M and set d = dim(M). Then there exists a natural isomorphism
Hy(M) 2 Hy o (M]Q, 5 (M)).

Proof. Since HY(M) is Artinian by Theorem 2.2, the natural homomorphism of R-
modules HjR(M) ~ HY (M) @z R — HY(M) is an isomorphism. So we shall assume
that R is complete. The exact sequence 0 — Q.(M) — M — M/Q.,(M) — 0
induces an isomorphism of R-modules HY(M) = H4(M/Q,(M)) by Proposition 2.25.
If we denote R = R/ Anng(M/Q.(M)), we obtain another isomorphism of R-modules
HI(M/Qa(M)) = H-(M/Q4(M)). Finally, if I € o — {R}, then

VI + Annp(M/Qa(M)) = V(D) 0 | V(p) = {m}
peU
by Lemma 4.8. Thus (aR) = (mR) and HI(M/Q.(M)) = HI(M/Q.(M)). So the

desired isomorphism follows. ]

Definition 4.10. Let M be a finitely generated R-module and « be a family of R.
Set P, (M) as the intersection of all the primary components p of Ann(M) such that
dim(R/p) = dim(M) and dim(R/(I + p)) < 0 for every ideal I € a. Observe that
Po(M) = 77YQ,z(R)) where m : R — R = R/ Ann(M) is the natural projection.
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Lemma 4.11. Let M be a finitely generated R-module, o be a non-trivial family of R

~ ~

and set d = dim(M). Then HA(M) = H? (M /P,(M)M).

Proof. Again, we may assume that R is complete. Set R = R/ Ann(M). Then there is
an isomorphism HZ(M) = H?-(R) ®r M. By Theorem 4.9, there is an isomorphism
H?(R) = H(R/P,(M)). Thus H? ,(R)®gM = H(M/P,(M)M) and the statement
follows. [l

For a finitely generated R-module M of dimension d we recall the notation
K(M) = HZ(M)" used by M. Eghbali and P. Schenzel in [ES12|. Observe that K (M)
is isomorphic to the R-module K = Extg‘fd(M, S) when (R, m) is the image of an
n-dimensional Gorenstein ring (S,n). Indeed, by Local Duality (see [Har67, Theo-
rem 6.3]), we have a natural equivalence Ext? (—,S)" — Homg(Hi(—), Es). Here
Es denotes the injective hull of the residual field of S. Left side of this equivalence
gives Ext? (M, S)" = Ext% (M, S) g S = Extg’d(M ®g S, 5) and right side gives
Homg(HZ(M), Es) = Homg(HI(M)®g R, Es) = Homg(HZ(M),Homg(R, Es)), prov-
ing the claim. We also point out that Anngz(K(M)) equals the intersection of the
primary components of dimension d of Ann R(M ) for every d-dimensional finitely gen-
erated R-module M as seen in [Har67, Proposition 6.6, 7)].

Lemma 4.12. Let a be a non-trivial family of (R,m) and M be a finitely generated

R-module of dimension d.
(i) HY(M)Y is a finitely generated R-module.
(ii) Assp(HI(M)Y) = U, x(M).
(i) K(VT/Q, (M) = HI(M)".
Proof. In order to prove (i), we notice that the Matlis dual of an Artinian R-module

is the same as its Matlis dual when regarded as an R-module: in fact, if A is such
R-module, then A = A®p R, E5(R/m) = E and we obtain natural isomorphisms

Homp(A, E) = HomR(A®RR,E)
=~ Hompg(A, Hom(R, E))
= Homg(A, E).

For (ii), we get that Assy(HL(M)Y) = Coassé(HiR(M)) = U_4(M), the last equality
follows from Proposition 3.18.
Finally, Kz(M/Q,z(M))Y = H?.(M/Q,z(M)) = HI(M) and the statement

remains proved. O
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Recall that a finitely generated R-module M satisfies Serre’s condition .S,., for an

integer 7, when depthp (M,) > min {r,dimg, (M)} for every p € Spec R.

Theorem 4.13. Let o be a family of (R, m) and consider a finitely generated R-module

M of dimension d. Consider the natural homomorphism
@y - R — Homz(HA(M), H(M)).
(i) ker &y = P s(M).
(ii) Hom(HE(M), HA(M)) is a finitely generated R-module.
(11i) Pg is surjective if and only if R/QGR(}?) satisfies Ss.
(iv) Homp(HI(R), HA(R)) is a commutative semilocal Noetherian ring.

Proof. As usual, we may assume that R is complete. Lemma 4.11 gives an isomorphism
HY(M) = HI(M/P,(M)M). Hence K(M/P,(M)M) = HE(M)". In this way we

obtain another isomorphism
Homp(Hg(M), Hi(M)) = Hompg(K (M/Pa(M)M), K(M/Po(M)M)). (4.3)

Thus ker &, = Ann(K (M /P, (M)M)) = P,(M), the last equality follows from [Har67,
Proposition 6.6, 7)] and (i) remains proved. Item (ii) follows also by equation (4.3)
because K (M) is a finitely generated R-module for every finitely generated R-module
M. Ttems (iii) and (iv) follow for M = R because in this case K(M/P,(M)M) is
isomorphic to the canonical module of the ring ]A%/QQR(}A%). Hence, results of Y. Aoyama

and S. Goto (see |[AG85, Proposition 1.2]) and Y. Aoyama (see [Aoy83, Theorem 3.2|)
apply. O
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Chapter 5

Linear topologies and local homology

Throughout this chapter, all the rings are assumed to be commutative Noetherian.
We shall introduce linear topologies induced by a family « of a ring R. The local
case serves as a motivation for this since the composite functor I',(—)" is naturally

isomorphic to the composite functor lim (—)Y ®r R/I.
Ie(a)

5.1 The a-adic topology

Consider a family a of R and an R-module M. For each m € M we define its
fundamental open neighbourhoods as the cosets of the form m + I M for some I € («).
By these means, M is a topological module and this topology is called the a-adic

topology on M. Notice that M is Hausdorff if and only if ﬂ IM =0. When M = R,
Ie(a)
we also have that («) is exactly the set of open ideals of R. Furthermore, if 5 is another

family, then the S-adic topology on R coincides with the a-adic topology on R if and
only if (8) = (o). If M = R/J for some J € (a), we see that the a-adic topology on
M is just the discrete topology and the projective system {R/I, 7T[J}I€<a>, with natural
projections 775 : R/J — R/I, is a system of topological rings. Therefore it is defined
the a-adic completion of R as the topological ring

Aa(R) = lim R/T

Ie(a)



in such a way that the canonical homomorphism of rings g : R — A, (R) is continuous.
Namely, the topology considered in A,(R) is the coarsest topology such that every
projection 77 : A,(R) — R/I is continuous. As before, ¢ is injective if and only if R

is Hausdorff in the a-adic topology.

Definition 5.1. The ring R is called a-adically complete if ¢ is an isomorphism.

Now consider an R-module M. It is seen as before that the a-adic topology on
M /IM is just the discrete topology for every I € («) and it is defined the a-completion

of M as the A,(R)-module A, (M) = Jm M/IM. Recall that this structure is given
Ie(a)
component-wise by the structure of the R/I-module M/IM. If N is an open submodule

of M, there exists a monomorphism of A,(R)-modules A,(N) — A,(M) which sends
(nr + IN)ie@y to (np + IM)ey: in fact, if N is an open submodule of M, then
JM C N for some J € («). Assuming that ny € IM for every I € (o), we obtain that
nyy € IJM CIN. But ny —n;; € IN. Hence ny € IN and the injection is now clear.
We have even more.

Lemma 5.2. Suppose that N is an open submodule of M with respect to the a-adic

topology. Then there exists an exact sequence of A, (R)-modules
0— Ay(N) = Ay(M) - Ay(M/N) — 0.

Proof. Since JM C N for some J € (a), we have that the a-adic topology on M/N
is just the discrete topology. Thus A,(M/N) = M/N and the surjectivity of the
homomorphism A, (M) — Ay (M/N) follows. Consider now (m; + IM)jcay € Aa(M)
such that (m; + 1M + N)jciay = (UM + N)jeay in Ag(M/N). So, for every m; there
exists ny € N such that m; + IM = n; + IM. Hence the statement follows. O

It follows that A,(N) = 7;'(N/JM) is an open submodule of A,(M) such that
©r(N) € Ay(N). Moreover, the submodules A, (IM), with I € (a), form a funda-
mental system of open neighbourhoods of the zero element 0 € A,(M). As before,
there exists a continuous homomorphism of R-modules ¢y : M — Ay (M) and M is

Hausdorff if and only if ¢,/ is injective.
Proposition 5.3. The following statements are true:

(i) For every open submodule N of M, we have that Ao (N) = @p(N).
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(ii) There exists a bijective correspondence

{open submodules in M} < {open submodules in A,(M)}
N — Ay(N)

ep(n) «~ n

Proof. Since A,(N) is an open submodule in a linear topology, it is also closed and
therefore py (N) € Ay(N). If JM C N for some J € (a) and (n;+IM) iy € Aa(N),
then ny+ JM + IM =ny;+ JM + IM for every I € («). Hence ny € ny+ JM + IM
for every I € (o). This implies finally that ¢y (ny) € (nf + IM)ic) + Aa(JM) and
thus (i) holds. For (iii), consider an open submodule n of A,(M). By the continuity
of oy it follows that N := @' (n) is an open submodule of M. Since n is also closed,
it follows from (i) that A,(N) C n. In the natural diagram

M/N ~ Aa(M)/Aa(N)

~

Ao (M) /n

the left oblique arrow is injective and the right oblique arrow is surjective. According
to Lemma 5.2, the horizontal arrow is bijective. This means A,(N) = n and (iii)
follows. O

The assignation A,(—) : R-mod — A,(R)-mod is functorial (furthermore, ad-
ditive): indeed, every homomorphism of R-modules f : M — N is continuous with

respect to any linear topology «. Hence it induces a continuous homomorphism of

Ao(R)-modules A, (f) : Aa(M) — Ay(N) in a natural way.

Definition 5.4. The module M is called a-adically complete if o,/ is bijective.

The a-torsion modules have coefficients in the a-adic completion of the base ring

as we shall see next.

Theorem 5.5. Consider an a-torsion R-module M. Then M has a natural structure of
Ao (R)-module and the canonical homomorphism of Ay (R)-modules M @p Ao (R) — M

18 an 1somorphism.

Proof. 1f x € M, then there exists J € (a) such that Jz = 0 by Lemma 1.10. In this
way, for every element (r; + I)cay € Aa(R), the filter (r;2)rc() acquires a constant
value ryz: indeed, if K is another ideal in («) such that Kz = 0, then r;x = rgx. So let
us define the A, (R)-module structure for M according to this: (774) ¢y := ry2. This
structure is compatible with the usual R-module structure of M and the natural map
M®grA,(R) — M which sends 2®(r;+1) to ryx has natural inverse x — z®(1+1). O

65



Now that a-adic topologies are defined, it is time to translate to this language a

partial result from Section 1.3.

Theorem 5.6. Let (R, m) be a Cohen-Macaulay local ring of dimension d with canon-

1cal module K and ¢ be a family of R. There is a natural isomorphism
Ay(Hy ) (R)) = Hy(Kg)”,

where t = d — supdim(R/J).
Jey

Proof. Exactly as in Theorem 1.54, we obtain a natural isomorphism
Hy ((R)/ THy [ (R) = Extyp(R/J, Kp)"

for every J € (a). Thus

\Y
Ay(Hy j(R)) = Jim Exty(R/J, Kp)* = (lg Exty(R/J, KR>> =~ [,(Kr)"
Je(d) Je()

and we obtain the statement. O

5.2 Local homology modules

Recall that Theorem 1.11 gives a functorial isomorphism
H (M) = ling Ext’%(R/I, M) (5.1)
Ie(a)
which reproduces the classic one for the closed support case
Hi(M) = li_ngExtﬁ%(R/[",M) (5.2)
neN
Equation (5.2) was used by N. T. Cuong and T. T. Nam in [CNO1] to define the i-th
local homology module H} (M) of M with respect to an ideal I of R as the projective
limit

H] (M) = lim Tor{(R/I", M).

neN

This situation, together with equation (5.1) suggest the following definition.

Definition 5.7. Let « be a family and M an R-module. The i-th local homology
module H*(M) of M with respect to « is defined by

H{(M) = lim Tor{(R/I, M).

Ie(a)
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Remark 5.8. Clearly, Hy (M) = A, (M). Tt is also clear that, when « is the fam-
ily {I™ : n € N}, this definition agrees with N. T. Cuong and T. T. Nam (loc. cit.)

definition of local homology modules.
Next we show a useful relation between the local homology modules H*(M) and
Proposition 5.9. Let M be an R-module and o be a family of R. Then

H{ (M) = lim H{ (M)

Ie(a)

for every i.

Proof. The claimed isomorphism follows since

lim HJ(M) = 1<1_ lim Tor{*(R/I", M) = lim lim Tor"(R/I", M).
Ie(a) (o) neN neN Ie(a)
Now we observe that, for every fixed n € N, the set {/" : I € («)} is cofinal with («).
Therefore,
lim Tor{"(R/I",M) = lim Torf(R/I, M).

Ie(a) Ie(a)
Thus
lim H](M) 2 lim lim Tor(R/I, M) = lim H (M) = H(M).
() neN Ie(a) neN
This proves the statement. O

Proposition 5.10. Let M be an R-module and « be a family of R. Then H¥(M) is
a-separated, i.e., ﬂ THX(M)=0.
Ie({a)

Proof. Note that

ﬂ TH*(M L [H} (M) = lim I lim Tor{(R/J, M).

Ie{a) J€e(a)

But

lim [ lim Tor{(R/I,M) = lim lim [Torf(R/J,M)= lim lim I Tor;(R/J, M).
Ie{a) J€e(a) Ie{a) Je(a) Je(a) Ie(a)

Since for each J € (o) we have that

lim I Tor{(R/J, M) = lim I Tor*(R/J, M)

1E(a) I>J

and I Torl(R/J, M) = 0 for every I > J, we conclude that
() 1H (M) =
Ie(a)

and the statement is proved. O
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A. Ooishi introduced in [O0i76| a generalised Matlis dual functor in the following
way: let R be a semi-local Noetherian ring with maximal ideals my,..., m, and set

Er = @ER(R/mi). For an R-module M it is defined the Matlis dual of M by

i=1
D(M) := Hompg(M, Er). With this notion we get a duality relation between local

homology and local cohomology for modules over semi-local Noetherian rings as follows.

Proposition 5.11. Suppose that R is a semi-local ring and let « be a family. Then
HX(D(M)) = D(H!(M)) for every i > 0.

Proof. By [00i76, Corollary 1.5,

7

H{(D(M)) = lim Torf(R/I, D(M)) = lim D(Extp(R/I,M)).
I€(a)

Ie(a)
But
lim D(Ext(R/I,M)) = D (hg Ext’(R/I, M)) = D(H!(M)).
Ie(a) Ie(a)
Hence the statement follows. ]

Next we state dual versions of some classic results from local cohomology theory
which serve as generalisations of some results from [CNO1|. For this purpose, we now
recall the notion of Noetherian dimension of an Artinian R-module M denoted by
Ndim(M). This concept was introduced by R. N. Roberts in [Rob75| by the name
Krull dimension. Later, D. Kirby changed in [Kir90] this terminology of R. N. Roberts
and referred to Noetherian dimension to avoid confusion with the well-known Krull
dimension of finitely generated modules. Let M be an Artinian R-module. When
M =0, set Ndim(M) = —1. By induction, for any ordinal a, set Ndim (M) = «, when
Ndim(M) < « is false and for every ascending chain My, C M; C --- of submodules
of M there exists a positive integer mg such that Ndim(M,,1/M,,) < « for every
m > my. Thus an Artinian module M is non-zero and finitely generated if and only if
Ndim(M) = 0.

If0— M"— M — M’ — 0is a short exact sequence of R-modules, then
Ndim(M) = max {Ndim(M"), Ndim(M")} . (5.3)
Proposition 5.12. Let M be an Artinian R-module with Ndim(M) = d. Then
HY(M) =0
for every i > d.
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Proof. Since H}*(M) = lim H] (M) by Proposition 5.9, the result follows from [CNOT,
I€(a)
Proposition 4.8]. O

Proposition 5.13 (Independence Theorem). Let f : R — S be a homomorphism of
Noetherian rings and M be an S-module. Then we get an isomorphism of Ay (R)-
modules H*(M) = H® (M) for every i > 0.

Proof. By [CNO1, Corollary 3.7|, for each I € («), we have an isomorphism of A;(R)-
modules H!(M) = H!S(M) for each i > 0. Now, by taking projective limits, we get

the desired isomorphism. O

Proposition 5.14. Let R be a semi-local ring and let M be an Artinian R-module.

Then the following conditions are equivalent:
(i) D(M) is a-torsion R-module.
(ii) H*(M) =0 for every i > 0.

Proof. (i)=-(ii): Since D(M) is a-torsion, it follows by Proposition 1.28, (i), that
H!(D(M)) = 0 for every i > 0. Therefore, since M is Artinian, we have by [00i76, The-
orem 1.6, (5)] and Proposition 5.11, that H*(M) = H(DD(M)) = D(H.(D(M))) =0
for every 7 > 0.

(ii)=-(i): By the Independence Theorem (Proposition 5.13) we can assume that
R is J-adically complete, where J is the Jacobson radical of R. If H*(M) = 0 for
every ¢ > 0, then by [O0i76, Theorem 1.6 (5)] and Proposition 5.11 we get that
D(H!(D(M))) = 0. Therefore H{(D(M)) = 0 by [00i76, Theorem 1.6 (8)]. On
the other hand, since M is Artinian, D(M) is finitely generated by [O0i76, Theo-
rem 1.6, (3)]. Hence Corollary 1.37 gives that D(M) is a-torsion. O

Proposition 5.15. Let R be a semi-local ring and let M be a non-zero Artinian R-
module with Ndim(M) = d. Then HJ(M) # 0, where J is the Jacobson radical of
R.

Proof. By [Sha92, Lemma 2.2] M has a natural structure as a module over A;(R)
in such a way that a subset of M is an R-submodule if and only if it is a A (R)-
module. Thus, Ndimg(M) = Ndimy, (g (M). Therefore, since HY (M) = H*" (M)
as Aj(R)-module for every i by the Independence Theorem (Proposition 5.13), we
may assume that R is J-adically complete. Then the Matlis dual D(M) is a non-
zero finitely generated R-module (see [00i76, Theorem 1.6, (3)]). It follows by [O0i76,
Theorema 1.6, (8)] that dimg(D(M)) = dimg(R/Anng(M)). On the other hand,
by [Sha89, Proposition 1.4|, we can write M = [y, (M) & --- & 'y, (M) for some
maximal ideals my,... my of R. Set M; = I'y,,(M). Then, by [Sha89, Remark 1.7,

each M, has a natural structure as an [y,-module in such a way that a subset of
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M is an R-submodule if and only if it is a Ry,-module. Moreover, M; = (M;)n,
as Ry,-modules. By equation (5.3), Ndim(M) = max {Ndim(M;),. .., Ndim(Mg)}.
Hence Ndimg, (M;) = Ndimpg, ((Mi)n,) = dimg, (Rw,/Anng, ((M;)y,)) for every
i = 1,...,k, the second equality following from [Rob75, Theorem 6]. Therefore we
get d = Ndimzg M = dimg(R/Ann(M)) = dimg(D(M)). Then H4(D(M)) # 0 by
Grothendieck’s Non-Vanishing Theorem and Flat Base Change. Therefore, by Propo-
sition 5.11, H{ (M) = HJ(DD(M)) = D(H%(D(M))) # 0 and the statement is now
proved. O

Remark 5.16. Observe that if M is an R-module and « is a family of R, then H*(M)

has a natural structure of A, (R)-modules.
The next result generalises [CN01, Proposition 4.6].

Proposition 5.17. Let R be a semi-local ring and M be an Artinian R-module. Then
HY(M) is a Noetherian A;(R)-module for every i, where J is the Jacobson radical of
R and Aj(R) is the J-adic completion of R.

Proof. By Proposition 5.13, we can assume that R is J-adically complete. By [00i76,
Theorem 1.6, (3)], D(M) is a Noetherian R-module. We shall prove first that the mod-
ule H(D(M)) is Artinian. In fact, since R is semi-local, it is enough to prove that the
localisation of H5(D(M)) at every maximal ideal is Artinian, but this follows by [BS98,
Theorem 4.3.2 and Theorem 7.1.3]. Moreover, DD(M) is isomorphic to M, by [00i76,
Theorem 1.6, (5)]. Finally, by using Proposition 5.11 and [O0i76, Theorem 1.6, (3)] we
get that HY (M) = H/(DD(M)) = D(H%(D(M))) is a Noetherian module. O

Proposition 5.18. Let R be an Artinian ring and let M be a finitely generated R-
module. Then HX(M) has finite length. In particular, H*(M) is an Artinian R-module.

Proof. There exists an ideal J in (a) such that J = I for every I > J in («). Then
H(M) = lim Tor;'(R/I, M) = Tor;'(R/J, M) for every i > 0.

1>J
On the other hand, since M is a finitely generated R-module, there is a free

resolution F, of M in which the free R-modules F; are finitely generated. Therefore,
Torf®(R/J, M) = H;(R/J ®g F.) has finite length for every i > 0. O

Proposition 5.19. Let M be an Artinian R-module. Then,

. B 0 if i=0
=\ () 1M _{Hg(M) if i>0

Ie{w)

Proof. Since M is an Artinian R-module, the family {IM : I € («)} of submodules of

M has an minimal element JM for some J € («). On the other hand, we can write

() IM = lim [M = lim IM = JM,

Ie(a) Ie(a) 1>J
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because for any I > J, we have that IM = JM by the minimality of JM.
Therefore, by Proposition 5.9,

Hy | () IM | = HY(JM) = lim H(JM) = lim H](JM).

Ie(a) Ie{a) I>J

Furthermore, if I > J and n > 1, we get ["M = JM. Thus ﬂnZI "M = JM.
By [CNO01, Corollary 4.5, we have that

o
a1y = o=t
I HI(M) if >0

Therefore the result follows from Proposition 5.9. O

The following theorem provides a characterisation for a-adically complete Ar-

tinian modules.

Theorem 5.20. Let M be an Artinian R-module. The following statements are equiv-

alent:
(i) M is Hausdorff with respect to the a-adic topology.
(i) M is a-adically complete.
(1) H§ (M) = M and HX(M) =0 for all i > 0.
Proof. We consider the following short exact sequence of projective systems of Artinian

R-modules
0— {]M}Ie(a) - {M}Ie(a> - {M/]M}Ie(a> — 0

By [Jen72, Corollary 7.2], the sequence of projective limits
0— ﬂ IM — M — Ay(M) —0
I€{a)

is exact.
The equivalence between (i) and (ii) follows from the exact sequence above.
Now let us suppose condition (ii). We have that H}(M) = A,(M) = M. On the
other hand, by Proposition 5.19 and condition (i) we get that

HY(M)=H [ () IM ] =0
Ie(a)
for every ¢ > 0.

Finally, condition (iii) trivially implies condition (ii). ]
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Corollary 5.21. Let R be an Artinian ring and let M be a finitely generated R-module.
Then HX(M) is a-adically complete.

Proof. This is a direct consequence of the Proposition 5.18 and Theorem 5.20. O

Proposition 5.22. Let 0 — M’ — M — M" — 0 be a short exact sequence of

Artintan modules. Then we have a long exact sequence
<o = HY(M') — HY(M) — H}(M") — HS(M'") — H§(M) — HS(M") — 0.

Proof. For each I € («), the short exact sequence 0 — M’ — M — M"” — 0 induces
a long exact sequence --- — Torf(R/I, M') — Tor®(R/I, M) — Torf(R/I,M") —
R/I®@M — R/I® M — R/I ® M" — 0. Since M’', M and M" are Artinian, the
modules in the latter long exact sequence are Artinian. By [Jen72, Corollary 7.2| the
projective limit is exact on the category of Artinian R-modules. Thus we have a long

exact sequence of local homology modules with respect to a. O]

Remark 5.23. Let ¢ : M — N be a homomorphism between Artinian modules and
consider a family .% of submodules of M such that, for every pair ' and G of elements of

Z , there exists an element H € .# contained in FNG. Then ¢ ﬂ F) = ﬂ o(F).
FeF FeF

Proposition 5.24. Let M be an Artinian R-module and N a submodule of M. Then
M is a-adically complete if and only if N and M /N are a-adically complete.

Proof. Suppose that M is a-adically complete. By Theorem 5.20 it is sufficient to
prove that N and M /N are Hausdorff with respect to the a-adic topology. It is clear
that (| IN C (1) IM = 0. On the other hand,

Ie(a) Ie(a)
() I(M/N)= () (IM + N)/N = (Y IM|+N|/N=0
Ie(a) Ie(a) Ie(a)

by Remark 5.23. Conversely, assume that N and M /N are a-adically complete. We

have a commutative diagram

0 N M M/N ———0

le J@M l‘ﬂ]b[/N

0 —— Ap(N) ——= Au(M) ——= A (M/N) ——0

The first row is obviously exact. The exactness of the second row is a consequence of
Proposition 5.22 and Theorem 5.20, (iii). Since ¢y and @pn are isomorphisms, the

homomorphism ¢, is an isomorphism. O
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Proposition 5.25. Let M be an Artinian R-module and t o positive integer. The

following assertions are equivalent:

(i) HX(M) is Artinian for every i < t.

(i) There exists an ideal J € () such that J C \/Anng(H*(M)) for every i < t.

Proof. (i)=-(ii): Consider ¢ < t. Since H¥(M) is Artinian, there exists an ideal J € ()
such that JH} (M) = IHX(M) for all I > J. By Proposition 5.10 we have that

0= () IH} (M) = JH}(M).

Ie{a)

Therefore, J C Anng(HZ(M)).
(ii)=(i): The argument goes by induction on ¢. For ¢t = 1, since M is Artinian,
there exists an ideal Iy € (a) such that [oM = IM for all I > Iy. Therefore

HE (M) = 1£1 M/IM = M/I,M
I>1Ip
is Artinian.

Let t > 1 and set K = [,M. By Proposition 5.19 we can replace M by K because
ﬂ]€<a> IM = IoM = K. On the other hand, note that JK = JIgM = I¢M = K
because JIy > Iy. Since K is Artinian, there exists x € J such that X' = K. Thus,
by hypothesis, tH*(K) = a H*(M) = 0 for all ¢ < t. Then the short exact sequence of

Artinian modules
0—(0:x ) K=K 0

gives rise by Proposition 5.22 to an exact sequence

0 —H7y (K) — H7((0 :x 7)) —= H}(K) —=0

for every i < t — 1. It follows that J C /Anng(H?((0 :ic x))) and, by inductive
hypothesis, that H*((0 : x)) is Artinian for every i < ¢t — 1. Consequently, H*(K) is

7

Artinian for any ¢ < ¢t and the statement is proved. m

5.3 Co-localisation and co-support

Let S be a multiplicative set of R. L. Melkersson and P. Schenzel introduced in
[MS95] the co-localisation of an R-module M with respect to S as the S~™'R-module
sM = Homgr(S™'R, M). This is a functor from the category of R-modules to the

category of S~!R-modules. Such functor is exact in the category of Artinian R-modules
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(see [MS95, Proposition 2.4|). If p is a prime ideal of R and S = R — p, then instead
of ¢M, we write ,M. For an R-module M, the co-support of M to be the set

Cosr(M) :={p € SpecR: (M # 0}.

Proposition 5.26. Let S be a multiplicative set of R. Suppose that SN I # () for
every I € a. If M is an a-separated module, then ¢M = 0.

Proof. Set f € M and consider £ € ST'R. For each I € «, there exists t € SN 1.
Therefore f (%) = f (%) =tf (%) € IM. Since ﬂ IM = 0, we have the desired

Ie(a)
result. O

Corollary 5.27. Let S be a multiplicative set of R and let M be an R-module. Suppose
that SN I # O for every I € a. Then sHX(M) =0 for all i > 0.

Proof. This follows from Proposition 5.10 and Proposition 5.26. O

Lemma 5.28. Let N be a finitely generated R-module and M an Artinian R-module.
Then
s Tor®(N, M) = Tor 'B(S™'N, ¢M).

Proof. Consider a resolution F, = (F;);>o of finitely generated free R-modules for N.
Then S™'F, = (S7'F});>0 is a resolution of finitely generated flat S~!'R-modules for
S~TIN. On the other hand F, ® M = (F; ® M);>¢ is a complex of Artinian R-modules.
Since co-localisation is an additive functor and exact on the category of Artinian R-
modules ([MS95, Proposition 2.4]), it commutes with homology functors. Moreover,
by [MS95, Lemma 5.1], we get that

s Tor®(N,M)) = gH;(F, ® M)
= Hi(s(F. @ M))
~ Hy(ST'F.® ¢M)
= Tor’ 'B(S7IN, M)
as required. N
Proposition 5.29. Let M be an Artinian R-module. Then
sHE(M) = HPS R (g M)
for every i > 0.

Proof. By [Rot09, Proposition 5.21|, the co-localisation functor preserves projective

limits. Therefore

sH{(M) = s lim Torj"(R/I, M) = lim s Tor;'(R/I, M).

Ie(a) Ie(a)
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Using Lemma 5.28 we get that

GHY (M) = lim Tor] "*(ST'R/IST'R, M) = H?® R (M)

Ie(a)

as desired. O
Corollary 5.30. Let M be an Artinian R-module. Then
Cosgr(H{(M)) C Cosg(M) N {«a)
for every i > 0.
Proof. Let p € Cosg(H¥(M)). By Proposition 5.29 we have an isomorphism

pHO(M) 22 H (,M)

K3 3

for every ¢ > 0. Since ,H{*(M) # 0, it follows that ,M # 0. Thus p € Cosg(M). On
the other hand, by Corollary 5.27, there exists an ideal I € « such that I C p. Thus

p € (a) and the statement is now proved. O
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Chapter 6

Local cohomology and Z-modules

6.1 Rings of differential operators over differentiable

admissible algebras

In this section k& denotes a field of characteristic zero and R is a commutative
k-algebra. We begin recalling the definition of the ring of k-linear differential operators
on R denoted by g/, First we define 9}%/,4 C Endg(R) for every ¢ > 0 in an inductive
way: set .@%/k = R and define .@}é/k for i > 0 as

-%i%/k = {P € Endy(R) : [P,r]=Pr—rP € 9;{/,16 for each r € R} .

We note that each @}é/k is a sub-(R-R)-bimodule of Endy(R). Moreover, we have that
9}3/,6 = R ® Derp(R), where Dery(R) denotes the R-module of all k-derivations of R,

and .@g/k.@fyk C .@?/i Furthermore, if P € Qg/k and () € -91{2/1@7 then [P, Q] € .@?/ifl.

The ring of k-linear differential operators on R is the ring Zg;, := U 9;%/;:- Now
i>0
recall that an associative ring A with identity is filtered if there exists an ascending

filtration of additive subgroups I' = {I';,i € Z} such that I'; = 0 for every i < 0, 1 € T,

U I'i = Aand I';I'; C I'iy; for every 4,7 > 0. It is clear from definition that Iy is a
isflzbring of A.

We denote by gr'(A) the associated graded ring gr' (A) := @Fi/Fi,l. Now
Iy =92, Ik defines naturally a filtration of Zg /. Notice that the assoéeiited graded ring

gr' (Zry1) is commutative because 77, _@Ij%/k] C .@;%_17 for all 4,5 > 0.



In [NB13|, L. Nufiez-Betancourt introduced an important class of algebras that
are essential in our work. The rings of differential operators of this kind of algebras
behave like those of polynomials or power series rings.

Definition 6.1. A commutative k-algebra R is called differentiable admissible if it is

Noetherian and regular and satisfies the following properties:

(A-1) R is equidimensional of dimension n, that is, the height of any maximal ideal is

equal to n.

(A-2) Every residual field with respect to a maximal ideal is an algebraic extension of
k.

(A-3) Derg(R) is a finitely generated projective R-module of rank n and the canonical
map Ry ®p Deri(R) — Derg(Ry) is an isomorphism for any maximal ideal
m C R.

Consider now the condition:

(A-3)’ There are k-linear derivations Dy, ..., D, € Dery(R) and aq,...,a, € R such
that D;(a;) = 1 if i = j and 0 otherwise.

The properties (A-1), (A-2) and (A-3)’ appear in [MNMO91]| as conditions (i), (i7) and
(7i7) and any commutative Noetherian regular k-algebra satisfying these conditions
will be called strong differentiable admissible. These conditions inspired L. Nunez-
Betancourt to consider the properties (A-1), (A-2) and (A-3) in [NB13, Hypothesis 2.3].
In both works, R is a commutative Noetherian regular ring that contains a field of
characteristic zero. It is worth noting that the conditions (A-2) and (A-3)’ imply that
the ring R is excellent, see [Mat80, Theorem 102].

In [NB13, Proposition 2.6|, it was proved that any strong differentiable admissible
k-algebra is differentiable admissible (see also [NM14]). Although the latter class of
k-algebras is greater in general than the former as seen in [NB13, Remark 2.8], these
classes coincide in the local case as a consequence of a theorem due to M. Nomura
(|[Mat86, Theorem 30.6]) which we now state.

Theorem 6.2. Let (R,m, K) be a Noetherian reqular k-algebra of dimension n. Sup-

pose that K is an algebraic extension of k. Let R denote the completion of R with respect

towm. Let x1,...,x, be a reqular system of parameters of R. Then R = K[z, ..., x,]]
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is the power series ring with coefficients in K and if we write 0/0x; for the partial
derivatives in this representation, then Der(R) = Derg(R) is the free R-module with

basis 0/0x1,...,0/0x,. Moreover, the following conditions are equivalent:

(i) 0/0x; maps R into R for 1 <i <n, so that every 0/0x; can be considered as an
element of Dery(R);

(i1) there exist derivations Dy, ..., D, € Dery(R) and elements ai,...,a, € R such
that Diaj = (Sij;'

(7ii) there exist derivations Dy, ..., D, € Deri(R) and elements a1, ...,a, € R such
that det(Diaj) ¢ m;

(iv) Derg(R) is a free R-module of rank n;
(v) rank(Der(R)) = n.

Remark 6.3. Observe that localisations on maximal ideals of differentiable admissible
k-algebras are also differentiable admissible. Completions of local differentiable ad-
missible k-algebras are also differentiable admissible. When a differentiable admissible
k-algebra is a domain, then any quotient over principal ideals is also differentiable ad-
missible. Interesting examples of differentiable admissible k-algebras can be found in
[NM14]. Remarkable examples of strong differentiable admissible k-algebras are the
polynomial rings, the power series rings and the rings of convergent power series.
When R is a strong differentiable admissible k-algebra, it is easy to describe the
ring of k-linear differential operators over R. In this case, Theorem 6.2 guarantees that

the R-module of k-derivations Derg(R) of R is free of rank n and Dy, ..., D, is a basis.

Moreover, the left R-module 2}, n is free with basis
{D*:=D{"---Do" la] =01+ -+, < i}

Therefore, every element P € Zg/, can be written in a unique form as a finite sum
P= ZraDa, where 7, € R. Thus Zg/; coincides with the k-subalgebra of Endj,(R)
genera?;ed by R and Dery(R), that is, P/, = R(D1,...,D,). In particular, Zg/
has no zero-divisors when R is a domain. On the other hand, if R[y,...,y,] is the
polynomial ring with coefficients in R and variables y,...,y,, the R-algebra map
U Rlyr, ..., yn) = " (Dryy) defined by ¢(y;) = 01(D;), where oy is the quotient map
Drje = Pl Py is an isomorphism of graded rings.

Suppose now that R is a differentiable admissible k-algebra of dimension n. Then

Dk, s left and right Noetherian (see [NB13, Corollary 2.14]). Moreover, the global
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dimension or homological dimension of g/, coincides with the Krull dimension of R,
that is,
gl. dim(Zg/i) = dim(R) = n. (6.1)

See [NB13, Proposition 2.15].

Now let A be a filtered ring with filtration I' and let M be a left A-module.
A filtration Y of M consists of an ascending sequence ¥ = {3;, i € Z} of additive
subgroups of M such that >; = 0 for ¢ < 0, UEi = M and I';¥; C ¥,y for all
1,7 € Z. In particular, each ¥; is an I'y-module. <

Suppose that A is a filtered ring such that gr' (A) is a commutative Noetherian
ring. A filtration ¥ of a left A-module M is a good filtration if the associated graded
module gr*(M) := @,.,, Xi/%i—1 is finitely generated over gr' (A).

Under the former conditions, J.-E. Bjork proved in |Bj679, Chapter 2, Proposi-
tion 6.1] that A is both left and right Noetherian ring. Moreover, a left A-module M
has a good filtration if and only if M is finitely generated. If ¥ and ¥/ are two good
filtrations of M, then there are non-negative integers j and k such that X; C Xf,,
and X; C %;,; for every i. Thus the Krull dimension of the gr'(A)-module gr*(M)
does not depend on the choice of the good filtration ¥ of M. We call this number the
dimension of M and we denote it by d(M).

The next invariant plays an important role in this work.

Definition 6.4. Let A be an associative ring with identity. The grade j4(M) of a left
A-module M is defined by j4(M) := min {j > 0 : Ext’,(M, A) # 0}.

Remark 6.5. Every short exact sequence of A-modules 0 — L — M — N — 0
leads to an exact sequence 0 — Hom4 (N, A) — Homy (M, A) — Homy (L, A) —
Exty(N,A) — -+ — Extj(L,A) — Ext;""(N,4) — Ext}t'(M, A) — ---.
Hence j4(M) = min{ja(L), ja(N)} and ja(N) = min{ja(L),ja(M)}.

According to [MNM91], a filtered ring A is a ring of differentiable type if its
associated graded ring is a commutative Noetherian regular ring and all its maximal
graded ideals have the same height. For example, if R is a differentiable admissible
k-algebra, then Zg/ is a ring of differentiable type (see [NB13, Theorem 2.12]).

Let A be a ring of differentiable type and M be a non-zero finitely generated
left or right A-module. Z. Mebkhout and L. Narvaez-Macarro proved in [MNMO1,
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Théoréme 1.2.2] that
d(M) + ja(M) = dim(gr* (A)). (6.2)

In particular,

d(M) > dim(gr" (A)) — gl. dim(A). (6.3)

Recall that a finitely generated left or right A-module M is said to be holonomic or to
be in the left or right Bernstein class when the equality holds in equation (6.3), this
is, d(M) = dim(gr’' (A)) — gl. dim(A).

In the special case when R is a differentiable admissible k-algebra, we already
observed that gr' (Zrk) = Rlyi, - .., yn]. Also gl.dim(Zg/x) = dim(R) = n by equa-
tion (6.1). Thus a finitely generated left or right 25 ,-module is holonomic if and only
if d(M) =dim(R[y1,...,yn]) —dim(R) =2n —n =n.

6.2 Quasi-holonomic Z-modules

For the remainder of this work, R is considered a differentiable admissible k-
algebra over a field k of characteristic zero and Krull dimension n and we denote by ¥
the ring Zgi, of k-linear differential operators on R.

For any Z-module M, we set 7(M) = inf {ju(N) : N is a Z-submodule of M}.
If proj. dim(M) is the projective dimension of M, then proj.dim(M) < gl. dim(Z) = n.

We recall the following property appearing in [CE56, Chapter VI, exercise 9. It
allows us to conclude that 7(M) < n.

Lemma 6.6. Let A be an associative ring and M be a non-zero finitely generated

left A-module. Suppose that A is Noetherian and M has finite projective dimension
proj. dim 4 (M) = r. Then Ext’y (M, A) # 0. In particular, ja(M) <.

Proof. Since proj.dim 4(M) = r, Ext’;"* (M, G) = 0 for every left A-module G. More-
over, there exists a left A-module N such that Ext”,(M, N) # 0. For this module there
are left A-modules I’ and L such that F'is free and the sequence 0 - L — F — N — 0

is exact. This sequence induces a long exact sequence
oo — Exty (M, F) — Ext’, (M, N) — Ext’;*"(M, L) — Ext"\""(M, F) — - -

As Ext’;" (M, L) = 0 and Ext’y(M, N) # 0, we have that Ext’,(M, F) # 0.
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Now we write F' = @A and since A is Noetherian and M is finitely gener-

AEA
ated, we have that Ext,(M,F) = Eth(M,@A) = @Extz(M, A). Therefore,
AeA AEA
Exty (M, A) # 0 and ja(M) <. O

The Z-modules M such that 7(M) is maximal are of special importance in our

work.
Definition 6.7. A left Z-module M is quasi-holonomic if 7(M) = n.

Remark 6.8. Note that a Z-module M is holonomic if and only it is finitely generated
and quasi-holonomic. In fact, if M is holonomic, then every non-zero submodule N of
M is holonomic. Thus d(N) = n and hence j4(NN) = n by equation (6.2). Therefore
7(M) = n. Conversely, if 7(M) = n, then j,(M) > n. On the other hand, Lemma 6.6
implies that ju(M) < n. Therefore, j4(M) = n. By equation (6.2) we have that
d(M) = n.

Remark 6.9. Every holonomic Z-module is Artinian. Furthermore, every holonomic
Z-module has finite length by [MNMO91, Proposition 1.2.5]. On the other hand, if 7 is
a simple ring (e.g., if Z = R(0y,...,0,), where R = k[xq,...,x,]) or R = k[[xq, ..., x,]]
or R=C{zy,...,2,} and 0, ..., 0, are the usual derivations over R), every holonomic
Z-module is cyclic. This is a consequence of the following result due to J. T. Stafford:
if A is a simple ring of infinite length as a left A-module, then every left A-module with
a finite length is cyclic (see |Bjo79, Chapter 1, Theorem 8.18|). Consequently, if M is
a quasi-holonomic Z-module, then M is locally Artinian, i.e., every finitely generated
submodule of M is Artinian. Moreover, if & is a simple ring, M is locally cyclic, that

is, every finitely generated submodule of M is cyclic.
We readily get the following consequence from Remark 6.5.

Lemma 6.10. The class T of quasi-holonomic Z-modules is a full subcategory of
the category of P-modules closed under the following operations: taking submodules,

quotients and extensions.

The class T' is also closed for inductive limits. More precisely,

Theorem 6.11. Suppose that { My, \ € A} is an inductive system of quasi-holonomic

D -modules and consider M := ligM,\. Then M is quasi-holonomic.
AEA

Proof. Set M’ = @MA. Since M is a quotient of M’, it is enough to prove that

AEA
M’ is quasi-holonomic by Lemma 6.10. For this, consider A\g € A and the canonical

injection 2y : My, — M'. We set My := im 1, then M, is a quasi-holonomic Z-module.
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In particular, ju(My) > n. Let us prove at first instance that ju(N) > n for every
submodule N of M’ such that My C N. Then N/My = @D My, where A’ = A — {Xo}.

AEN
On the other hand, jz(M,) > n for each A € A’. This implies that Ext’,(M,, 2) = 0

for all 0 <7 < n and for each A € A’. Since Ext%(@ M\, 2) = H Ext’, (M), 2) by
AeN/ AeN!
[Rot09, Theorem 7.13], we have that Ext’,(N/M,, &) = 0 for all 0 < i < n and thus

jo(N/My) > n. By Remark 6.5, jo(N) > n.

Now consider any submodule N of M’. As proved before, jo((N + My)/My) > n.
Hence ju(N/(N N My)) > n. Since N N M, is quasi-holonomic, ju(N N M) > n.
Therefore, we have that j»(N) > n for every submodule N of M’ by Remark 6.5.
Thus 7(M’) > n and consequently M’ is quasi-holonomic. O

Corollary 6.12. There is a quasi-holonomic Z-module M such that for every quasi-
holonomic P-module N there is a submodule L of MUND such that N — M(ND /L.

Proof. We select any set { M), A € A} of representatives of isomorphy classes of cyclic
submodules of quasi-holonomic Z-modules. Hence, for a quasi-holonomic module N

and m € N, there is A € A such that Im = M,. We set M := @M,\. Since each M)

AEA
is quasi-holonomic (even more, holonomic), M is quasi-holonomic by Theorem 6.11.

If ¢ is the sum map @990 — N = Z.@x and V = ker ¢, then N = @Qx/\/.
zeN zeN zeN
Since P& — M for each x € N, we have that N — MUND /L for some submodule L

of M. O

Let M be a left Z-module and consider an element m € M. Recall that m is a
torsion element if Anng(m) :={r € 2 : rm = 0} is a non-zero left ideal of 2. If every

element of M is torsion, then M is called a torsion module.

Proposition 6.13. Every quasi-holonomic P-module is a torsion module. Conversely,

if 9 has no zero-divisors and n = 1, then every torsion Z-module is quasi-holonomic.

Proof. Let M be a quasi-holonomic Z-module and m be a non-zero element of M.
Consider the map ¢ : 2 — M defined by ¢(r) = rm. If Anng(m) = ker¢ = 0, then
0=jy(2) = jy(imy) > n, which is a contradiction. Therefore, Anng(m) # 0.
Conversely, suppose that & has no zero-divisors and n = 1. Let a be a non-zero
element of 2. Then Homy (2 /Za, Z) = 0. Therefore j4(2/%a) > 1 and consequently
d(2/%a) = 1,i.e., Z/Pais holonomic. Now let M be a torsion Z-module and let N be
a finitely generated submodule of M. Suppose that N is generated by my, ..., m,. Since
M is torsion, for each j =1,...,r there exists 0 # a; € & such that a;m; = 0. Hence
Pm; is a quotient of Z/%a;. Thus each Zm; is holonomic. Since N is the sum of all
the Zm, it is holonomic. Finally, since every module is the inductive limit of its finitely

generated submodules, we have that M is quasi-holonomic by Theorem 6.11. [
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The ring R has a natural structure of Z-module. The action of each element of R
is by straightforward multiplication, whilst the action of each derivation § € Dery(R)
over an element f of Ris § - f = d(f). It is not hard to show that R is a holonomic

Z-module, whence torsion.

Proposition 6.14. If R is strong differentiable admissible and 2 is a simple ring,

then R is an irreducible Z-module. In this case,

R=9/Y 9D;
i=1
Proof. If I is a non-zero submodule of R, then the two-sided ideal a of & generated by
I coincides with . But  =anN R. Then I = YN R = R.
The element 1 € R is annihilated by Dy,...,D,. Hence the left ideal J of ¥
generated by Dy, ..., D, is contained in Anng(1). Conversely, consider P € Anngy(1).
Then P may be written in the form f + @, where Q € J and f € R. Thus

0=P-1=f-1=F.

Therefore P = Q € J. Consequently, J = Anng(1). Consider now the map of Z-
modules ¢ : Z — R defined by ¢(1) = 1. Since 0 # 1 € R and R is irreducible, ¢ is
surjective. On the other hand, ker = Anny(1) = J. Therefore, Z/J = R. ]

Proposition 6.15. Let M be a quasi-holonomic Z-module. Then the flat dimension
fd(M) of M is at most n. Furthermore, if fd(M) = n, then proj.dim(M) = n.

Proof. Let us assume first that M is finitely generated (hence holonomic by Re-
mark 6.8). If proj.dim(M) < n — 1, then Ext%, (M, 2) = 0. This contradicts the fact
that jo(M) = n. Therefore, proj. dim(M) > n. Since proj.dim(M) < gl. dim(Z) = n,
we have that proj.dim(M) = n. Since Z is Noetherian and M is finitely generated,
fd(M) = proj. dim(M) = n.

In general, M is the inductive limit of its finitely generated submodules, i.e.,

M = lig]\/[)\. On the other hand, if 0 — (F,), — -+ — (F1)x = (Fy)x — M, is a flat
A€
resolution of each M), then 0 — @(Fn)A — o = m(F)) — liﬂ(Fo))\ — lim M, is
xeA AeA AeA xeA
a flat resolution of M. Therefore fd(M) < n.

The last statement follows from fd(M) < proj. dim(M) < gl. dim(Z) = n. O

Quasi-holonomic Z-modules which are direct sums of holonomic Z-modules have
projective and flat dimension equal to n, because proj. dim(M)) = sup {proj. dim(M,)}
and fd(®M,) = sup {fd(M,)}.
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Now let S be a multiplicative subset of R. For any Z-module M, the R-module
S~'M has structure of Z-module in such a way that the natural map M — S~'M is a
homomorphism of Z-modules. In order to extend the action of 6 € Dery(R) to S~ M,

we define it by the usual quotient rule for differentiation, i.e.,

5.(@) _ from=0(f) -m

f f?
Remark 6.16. J.-E. Bjork proved in [Bj679, Chapter 3, Theorem 4.1| the non-trivial
result that the localisation by an element of a power series ring A = k[[x1,...,z,]] of

a holonomic Z,/,-module is also a holonomic %, /,-module. Later, Z. Mebkhout and
L. Narvaez-Macarro extended this result for strong differentiable admissible k-algebras
in [MNM91, Théoréme 3.2.1] and L. Nunez-Betancourt did the proper for differentiable
admissible k-algebras in [NB13, Corollary 3.12].

Now, let M be an R-module and let S be a multiplicative subset of R. In S we
define the following relation: given s,t € S, s <t if there is r € R such that t = rs. It
is not hard see that < is a partial order over S. With this order, S becomes a directed

set. For s < t, we consider the map ¢y, : My — M, defined by ¢, (%) = 5%, where

rm
t

t = rs. Then, {M,, ps;: My — M} is an inductive system of R-modules such that

@MS = S™'M in the category of R-modules with the natural R-homomorphisms
ses
is : My — S™'M as insertion morphisms.

The next result follows immediately from the constructions above.

Proposition 6.17. Suppose that M is a Z-module and that S is a multiplicative subset
of R. Then

(i) My is a Z-module for each s € S and for s <t, the map sy : Mg — M, is a
homomorphism of Z-modules. Moreover, {Ms, pss : My — M} is an inductive

system of Z-modules.

(11) For each s € S, the natural map iy : My — S™'M is a homomorphism of 9-
modules such that ligrlMs = S7'M s the inductive limit of the system above in
seS
the category of Z-modules.
Corollary 6.18. Let S be a multiplicative subset of R. If M is a quasi-holonomic

2D -module, then ST'M is a quasi-holonomic Z-module.

Proof. We shall see that M; is quasi-holonomic for all f € R. In fact, M = ling’\
where M? is a finitely generated Z-module for every A. Since localisation at f com-
mutes with inductive limits, we have that the R-modules M; and %ﬂM } are isomor-

phic. Therefore, using Proposition 6.17 they are also isomorphic as Z-modules. Thus
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My is a quasi-holonomic Z-module for every f € R by Theorem 6.11. The statement
follows by Proposition 6.17, (2) and Theorem 6.11. ]

6.3 Local cohomology and Bass numbers

Consider two families § C « of R and an R-module M. The cohomology modules
H! /B(M ) are defined by the right derived functors arising from the exact sequence of

R-modules

Ly(M) ———— Fo(M) —— Lo(M)/Tp(M) — 0.

See [Har66, pp. 219-221]. A functor .7 (—) is called a Lyubeznik functor (cf. [Lyu93,
1] and [NB13, Definition 4.1]) if it is a composition of cohomology functors or kernels

of the induced long exact sequence

L i i i 9 i Litl
Hi(=) —— Hys(=) —— Hg" (=)

(6.4)

Theorem 6.19. Let M be a Z-module and let o be a family of supports on Spec R.
Then the local cohomology modules H'. (M) all have the structure of P-modules. More-

over, if M is quasi-holonomic, then H' (M) is quasi-holonomic.

Proof. The i-th cohomology functor H' (—) is an additive functor for every i. Hence, by
[Lyu93, Example 2.1, (iii)|, H. (M) is a Z-module for every i. By Theorem 1.11 we have

that H' (M) = lim Hi(M) as R-modules. We claim that this is also an isomorphism
Ie(a)
of Z-modules. In fact, we have that H:(M) = H'(Cg(M)) as Z-modules, where f

is a set of generators of I and C§(M) is the Cech complex of M. The direct system
{H{(M), L1} reqqy Of f-modules is also a direct system of Z-modules because if 1 2 J,
then we can choose generators g of J and complete it to a set of generators g, f of I,
in which case the morphisms from Cg (M) to Cg(M) are given by projections. Hence
they are Z-homomorphisms. Thus ;7 is also a Z-homomorphism and this proves the

claim. From Theorem 6.11 we have the statement. O

Corollary 6.20. Let M be a P-module. Then (M) has a structure of Z-module.

Moreover, if M is quasi-holonomic, then (M) is quasi-holonomic.

Proof. 1t suffices to show the second statement for HQ/B(M), but this follows from the
exact sequence 0 — H(M)/kern* — H} 5(M) — im 0" — 0 which is induced
by equation (6.4). O
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Corollary 6.21. For every i, the local cohomology module H' (M) is a locally Artinian,
torsion 2-module. Moreover, if 9 is a simple ring, then H' (M) is a locally cyclic -

module.

Proof. This follows from Theorem 6.19, Remark 6.9 and Corollary 6.13. [

Before presenting our next results, we need the following statement.

Proposition 6.22. Let (R,m, K) be a local differentiable admissible k-algebra. If M
is a D-module, then R ®r M is a .@—module, where 9 = .@R/K. Moreover, if M is a

holonomic P-module, then R®@g M is a holonomic D-module.

Proof. By Theorem 6.2, we have that R = K{[[z1,...,2,]]. Therefore, if 0y,...,0,
are the usual derivations over K[[z1, ..., z,]], then 9 = K[z, ..., 2,]](01, ..., 9,) and
d; € Dery(R). Now we define the actions of the elements f € R and the derivations 9,
i =1,...,n over the elements g ®m of the R-module R®z M by f-(g@m) :== fg@m
and 0; - (g@m) :=0;(9) @®m + g ® J; - m.

Since 0; € Deri(R) and [0;, f] - (9@ m) = 0;(f) - (9 @m) for all i = 1,...,n
and for all f,g € R and m € M, the action can be extended to all elements of 2.
Consequently, R@p M is a Z-module.

On the other hand, by Theorem 6.2, Dery(R) = Derg(R). Thus Di = 9.
Consider now the map R @z M — -@R/k ®g M defined by f @ m +— f ®@m. It is not
hard to prove that this is an injective map of @R/k—modules. Since QR/k ®g M is a
holonomic Zj ,-module (see [MNM91, Remarque 2.2.5]), it follows that R ®p M is a

holonomic 9}% /k—module and the statement follows. O

Corollary 6.23. Let (R,m, K) be a local differentiable admissible k-algebra and M be
a P-module. Then inj. dimR(R ®QrM) < dimR(R ®prM). If M is holonomic, then the

set of associated primes of the R-module M 1is finite.

Proof. We have that R@RM is a Z-module by Proposition 6.22. Since the completion
R is the power series ring K [[x1, ..., 2,]], we obtain from [Lyu93, Theorem 2.4, (b)] that
inj. dimR(}? ®@r M) < dimR(R ®pr M). If M is holonomic, then R ®5 M is holonomic
by Proposition 6.22. Hence the set of associated primes of R ®p M as R-module is
finite by [Lyu93, Theorem 2.4, (c)|. Since every associated prime of the R-module M
is restriction of an associated prime of the R-module R®@p M , we have that the set of

associated primes of M as R-module is finite. O

Theorem 6.24. Let R be a differentiable admissible k-algebra and let M be a left
P -module.

(a) For any mazimal ideal m of R, HL (M) is an injective R-module.
(b) If dimgr(M) = 0, then M is an injective R-module.
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(¢) Suppose that M is a quasi-holonomic P-module. If N is a finitely generated

9 -submodule of M, then the set of associated primes of N is finite.

(d) Suppose that M is a holonomic Z-module. Then p'(m, M) is finite for every

mazimal ideal m and every 1.

Proof. (a) Note that HZ (M) is an injective R-module if and only if (HJ(M)), is an

injective R,-module for every maximal ideal n of R. Since (HL(M)), = HiRn (M,)
by Lemma 1.18, we can assume that R is local with maximal ideal m. Let R
be the completion of R with respect to m. Again, by Lemma 1.18, we have
that R @ Hi (M) = HiR(R ®@r M). Since HJ(M) is supported only at m,
R ®p Hi(M) = Hj(M). Therefore, H’ (R ®p M) = Hj(M). In view of
Proposition 6.22, R ®r M is a @E/K—module, where K = R/m and QR/K is the
ring of differential operators K|[zy,...,2,]](01,...,0,). Since the dimension of
HiR(R ®pr M) is zero, we have that Hi}?(é ®pr M) is a direct sum of copies
of Ex(R/mR) = Er(R/m) by |Lyu93, Proposition 2.3 and Theorem 2.4]. Hence
HiR(R®RM) is an injective R-module and HY (M) is also an injective R-module.

It suffices to show that M, is Ry-injective for every maximal ideal m of R. For
each maximal ideal m of R, we have that Suppy_(Mn) € {mRn}. Therefore,
H)p (My) = Tag,(Mn) = My and this implies that M, is an injective Ry-
module by (a). Thus the statement follows.

Let N be a finitely generated submodule of M. Since M is quasi-holonomic, we
have that N is holonomic by Remark 6.8. Now, the result follows from [NB13,
Lemma 4.3].

Let m be a maximal ideal of R. Then p'(m, M) = p'(mRy, My). Therefore,
we can assume that R is local and m is the maximal ideal of R. By part (a)
and [Lyu93, Lemma 1.4] we have that p‘(m, M) = p°(m, H: (M)). Therefore
it is sufficient to prove that p®(m, H.(M)) is finite. Let R be the completion
of R with respect to the maximal ideal m. Then R = K[[z1,...,2,]], where
K = R/m. By Lemma 1.18 we obtain that H' .(R®p M) = R®y H(M). But
R®g HL (M) = H! (M) because dimgr(H:(M)) = 0. We conclude in this way
that H' .(R®p M) = Hi(M) and p°(m, Hi(M)) = p°(mR, H! (R &g M)).
By Proposition 6.22, R @z M is a holonomic %-module. Hence Héqé(ﬁ ®@r M)
is holonomic. Therefore, p°(mR, H;R(R ®pg M)) is finite by [Lyu93, Theo-
rem 2.4, (d)] and the statement follows.

[

Corollary 6.25. Let R be a differentiable admissible k-algebra and M be a Z-module.
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(a) If dimg(T(M)) = 0, then T (M) is an injective R-module. In particular,
HI(T(M)) is an injective R-module for every j and every good family (a) of

R generated by mazimal ideals.

(b) Suppose that M is a quasi-holonomic P-module. If N is a finitely generated
D -submodule of 7 (M), then the set of associated primes of N is finite.

(¢) If M is quasi-holonomic, then every finitely generated 2-submodule of 7 (M) has

finite Bass numbers with respect to the maximal ideals.

Proof. Since .7 (M) is a Z-module, the first part of (a) follows from Theorem 6.24, (b).
The second statement follows from the first one by taking the Lyubeznik functor
T (=) = Hl 0 7(=) because dim(R/I) = 0 for every I € (a).

Since 7 (M) is quasi-holonomic by Corollary 6.20, item (b) follows directly from
Theorem 6.24, (c).

For (c), note that .7 (M) is quasi-holonomic because M is, hence every finitely
generated submodule of .7 (M) is holonomic. O
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Appendix



Appendix A

Complementary results

We show here a particular version of Grothendieck’s spectral sequences. This

proof is a suitable modification of the proof of [Rot09, Theorem 10.47].

Theorem A.1. Let A, B and C be three abelian categories, F: B —C and G: A — B
two additive functors. Suppose that A has enough injectives, B has enough projectives,
F' is right exact, G is contravariant and G(FE) is left F-acyclic for every injective object

E of A. Then, for every object A of A, there exists a first quadrant spectral sequence
By = (LyF)(LyG)(A) = (La(FG))(A).

Proof. We shall construct a double complex such that its iterated homology gives the
desired spectral sequence. Consider an injective resolution (E*(A),d*) = (E*,d");>o of
A and apply the contravariant functor G in order to obtain the complex (G(E"), 6;)i0
where 6; = G(d"™') : G(E') — G(E*™'). Next we construct a Cartan-FEilenberg projec-
tive resolution for this complex: for every non-negative integer p, there are two exact
sequences 0 — B, — Z, - H,(G(E*)) — 0 and 0 — Z, — G(E?) — B,_1 — 0 where
Z, = kerd, and B? = imd,,;. Take a projective resolution B, . of B, and another
projective resolution H, , of H,(G(E*)). Then we obtain projective resolutions, Z, , of
Zp and M, , of G(EP), and exact sequences of complexes 0 — By — Zps— H,, — 0
e0— Z,, = M,,— By_1 . — 0. Define chain maps d,, : M, ;, — M,_1 4 as composi-



tions My, , — Bp_14 — Zp—1,4 — Mp_14. In this way, the commutative diagram

Mz © M 12 ek Mo 0

My SV 11 ek Mo 0

My —2> Mg —2= My 0
0 0 0

is a projective resolution of the complex (G(E"),d;)i>0. Denote the associated double
complex by M. By calculating F'(M) we obtain the diagram
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Since M, . is a projective resolution of G(EP), we have that F'(M, ) is a complex such
that its ¢-th homology equals (L,F')(G(EP)). As G(EP) is left F-acyclic, we have that
(LyF)(G(EP)) = 0 for ¢ > 1. Now F is right exact. Then (LoF)(G(E?)) = FG(EP)
for each p. Thus the horizontal filtration of M generated a spectral sequence whose
second page has terms 'E2; = (L,(FG))(A) and 'E} = 0 when ¢ # 0. Hence this
spectral sequence collapses at ¢ = 0 and H,,(Tot(F(M))) = (L.(FG))(A).

It is time to calculate the second iterated homology: notice that

ker F'(d, )

Hy(F(M.,)) = — Fdgi1p)

We have thus a commutative diagram, being the row a complex,

F(v) F(m)
0 F(Zyp) F(Myp) — F(Bg-1p) 0
) IF(L)F(J')
F(Mq—l,p)

Since B,_;, is projective, the row is a split exact sequence. Now j¥¥ : B®P — Z9P ig
an inclusion and B?? is injective. Thus F(j) is injective. We also have that d = ¢y,
whence F'(d) = F(v)F(j)F(m). Since F(¢) and F(j) are monomorphisms, we have that
ker F'(d) = ker F(7) =im F(:) = F(¢)(F(Z)). Now

im F(d) = F(d)(F(M)) = F()FG)F(m)(F(M)) = F()F () (F(B)).

Again by the injectivity of F\(:) : F(Z) — F(M) and F(j) : F(B) — F(Z) we obtain
F(Z) o~ _FOUFE?Z)
FGFB) — FFG)(F(B))

an isomorphism

But % = coker F'(j) = F(H) because the sequence
F(5)

0

F(B) F(Z) —— F(H)

0

is exact as B is injective. Hence HY(F(M.,)) = F(H,,), this is, F' commutes with H,.
Now - -+ — H,1 — H, o — 01is a projective resolution of H,(G(E*)) = (L,G)(A) by the
construction of the Cartan-Eilenberg projective resolution and by the same reason we
have that H,(M.,) = H,,. Hence (H,(M,,)) is a projective resolution of (L,G)(A)
and the generic term of the second page of the spectral sequence generated by the
vertical filtration of F'(M) is

ME?, = HH,(F(M)) = Hy(F(H,(M))) = (L,F)(L,G)(A).

Since both filtrations converge to the homology of the total complex of F'(M), it follows
that (L,F)(L,G)(A) = L,(FG)(A). m
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Among other results envolving duality, C. Huneke proved in [Hun07] the next

statement. We write it just as it appears in [MZ14].

Lemma A.2. Let R be a Noetherian local ring and M, N be R-modules. The following

statements hold for every integer i:
(i) Extiz(N, MY) = Torf(N, M)".
(ii) If N is finitely generated, then Exth (N, M)V = Tor®(N, MV).
Proof. The first isomorphism follows from the adjoint isomorphism
Hompg(P ®r M, E) = Hompg(P, Homg(M, E))
while the second one follows from the natural transformation (4.1). O

The next result appears in [Sch07] and it displays a constructive proof of [Bou89,
Proposition 4, p. 263|.

Lemma A.3. Let R be a commutative Noetherian ring and M be a finitely generated

R-module. Consider a subset S = {p1,...,ps} of Ass(M) = {p1,...,p:} and a minimal
t

primary decomposition 0 = ﬂQpl for the zero submodule of M. If N = ﬂ Qyp, then
=1 pes

Ass(M/N) = S and Ass(N) = Ass(M) — S.

Proof. Since N = ﬂ @, is a minimal primary decomposition, we have that

pesS
Ass(M/N) = S.
Consider N’ = ﬂ Qp. Since NN N’ = 0, we have that N = (N + N’)/N’. Thus
pEAss(M)—-S

Ass(N) C Ass(M/N') = Ass(M) — S. It p € Ass(M) — S, then

0# N/(NNQy) = (N +Qp)/Qy

and Ass(N/(NNQ,)) = {p}. On the other hand, N N (), is part of a minimal primary
decomposition of the zero submodule of N. Hence p € Ass(N) as desired. O
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