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Abstract

We study two types of Neumann problem related to Capillary problem and to the
evolution of graphs under mean curvature flow in Riemannian manifolds endowed with
a Killing vector field. In particular, we prove the existence of Killing graphs with

prescribed mean curvature and prescribed boundary conditions.

Keywords: Neumann, Capillary, Mean curvature flow.
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Introduction

Capillarity phenomena happens whenever two materials are situated adjacent to
each other and do not mix. We use the term capillary surface to describe the free
interface that occurs when one of the materials is a liquid and the other a liquid or gas.

We can observe the capillarity phenomena in various places, some are simple,
others, such as the rise of liquid in a narrow tube, are more important and has been
studied since the 17th century by an Italian scientis Nicol6 Aggiunti. He wrote in his
booklet a first description of the observation of that problem [1].

The modern theory of capillarity starts in the beginning of the 19th century and
is mainly based on mathematical methods of calculus of variations, and on differential
geometry. But the initial mathematical insights were introduced by Thomas Young, a
medical physician and natural philosopher who in 1805 introduced the mathematical
concept of mean curvature H of a surface and who showed its importance for capillarity
by relating it to the pressure change across the surface |2|.

It was Laplace [3] that derived a formal mathematical expression for the mean

curvature H of a surface u(x,t),

Du
1+ |Dul?

The notion of mean curvature of a surface was introduced by T. Young (1805)

2H = divTu, where Tu=

and P. S. Laplace (1806) just for characterizing quantitatively the rise of liquid in a
narrow tube. The Laplace or Young-Laplace equation can be written as
1 1

P=co(— 4+ —
(7t 7)

where P is the pressure, o is the surface tension, R, and Ry are the two principal



radii of curvature, so for the height u of the surface above the level corresponding to
atmospheric pressure we have
1 1

1
Zhu=H(— + —

where k is a physical constant.

One of the reasons for studying capillary problems is that the problem of finding
a capillary surface is a purely geometric one, that is, to find a surface whose mean cur-
vature is a prescribed function of position and which meets prescribed rigid boundary
walls in a prescribed angle. That is if we assume that the surface can be described as

a graph of a function u over a domain 2 then we have

div(%):ku. in Q (1)
(N,v) =¢ on Of. (2)

Now a large number of the modern results on capillary surfaces are devoted to esta-
blishing the existence of solutions for the problem (1), (2). The first general result was
obtained only in 1973 using the variational approach [4].

Gauss unified the work of Young and Laplace in 1830, deriving both the differen-
tial equation and boundary conditions using Johann Bernoulli’s virtual work principles,
according to which the energy of a mechanical system in equilibrium is unvaried under
arbitrary virtual displacements consistent with the constraints [5]. We observe that,
the energy functional consists of a ’surface integral’ plus a 'volume integral’. Now the
problem is that the classical definition of surface area is rather inadequate for treating
this type of problem. A satisfactory theory of surface area for a general class of surfaces
of codimension one in R", n > 2, has been developed by E. De Giorgi in the fifties, and
then by M. Miranda, M. Giaquinta, E. Giusti, and others [6]-[9]. Independently the
ideas of geometric measure theory were developed by H. Fédérer, W. H. Fleming, F.
J. Almgren, W. K. Allard, and others, and have been used effectively by Jean Taylor
to consider boundary regularity for capillarity problems [10]-[14].

One of the problems that we will discuss in this thesis is the existence of solution
to the problem of capillarity

div(%) - <Z—3, %) — . (3)



Notice that equation (3.1) is the prescribed mean curvature equation for Killing graphs.
The first general existence results for constant mean curvature graphs in Riemannian
ambients as warped product spaces were treated in [15]. A general existence result
for solutions of the Dirichlet problem for this equation may be found in [16|. There
the authors used local perturbations of the Killing cylinders as barriers for obtaining
height and gradient estimates. However this kind of barrier is not suitable to obtain a
priori estimates for solutions of Neumann problems. For that reason we consider now
local perturbations of the graph itself adapted from the original Korevaar’s approach
in [17] and its extension by M. Calle e L. Shahriyari [18].

Solutions of mean curvature equations can also be constructed as stationary limits
of mean curvature flow with speed given by the difference of the actual and the desired
mean curvature.

We say that a hypersurface M; in a Riemannian manifold M is said to be evolving
by mean curvature flow if each point of the surface moves, in time and space, in the
direction of its unit normal N with speed equal to the mean curvature H at that point.
For example, round spheres in Euclidean space evolve under mean curvature flow while
concentrically shrinking inward until they collapse in finite time to a single point, the
common center of the spheres. Equivalently if one considers the mean curvature flow

of smooth family of immersions F; = F(-,t) : M" — M this is given by

9 Fp.1) = nH(F(p, )N(E(p, 1), 9(p.1) € M" x [0,7)
There are two approaches to the study of mean curvature flow. One may work di-
rectly with the immersions or if the hypersurfaces obey a graph condition, one may
study mean curvature flow with classical techniques by considering it as a quasilinear
parabolic partial differential equation.

Mean curvature flow is perhaps the most important geometric evolution equation
of submanifolds in Riemannian manifolds and has been studied for some time, at
least since 1956, when Mullins [19] considered a version of mean curvature flow in one
dimension, were he proposed mean curvature flow to model the formation of grain
boundaries in annealing metals. In 1978 Brakke 20| studied the mean curvature flow
of surfaces from the point of view of geometric measure theory.

For closed convex surfaces in R"™!, one result of great interest is that of Huisken
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[21]. There the author proves that under mean curvature flow, compact, initially convex
surfaces retain their convexity and becoming more and more spherical at the end of
the evolution. In [22] this was extended to general Riemannian manifolds under the
assumption that the initial hypersurface is sufficiently convex: Each principal curvature
A; of the initial surface has to be bounded below by a constant depending on the
curvature and the derivative of the curvature in the ambient manifold. The analogous
result for the one dimensional case, the curve shortening flow, was obtained by Gage
and Hamilton [23], [24], where it was proved that initially convex planar curves contract
to points. This was later generalised by Grayson [25],|26] for all closed embedded planar
curves. He proved that any embedded closed curve on a 2-surface of bounded geometry
will either smoothly contract to a point in finite time or converge to a geodesic in in
finite time.

In many contributions to the theory of mean curvature flow one assumes that M
is a smooth closed manifold. The reason is, that one key technique in mean curvature
flow (or more generally in the theory of parabolic geometric evolution equations) is
the application of the maximum principle. But even for complete non-compact subma-
nifolds there are powerful techniques, similar to the maximum principle, that can be
applied in some situations. In the complete case one of the most important tools is the
monotonicity formula found by Huisken [27], Ecker and Huisken [28] and Hamilton [29]
and that equally well applies to mean curvature flow in higher codimension. A local
monotonicity for evolving Riemannian manifolds has been found recently by Ecker,
Knopf, Ni and Topping [30].

The non-parametric mean curvature flow of graphs with either a ninety degree
contact angle or Dirichlet boundary condition on cylindrical domains has been studied
by Huisken [31] and there proves a long time existence and convergence to minimal
surfaces theorem. This was later generalised by Altschuler and Wu [32], where they
allow arbitrary contact angles at the fixed boundary for two dimensional graphs. This
in turn was also later generalised to arbitrary dimensions by Guan [33] in Euclidian
space, and Calle [18| in Riemannian manifolds. From the point of view of immersions
mean curvature flow with Dirichlet boundary data has been studied by Stone [34],[35]
in Euclidean space and Priwitzer in [36] in the setting of Riemannian manifolds.

In this thesis we study the following Neumann problem in Riemannian manifold
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related to the evolution of Killing graphs under mean curvature flow.

0X

Fri (nH — H)N, (4)
X(O’) = 19(“0(')7')’ (5)

with boundary condition
(N, v)]os, = ¢, (6)

As an application we prove the existence of Killing graphs with prescribed mean cur-
vature and prescribed boundary conditions. This problem is considered as a flow of
immersions which have also the property of being graphs. This will allow us to trans-
form the evolution equation for the immersion into that for a scalar function.

This equation is parabolic and quasilinear and standard theory guarantees that
the problem of solving (1.6)-(1.8) is reduced to obtaing a priori height and gradient
estimates for solutions the problem. This thesis is divided into four chapter as follows.

In Chapter 1 we give a brief explanation of the problems that we treat in this
thesis, namely, Capillary Problem and Mean Curvature Flow of Killing Graphs, both
with Neumann boundary conditions.

In Chapter 2 we present a set of theorems which concerns the theory parabolic,
including maximum principle and short time existence.

In Chapter 3 and Chapter 4 we will proof the Capillary Problem and Mean
Curvature Flow of Killing Graphs respectively.
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|Capitulo 1

The Problems

Let M be a (n + 1)-dimensional Riemannian manifold endowed with a Killing
vector field Y. Suppose that the distribution orthogonal to Y is of constant rank and
integrable. Given an integral leaf P of that distribution, let 2 C P be a bounded
domain with regular boundary I' = 9Q. Let ¢ : I x Q — M the flow generated by
Y with initial values in M, where I is a maximal interval of definition. In geometric
terms, the ambient manifold is a warped product M = P x1, 5 I where v = ¢/(Y,Y’).

Given T € [0, +00), let u : 2 x [0,T) — I be a smooth function. Fixed this nota-
tion, the Killing graph of u(-,t), t € [0,7), is the hypersurface ¥; C M parametrized
by the map

X(t,z) =0(u(z,t),z), x €l

Notice that this definition could be slightly more general if we suppose that the coor-
dinates of 2 € Q) change with the parameter ¢ € [0,T). To abolish this possibility is
equivalent to rule out tangential diffeomorphisms of €.

The Killing cylinder K over I' is by its turn defined by
K={d(s,x):sel, x eI} (1.1)

Let N be a unit normal vector field along >;. In what follows, we denote by H
the mean curvature of ¥; with respect to the orientation given by N.
The height function with respect to the leaf P is measured by the arc lenght

parameter ¢ of the flow lines of Y, that is,
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In this thesis we work with two types of problems. The first is a capillary problem.
We prove that there exist solutions for a non-parametric capillary problem in a wide
class of Riemannian manifolds endowed with a Killing vector field. In other terms, we
prove the existence of Killing graphs with prescribed mean curvature and prescribed
contact angle along its boundary. For the second type of problem we consider the mean
curvature flow of killing graphs with a Neumann boundary condition.

In what follows we present a brief presentation of the problems

1.1 Capillary problem

We formulate a capillary problem in this geometric context which model statio-
nary graphs under a gravity force whose intensity depends on the point in the space.

More precisely, given a gravitational potential ¥ € C**(Q2 x R) we define the functional

Alu] = /E (1+/OU/W\II(x,5(§))d§)dE. (1.2)

The volume element d¥ of ¥ is given by

1
—\/7 + |Vul?do,
N [Vl

where do is the volume element in P.
The first variation formula of this functional may be deduced as follows. Given
an arbitrary function v € C2°(§2) we compute
d 1 (Vu,Vv) 1
— Au+7v:/<—’—+—\lfx,ux v)ﬁdx
drlr=0 | | o \VY 7+ Ve VY (2, u())

= /Q (div(%%v) - div(%%)v + %\P(x, u(w))v) Vodx

- /Q (\%aw(%) - %@—J,%) - %m,u(x)))vﬁdx,

where y/odz is the volume element do expressed in terms of local coordinates in P.

The differential operators div and V are respectively the divergence and gradient in P
with respect to the metric induced from M.
We conclude that stationary functions satisfy the capillary-type equation

div(%) - <Z—3, %) _ (1.3)
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Notice that a Neumann boundary condition arises naturally from this variational set-

ting: given a C* function ® : K — (—1,1), we impose the following prescribed angle

condition
(N,v) =2 (1.4)
along 0%, where
1
N = W(vY — 9. Vu) (1.5)

is the unit normal vector field along ¥ satisfying (/V,Y) > 0 and v is the unit normal
vector field along K pointing inwards the Killing cylinder over (2.
Following [18] and [17] we suppose that the data ¥ and ® satisfy

i. U]+ |V <Cyin Q xR,
i (VU,Y)>8>0in Q xR,
iii. (V®,Y) <0,
iv. (1-®2) >4,

v. [P <Cs in K,

for some positive constants Cy, Cyp, 8 and 3, where V denotes the Riemannian connec-
tion in M. Assumption (i7) is classically referred to as the positive gravity condition.
Even in the Euclidean space, it seems to be an essential assumption in order to obtain
a priori height estimates. A very geometric discussion about this issue may be found
at [37]. Condition (éi7) is the same as in [18] and [17] since at those references N is
chosen in such a way that (IV,Y) > 0.

We will prove the following result

Theorem 1 Let Q be a bounded C** domain in P. Suppose that the ¥ € C1*(Q x R)
and ® € C**(K) with |®| < 1 satisfy conditions (1)-(v) above. Then there exists a
unique solution u € C**(Q) of the capillary problem (3.1)-(3.2).

We observe that ¥ = nH, where H is the mean curvature of ¥ calculated with
respect to N. Therefore Theorem 13 establishes the existence of Killing graphs with
prescribed mean curvature W and prescribed contact angle with K along the boundary.

Since the Riemannian product P x R corresponds to the particular case where v = 1,
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our result extends the main existence theorem in [18]. Space forms constitute other
important examples of the kind of warped products we are considering. In particular,
we encompass the case of Killing graphs over totally geodesic hypersurfaces in the

hyperbolic space H" 1.

1.2 Mean curvature flow

We will establish conditions for longtime existence of a prescribed mean curvature

flow of the form

0X
o = (nH —H)N, (1.6)
X(Ov) :19(“0()7)’ (17)

for given functions ug : Q — R and H : Q — R. In order to define boundary conditions
for the evolution problem (1.6) we consider a function ¢ € C*°(T") such that |¢] < g <
1 for some positive constant ¢y. Let v be the inward unit normal vector field along K.

We impose the following Neumann condition associated to (1.6)

(N,v)|os, = o, (1.8)

where (-, -) denotes the Riemannian metric in M.

Let x',...,2" be local coordinates in P. This system is augmented to be a
coordinate system in M by setting 2° = s, the flow parameter of Y. The tangent space
of ¥; at a point X (¢,z), x € Q, is spanned by the coordinate vector fields

0 0 0 0 0

X,— =9, — Ve = — i
oxt oxt tu 0x0 Ozt tu 00

(1.9)

X ‘X'
In terms of these coordinates the induced metric in ¥, is expressed in local components

by

1
gij = Uij + ;UZ‘U]‘, (110)
where v = ﬁ and o;; are the local components of the metric in P.

In order to compute the mean curvature of >J;, we fix N as the vector field

1
N = W(w-mvu), (1.11)

where Vu is the gradient of v in P and

W = /7 + |Vl (1.12)
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The second fundamental form of ¥; calculated with respect to this choice of normal

vector field has local components

_ 0
4y = (Vx, 2, Xz = ), (1.13)

where V denotes the covariant derivative in /. We then compute

_ 0 - 4
A5 = <VX*£Z_19*%7N> —I—(VX*%Ujﬁ*a O’N>
_ 3} 0
= (Vy, 6193 N) +ui(V,, 8193 )+ iV, 81980’N>
9 0
+ui,j(79*@,N> +uluj<v19 32 Vs *Or 5,00 V)

Hence using the fact that the maps z — (s, z) are isometries and that the hypersur-

faces defined by {J(s,z) : x € P}, s € I, are totally geodesic one concludes that

_ 0 1 _ 1 — 1
CLZ'J' = < aii @, —va + Ui<vai] Y, W’YY> + UJ <V%Y, W’}/Y>
1 _
+u; (Y, W’yY) + u;u; (VyY, —WVU).

It follows from Killing’s equation that

Wig Wi 7Yy U5 i Wil gk

= — e — o — —— 1.14
WTW T Wy W2y 2w A2 (1.14)
It turns out that a;; could be also expressed by

u'i'j 'LLl'
woow!

_ 0 Ui = 0 U
Y, —) — -2 — ) —
VY o) T W

(VyY, Vu). (1.15)

aij

Taking traces with respect to the induced metric one obtains the following expression

for the mean curvature H of the hypersurface 3,

coutwiNu 2+ |Vul? Vi
nH = <o”———)—”—— M VY 1.16
WWw/) w W3 < 27y ) (1.16)
Alternatively one has
- PN w2 Vul* -
ntt = (o - L0 by DD gy v, (1.17)
At this point we recall that
= 1,
and
— 1
Ty = 2V (1.19)
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what implies that

1

<va, Vu> = —(?WY, Y> = 2’)/2

(Vy, Vu). (1.20)

Using this one easily verifies that (1.16) may be written in divergence form as

div% — MLl/V(v% Vu) =nH. (1.21)
In fact we have
wiy 1 .1, 1,
()., = k= e vss = gy
It is worth to point out that (1.21) is equivalent to
div% - %(?YY, V) = n. (1.22)

We conclude that (1.6) may be written nonparametrically as

ou . Vu _
En = Wdlvw — WH —~v(VyY,Vu). (1.23)
Indeed it holds that
0X ou, 0 7 0 1 Ou

H-H—= (T2 Ny = (L, L Ty, Ly %
nH —H = {50 N = {5050 7w am = Wa

Using (1.16) one verifies that (1.23) is equivalent to

Ou P TR 27 + |Vu|? , Vy
5 ((Ij )um - T<Z’ Vu) — WH. (1.24)

We conclude that the Neumann problem (1.6)-(1.8) has the following nonparametric

form
up = (aff - “—“—j)u - (i b )7u CWH i Qx[0,T) (1.25)
Ww/) ™ \2y 22 ’
u(-,0) = up(-) in Qx{0} (1.26)
with boundary condition
(N,v)y =¢ on 0Qx][0,T). (1.27)

This boundary value problem describes the evolution of the Killing graph of the func-
tion wu(-,¢) by its mean curvature in the direction of the unit normal N with prescribed

contact angle at the boundary.
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The standard theory for quasilinear parabolic equations 48| guarantees that the
problem of solving (1.6)-(1.8) is reduced to obtaning a priori height and gradient
estimates for solutions to (4.4)-(4.6).

We will prove the following result

Theorem 2 There exists a unique solution u : Q x [0,00) — I to the problem (1.6)-
(1.8). Moreover, if = 0 and H = 0 the graphs ¥; converge to a minimal graph which
contacts the cylinder K orthogonally along its boundary.

Theorem 2 extends Theorem 1.1 in [31] as well as Theorem 2.4 in [33] and Theo-
rem 2.4 in [18] in a twofold way. The corresponding theorems in [31] and [33] concern
evolution of graphs in Euclidean space whereas [18] deals with the case of graphs in
Riemannian product spaces of the form P x R. Moreover those earlier results hold
only for the case when the prescribed mean curvature is H = 0. An existence result
for evolution of graphs in Euclidean space by the Gauss-Kronecker curvature under
Neumann boundary conditions is proved in [39]. We also mention that the Dirichlet

problem for the evolution of graphs in warped spaces is extensively studied in [38].
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Capitulo

Parabolic Theory

2.1 Maximum and comparison principles

The maximum principle is an important tool in the study of second order para-
bolic problems, in particular here for the study of mean curvature flow. In general the
maximum principle states that the maximum of a solution of a homogeneous linear or
quasilinear parabolic equation in a domain must occur on the boundary of that domain.
In fact, this maximum must occur on a special subset called the parabolic boundary.
The parabolic boundary includes the domain at initial time. The strong maximum
principle asserts that the solution is constant if the maximum occurs anywhere other
than on the parabolic boundary.

In this chapter we present a set of maximum principles for scalar functions which
satisfy a parabolic evolution equation on a bounded domain in a Riemannian manifold
(P™, o). We follow the PhD thesis of Valentina Mira [42] and Benjamin Lambert [43]
which were based on Lieberman [48] . The comparison and maximum principles will
be used to obtain interior estimates, and since we have a boundary value problem, the
estimates we give here will depend upon the boundary values.

Let Q0 C P™ be a domain with a smooth boundary 0€2. We define our parabolic

domain to be

Q=0Qx[0,7).

The parabolic boundary PQ is the union of the following three components: BQ =
Qx {0}, SQ = 00 (0,T) and CQ = Q2 x {0}. We denote an arbitrary point (z,¢) € O
by X.
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Consider the quasilinear operator P defined by

Pu = a"(z,Vu)u; + a(x, Vu) — uy,

for some u € C*'(Q)) where the coefficients are given by

g ) toyd
a’ =o" — UWUW (2.1)
and
1 1 i

in terms of the notation fixed in Chapter 1.

Notice that the coefficients do not depend explicitly on the variables t or u but
only implicitly through the terms involving Vu. This operator is parabolic in the sense
that the matrix a” is positive definite. Indeed, for any (x,p) € TQ and ¢ € T;P we

have

v
v+ [p]?

IC)? < a¥(z,p)G¢ < ICP,

We conclude that restricted to the points of the form (z, Vu) the extremal eigenvalues

are given by

v
Y vup

Hence P is parabolic in u. However, the ratio % =1+ ﬂly|Vu|2 is uniformly bounded if
and only if |Vu| is uniformly bounded in Q. This means that P is uniformly parabolic
in u if and only if Vu is uniformly bounded.

In order to prove a maximum principle we prove first a comparison principle as

follows.

Theorem 3 (Comparison principle) Let P be the quasilinear operator as above. Sup-
pose that there exists an increasing positive constant k such that a(x,p) + k(M)z is a
decreasing function of z on TQ x [—M, M] for any M > 0. If u and v are functions
in C2HQ\PQ) N C(Q) such that P is parabolic with respect to u or v, Pu > Puv in
Q\Pﬁ, and u < v in PQ, then u < v in Q.

Proof. We define w = (u — v)e*, where )\ is a constant to be chosen later. Let

M = max{sup |u|,sup|v|}. We have that v < v in PQ, then, w < 0 in PQ. Let
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Xo = (o, t9) be a point where w attains its first positive maximum. At this point, we

have,

Du—Dv=Dw=0
(D*u — D*v)eM = D*w < 0, and (2.3)

(u; — ve)eM + AMu — v)e™ = w; > 0.

Now let a = (X, u(Xp), Du(Xy)) and g = (Xo, v(Xo), Dv(Xy)), then

0

Lu(Xo) = Lv(Xo) = a”(a) D};(u — v) + (a(a) — a(B)) — 5

u—0).
It follows by (2.3) and the hypothesis on the existence of the constant k that
Pu(Xy) — Pv(Xo) < (k(M) + \)(u —v).
Now if we have u > v choosing A < —k(M) we conclude that
Pu(Xy) — Pv(Xy) <0,

which contradicts the hypothesis that Lu > Lv. So we cannot have an interior positive
maximum of w, which gives us u < v in Q.

O

The uniqueness of a solution for a parabolic boundary value problem follows

directly from the comparison principle above.

Corollary 4 (gm'queness) Suppose that P is as in Theorem 3 and that u and v belong

to CPHQ)NC(Q). If Pu= Pv in Q and u = v on P, then u = v in Q.

Now, we prove a maximum principle using the comparison principle above.

Theorem 5 (Mazimum Principle) Let P be a parabolic operator whose coefficients a*
and a do not depend on z. If Pu >0 n Q then

sup u < sup u.
Q PO

Proof. Let v = suppg u. Observe that Pv = 0 then Pu > 0 = Pv. And u < suppgu =
v in PQ. Tt follows by Theorem 3 that v < v in Q). Then supg u < v, this completes

the prove. O
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We will need the boundary point lemma of E. Hopf , which is normally referred
to as the Hopf Lemma. At a maximum point of a scalar function on a domain the
directional derivative towards that point is non-negative. If this point is a boundary
point and the scalar function satisfies a parabolic inequality, then the following result
gives us a strict sign on the derivative in a direction away from the boundary. Here we
prove a Hopf Lemma where the parabolic boundary is assumed to be at least C''. This

result can be found throughout the literature, for example in [44].

Lemma 6 (Hopf Lemma) Let Qbea space-time domain with C*-boundary in which u

s a solution of the parabolic inequality
Pu>0

where P 1s a quasilinear parabolic operator with smooth coefficients. Suppose that
Xo = (zo, 1) is a point on the boundary 00 where the mazimum value M of u occurs.
Assume that there exists a sphere through Xy whose interior lies entirely in Q and in
which u < M. Also suppose that the radial direction from the centre of the sphere to
X is not parallel to the times axis. Then if a% denotes any directional derivative away

from the boundary, we have

0
8—:j>0atX0.

Remark 7 In the proof we use a local system of coordinates and then we assimilate

the distance sphere to an Fuclidean sphere for sake of simplicity.

Proof. Observe that in X, any directional derivative of u in a direction pointing towards
the point X will be non-negative. So in order to obtain the strict sign we will consider
a perturbation of the solution u to which we apply the maximum principle.

Let S C Q the sphere that appear in the hypothesis, with boundary 99 and centre

at Xs = (x4, ts). Consider now another sphere K centered at X, and with boundary

OK and with radius smaller than | X, — X,|gnt1 = /|20 — 4|20 + [to — ts]2.

Now denote by C; and Cy the portion of 0K which is included in S, respectively
the portion of 05 included in K. We also add the end points of the arcs C; and C5 to
obtain a closed lens-shaped domais which we denote by D. Then we have

(i) u < M on Cy except at Xo. If S does not satisfy this then a slightly smaller
sphere osculating the boundary at X, will be contained in the interior of S, and so the

condition u < M will be satisfied everywhere on the arc Cs except the point Xj.
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(ii) u = M at Xy. It is because the hypothesis.
(iii) There exists a sufficiently small constant 2 > 0 such that v < M — p on Cj.
Since u < M everywhere in the interior of S and Cf is a closed subset of S.

Define the function

2 2
v(x,t) = e Nolgnir _ gmelXomKolgnia
and choose « large enough such that

Py(z,t) > 0 for all (x,t) on DUID.

Now, consider the function

w = U+ €v.

Observe that for every positive €, Pw = Pu + ePv > 0 everywhere in D. It follows by

(iii) that there exists an € so small that we have
w<M on C. (2.4)

Now v = 0 on 05, also on the arc Cy. This together with relation (i) gives

w<M on Cy except at X, (2.5)

and

w=™M at Xo. (2.6)

Applying the maximum principle for the function w and using (2.4), (2.5) and
(2.6) we conclude that the maximum of the function w occurs only at the boundary

point X. It follows that

for any outward pointing direction v of the set D. Denote by n the outer pointing

unit normal to the boundary 9Q at X,. We have that (v,n) > 0 since v is also
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outward pointing. Choose a coordinate system such that X, is the origin and let

r(X) =|X — Xi|gn+r1. We may rewrite v as

—or?  —alXo—Xs|2
U(;[‘)t) —e Y _¢ alXo S|Rn+1’

than we have

ov
aiL’i

ar2

= —2ax;e”

It follows that
ou

v
Using this and (2.7) we conclude that

= —2are " (v,) < 0.

ou
— >0 at X,.
ov 4 0

2.2 Short and longtime existence results

The Neumann problem (1.6)-(1.8) we stated in Chapter I may be rewritten as

follows
Pu=0 1in Q,
Mu=—¢ in SO, (2.8)
U= 1uUg Iin BQNCAQ.
where
Pu = (0’7 - %%)u” - (% + %W)WZUZ —WH —w (2.9)

and the boundary operator is given by

Mu= (N,—v) = <%7V>- (2.10)
We also assume that Mug = —¢ in C€ in order to have compatibility between the

boundary and initial value conditions.
The first step towards solving (2.8) is to show that a solution exists for a short
interval of time. After that we proof that given uniform bounds on |Vu| and u we have

a bound on |uls for some § € (1,2). This Holder norm will be defined in the sequel.
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Then, the short time existence, under the assumption that |uls is bounded implies the
existence of solutions for ¢ € [0, +00).

We now define the above mentioned Hélder space Hs and other further spaces and
norms needed for what follows. For a € (0, 1], we say that a real function f : Q>R
is Holder continuous at Xy with exponent « if the quantity

|f(X) = f(Xo)|
| X — Xo|*

[f}a;Xo = %llp
XeO\{Xo}

is finite. Here and from now on we are considering the following parabolic distance

between points X = (z,t) and Xy = (20, p):
| X — Xo| = max{d(z, x0),t — to}. (2.11)

If [f]1.x, is finite , we say that f is Lipschitz continuous at X,. Also it is easy to
see that if f is Holder continuous at a point, then it is also continuous there. If the
semi-norm

[zﬂa;ﬁ = SuH[f]a;Xo
XoeQ

is finite, we say that f is uniformly Holder continuous in Q. Finally, if f is differentiable
then it is Lipschitz.
We also define a kind of temporal Holder quotient

| f (o, 1) — [ (2o, o)
|t — t0|§

(f)pixo = sup { : (wo,t) € Q\{ (o, to)}}

with the corresponding semi-norm defined by

(Fpa = sup (f)ax,-

X()Eﬁ

Then for any a > 0 such that a = k+«, where k is a non-negative integer and « € (0, 1],

we can define

<f>a;§ - Z <V68ff>a+1,

|B]+2j=k—1

flaa= > [VPf],,

|8 +25=Fk
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flaa= > sup |V f]+ [flag + (Haa-

1B1+2i<k

We may verify that |f| defines a norm on H,(Q) = {f : @ = R;|f|. < oo} which
makes H,(€) a Banach space.

The smoothness of 92 C P" implies that given any sistem of local coordinates
(', ..., 2" 2™) which flatten out 9 locally, we may describe SO in terms of the

augmented coordinate system (z!,..., 2" 2" t) as a graph of the form
"= f(xt,. . 2" ),

for some function f € Hs(Q), where Q = B(0,r) x [0,e) € R*! x R, for some
r >0, > 0 and for any 6 > 1. In particular we conclude from the very definition that
the parabolic boundary PQ has Hj regularity, for any J € (1,2).

The proof of short time existence for quasilinear partial equations follows in two
steps. First we obtain the existence of a solution for an associated linear problem, and
then extend the existence to the quasilinear case through a fixed point argument.

Given € € (0,7), we denote Q. = {X = (z,t) € Q:t< ¢}. Then, fixed a function
u, we consider the linear problem

L, = a”(z, Vu)v; — (QLVQ + m> Vv, — v = H/y + [Vul?
in PQG,
Vv

v=1uy On BQE U CQE.

M,v = { vy=—¢ on SQ, (2.12)

Fixed ¢ € (1,2) and 0 € (1,0), denote By = 1 + |ug|g. Then define

S = {U & HQ(Q€>; |u|9 < BQ},
where € > 0 will be chosen later. We define the map J : & — Hy by declaring that
Ju = v if v is the solution of the problem (2.12). We claim that .J is well defined.
For that we use the next result which may be found in [48] and that yields a short
time solution for the linear problem (2.12) under some requirements on the boundary

and initial conditions as well as on the regularity of the parabolic boundary.
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Theorem 8 ([48], Th. 5.18). Given a linear parabolic operator of the form
Lv = @ (z)vy; + a'(z)v; — v

and the boundary operator

Nv = (Vv, §),

for a given vector field B, suppose that there exists o € (0, 1) such that PQ s Hs where
0 =2+ ag and that

o L is uniformly parabolic, that is, that there exists A\ and A so that
ACI? < a¢i¢; < AJ¢P
e there exist positive constants A e B such that |a"|,, < A, |@'|s, < B;

e there exist constants x > 0 and By > 0 such that (B,v) > x and |Bl11a, < Bix-

Then for all f € Hy,, ¢ € Hyro, and for any initial data ug € Hay o, () NC(Q) such

that Nug = —¢, there exists a unique solution v € Hoy,, of the problem

Lv=f in PQ,
Nv=—¢ on Sﬁ,
Vv =1y on BQ U CAQ.

and there is a constant C' determined only by A, B, By, Ci, n, a, 7, 6 and Q such that

’U’2+a S C(‘f‘ao + ‘¢|1+a0/X + |u0‘2+o¢0)'

Remark 9 Since

v
f=—.
Vo + [Vul?
it follows that
1
(B,v) = = 16l.

Vo + [Vl
Hence we fix p = 1 in the original notation of Theorem 5.18 in [?]. Now we observe

that if Vu is uniformly bounded by a constant Cy then we obtain we fix the constant R
in the statement of the Theorem 5.18 as

2R B infg vy infq
infoy — Rinfo Vv 2supgv? + supg | V7| supg v + C3

Then we obtain
2R+ 2Rsup|(a’,...,a")| < A

SINCE 1N OUTr Case
Y

Yo
v+ |Vul?
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and

i 1 1 ;
“(mﬁdw+ww97

and ¢ = 0.

To pass from the linear results to the quasilinear ones we need the following

Brouwer fixed point theorem. The proof can be found in [48].

Theorem 10 (Lieberman [48], 1996). Let S be a compact, convex subset of a Banach
space B and let J be a continuous map of S wnto itself. Then J has a fixed point.

Now we can state the result of short time existence for quasilinear problems.

Theorem 11 Under the hypothesis of the Theorem 2, there exists a positive constant
€ > 0 such that the problem (2.8) has a unique solution uw € Hyy, defined in €.

Proof. As we mentioned above, PQ, is Hy regular for any 0 € (1,2). We proceed with
the proof observing that the the gradient estimates we will obtain in the subsequent
chapters for the quasilinear problem are uniform in ﬁe (they are global in space, only
local in time). Using the classical work by Ladyzhenskaia and Uraltseva [40] we prove
that there exists a (locally defined) Holder exponent «q such that w is bounded in the
parabolic Holder norm with such exponent. The compactness of {2 and the fact that
e may be taken small enough imply that we may choose the same oy for the whole
domain §~26.

Hence given a prospective solution u of the quasilinear problem (2.8) there exists

Cy such that |u|14a, < Co. Hence if we define

4 (2) = ot — 2.13
a’(x) =0 +7+\Vu]2’ (2.13)
a’ =—4+ — v 2.14
#(2) Q%+2W+WW077 (214)

f(a) == H/7 + [Vul?, (2.15)

B(x) = ————. (2.16)
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we obtain constants A, B, B; and x depending on the H;,,, norm of u and on the
geometry of 2. Hence Theorem 8 implies that there exists a solution v € Hy,, to the
problem (2.12).

The same reasoning may be replicated starting with arbitrary functions u in the
set

S ={u € Hy() : |uly < Bo},

where 6 € (1,60) with § = 1 + ag chosen in such a way that Hy,,, C Hy continuously
for any 6 € (1,6 = 1 + ap). The time interval [0, €) will be chosen later.

We conclude that the map J : & — Hy is well-defined. In order to use the
Brouwer fixed point theorem, we have to prove that J map S into itself. For proving

this, we observe that the the Schauder-type estimate in Theorem 8 implies that
1 < |vls=14a0 < Clo|2400 < C, (2.17)

where C' comes from Theorem 8 and depends on all the inicial data and boundary
coefficients and also on C' = C(A, B,n,a, 0,7, Qe) < 00. In particular, we have v € Hy.

Now we will prove that v € S. Denoting 6 = 1 + a we have
|v — upleg = sup |V — Vug| + [V — Vugls + sup [v — ugl + (v — ug)11a-

The terms |V,v| and |v;| are estimated by C' since they are summands in the norm

|v|;. Then the first and third terms are controlled. Now since v(-,0) = uy we have
|Vu(x,t) — Vug(z)| = |[Vo(z,t) — Vo(z,0)] < Ce s,
where V indicates both space and time derivatives, and
lo(2,t) — up(z)| = |v(z, t) — v(z,0)] < Ce.
With respect to the last term it follows from |v|; < C that denoting g = v —ug we have

_ t R —a —o
(9)1+a = sup 9(z,5) ?ff ) < Csupls— 12" < Ce="

s#t ‘8 —t’T s#t

Finally observing that [Vu]i,q is estimated by |v]oiq and then by C' it results that

Voln=  sup V9K = Vo)

< Ce s,
xyen xzy (maxd(z,y),v/s —1)°
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We conclude that choosing € > 1 there exists C'= C(n) > 0 such that
|v —uple < cle=".
Then we choose € small enough in order to guarantee that
[vlg < |uole + |v — uole < |uole + CCe 2" < By.

We conclude that J maps S into itself and we can apply the Theorem 10, since the
set S is a ball in the function space Hg(ﬁé), and so a convex set. Then the map J has
a fixed point u, which is in Hj,,9—1) and which solves our quasilinear problem. This
completes the proof. O

Finally we have the following longtime existence theorem.

Theorem 12 Suppose that we have short-time existence to problem (2.8) and that
there exist constants § € (1,2) and Cs > 0 such that

luls < Cs

in the mazimal interval of definition. Then there exists a solution to (2.8) defined in
[0, +00).

Proof. Suppose that there exists a solution u to problem 2.8 defined in some maximal
open time interval [0, T') where T is finite. Then u satisfies L,u = 0 in (NZ, M,u = —¢ on
SQ and u = ug on BSY. Setting 0 = 1+« it follows that the estimate |u|s; < Cs implies
that there exists a € [0, 1) such that |a¥ (X, Vu)|, and |a(X, Vu)|, are bounded by a

constant depending on Cy. It follows by Theorem 8 that we have the uniform estimate
|U‘2+a < Cl(C§)|UO|2+a = Cg, for t € [O,T) (218)

Now, take a sequence of times t; — T, and define @;(-) = u(-, ;). Then the bound |uls
implies that there exists a subsequence, which by abuse of notation we also write ;,

such that
@; — @ uniformly as i — oo. (2.19)

Moreover, by (2.18) we have equicontinuity of V;i;, V?;ﬂi and u;; and taking subse-

quences we have

Vji; = Vi, Vi, — Vi and @, — G, (2.20)
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uniformly, where we define @, here to be a”(z, Va)u; j+a(z, Va).

Then we extend u to the interval [0, 7] by using @. The bound |u|s still holds by
the C? convergence of 1; to @, and so by the continuity of P and M we have that u is
a solution of (2.8) on [0, 7.

Now we will prove that @ € C?T%. Let x,y € €, for simplicity we denote by V?u
an arbitrary component V?ku. Using the uniform convergence of the second derivatives

we choose t sufficiently close to T' that
|V2ﬂ() - Vzu(at)| <e< d(l’7y)

Then
d(z, y)° = max{d(z,y), |T —t|z}o ~
due to the bound on [V?u, for t < T. Tt follows that |i]syq-

240y

Now we apply the short time existence theorem to (2.8) but with uy = @ and get

a solution 7 in ).. Then we define

u(x,t) for (z,t) € Q x [0,7T]

w(z,t) = { w(x,t —=T) for (z,t) € QA x [T, T + €.

We have that u(-, s) — u:(0) as s — T, then w is twice differentiable in space and once
differentiable in time and satisfies Pw = 0 and Mw = —¢. Moreover, by the strong
maximum principle it is the unique solution Lw = 0 and by Theorem 8 it follows that
w € H***(Qr,.). And this contradicts the definition of 7. This completes the proof.
O
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|Capitulo 3

Capillary Problem

Consider the capillary equation

. (Vu Vv Vu
(T (VY i
() (5237 (3.1)
Given a C** function ® : K — (—1,1), we will impose the following prescribed angle
condition
(N,v) =7 (3.2)
along 0%, where
1
N = W(WY — 9. Vu) (3.3)

is the unit normal vector field along ¥ satisfying (V,Y) > 0 and v is the unit normal
vector field along K pointing inwards the Killing cylinder over €2.
Equation (3.1) is the prescribed mean curvature equation for Killing graphs.

We suppose that the data ¥ and & satisfy
i |0+ |V <Cyin Q xR,
ii. (VI,Y)>p>0inQ xR,
iii. (V®,Y) <0,
iv. (1-®2)>p,
v. [P <Cs in K,

for some positive constants Cy, Cy, 8 and B’, where V denotes the Riemannian con-

nection in M.

The main result in this chapter is the following one
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Theorem 13 Let ) be a bounded C** domain in P. Suppose that the ¥ € C1*(Q xR)
and ® € C**(K) with |®| < 1 satisfy conditions (i)-(v) above. Then there erists a
unique solution u € C**(Q) of the capillary problem (3.1)-(3.2).

We will use the classical Continuity Method to (3.1)-(3.2) for proving the existence
of result. So we need a prior: height estimates and a interior and boundary gradient

estimates.

3.1 Height estimates

In this section, we use a technique developed by N. Uraltseva [41] (see also [40]
and [45] for classical references on the subject) in order to obtain a height estimate
for solutions of the capillary problem (3.1)-(3.2). This estimate requires the positive

gravity assumption (i7) stated in the Introduction.

Proposition 14 Denote

B = inf (VI,Y) (3.4)
and
p = sup ¥(z,0). (3.5)
Q

Suppose that > 0. Then any solution u of (3.1)-(3.2) satisfies

supg [V

u(z)] < Tl Y] B (3.6)

for all z € Q.

Proof. Fix an arbitrary real number k£ with
ks SWo [Yp
infq |Y| 8
Suppose that the superlevel set
Qe ={x € Q:u(x) >k}

has a nonzero Lebesgue measure. Define uy : 2 — R as

u(z) = max{u(z) — k, 0}.
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From the variational formulation we have

1 (Vu, Vuy) 1

o= [ (G A

However

U(x,u(z)) = ¥(x,0) +/ aa—‘fds > —p+ Pu(x).

Since ‘/W:Y < 1 we conclude that

%] = |€0%] — (u=k)+6 | —=ulu—Fk) <0

1 1

Hence we have

It follows that

Bkinf |Y| | (u—Fk) <psup|Y| [ (u—k)
0 O Q Qe
Since |Q| # 0 we have
supg Y]
- HlfQ |Y‘ B7

what contradicts the choice of k. We conclude that [Q| = 0 for all k£ > S;?g“;‘ 5. This

implies that
(z) < Mﬁ’
infq |Y]| 8
for all x € Q. A lower estimate may be deduced in a similar way. This finishes the

proof of the Proposition. 0

Remark 15 The construction of geometric barriers similar to those ones in [37] is also
possible at least in the case where P is endowed with a rotationally invariant metric

and Q is contained in a normal neighborhood of a pole of P.
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3.2 Gradient estimates
Let ' be a subset of Q and define
YW ={d(u(z),z):z€eQ}CX (3.7)

be the graph of u|q.. Let O be an open subset in M containing ¥'. We consider a vector
field Z € T(T M) with bounded C? norm and supported in O. Hence there exists ¢ > 0
such that the local flow = : (—¢,¢) X O — M generated by Z is well-defined. We also

suppose that
(Z(y),v(y)) =0, (3.8)

for any y € K N Q. This implies that the flow line of Z passing through a point
y € KN QO is entirely contained in K.
We define a variation of X by a one-parameter family of hypersurfaces ¥, 7 €

(—¢,¢), parameterized by X, : Q — M where

X, () = Z(r, 9 (u(x),x)), =z €l (3.9)

It follows from the Implicit Function Theorem that there exists 2, C P and u, : Q, —
R such that ¥, is the graph of u,. Moreover, (3.8) implies that the Q, C €.

Hence given a point y € X, denote y, = Z(7,y) € 3,. It follows that there exists
z, € Q. such that y, = J(u,(z,),x,;). Then we denote by ¢, = d(u(z,),z,) the point
in Y in the flow line of Y passing through y,. The vertical separation between v, and

> is by definition the function s(y,7) = u,(z,) — u(z,).

Lemma 16 For any 7 € (—¢,¢), let A, and H, be, respectively, the Weingarten map
and the mean curvature of the hypersurface X calculated with respect to the unit normal
vector field N, along ¥, which satisfies (N,,Y) > 0. Denote H = Hy and A = Ay. If
e C™®0) and T e I'(TO) are defined by

Z =(N; +T (3.10)
with (T, N;) = 0 then
i 8¢ _, = (Z, N)W.
ii. VzN|__,=—AT —V*(
iii. 92| _ = AsC+ (JA]® + Ricy (N, N))¢ + (VV, Z),
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where W = (Y, N;)™' = (v + |Vu,|?)"2. The operators V> and As are, respectively,
the intrinsic gradient operator and the Laplace-Beltrami operator in Y with respect
to the induced metric. Moreover, ¥V and Ricy; denote, respectively, the Riemannian

covariant derivative and the Ricci tensor in M.

Proof. (i) Let (x'); a set of local coordinates in  C P. Differentiating (3.9) with

respect to 7 we obtain
0
Xev=—=Z|x, =(N. +T
or
On the other hand differentiating both sides of

X (x) = dur(xr), )

with respect to 7 we have

9, ou,  Ou, Ozt ozt 0

XT*E a <(97' + oxt Ot >19*Y+ or ﬁ*ﬁxi
ou, ozt 0  Ou,

= G0+ 5 (Ve + 5 0Y)

Since the term between parenthesis after the second equality is a tangent vector field

in X, we conclude that

ou, 0
8’7— <Y7 NT) — <XT*§7NT> —C
from what follows that
ou,
or W
and
0s 0 ou,
or ~artr W= g =W

(ii) Now we have

<vZNT7X*a’£> = _<NT7 vZ—‘)(>i<al> == _<NT7vX*aZZ> = _<NT7vX*8Z<CN + T>>
= _<N7'7 v)(*(3111> - <NTva*aiCNT> = _<ATT7 X*az> - <VZC7X*61>7

for any 1 <i < n. It follows that

V4N = —AT — V(.
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(iii) This is a well-known formula whose proof may be found at a number of references

(see, for instance, [46]). O

For further reference, we point out that the Comparison Principle [45] when
applied to (3.1)-(3.2) may be stated in geometric terms as follows. Fixed 7, let z € {/

be a point of maximal vertical separation s(-,7). If z is an interior point we have
Vu,(x,7) — Vu(z) = Vs(z,7) =0,

what implies that the graphs of the functions u, and u + s(z,7) are tangent at their
common point y, = ¥(u,(x),x). Since the graph of u + s(x,7) is obtained from X
only by a translation along the flow lines of Y we conclude that the mean curvature of
these two graphs are the same at corresponding points. Since the graph of u + s(z, T)

is locally above the graph of u, we conclude that
H(gr) = Hr(y-). (3.11)
If z € 002 C 0FY we have
(Vu,, V)|, — (Vu,v)|, = (Vs,v) <0
since v points toward (2. This implies that

<N7 I/>|y7’ > <N7 V>|Z?r (3'12)

3.2.1 Interior gradient estimate

Proposition 17 Let Br(zg) C Q where R < injP. Then there exists a constant C' > 0
depending on 3, Cy, 2 and K such that

RQ

<(C—am—->— 1
IWMM_CW_@@y (3.13)
where d = dist(xg, ) in P.
Proof. Fix ' = Bgr(x) C Q. We consider the vector field Z given by
Z = (N, (3.14)

where ( is a function to be defined later. Fixed 7 € [0,¢), let © € Bgr(zo) be a point

where the vertical separation s(-,7) attains a maximum value.
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If y = J(u(z), z) it follows that

H,(y.) — Ho(y) = a;f T o). (3.15)

However the Comparison Principle implies that Hy(y,) > H,(y,). Using Lemma 16

(7i1) we conclude that

OH,

87' 7=0

Ho(y-) — Holy) = 7+ 0(7) = (AsC + |[APC + Riea (N, N)Q)T + o(7).

Since ¢, = V(—s(y, 1), y,) we have

di, _ds 0 Oy, 0 ds dy, s
F R S

Hence using Lemma 16 (7) and (3.14) we have

dij,
dr 7=0

= (WY +(N. (3.17)

On the other hand for each 7 € (—¢,¢) there exists a smooth & : (—¢,e) — T'M such
that

QT = €XPy g(T)

Hence we have

dj, ,
L ()

dr lr=0

With a slight abuse of notation we denote W (s, z) by U(y) where y = ¥(s, x). It results
that

Ho(97)—Ho(y) = ¥ (2, u(z,)) =V (7, u(r)) = ¥(exp, &) —V(y) = <@\Il\y,5/(0))7'+0(7').

However

(VU,€(0)) = (VI,N —WY) = —gw‘g—f + ((VU, N). (3.18)

We conclude that

—CW%T + ((VU, N)T + o(7) > (As + |A|*¢ + Rica (N, N)O)T + o(7).

Suppose that -
- C+ |V

(3.19)
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for a constant C' > 0 to be chosen later. Hence we have
(AxC + Ricpy (N, N)O) T+ CCT < o(T).

Following [18] and [17] we choose

d2
¢(=1- T
where d = dist(zy, -). It follows that
2d
s =
and
2d 2
A = —ﬁAzd - §|Vzd|2

However using the fact that P is totally geodesic and that [V, Vd] = 0 we have

Asd = Ayd — (VyVd,N) +nH(Vd,N)

= Apd — (V5. Vd, %) — XY, NY2(VyVd,Y) +nH(Vd,N)

Let m: M — P the projection defined by 7(¥(s,x)) = x. Then

N =
m W

We denote
N+t =7n.N — (n,N,Vd)Vd.

If A; and H, denote, respectively, the Weingarten map and the mean curvature of the

geodesic ball By(zg) in P we conclude that
Asd = nHg — (Ag(m N©), 7N + (Y, NY?k + nH(Vd, N).

where

k= —y(VyVd,Y)

is the principal curvature of the Kiling cylinder over By(xg) relative to the principal

direction Y. Therefore we have

|Axd| < Ci(Cy, sup (Hq+ k), sup 7)

Br(zo) Br(zo)



3.2 Gradient estimates 43

in Bgr(xo). Hence setting

Cy = sup Ricyy

Br(z0)
we fix
C = max{2(C} + Cy), sup |[V¥|}. (3.20)
RxQ
With this choice we conclude that
cc< 20
T
a contradiction. This implies that
— |V
W(z) < c-|ve (3.21)
s
However
()W (2) +o(r) = s(X(2),7) < s(X(2),7) = ((x)W(x) + of7),
for any z € Bgr(x). It follows that
R? — d?(2) R? C —|VY| ~ R?
< — = < <(U——"——
W(z) < 7 dQ(x)W(x) +o(1) < =0 3 +o(r) < C’R2 — @)
for very small € > 0. This finishes the proof of the proposition. 0

Remark 18 If ) satisfies the interior sphere condition for a uniform radius R > 0 we

conclude that

W(z) < (3.22)

dr(z)’
for x € Q, where dp(x) = dist(z,I").

3.2.2 Boundary gradient estimates

Now we establish boundary gradient estimates using other local perturbation of

the graph which this time has also tangential components.

Proposition 19 Let zg € P and R > 0 such that 3R < injP. Denote by ) the subdo-
main LN Bag(xg). Then there exists a positive constant C = C(R, 3,8, Cy,Cs,2, K)
such that

Wi(z) <C, (3.23)

for all x € Q.
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Proof. Now we consider the subdomain €' = Q N Bg(zg). We define
Z =N + X, (3.24)

where

N = aov + aydr

and «ap and o are positive constants to be chosen and dr is a smooth extension of the

distance function dist(-,I") to ' with |Vdr| < 1 and
v=4R* - &*,
where d = dist(zy, ). Moreover
X = P (vv — drVw).
In this case we have
(=n+(X,N) =+ ardr + ag®(v(N,v) — dr(N, Vv)).

Fixed 7 € [0,¢), let z € ' be a point where the maximal vertical separation between
Y and ¥, is attained. We first suppose that = € int(9§2 N JN). In this case denoting
yr = Uu.(z),z) € X; and g, = J(u(z),z) € X it follows from the Comparison
Principle that

(Nrs )y = (N, v)lg, (3.25)

Notice that g, € 0%. Moreover since Z|xno is tangent to K there exists y € 0% such

that
y=Z(=7yr).
We claim that
(V(N,,v), %L:O)y < (1 —®?) + Cay (3.26)

for some positive constant C' = C(Co, K, R).
Hence (3.2) implies that

i _d,
(N, )], — (N, V)], = (9r) — D(y) = 7(VO, E‘T=0> +o(7).

Therefore

djr

dT ‘T=0>

<N7V>|yr_<N7V>|yZT<v(I)7 +O(T)'
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On the other hand we have

= dy-
<N7 V>|yr - <N? V>|y = T<V<N7 >a d_T}T:0> + O(T)
We conclude that
— d@/r — dgf
PO L] ) 2 r(90, L] )+ o)
Hence we have
dj,

a1 (1 — &7 + Cayr > 7(VP, - |T:0> + o(T).

It follows from (3.16) that
a1(1 — %) + Cay > —CW(VD,Y) + ((V®, N) + o(1) /7.

Since

(VO,Y) :g—q) <0

s
we conclude that

Wi(x) < C(Cs, B, K,Q,R). (3.27)
We now prove the claim. For that, observe that Lemma 16 (i¢) implies that

0
(N, = (N}l = 75| (Vo0 + ()

= T({N, Vzv)l, — (AT + V*(,v)|,) + o(7).
Since Z|, € T, K it follows that
(N, )y, = (N.v)ly = =T((Ax Z, N)|, + (AT + V¢, v)],) + o(7),

where Ay is the Weingarten map of K with respect to v. We conclude that

—H(ARZ Ny + AT+ VC0]) = 790, Do) o) (328)

where

v' =v—(N,V)N.

We have

(VEC+ AT, V) = ag(Vu, vh) + aq (VZdp, V7)) + (VE(X, N), ) + (AT, V7).
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We compute
(V(X,N),v") = ap(v(N,v) — dr(N, Vo) (V®,v7)
+ao®((Vo, v" (N, v) + v({(V,rN,v) + (N, V,rv)) — (Vdr,v")(N, Vv)
—dr({(V,rN, V) + (N, V,rV0))).
Hence we have at y that
(VE(X,N),v") = ag(v® — dr(N, Vo)) (Vo 1)
+ao® ((Vv, )@ + v(—(Av", V") + (N, V,v) — (N, v)(N, V)
— (v, V)N, Vo) — dr(—(Av", Vo) + (N, V,Vv) — (N,v){N,V V).
Therefore we have
(V¥ (X, N),v") = ap(v® — dp(N, Vo)) (VO, T
+ao® ((Vo, )@ — v((Av", ") + (N, v) (N, V1))
— (v, vV (N, Vo) + dr((AV7, Vo) — (N, V, V) + (N, v)(N, VN V0))).
Tt follows that
(VEC+ AT, V") = (AT, V7)) + ao(Vu, v + ay (v, v7)
+ag(v® — dp(N, Vo)) (VP, T
+ao®((Vo,v")® — v((Av",v") + (N, v) (N, V)
—(v, ") (N, Vo) + dr((Av", Vv) — (N, V, Vo) + (N, v)(N, VyV0))).
However
(AT, V") = (AvT) X)) = ap®@u(AvT, vT) — ap®dr(AvT, Vo).
Hence we have
(VEC 4+ AT, ") = ag(Vo, v") + oy (v, v7) + ap(v® — dp (N, Vo) (V D, vT)
+ao®((Vo,v")® — v®(N, Vyv) — (v, ) (N, Vo)
—dr((N,V,Vv) — (N,v)(N,VyV0))).
Since dr(y) = 0 we have

(V¢ + AT, V") = ao(Vo, ") + ay (v, ") + agu®(V e, vT)

+ao®((Vo,v")® — v® (N, Vyv) — (v, )(N, Vv)).
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Rearranging terms we obtain

(VC+ AT, V") = ay (1 — (N, 1)) + ag(Vu, v (1 4 &2) + agu®(Ve, 1T

—ap® (v(N, Vyv) + (1 — (N, v)*)(N, Vv)).
Therefore there exists a constant C' = C(®, K, {2, R) such that
(VZ¢+ AT, v")| < ay(1 — @2) + Cay. (3.29)
Since dr(y) = 0 it holds that
(A Z, )| = |Ax||Z] < |Ak|(n+ |X]) < AR%a0| Ax|(1 + ®)

from what we conclude that

dy,
dr

for some constant CN’(C’q), K,Q,R) > 0.

[(V(N-,v),

| < au(1— %)+ Cag (3.30)

Now we suppose that x € 9 N Q. In this case, we have v(x) = 0. Then n = a;dr
and

X = —apPdrVou

at x. Thus
¢=n+(X,N) = adr + 200®ddr(Vd, N).

Moreover we have

C
Wiw) < - @
(see Remark 18). Tt follows that
(W < C(ag +200Pd(Vd, N)) < C(ay + 4R ®). (3.31)
We conclude that
W(z) < C(Cs, K,Q, R). (3.32)

Now we consider the case when x € QN . In this case we have

Asx( = apAxv + a1 Asdr + apAs®(v(N,v) — dr(N, Vo))

+ap®(Asv(N,v) + vAs(N,v) + 2(V=0, V¥(N,v)) — Asdr(N, Vv) — drAx(N, Vo)
—2(V*dyp, V*(N, Vv))
+200(VE®, VZ0(N, v) + vVZ(N,v) — VZdr(N, Vo) — drVZ(N, Vv))
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Notice that given an arbitrary vector field U along ¥ we have
<VE<N7 U>a V> = _<AUT7 V) + <N7 ?VU%

for any V € T(T'Y). Here, UT denotes the tangential component of U. Hence using

Codazzi’s equation we obtain
As(N,U) < (V(nH),U") + Ricy (U, N) + C|A]
for a constant C' depending on VU and V2U. Hence using (3.1) we conclude that
As(N,U) < (VU UT) + C|A] (3.33)

where C is a positive constant depending on VU, V2U and Ricyy,.

We also have

AEdF - APdF + ’Y<vyvd, Y) - <vadF, N> + nH(?dF, N>

< GV +

where Cy and ' are positive constants depending on the second fundamental form of
the Killing cylinders over the equidistant sets dr = ¢ for small values of §. Similar
estimates also hold for Axd and then for Axv.
We conclude that
Ax¢ > —Cy — Cy|A], (3.34)

where Cy and C; are positive constants depending on Q, K, Ricyy, |®|s.
Now proceeding similarly as in the proof of Proposition 17, we observe that
Lemma 16 (7ii) and the Comparison Principle yield

OH,

5| Tt o(1) = (AsC + |A]’¢ + Ricy (N, N)O) T + 7(V¥, T) + o(7).

HO(@T) - HO(y) >

However
Hy(3),) — Ho(y) = (V¥|,, £'(0)7 + o(T).
Using (3.16) we have

(VU,£(0) = (VI, Z - (WY) = (VT¥, Z) — gwg—f.

We conclude that

_CWZ_fT + VU, N)T +0(1) > (AsC + |AP¢ + Ricy (N, N)O)T + o(7).
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Suppose that

C VA"
ws CENVY (3.35)
B
for a constant C' > 0 as in (3.20). Hence we have
(As¢ + |A]*¢ + Ricy (N, N)¢)T 4+ C¢T < o(7)
We conclude that
Gy 1A+ Gl + 0 < 2T
T
a contradiction. It follows from this contradiction that
YA/
W) < SV (3.36)

- B
Now, proceeding as in the end of the proof of Proposition 17, we use the estimate for

W (z) in each one of the three cases for obtaining a estimate for W in €. This finishes

the proof of the Proposition. O

3.3 Proof of the Theorem 13

We use the classical Continuity Method for proving Theorem 13. For details, we
refer the reader to [47] and [40]. For any 7 € [0, 1] we consider the Neumann boundary
problem N, of finding u € C*%(Q) such that

Flr,x,u, Vu, V*u] = 0, (3.37)
<%%Jo+7¢:o, (3.39)

where F is the quasilinear elliptic operator defined by

- (Vu Vy Vu
2 1 _ _ _
Flz,u, Vu, Vu] = le( W > ( > W ) — 7V, (3.39)

Since the coefficients of the first and second order terms do not depend on w it follows

that

oOF ov
—_— = 77— < — . .
90 T o0 = T8 <0 (3.40)

We define Z C [0,1] as the subset of values of 7 € [0,1] for which the Neumann
boundary problem A, has a solution. Since u = 0 is a solution for N, it follows that

Z # (. Moroever, the Implicit Function Theorem (see [45], Chapter 17) implies that
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7 is open in view of (3.40). Finally, the height and gradient a priori estimates we
obtained in Sections 3.1 and 3.2 are independent of 7 € [0,1]. This implies that (3.1)
is uniformly elliptic. Moreover, we may assure the existence of some oy € (0,1) for

which there there exists a constant C' > 0 independent of 7 such that
|UT‘1,ao,Q <C.

Redefine o« = «p. Thus, combining this fact, Schauder elliptic estimates and the
compactness of C32°(Q) into C3(Q) imply that Z is closed. It follows that Z = [0, 1].

The uniqueness follows from the Comparison Principle for elliptic PDEs. We
point out that a more general uniqueness statement - comparing a nonparametric
solution with a general hypersurface with the same mean curvature and contact angle
at corresponding points - is also valid. It is a consequence of a flux formula coming
from the existence of a Killing vector field in M. We refer the reader to [16] for further
details.

This finishes the proof of the Theorem 13.



|Capitulo 4

Mean Curvature Flow of Killing

Graphs

In this chapter we prove the following result

Theorem 20 There exists a unique solution u : 2 x [0,00) — I to the problem

0X
— =(nH—-H)N 4.1
= (nH —H)N, (41)
(4.2)
with boundary condition
<N7 V>’32t = o, (43)

Moreover, if =0 and H = 0 the graphs ¥; converge to a minimal graph which
contacts the cylinder K orthogonally along its boundary.

Remember that (1.6), (1.7) may be written nonparametrically as

P T 1 1 ; .
Uy = (O’j — WW)UZJ - (% + 2_1/1/2)7 U; — WH in Qx [O,T) (44)
u(+,0) = ug(+) in Qx {0} (4.5)
with boundary condition
(N,v) =¢ on 0Qx][0,T). (4.6)

In what follows we prove height and boundary gradient a priori estimates for

(1.6)-(1.8).
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4.1 Height estimates

In this section we obtain an a priori height estimates.

From now on, we consider the parabolic linear operator given by

1_'_ 1
2y 22

. ut
>7’vi — /HWUZ' — Uy, (4.7)

Lv=g"v;; — (
where v € C*(Q2 x [0,T)).

Proposition 21 For a solution u € C>®(Q x [0,T*]), T* < T, of (4.4)-(4.6), it holds
that

_max |uy| = max |u (0, -)].
Qx[0,T%] Q

Then it follows that

“max |u| < CT*
Qx[0,7*]

for a given constant C > 0 which depends on T™.

Proof: First of all we verify that wu; is a solution for a linear parabolic equation. Indeed

one has

1
%+2W2

— o, V~.V —
- ;7 )
Luy g uy ( )( 7 Ut> Uyt

g . 1
= (gZﬂUi;j)t - gyguz,_j - (% + 2W2> <V7, VUt> — Ut
1 1
= —guy + (% + QWQ)tw%vw + (% + 2W2)<V%,VU> + WiH.

However since v = y(z) in (1.24) and x is independent of ¢ it follows that

1 1 1 1 1 k Loy
(55 33). = (57), = 7™ =~ + 20w =

In the same way we have

1 1
We = 5o (e 20 i) = . (48)
We conclude that
ij 1 k 1 k
Lu, = —0.i Wizj — W<V% Vuyu™(ug)r + WHU (ue) -

Now using the fact that afg =0 and v, = 0 we have

2 qulu! ol 1 y 1.,
Eut = W( W — WW t) U5 — W<V’}/, VU)U (ut)k + WHU (ut)k
2 Yi o\ v L ut uk 1 i 1 %
— W((I/VZ QW)U;t (W; QW)WWUEO W(V% Vuyu® (ug)g + WHU (ug)k

2 Vi o o uluk 1
Z (W, — L e
i o) e

1
<V77 vu)“’k(ut)k + WHUk(Ut>k
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Hence it follows that

2 .
Luy — ngk(Wi

) (ue)k + L(V% Vu)u® (uy)y, — i’;’-luk(ut)k =0. (4.9)

_
2W W W

Thus fixed T* € [0,T) let (z9,t) be a point in Q x [0, T*] such that

u (g, tg) = Qir%(?%(*] |y

Hence we choose a coordinate system adapted to the boundary I' in such a way that
&l

507 = v at xo. Then, at the point (zg,%5) we have

Uit = Uty = 0

for 1 <14 < n what implies that

1
Wi = —u™Upy = —(T0)Unt,

w
where we used (4.6) and (4.8). On the other hand, (4.6) implies that

Upn, = Uny = —(OW)y = —(z0) W, (4.10)
at (xo,to). We conclude that
(1 - ¢2<x0))un;t =0.

However since | ¢ |< 1, it follows that u;, = 0 what contradicts the parabolic Hopf
Lemma [48].
From this contradiction we conclude that ¢, = 0. Since T™ is arbitrary, the

conclusion follows. O

4.2 Boundary gradient estimates

Now we will prove a gradient bound for a solution of (4.4)-(4.6) by applying a
modification of the Korevaar’s technique [17] which appeared formerly in [33].

From now on, we consider a non-negative extension d : Q — R of the distance
function distp(-,T) satisfying |Vd| < 1 in Q. In the same way, we consider a O
extension of the boundary data ¢ to the domain Q which we denote also by ¢. Then
we define

n=efh (4.11)
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where

h=14 ad— ¢(Vd,N), (4.12)
where K and « are positive numbers to be fixed later.

Proposition 22 For a > 0 sufficiently large independent of K and t, if for somet > 0
fized, nW (-, t) attains a local mazimum value at a point xo € ON), then W(xy,t) < K.

Proof: Let t > 0 be such that
max WV (t,) = g (t, zo)
Q

for a point g € I'. Hence we choose a coordinate system adapted to I' such that
d

5.m = v at zg and

ui(zg) >0 and wu;(xo) =0, for 2<i<n-—1. (4.13)
We have at z
0= W) =mW +gW; =" (WEKui(1 — ¢°) = 2Wogy + Wi(1 — ¢%))  (4.14)

from what follows that

Ww. (4.15)
On the other hand at zy we have

M = e"(Ku,(l—¢*) +a— ¢, — ¢((VyalV, Vd) + (N, VgaVd)))

= (Kl — )+ &~ 060 — 6((0ug (Y — Tu),80) + (Y0, (Y — V), 5,))

1 1
= "(Ku,(1—¢°) +a— ¢p, — a0t W + quunm)_
Since (nW),, < 0 at xq it holds that

1
= WKu,(1 — @) +aW + W, + Gna + tndp
= WEKun(1— %) +aW + Wy + ¢t — Wi,

On the other hand

| n 1
W, = ;W + W(Ululgn + Un“n;n) = ;_W - W(bulWl — Q1U1 — QU (4'16)
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what implies that

. 20, W W
Vo = g = o (g — Kul) - o = dun,
a 1+ i
= - Zgulcbﬁmul Pl

Therefore since
ud = [Vul’ —ud = W2 =y — PW2 = W(1 - ¢*) —

we conclude that

02 a+gl - RO R g+ K- )
= ot gl PN+ Ko(WO - 67) = ) - 66, — KoW (1 - )
— a+2%2+1+221\h¢1 2 g6
> at0-o7

for a given constant C' depending solely on v and ¢. It follows that W (zy,t) < K if «

is chosen large enough and independent of K and ¢.

4.3 Interior gradient estimates

In this section we deduce a global gradient bound using the techniques in [1§]
and [33]. However the more general context of warped product gives rise to a long list
of additional terms which require a careful tracking along the calculations.

In the sequel, we consider the parabolic linear operator given by

y 1 1 ;
Lv = g"vi; — <5 + 2W2>’YZ% — vy, (4.17)

where v € C*(Q x [0,7)).

Some lemmata will be needed in the sequel. Their content could be also of
independent interest for other applications.
Lemma 23 Denote 0 = (Vd,N). The differentials of the functions 6 and h have

Components gZ‘Ue’fL by
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and

hi = (8! + ¢al)d; — (¢(dij — Koij) + ¢ed;) N?

respectively, where k = (yVyY, Vd).

Proof: We have

gz = X*%U\C Vd) = (Vy o N, Vd) + (N, V.
= (AX. o V) 4 N,V a0 V)
_ —<AX*%,W> %(%, 7 0 V) - <%
+uiv¥/<%, V o, Vd) ~ u; %ﬁaiﬁc@
Since P is totally geodesic we have
(059 0 Vd) = (05 ¥ 2 Vd) =

Moreover we compute

0 = = 5, Y - = B s 1
<@>Va%vd> - |Y| <|Y|’VIY7IVd> - ‘Y‘ k= v
and
Vu = — Vu = 0 Vu . 0
<W’ V@%V@ = <W’ VW@> + <W7 [@,

where we used the fact that [-2;, Vd] = 0 and that P is totally geodesic.

810 Y

Thus we conclude that

(4.19)

06 0 = Vu
However
(AX 9 Vd) = al (X 9 Vd) —aj<i+u~Y Vd) = ald; = g"Fayd,
g VT g M T gy T VAT G T G

Therefore we write
Hi = —gjk(likdj -+ (di;j — IiO’Z‘j)Nj.
This finishes the proof of the proposition.
We denote the components of the tensor X*I7 in P by

g 0 0 0
ot ) T AXs

oxt’ 5’xﬂ>

(4.20)

(4.21)
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Notice that the covariant derivatives of X*II and II are related by

0 0 0 = 0 0
” o A)X,—, X.— AX,—, o Xy— — X,V o —
Vb = {(Vy A Xeg Xegg) T ARG Va2 Xegs Vot o)
0 - 0 0
AX, X - X,
HAX o Ve X — XV a5
However since X, -2 o = (w + u;Y we compute

— 0 0 _ 0 -0 _
Vit X = XV g = Vg Y TV Yt uVy g uaVyY
19) 0
—V&% ot <VU,V# 8xi>Y'
Therefore
\Y X, — 0 . A 0 Y +uV.eY \Y 0. Y VyY.
X aik al’ 8ask ox’ = Uik + U ik U 8 T Ui Vy
Hence using (1.14), (1.18) and (1.19) we obtain
- 0 0 LV 1 V7
VX* 8 X 81‘ X Vazk Oz (W@Zk + U U Q_f)/Z)Y + §U7/Uk?
1 1
27y 22
Hence it follows that
0 = 0 0 8 U; uk
AX,—,V X —XV = (AXiz—, 55 XV WaY
AL g Vg o) = AXgg T+ WasY)
1 U Uk
= ;Waikaé-ul + 272 ajl/yl
We conclude that
0 0
2 U
Vibij = <(VX* 5 A)X*%,X B )—1— Walka U 27
+— Wa]ka Uy —i— kad’yl,
272
that is,
Vibii = Via; + Wa ka u; + Wa Rl —i— kg A+ Y, e (4.22)
1] k Wij 7 7 272 J 272 ? ’

Now we use (4.22) for computlng the Hessian of the function 6.

Lemma 24 The trace of the Hessian of 0 in Q calculated with respect to the metric in

> 1s given by

%05 = —|APP0 — 2(V?d, X*I1)y — n(VZH,V>d) — nHW(AYT V>d) — Ric(Vd, %)
. 2 ]Vu|2 b Vv 1 T T . 1 @
trs Vg VA — - (AV¥d, X, 27> (AY YTV, V) 2W2v d(W Vv)
WQ(N VE) + k(nH —v(AYT YT)) — 2W2 (N, V7).
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Proof: Notice that we may write (4.20) as
Hence we have

9% 05 = — g™ (P"bad;) e + 9% (diji — Froi))N? + g™ (ds; — Koiy) N7,

)

— —gik(gjlbl-ldj);k + gik(di;k]’ + Rz-,ﬂ-dl — Iikdij)Nj — gik(di;j — I€O’ij>(a{€ — Nk;—;).
However
9" (" bad;)i = ¢ 9% baed; + g% gbud; + "% ¢"bud,,
= ¢lg™(Viayg + %Waika}”um + %Walkagnum + uiukalm% + ulukaim;—;)dj
+gikg;j]ibildj + g% g7 bad i
Hence using Codazzi’s equation we obtain
" (g bud;) s = ¢" (nH, + n%WHaf”um + %Wa}'a’i“um + w;/—ufalmg + ulukafn;—;

gy Oy O A iy
+9J19 k<R(X*%7 X*%)N, X*%>d] +g kgf,ibzld] +g kgﬂbildj;k

Using that ¢’'u; = 77w/ we conclude that
g ("' bud;) s = ng Hidj — n—=W?*Hg"'a]" N, d; — ~W?g" ala}" N,,d;
Y Y

[Vul®
_|_—

W2 Clznr;—vdj —+ Nijaﬁl;—vdj —+ glkgfliblld] -+ gikgjlbildj;k

However we have

,yj

7= (o~ NN = NN NN, = (e~ N )N+ (e~ N ).
’ ’ ’ Y Y
and
_ _ _ 0 - Vu
0 ug Vv Vo
= -AX,— — —(— + (Vu,—)Y
gur ~ (o (V= hY)

from what follows that
ng(g]lbildj);k = ngleldj — n—WQHa;”ngﬂdj — —WQa}a;“ mg]ldj
7 Y

R d; + NJNkafngdj + aja,N'd,

J . Lo )
—akaNl;—’ydj + afaﬁgN]dj — aka%dej + gﬂafdj;k
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Therefore
gkﬁi;k = —ngﬂHldj—i-n;WzHal mgﬂd + Wzala mgﬂd e afngdj
N k ! Vy il
—afal N'd; + af NyN'Y(Vd, 27)‘“1 akf — g’afd;
) ) . . J
+9™ (g + Rhpady — kxoi) N7 — g™ (diyy — koij) (af, — Nk%)
Now using the fact that gu; = ;75u’ and therefore g N; = 5 N' we obtain
m m gl 0 9
a" Ny, = ¢"™ay N, = Wzaszk W3 L (AX,— s ,N*X, %>
_ " 8 g 0 k0
g 8 'y
= —(AX,— ,N— =Y +(N,Vu)Y
773 (AX o Y+ U> )
gl 0 v VP gl 0 VT y O
=——(AX,—,Y)(— =——(AX,—)Y)=——(AY"  X,—).
VV2< ox’ >(W+ 4% ) I/V< ox’ ) I/V< 8:1:Z>
Therefore
m 1 T _jl 9 _ 7 T o
Moreover notice that
N km ! g T 9
a/N'=g""a N' = W(AY" X,—)
ox™
and
aigN* = —W(AYT X, i>
" Ot
Similarly we have
; , 0 0 0 0
Td; = ¢ d(AX,——, X, ——) = (AX,——, VZd) = (AVZd, X, —
A 9 J< ok’ a$m> < a$k7v > < \Y a$k>
Replacing this above we obtain
ikpg b S T oS T b _‘VUP b Vv
970 = —n(V*H,V=d) —nHW (AY",V=d) — W(AY" 6 AV=d) T2 (AV*=d, X, 5 —)
i

Vv

+W{AYT AVZd) + v(AYT, YT)(Vd, 7> |A]?0 — ¢'afd,),

. j 2 ‘ j
9" (digy + Rydi — riroiy)N? — g% (dsy — ko) (aj, — Nk;_v)
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Therefore

IVUI2 Vry

G*05 = —n(VZH,VZd) — nHW (AYT V*¥d) — 2

\V4 .
jj ) — AP0 — glald;y

———(AV¥d, X, —)
+7(AYT YTV (Vd,
+9*(dij + Rlydy — ki) N7 — g™ (dis; — K03j)(af, — Ny=—)

However

U; U5

— ok
o

gikaij = gik<gij -

Hence we have

|VUI2 Vv

%01, = —n(VZH,V>d) — nHW (AYT V>d) — >

(AVZd, X, —)

1 ik _j i
+§<AYT7 YT><Vd7 V”Y> - ‘APG - 29 kgjldi;jakl + 2W2 dl]N
Vu, vy

+9%*d;.1; NV — Ric(Vd, W) 7 — (N, VE) + k(nH — y{AYT YT)) —

Ko (N, V)

This finishes the proof of the Lemma.

Using Lemma 24 we will obtain an expression for Lh. Notice that
hi;k = Oéd@';k — @i, — Prb; — ¢i;k9 - ¢9i;k-

Moreover it holds that

)
=)
a k
= 2(AV*d,V¥¢) — 29 dy i N* + 2L

29" 0, = 29" $;(AV7d, X, —2gikdk.l¢iN’+2ng”“akl¢iN

L5(Vo,N).

We conclude that

0 hig, = ag®dig + 2AVEd, VES) — 20%diydi N' + 26— (Vp, N) — g0

W2
Vul|? \%
+né(VEH, VEd) + ngHW (AYT, V=d) + |W2‘ <AVEd X, 23)
1 o
—§¢<AYT, YINVA, V) + |AP o0 + 29" ¢ dija6 — 2W2 S5 0Ny

A A ) Vu
— g™ N + Ric(Vd, ~— vgz

T (N,Vk)¢ — k(nH — v(AYT, YT))o

)¢+

Hhos (N, V)6,
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Now we compute the derivatives with respect to t. We have

6, = X*%(N, Vd) = (V. o N,Vd) + (N, V., Vd)

= —(V*(nH —H),Vd) + (nH — H)(N,VxVd).

However
_ 1 - = Vu - =

<N, VNVd> = _2W2 <V’}/, Vd> + <W, V%VCD

Hence we have
0, = —(VE(nH — H),Vd) + (nH — H)(— —— (V7. Vd) + (2 T 0. V)
9 2w2 ) W ) W

Moreover we have

dy = (X*%, vd> = (nH — H)(N, Vd) = (nH — H)6. (4.24)

Therefore

hi = a(nH —H)0 — (nH — H){N,V¢)0 + ¢(VZ(nH —H),Vd)
—p(nH — H)(~ -

<

(V7, Vd) + (~—, V5. Vd))

s

Vu
2072 W

We also compute

(V, Vh) = a(Vd, Vv) + ¢({AV>d, X, V) — (V, V)0 — ¢di.iv' N7 + kp(N, V7).

Now we obtain

§¥dis = A — (V 5, Vd, V1) = —ny — (Vs Vd, 220)
and
4 , \Y%
9" d g N' = dyy " N' — diy N*N'N' ¢, = —(Vy.Vd, V) — (Ve Vd, Wu><N7 Vo).
Moreover we have
i Vu
90 = Dp —(VuVO, 77)

and

Vu Vu Vu

9™ iy N7 = (0™ dig) ;N7 = digg N'NFN? = —n(Hy) ;N7 + Vd( AT
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Therefore grouping and rearranging these expressions we obtain

Lh = |AP¢0 + ngHW (AYT, V>d) + (kv — %(Vd, V) e(AY T, YT
+2(AV¥d, V¥¢) + 2(A, V3d)x ¢ — i¢<AvEd X.V7)

(nH —H)((N,V§)0 — af — ——(V~,Vd)¢ + <Vw Vd, V—)gb) —nkHo

2W2 W
—naHy + (2(N, V6) - ) (V5 Vd, %> +2(V5,Vd, Vo)
Vy N 34 Vu Vu Vu Vu
—qb(Vde, _fy> + (V=H,Vd) + n(VHq, N)p — ¢V d(— W W —) + Ric(Vd, W)gb

1
+W(N Vk)p — (— + 5y

—rp(N, V>+2 (Vo) - (A¢—<V%V¢,W>)0-

) (V4. 3) + (5= + 5175) (V6. V)0

Lemma 25 We have

Vv

2 . Vv
LW — 2 WV, — |AI? HW3AYT YT —nHW3(—L N) — 3~(AY7T X,—
W G Wil = [APIW W AYTYT) = nHIW (5 N) = 3y(AYT, X

ij Vi _§‘V’Y’2 1 Vy N Vo N — S N
+g 2Pyl/V 112 W — 4(27 VW 4y W<VN2»Y2’ ) — W(VZH,N)

VA 1

W W;.

Proof: Notice that

Wi = —W2((Vy. 0 ¥, N) + (Y, Vo \))
oz oz

= -W?({(V_o Y,N)+u(VyY,N) — (Y, AX, ai ))
oz
2y i V’y 5
= — —— (YN N Y AX,—
Therefore
Vy 0
N,W3 N 2AYT ) X, —
W, = W+ W<272’ )+ W=( a%z)
However
8 0 0 0 1

Hence it follows that

Vi 3, V7Y I
= —W + NW?{— N) — WN'b;.
W; 2 + N; (272, ) — WN'b
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Hence we obtain

1 YAl2 b
I, = v 7' W+ W (Vy N><2vZ,N> (AyT, Y Dy
+|Vul? <272,N>2W — (AYT, Yﬂ(?, NYW? 4+ (AYT, AYTyw?

Now we compute

= (L By le NG (L N) 4+ SN2 (A )

[/

2y 297 2%’ 29’
Vv V7 0
3 ! 1 l
+NWH (V. o 257V = (G AXe 5 ——)) = W;N'by = Wby — WN'by;.
However we have
ij Vivir [V>y? Vv N2 2/ Ay T Viy
g 2ny o W+<27 YW+ WH( , 27)
and
9" Nyj = gYouN; = — (07, — NJNk)(a’j - Njg)
Y Vy T T
=-nH+ — (N, — AY S Y ).
(N o)+ (AYE Y
Moreover we compute
i 2l Vy 7]Vu|2 Vv T T
UNIW: = —(N. —L N AY'Y
g 1W] W< ) 2’Y> W <2727 > W( ) >
and
’ Vo Vo 0
UN W3 — N A
PNV (V. 55 V) = (5 AX )
Vo VEy
:"}/W(<VN Wy2 2,N> <A 2 5 ,—WY))
= V7 |V7’2 2 V¥y T
N A—-Y
W<VN2 2 >+W 4~2 +7 W < 2 9 >

We also have

Viy

0 ) = 2W(AYT, 2—> - W3<m, NYAYT Y)Y 4 2W3(AY T AYT).
v v

oW "W AAY T, X, —
Wg WJ( ’ 8ZL'Z

Now we compute
. g 1 y 1 y
g”WNlbil;j = Wng”VZail + —WQg”aijalleum + —ng”alela;”um
Y

lulu]
272

m

+W g 2 ditly amN'A™ + W g9 N AimY™.

272
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Hence we have

3 - ) o) 9]
7 1 o l by 7
g"W N'b;.; = WN'(nV, H+93(R(X*a X )N, X, 6ml>)
+nHW?*(AYT NFX, %> + W37 (AYT X, ai>( - W(AYT X, 8a.>)
x’L
Vul|? 0
— 2AYTX*— Nul? AYT X, —))y™.
Vul (AT, X5 4 S (CWAYT X5

Therefore

G"WN'b;; =nWN'VFH —nHW*(AYT YTy = W3AYT AYT) — |[Vu?(AYT) X,

Moreover

ij l, 2 T V27 3, VY T T 3 T T
g"W;Nby = -W (AY", % )+ W (g,N}(AY Y5 = WP (AY T AY)
and
!
y g 1
W NGy = =Wg(a} = Ny Loy = —|APW = S(AYT. X.9).

We conclude that

GIW,y = |[APW + 203 (AYT, AYT) 4 (nH — 3(2—3, N)YWHAYT vT)

Vy

P
1
+3WHAYT, V27 )+ | Vu2(AYT X, 7> +—(AYT,X*V7>

[V
2

2
+ ’Lj/yl]W |V’)/|
2y 4y

V _
—nHW3<272 N) 4+ AW (Vy

W+ W+ (5W +3— \V|)(v77 N)?

~1 N) — nWN'VEH.

Now

2
1
My L SV, N2+ W2(AYT, X, V7).

Vv, VW
< )= 2y 22

Vy

B
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Hence
2 A2 Vy 37 4T T
LW — 579" Wil = |APW + (nH+<g,N))W (AYT YT
1
~W2(AYT, v Ty 4V (AYT, X m> + ~(AYT X, V)
2y v 2
1 2 T
—(—+ 2WQ)W (AYT, X, V)
ij Visi __|VE'Y|2 IV K 2 D N2
T W W 4_72W+(5W+37|Vu|)(27, )
—nHW‘O’(%, N) + wv(vNQV—JQ, N) —nWN'VFH
1 Vy? 1 S
— (== W4 — N)2W
( 2w2)( 2y + 2~2 <V% > )
2, VY
However
w Vv Vv w Vv
3_ 2_N2_2 N2 - 2_N2
VU (G V) = 20|Vl (g NP = V()
and
Vo 1 Vv e
~_ N _ _ /!
and
VEy Vv 1 1
—W?2(AY'T, AYT X, AYT X, 2(AYT X,
W*( 27>+IV!< ,y) < V) — ( 2WQ)W< , X V)
Vv Vv
= =3 (AY", X, w? N)Y(AYT, Y7
AT, X9 = WS N )

Moreover we compute

1 |V7’2 21173
(_ 2w2)( 2,}/ + 2,)/2 <V%N> w )
]V’y|2 3, VY 2 ‘V7|2 1 Vv 2
Wi + = (L N
dy? g 2 2y’ > by W <27 !

and

—nWN'VFH = —nW/(V*H,N) = —W(V*H, N).
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We conclude that

2
LW — =g Wil = |APW + nHWHAYT,Y7) = 37(AY ", X*Z_;>
YA l2 2
ii Vi 31V Val* Vo e
+g 27VV 1 e 4 5 (27, VW
—nHW (2L, N) +7VV<WE N) — W(V>H, N)
2’}/27 2,}/2’ ’
1o,V V4?1
— W NY? - e W
g <2 ) 4y W !
However
|Vu|2 Vv 2 1 4 Vv 9 Vv 5
—7N W ——-W —,N :__,NW
g <27 ) Y <2’y ) <27 )
and
3|v27|2 v,y 9 3‘V,y’2 3 vfy ) V"}/ )
- (-1 N __° XN YN

3 [Vq[? 1Vy o
=2 — (=L NY2W.

Hence we obtain

2 ..
LW — 559" Will; = |APW +nHW3{AYT YT — nHW?’(QV—Z, N) —3y(AYT X
v

ij Visg _§|V7|2 _EENQ = V’VN_ 2y N
Pl
4v W !

This finishes the proof of the lemma.

Now we are able to prove the following result

Proposition 26 For fized T* < T there exists K > 0 sufficiently large so that if

nW(zo, to) = max nW

Qx[0,T*]

for some (zq,t0) € Q x [0,T%], then W (x¢,to) < C, for some constant C.

Proof:  We can assume xy € Q and ¢ty > 0. At a point (xg,to) where nWW attains

maximum value we have

mW +nW; =0 (4.25)

(%!

27

)
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and
1 1 2
SLnp+— (LW _ =z
n

TWW5 ) < 0. :
— g Wil ) <0 (4.26)

We conclude that

1 1 g . h
—Ln = KLu+ ELh + KQg”u,-uj + 2Kg”ui#
n

1 2
— kMW 4 Lon oy 22V

2K g"u;
h w2 *

Now we have

i v v
gluily = pruhy = =57 (N, Vd) = (N, V)0 — (N, V0)).
However
Vu |Vul|?

Therefore

. Vu [Vul®

) T DN
g ush; = W<N vd) + WW V)0 +yd(AY T VEd) + ¢<VVqu T~ 1R

Thus the expression for Lh in Appendix allows us to conclude that

[ 27Vul?
2K \Y% Vul|?
h 2B a%w V) + TN, V6)0 +46{AYT, V) + L 6{V 5V, ) —aon o)
+E|A12¢9 + nE¢HW<AYT VEd) + %(m — %(Vd, V) e(AY T YT
2 2
+E<AVZd, VZ¢) + E(AVQ )n — hW2¢<AVZd X.Vy)
1 Vu 1
E(nH H) ((N, Vg — abl — 2W2 (Vy,Vd)¢ + (V. Vd, W >¢) — n#m;
S Hat %(2<N v¢> — ) (V5. Vd, VW> 2<v . Vd, V)
! vy - L ygag Ve, Yu Vo
—Ed)(Vde, I+ ¢<V H,Vd) +n- <VHd, N)¢p — hW A W W)
1 1 1 1 1
+hR1c( )¢+ hW2 (N, VK)o — h( 2W2) a(Vd, Vv) + h( 2W2)<v¢ V7)6

+ 2/<o—<ngS N) — —(Aqs (VeuVo, %»9.

—kT ¢< /7> B2
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On the other hand Lemma 25 yields

1 2 . Vo
_ _ 2T ) — 2 2 T yT 2 N
W(LW = WZWJ> AP+ nHWHAYTYT) — nHWH 3 N)
1 Vv, % 3R 1,V - Vy
3N (AYT X, =)+ g7 S (L) Vy—,N
V'}/P 1 Wt
—(VEH.N) — ‘__ —
(VZH, N) o W W
Now we use the fact that xq is a critical point to nWW. We have
X (Kuih + hy)W = —eX“hWV,.
what implies that
—~KW?2hN;N* + Wh;N* = —hW;N"
and then
—Kh|Vul* + Wh;N" = —hW;N".
However
WiN' = JENW 4 NN (YL NY 4 W2AYT, NiX. -0y
! 2y 22’ Oz’
1 Vy
= — NYW 2w LNy — WAy T, YT
27<V% YW+ [Vul <272, ) (AY",Y7)
and
hiN' = af — (Vé, N)O + ¢alN'd; — (di; N'N? — ko) N N
v Vul|?
=afl — (Vo,N)Y§ — oW (AYT V*d) — ¢V ruVd, —“) + oK | “'
W W2
We then conclude that
Vul?  af 1 o T ooy o Vu, ¢ |Vul?
= NY) — =W (AY d) — ~(VvuVd, ~—) 4 —
K+ h(ng, ) hW( ,VEd) <Vv v W>+hﬁ- 2
1 Vy
- N) — 2L N 2AYT YT
27<V% ) — [Vl <272, )+ WHAY ", YT)
Moreover
W e hy hy
—— = 2 Ku+-L=WK(nH - -
W ; up + . =WK(n H) + .
1 ¢
= WHKW = KWH — ~(nH — ) (470, N0 — a6 - 5 (Y7, va))
gb Vu

h< W VVqu>
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Then we have

%(LW - %giﬂmwj> = |A]? + KnHIZ/ + %enH - %nH(ng, N)O — %nHW(AYT Vd)
—%(nH - H)((W, NY — af — V?? (Vy Vd)) - %nH(Vde ZV )+ TnHn |:V“2‘2
—3%7(14}” X. ZJ) + g“% - 2% — i(Z—J,NW + 7<VN;2, N) — (V¥H, N)
_|V43|2m1/2 KWH + z<:v V. Vd).
We conclude that
%Ln + % (Lw - %gijwiwj> - KﬂlVVVZP +A+B,

where
2K 1
A= (14 2 1a1 4 Eoqo(ay” v2d) + (w7 - LV, V) AV, YT)
h ) A
2 S o 2 2 ey — >
F2AVE V) + 2 (4, Py hW2¢<Av . X*vw
af 1 10)

v T

Vy

>

and

2K v v
B=="(-ab(N,vd) + W(N,ngﬁ)@—l—%(b(vad,—u)—7¢H|W;L3| )

2
+3(V5.Vd, Vo)

1
VU 0, + = (2(N, V) — a) (V5. Vd, %>
Vo Vu Vu Vu)
WW W

W> h h
520+ 3OV V) + 03 (VHL N} = 20VP (5
1,1 1
+RiC(Vd, 7306 + s (V. VR0 = 1 (5 +
1 1

7 7+2W2)<V¢,V’y> — kT ¢< >—i—z —<V¢ N)

H(V Vu Vd

——¢<VW vd,

Yo (Vd, V)

h W2
Vu Vi 3!W|2 1, Vy - Vv
A LV, ~2 gl 2V 2 V2 N
VA2 1 ¢, Vu
4y W2+h<W

+
DI»—K?H@

—(V*H,N) —

However using some standard inequalites we obtain

0 2K 2
A <1+¢—)|A|2—<h\/z+h 5Vl + 31901+ 2197l
Kyvn | abvn 9\/_ wWne 3y o Vy
A
hW2|XV N+ =+ = Vol i ey )14
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Using that W2 > ~ and choosing « sufficiently large and depending only on n, v, ¢ and

Kk we have
%|A|2 (e+2ﬁ5+szf Z)’\fp( >|A|
(el B Ty
Moreover
BZ_C(lJFh+hW2+2+%+hV1V2+K%+%)’

where C' is a constant depending on n,7, ¢,d, x and H.

Hence we obtain

1 1 2 v Vul? K K?
Z _ _ 2 JUWW ) > g2 AL _
7f”+w«£W-1v9””%>—K z -~ Ol =l nn) = 3500
1 K K? K?
~57 016 = 55 C7.n) = 75:0(7) - ch, m) = 500 — 7 C0)
« K 1
—K=C - = = — - .
SO = Cle)=C hC hW?C hc WQC €
Then
Vul2 K2 K 1 K K « 1 1 K 1
W2 vt w tww T e T twr tae tw T

a K o 1
K—+—4+—4+—4+1).
+ h+h+h+h+)

It follows that

K2 K 1 1
(K%—( RS +a+1)0)w2§(K2+K+$+1)0

h? h h h

K
+(K + ot 1)CW.

Now suppose that W (zg,ty) > 1. Otherwise we are done. In this case we have W < W2
and absorbing the terms with W into that one with W2 transforms the inequality above

into

K? K 1 1
(Kv hZC’ hC KC-C h(oH—l)(K—i—l)C)W <(K —|—K—|—1+h(a—i—l))C’.

If dy = d(zp) then choosing o > 1/(C(dp)dy — 1) for some constant C(dy) > 1/dy we
obtain (1 + «)/h < C(dy) what implies that

(sz - ﬁc . %C KC(dy) — C(do))W2 < (K% + K + C(dy))C.
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Then for a > % max{1, \/2C/v} we have

(KQ% ~ KCO(dy) — C(do))W2 < (K?+ K + C(do))C.

It follows that for K > C@HVC@T2v0W0) 0o p e K?*2 — KC(dy) — C(dp) > 0 and

Y

5 C(K?+ K + C(dy))
WS B RO - Cld)

(4.27)

This finishes the proof of the proposition.

Theorem 27 There erists a unique solution u : ) x [0,00) — I to the problem (1.6)-
(1.8).

Proof: Propositions 21, 22 and 26 yield the following global gradient bound

n(x,t) Co MT*
Wiz, t) <W t < (he~2 4.28
(z,1) < W(zo, O)Tl(xoﬂfo) = ’ (4.28)

for (z,t) € Q x [0, T*], where C; and C, are positive constants and
M = max |u— ugl.
Qx1[0,7*]
It results that (4.4) is uniformly parabolic and then the standard theory of quasilinear
parabolic PDEs may be applied for assuring the existence of a unique smooth solution

to (4.4)-(4.6).

4.4 Asymptotic behavior

Suppose from now on that H = 0 and ¢ = 0. In the particular case when the
evolving functions have the form u(z,t) = v(z) + Ct, (z,t) € Q x [0,T), the initial
value problem (4.4)-(4.6) becomes

Y - .,V C
div_r = A(VyY, 72 = oo
(v, N) =0 on 0 (4.30)

in Q (4.29)

Conversely, notice that if v(x) is a solution of (4.29)-(4.30) then u = v+ C' is a solution
of (4.4) which is translating along the flow lines of Y with speed C.

Now observe that

YY) vl 4 (V5 YY) = divars 4 4(Vyrs, ¥) = divy .

Vv _
div—y — (VyY
v VY, 7 W W W W

w
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Therefore it follows from divergence theorem that

C \V4
9((0,8)x) W 9((0,8)xT) W 9([0,8]xT) 9(]0,8]xT)

Since the integrands do not depend on s we have

/Qcﬁ = /F%qs (4.32)

from what results that

C =0 (4.33)

We then obtain the following height estimate
Proposition 28 Given a solution u(x,t) of (4.4) there exists a constant M such that
lu(x, )| < M (4.34)

for (x,t) € Q x [0, +00).

Proof:  We observe that since C' is necessarily zero, v = cte. is a solution to (4.29).

In particular the constant functions v; = igf up and ve = sup ug are solutions of (4.29)
Q

with v; < wug < vy. Hence the parabolic maximum principle implies that
v < uls,t) <oy

for t € [0,T) from what we obtain (4.34).

Now, proceeding as in [31]|, we prove the following convergence result

Theorem 29 Suppose that H =0 and ¢ = 0. Then limy_,o uy = 0. In particular the

mean curvature flow converges to a slice of the form 9({s} x Q) for some s € L.

Proof: It is immediate that v = s is a trivial solution to (4.29) with (necessarily)

C = 0. We also have

d U u? 1 |Vul|?
— [ w= t=— [ L= [ —(Vu, V) — Vu, V7).
dt/Q 0 W /QW /92W3< u, V) /szW( U, V)

Therefore

2 2
up d 1 / |Vu|
_ -t _ . 4.
/QW dt(/QW> +/Q T (Vu,Vv) + e (Vu, V) (4.35)
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It follows that

T U?

—=— [ W(x,T —|—/Wx,0
/O/QW / @)+ [ W0

T 1 T | Vul? ~
+ Vu,V —l—// Vu,Vvy) < C
/O/QQW3< 0+ [ v v

for some positive constant C. Tt follows that tlim “—V(i = 0. Since W is bounded then
—00

tlim u; = 0. This finishes the proof of the theorem.
—00
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