
Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Flávia Estélia Silva Coelho

Characterizing Refactoring-Inducing Pull Requests

Campina Grande, Paráıba, Brasil

2022

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Characterizing Refactoring-Inducing Pull Requests

Flávia Estélia Silva Coelho

Tese submetida à Coordenação do Curso de Pós-Graduação em

Ciência da Computação da Universidade Federal de Campina

Grande – Campus I, como parte dos requisitos necessários para ob-

tenção do grau de Doutora em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Metodologia e Técnicas da Computação

Dr. Tiago Lima Massoni

Dr. Everton Leandro Galdino Alves

(Orientadores)

Campina Grande, Paráıba, Brasil

©Flávia Estélia Silva Coelho, 18/02/2022

C672c

Coelho, Flávia Estélia Silva.

 Characterizing refactoring-inducing pull requests / Flávia Estélia
Silva Coelho. – Campina Grande, 2022.
 210 f. : il. color.

 Tese (Doutorado em Ciência da Computação) – Universidade

Federal de Campina Grande, Centro de Engenharia Elétrica e
Informática, 2022.

 "Orientação: Prof. Dr. Tiago Lima Massoni, Prof. Dr. Everton
Leandro Galdino Alves”.

 Referências.

 1. Refactoring-Inducing Pull Request. 2. Code Review. 3. Empirical

Study. 4. Computing Methodology and Techniques. 5. Software
Engineering. I. Massoni, Tiago Lima. II. Alves, Everton Leandro
Galdino. III. Título.

 CDU 004.41(043)

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA SEVERINA SUELI DA SILVA OLIVEIRA CRB-15/225

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

POS-GRADUACAO CIENCIAS DA COMPUTACAO
Rua Aprigio Veloso, 882, - Bairro Universitario, Campina Grande/PB, CEP 58429-

900

FOLHA DE ASSINATURA PARA TESES E DISSERTAÇÕES

FLÁVIA ESTÉLIA SILVA COELHO

CHARACTERIZING REFACTORING-INDUCING PULL REQUESTS

Tese apresentada ao Programa
de Pós-Graduação em Ciência da
Computação como pré-requisito
para obtenção do título de
Doutor em Ciência da
Computação.

Aprovada em: 18/02/2022

Prof. Dr. TIAGO LIMA MASSONI, Orientador, UFCG

Prof. Dr. EVERTON LEANDRO GALDINO ALVES, Orientador, UFCG

Prof. Dr. ROHIT GHEYI, Examinador Interno, UFCG

Profa. Dra. MELINA MONGIOVI BRITO LIRA , Examinadora Interna, UFCG

Prof. Dr. UIRA KULESZA, Examinador Externo, UFRN

Prof. Dr. ALESSANDRO FABRICIO GARCIA, Examinador Externo, PUC-RIO

Documento assinado eletronicamente por EVERTON LEANDRO GALDINO
ALVES, PROFESSOR 3 GRAU, em 18/02/2022, às 14:05, conforme
horário oficial de Brasília, com fundamento no art. 8º, caput, da Portaria SEI
nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por TIAGO LIMA MASSONI,
COORDENADOR(A) ADMINISTRATIVO(A), em 18/02/2022, às 14:30,

PRPG-Folha de Assinatura para Teses e Dissertações COPIN-PRPG 2125607 SEI 23096.005705/2022-11 / pg. 1

conforme horário oficial de Brasília, com fundamento no art. 8º, caput, da
Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por MELINA MONGIOVI CUNHA
LIMA SABINO, COORDENADOR DE POS-GRADUACAO, em 18/02/2022,
às 15:37, conforme horário oficial de Brasília, com fundamento no art. 8º,
caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por ROHIT GHEYI, PROFESSOR DO
MAGISTERIO SUPERIOR, em 18/02/2022, às 16:16, conforme horário
oficial de Brasília, com fundamento no art. 8º, caput, da Portaria SEI nº 002,
de 25 de outubro de 2018.

Documento assinado eletronicamente por Uirá Kulesza, Usuário Externo,
em 18/02/2022, às 16:50, conforme horário oficial de Brasília, com
fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de
2018.

Documento assinado eletronicamente por Alessandro Fabricio Garcia,
Usuário Externo, em 18/02/2022, às 17:27, conforme horário oficial de
Brasília, com fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de
outubro de 2018.

A autenticidade deste documento pode ser conferida no site
https://sei.ufcg.edu.br/autenticidade, informando o código verificador
2125607 e o código CRC 8CA353D6.

Referência: Processo nº 23096.005705/2022-11 SEI nº 2125607

PRPG-Folha de Assinatura para Teses e Dissertações COPIN-PRPG 2125607 SEI 23096.005705/2022-11 / pg. 2

Resumo

O desenvolvimento baseado em pull adequa-se à prática da Revisão de Código

Moderna (RCM), na qual os revisores podem sugerir melhorias de código, como refa-

toramentos, por meio de comentários e commits em Pull Requests (PRs). Estudos

anteriores de RCM tratam todos os PRs como semelhantes, independentemente de

induzirem refatoramento ou não. Definimos um PR como indutor de refatoramento

quando as edições de refatoramento são realizadas após o(s) commit(s) inicial(is) como

resultado de comentários de revisores ou ações espontâneas realizadas pelo autor do

PR. Este trabalho explora aspectos relacionados à revisão de código com o objetivo

de caracterizar PRs indutores de refatoramento. Para isso, extráımos edições de refa-

toramento e dados de revisão de código do GitHub. Em seguida, realizamos estudos

emṕıricos para identificar similaridades/dissimilaridades entre PRs indutores de refa-

toramento e não indutores de refatoramento e caracterizar revisão de código e edições

de refatoramento em PRs indutores de refatoramento. Encontramos diferenças sig-

nificativas entre PRs indutores de refatoramento e não indutores de refatoramento e

evidências emṕıricas sobre a relevância da revisão de código para edições de refatora-

mento no ńıvel de PR. Observamos fatores motivadores por trás dos PRs indutores de

refatoramento, identificamos aspectos estruturais dos comentários de revisão em PRs

indutores e não indutores de refatoramento e propomos diretrizes para uma revisão

de código mais produtiva. Também encontramos evidências emṕıricas sobre aspectos

técnicos que caracterizam refatoramentos em PRs indutores de refatoramento. Nossas

descobertas sugerem orientações para pesquisadores, profissionais e desenvolvedores de

ferramentas para melhorar as práticas em torno da revisão de código baseada em pull.

Palavras-chaves: Solicitação Pull Indutora de Refatoramento; Revisão de Código;

Estudo Emṕırico; Metodologia e Técnicas da Computação; Engenharia de Software.

iv

Abstract

Pull-based development has shaped the practice of Modern Code Review (MCR),

in which reviewers can suggest code improvements, such as refactorings, through com-

ments and commits in Pull Requests (PRs). Past MCR studies treat all PRs as similar,

regardless of whether they induce refactoring or not. We define a PR as refactoring-

inducing when refactoring edits are performed after the initial commit(s) as either a

result of reviewers’ comments or spontaneous actions carried out by the PR author.

This work explores code reviewing-related aspects intending to characterize refactoring-

inducing PRs. For that, we mined refactoring edits and code review data from GitHub.

Then, we carried out empirical studies to identify similarities/dissimilarities between

refactoring-inducing and non-refactoring-inducing PRs and characterize code review

and refactoring edits in refactoring-inducing PRs. We found significant differences be-

tween refactoring-inducing and non-refactoring-inducing PRs and empirical evidence

on the relevance of code review to refactoring edits at the PR level. We observed

motivating factors behind refactoring-inducing PRs, identified structural aspects of

review comments in refactoring-inducing and non-refactoring-inducing PRs, and pro-

posed guidelines for a more productive code review. We also found empirical evidence

on technical aspects characterizing refactorings in refactoring-inducing PRs. Our find-

ings suggest directions for researchers, practitioners, and tool builders to improve prac-

tices around pull-based code review.

Keywords: Refactoring-Inducing Pull Request; Code Review; Empirical Study;

Computing Methodology and Techniques; Software Engineering.

v

To all those who taught me some lesson

and all my illiterate ancestors,

affectionately.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 4

1.3 Motivating Example . 6

1.4 Objectives . 8

1.5 Research Questions . 8

1.6 Main Results and Implications of Research 9

1.7 Document Structure . 11

2 Background 12

2.1 Refactoring . 12

2.1.1 Identification of Candidates for Refactoring 14

2.1.2 Application of Refactoring . 15

2.1.3 Refactoring Detection . 16

2.2 Modern Code Review . 18

2.3 Git-based Development and PRs . 20

2.4 Association Rule Learning . 25

2.5 Concluding Remarks . 33

3 Mining Refactoring Edits and Code Review Data 34

3.1 Data Mining Design . 34

3.1.1 Mining Merged PRs . 34

3.1.2 Detection of Refactoring Edits 39

3.1.3 Mining Code Review Data . 45

vii

CONTENTS viii

3.2 Limitations . 51

3.3 Concluding Remarks . 54

4 Comparing Refactoring-Inducing and non-Refactoring-Inducing Pull

Requests 55

4.1 Research Design . 55

4.1.1 Association Rule Learning . 56

4.1.2 Data Analysis . 62

4.2 Results and Discussion . 65

4.2.1 How Common are Refactoring-Inducing PRs? 65

4.2.2 How Do Refactoring-Inducing PRs Compare to non-Refactoring-

Inducing Ones? . 66

4.2.3 Is Refactoring Induced by Code Reviews? 72

4.3 Implications . 74

4.4 Limitations . 76

4.5 Concluding Remarks . 77

5 Characterizing Code Review in Refactoring-Inducing Pull Requests 79

5.1 Research Design . 79

5.1.1 Selection of a Purposive Sample 80

5.1.2 Sanity Check of Refactoring Edits and Manual Analysis of Re-

view Comments . 84

5.1.3 Merging of Results . 85

5.2 Results and Discussion . 86

5.2.1 Preliminary Results . 87

5.2.2 How Are Review Comments Characterized in Refactoring-

Inducing and non-Refactoring-Inducing PRs? 97

5.2.3 What Are the Differences Between Refactoring-Inducing and

non-Refactoring-Inducing PRs, in Terms of Review Comments? 107

5.2.4 How Do Reviewers Suggest Refactorings in Refactoring-Inducing

PRs? . 112

5.2.5 Do Suggestions of Refactoring Justify the Reasons? 113

CONTENTS ix

5.2.6 What Is the Relationship Between Suggestions and Actual Refac-

torings in Refactoring-Inducing PRs? 115

5.3 Implications and Guidelines . 116

5.4 Limitations . 120

5.5 Concluding Remarks . 121

6 Characterizing Refactoring Edits in Refactoring-Inducing Pull Re-

quests 122

6.1 Research Design . 122

6.2 Results and Discussion . 125

6.2.1 What Types of Refactoring Edits often Take Place in PRs? . . . 125

6.2.2 How are the Refactoring Edits Characterized? 133

6.3 Implications . 140

6.4 Limitations . 141

6.5 Concluding Remarks . 142

7 Related Work 143

7.1 Characterization of Code Review . 143

7.2 Characterization of Refactoring Edits throughout Code Evolution . . . 148

7.3 Concluding Remarks . 151

8 Conclusions 153

References 157

A Initial Investigations on Refactoring and Modern Code Review 176

B Descriptive Statistics of pull requests data 179

C Checking for Parametric Tests Assumptions and Results of Statistical

Testing of Hypotheses 186

D Complements to the Characterization of Code Review in Refactoring-

Inducing Pull Requests 199

List of Symbols

API – Application Programming Interface

ASF – Apache Software Foundation

AST – Abstract Syntax Tree

ARL – Association Rule Learning

CLES – Common-Language Effect Size

DVCS – Distributed Version Control System

FP – Frequent Pattern

GUI – Graphical User Interface

IDE – Integrated Development Environment

IQR – InterQuartile Range

MCR – Modern Code Review

ML – Machine Learning

OSS – Open-Source Software

PMC – Project Management Committee

PR – Pull Request

p-value – probability value

REST – REpresentational State Transfer

SD – Standard Deviation

SHA-1 – Secure Hash Algorithm 1

SPLab/UFCG – Software Practices Laboratory

URL – Uniform Resource Locator

x

List of Figures

1.1 A refactoring-inducing PR (Apache Tinkerpop PR #1110), illustrating

initial commits (c1 − c2) and subsequent commits (c3 − c4). 5

1.2 Examples of refactoring-inducing PRs from Apache Drill repository . . 7

2.1 The commit message #141112 of the Eclipse’s repository Egit on Gerrit

(a) and the respective RefactoringMiner’s output (b) 17

2.2 A commit from Apache Hadoop-Ozone PR #1033 at GitHub 19

2.3 Examples of Git branches . 21

2.4 An overview of a Git PR in GitHub . 22

2.5 An overview of Git PR review in GitHub 22

2.6 A partial diff output (reviewing feature) of committed changes into the

Apache Drill PR #1888 at GitHub . 23

2.7 A partial diff output (differentiating feature) of committed changes into

the Apache Drill PR #1888 at GitHub 24

2.8 Illustrating merge PR option (Apache Accumulo-Examples PR #19) . 25

2.9 Illustrating squash and merge option (Apache Accumulo PR #106) . . 25

2.10 Illustrating rebase and merge option (Apache Accumulo PR #190) . . 26

2.11 Example of one-hot encoding . 28

2.12 Example of transactions . 28

2.13 Example of the FP-tree formation . 30

2.14 Example of the bottom-up approach for generation of frequent itemsets 32

3.1 Overview of the data mining design . 35

3.2 An overview of Apache Drill PR #1807, illustrating squashed commits

(c1 − c12) . 38

xi

LIST OF FIGURES xii

3.3 A commit, from Apache Fluo PR #1077, consisting of four Inline Method

instances as detected by RefactoringMiner 42

3.4 A commit, from Apache Kafka PR #4757, consisting of two Pull Up

Method instances as detected by RefactoringMiner 43

3.5 A commit, from Apache Beam PR #6261, consisting of one Extract

Class, three Move Attribute and on Move Method instances as detected

by RefactoringMiner . 44

3.6 Illustrating a PR’s commit presenting two parents (Apache Avro PR

#537) . 49

3.7 Creation and merge dates of the final sample’s PRs 50

4.1 An overview of the comparative study between refactoring-inducing and

non-refactoring-inducing PRs . 57

4.2 Distribution of refactoring edits in the refactoring-inducing PRs 65

5.1 An overview of round i of our characterization study of code review in

refactoring-inducing PRs . 81

5.2 A single review comment, from Apache Incubator-Pinot PR #479, which

induced no refactoring edit . 89

5.3 A review comment, from PR Apache Cloudstack #2071, which induced

a Rename Package edit . 89

5.4 Example of self-affirmed refactoring in five subsequent commits, from

Apache Usergrid PR #102 . 90

5.5 Example of a GitHub profile (author of Apache Kafka PR #5784) . . . 95

5.6 An uncertain review comment Apache Flink PR #9143 102

5.7 A typical suggestion of Rename edit from Apache Samza PR #1051 . . 108

5.8 A review comment on a minor scope issue from Apache Beam PR #6050 108

5.9 A review comment on a major scope issue from Apache Tinkerpop PR

#1110 . 109

5.10 A typical discussion in non-refactoring-inducing PRs, from Apache

Brooklyn-Server PR #411 . 110

LIST OF FIGURES xiii

5.11 A direct review comment, from Apache Dubbo PR #3299, which in-

duced a Change Variable Type edit . 112

5.12 A review comment providing a reason (code conventions), from Apache

Brooklyn-Server PR #1049, which induced a Split Attribute edit 112

5.13 A warning on a conditional to deal with enumerations, from Apache

Cloudstack PR #2833, which induced a Change Variable Type and a

Rename Variable edits . 113

5.14 A review comment providing a reason (secure-related issues), from

Apache Cloudstack PR #3454, which induced two Push Down Attribute

and two Push Down Method edits . 114

5.15 A warning on responsibility of methods, from Apache Incubator-Iceberg

PR #119, which induced a Change Return Type, a Rename Method, a

Change Parameter Type, and a Rename Parameter edits 115

5.16 A suggestion of a refactoring, from Apache Kafka PR #5946, which

induced an Extract Variable edit . 116

5.17 A review comment providing a reason (long class body), from Apache

Flink PR #7945, which induced two Move and Rename Class edits . . 117

5.18 A warning on a class useless, from Apache Dubbo PR #2279, which

induced a Change Variable Type and a Rename Variable edits 117

5.19 A review comment, from Apache Flink PR #8620, which induced a

Rename Method edit . 118

5.20 A review comment including an embedded code from Apache Dubbo PR

#4870 . 118

6.1 An overview of the characterization study of refactoring edits in

refactoring-inducing PRs . 123

6.2 Number of types of refactoring detected by refactoring-inducing PR . . 131

6.3 A Change Attribute Type edit in Apache Flink PR #8222 132

6.4 A Move Class edit that induced a review comment in Apache Kafka PR

#5194 . 134

6.5 Number of subsequent commits in refactoring-inducing PRs 135

LIST OF FIGURES xiv

6.6 Scatterplot of number of refactorings in relation to number of subsequent

commits in 449 refactoring-inducing PRs 136

7.1 An overview of this thesis concerning other works 152

B.1 Number of subsequent commits in the sample’s PRs 180

B.2 Number of added lines in the sample’s PRs 180

B.3 Number of deleted lines in the sample’s PRs 181

B.4 Number of file changes in the sample’s PRs 182

B.5 Number of reviewers in the sample’s PRs 182

B.6 Number of review comments in the sample’s PRs 183

B.7 Length of discussion in the sample’s PRs 184

B.8 Time to merge in the sample’s PRs . 184

B.9 Number of refactoring edits in the sample’s PRs 185

C.1 Number of added lines by presence of refactorings 188

C.2 Number of deleted lines by presence of refactorings 189

C.3 Number of file changes by presence of refactorings 191

C.4 Number of subsequent commits by presence of refactorings 192

C.5 Number of review comments by presence of refactorings 193

C.6 Length of discussion by presence of refactorings 195

C.7 Number of reviewers by presence of refactorings 196

C.8 Time to merge by presence of refactorings 198

List of Tables

2.1 A summary of a few code review aspects raised from empirical studies . 20

2.2 Relationship between antecedent and consequent according to the lift

value . 27

2.3 Example of conditional pattern base, conditional FP-tree, and the re-

spective generated frequent pattern rules 32

3.1 Search results for merged PRs from Apache’s non-archived Java reposi-

tories in GitHub . 36

3.2 Top 5 repositories containing PRs merged by merge pull request option 37

3.3 Top 5 repositories containing PRs merged by squash and merge or rebase

and merge options . 37

3.4 A RefactoringMiner output example . 40

3.5 Types of refactoring edits detectable by RefactoringMiner 1.0 in Septem-

ber 2019, classified in line with technical descriptions by Fowler 40

3.6 Output of RefactoringMiner execution in Apache’s repositories 45

3.7 RefactoringMiner output, at commit and PR levels, for Apache’s repos-

itories . 45

3.8 Top 5 repositories containing PRs merged by merge pull request option

in sample 1 . 46

3.9 Top 5 repositories containing PRs merged by squash and merge or rebase

and merge options in sample 1 . 46

3.10 Selected PR attributes for mining . 47

3.11 A summary of the final sample from mining Apache merged PRs in GitHub 49

3.12 Top 5 Apache’s repositories in the final sample 50

xv

LIST OF TABLES xvi

3.13 Validity and reliability countermeasures for mining refactoring edits and

code reviewing-related data . 52

4.1 One-hot encoding for binning of features 59

4.2 ARL output by experimenting minimum support from 0.01 to 0.1 by

steps of 0.01, and confidence of 0.5 . 60

4.3 Association rules selected by manual inspection (AR1–AR4 for

refactoring-inducing PRs, AR5–AR8 for non-refactoring-inducing PRs) . 66

4.4 Descriptive statistics of PR attributes 67

4.5 Results of the manual validation of refactoring edits mined by Refactor-

ingMiner 1.0 . 73

4.6 Refactoring-inducing PRs, in which refactoring edits were induced by

code review, by level of refactoring. 73

4.7 Validity and reliability countermeasures for comparing refactoring-

inducing and non-refactoring-inducing PRs 76

5.1 A summary of the main objective of each round of qualitative analysis . 81

5.2 Summary of the purposive samples . 84

5.3 Results of the manual validation of refactoring edits mined by Refactor-

ingMiner 1.0 . 84

5.4 Inducement by code review in refactoring-inducing PRs 87

5.5 Refactoring-inducing PRs containing self-affirmed refactorings in their

subsequent commits . 91

5.6 Type of changes by category of PRs . 92

5.7 Characteristics of review comments in refactoring-inducing PRs, with

refactorings led by the authors . 98

5.8 Characteristics of review comments in refactoring-inducing PRs, with

refactorings induced by code review . 100

5.9 Characteristics of review comments in refactoring-inducing PRs, with

refactorings both led by the authors and induced by code review 102

5.10 Characteristics of review comments in non-refactoring-inducing PRs . . 105

LIST OF TABLES xvii

5.11 Validity and reliability countermeasures for characterizing code review

in refactoring-inducing PRs . 120

6.1 Sample of refactoring-inducing PRs for the quantitative analysis 124

6.2 Sample of refactoring-inducing PRs for the qualitative analysis 124

6.3 Types of refactoring edits detected by RefactoringMiner 1.0 in the 449

refactoring-inducing PRs . 125

6.4 Kinds of refactoring edits detected by RefactoringMiner 1.0 in the 449

refactoring-inducing PRs . 127

6.5 Types of refactoring edits detected by RefactoringMiner 1.0 in 136

refactoring-inducing PRs consisting of a single type of refactoring . . . 128

6.6 Kinds of refactoring edits detected by RefactoringMiner 1.0 in 136

refactoring-inducing PRs consisting of a single type of refactoring . . . 129

6.7 Kinds of refactorings in 65 refactoring-inducing PRs (validated refactor-

ings) . 132

6.8 Number of detected refactorings from the first until the third subsequent

commit in refactoring-inducing PRs . 135

6.9 Low-level and high-level refactorings detected by RefactoringMiner in

449 refactoring-inducing PRs . 137

6.10 Types of high-level refactorings detected by RefactoringMiner 1.0 in 449

refactoring-inducing PRs . 137

6.11 Number of low-level and high-level refactorings in 65 refactoring-

inducing PRs (validated refactorings) 138

6.12 Kinds of refactorings by type of change in 65 refactoring-inducing PRs

(validated refactorings) . 139

6.13 Validity and reliability countermeasures for the characterization study

of refactoring edits in refactoring-inducing PRs 142

7.1 A summary of characterization studies on code review 143

7.2 A summary of characterization studies on refactorings over code evolution148

A.1 A summary of the preliminary investigation results 178

LIST OF TABLES xviii

B.1 Descriptive statistics – number of subsequent commits 179

B.2 Descriptive statistics – number of added lines 180

B.3 Descriptive statistics – number of deleted lines 181

B.4 Descriptive statistics – number of file changes 181

B.5 Descriptive statistics – number of reviewers 182

B.6 Descriptive statistics – number of review comments 183

B.7 Descriptive statistics – length of discussion 183

B.8 Descriptive statistics – time to merge 184

B.9 Descriptive statistics – number of refactoring edits 185

C.1 Statistical tests output – number of added lines by presence of refactorings188

C.2 Statistical tests output – number of deleted lines by presence of refactorings189

C.3 Statistical tests output – number of file changes by presence of refactorings190

C.4 Statistical tests output – number of subsequent commits by presence of

refactorings . 192

C.5 Statistical tests output – number of review comments by presence of

refactorings . 194

C.6 Statistical tests output – length of discussion by presence of refactorings 195

C.7 Statistical tests output – number of reviewers by presence of refactorings 196

C.8 Statistical tests output – time to merge by presence of refactorings . . . 197

D.1 Descriptive statistics (refactoring-inducing PRs) 199

D.2 Descriptive statistics (non-refactoring-inducing PRs) 200

D.3 Type of changes by category of PRs . 202

D.4 Presence of self-affirmed minor PRs . 203

D.5 Presence of self-affirmed minor review comments 204

D.6 Presence of code review bot in PRs . 205

D.7 Descriptive statistics of participants of PRs by category 206

D.8 Apache roles of the participants of PRs by category 207

D.9 Descriptive statistics of participants by subgroup of refactoring-inducing

PRs . 208

D.10 Age of PRs (in number of years) . 209

List of Source Codes

2.1 A simple Java source code . 12

2.2 A simple refactored Java source code 13

2.3 A simple example of a Java source code with Feature Envy 14

2.4 A simple example of a Java source code with no Feature Envy after a

Move Method refactoring . 15

6.1 A simple Java method . 127

6.2 A simple Java refactored method . 128

xix

Chapter 1

Introduction

1.1 Motivation

Modern Code Review (MCR) is lightweight, tool-assisted, asynchronous, and driven by

reviewing code changes [33]. Through the years, we perceive the transition from formal

software inspection to MCR, in both open source and industrial software development.

Thus, finding defects, the main objective of software inspection [59], became a limited

operation of inspection [76], whereas regular change-based reviewing, in which code

improvements are embraced, became an essential practice in the MCR scenario [33;

120]. Code changes may comprise new features, bug fixes, or other maintenance tasks,

providing potential opportunities for refactorings [110], which form a significant part

of the changes [35; 141]. Given that the nature of changes significantly affects code

review effectiveness, as it directly influences how reviewers perceive the changes [117],

the provision of suitable resources for assisting code review is essential.

Characterization studies of MCR have been conducted to investigate technical as-

pects of reviewing [38; 44; 73; 120; 121; 122; 126], factors leading to useful code review

[45], circumstances that contribute to code review quality [80], and general code review

patterns in pull-based development [87]. Those studies are relevant because MCR is

critical in repository-based software, driven by change and collaboration, especially in

Agile software development and continuous delivery approaches. A change-driven and

collaboration-based strategy guides the principles of Agile practices. [14]. Whereas

continuous delivery is a chain of processes (e.g., build, review, test, packaging) that

1

1.1 Motivation 2

produce deployable software releases from code changes, in a fast, automated, and

replicable manner [72].

In that scenario, Git-based software repositories have increasingly been adopted

[13]. In practice, Git Pull Requests (PRs) are suitable to MCR as they promote well-

defined and collaborative reviewing. A PR is a commonly used way for submitting

contributions to collaboration-based projects [7]. Through PRs, the code is subject

to a review process in which reviewers may suggest improvements before merging the

code to the main branch of a repository [50]. Branching and merging are features of

Git-based development. Branching allows the creation of development lines without

interfering with the main development line, and merging provides the procedure to

integrate the code developed in a branch into the main development line [50]. Code

improvements may take the form of refactorings, resulting from discussions among the

PR author and reviewers on code quality issues, including spontaneous actions of the

author aiming to refine the originally submitted code.

Concerning the characterization of refactorings performed throughout code evolu-

tion, research has addressed the peculiarities of manual and automated refactoring

edits over time [101], the relationship between different categories of code changes and

specific refactoring types [110], and the commit-level assessment of contemporary refac-

toring practices [147]. Studies have investigated how developers document refactorings

during the code evolution [27], and the impact of refactorings on merge conflicts [89].

Recently, studies have explored the reason for systems’ architecture degradation after

refactoring edits [107], the commit-level description of refactorings over time [47], the

motivations behind refactorings at the PR level [112], and the characterization of the

intents and evolution of refactorings during code reviewing [109].

We hypothesize that refactoring-inducing PRs have different characteristics from

non-refactoring-inducing ones, as refactoring may involve design and Application Pro-

gramming Interface (API) changes that require more extensive effort and knowledge of

the project. Accordingly, we realized there is a lack of knowledge regarding the charac-

terization of refactoring edits and technical aspects of code reviewing in the pull-based

development in line with our definition of refactoring-inducing PR (Section 1.2).

1.1 Motivation 3

We decided to work at the PR level because we understand a PR as a complete

scenario for exploring code reviewing practices in a well-defined scope of development,

which allows us to go beyond an investigation at the commit level. For instance, at the

PR level, we can obtain a global comprehension of contributions to the original code,

in terms of both commits and reviewing-related aspects (e.g., reviewers’ comments).

This conception is mainly inspired by empirical evidence that the pull-based develop-

ment model is associated with larger numbers of contributions, at least, in relation to

patch-based code contribution tools, such as mailing lists [153], and by findings from

Pantiuchina et al. that considered discussions at the PR level as one of the motivating

factors to refactorings [112].

Therefore, by distinguishing refactoring-inducing from non-refactoring-inducing

PRs, we can potentially advance the understanding of code reviewing at the PR level

and assist researchers, practitioners, and tool builders in this context. To the best of our

knowledge, no prior MCR studies made a distinction between refactoring-inducing and

non-refactoring-inducing PRs, when analyzing their research questions, which might

have affected their findings or discussions. For instance, if Gousios et al. [68] and

Kononenko et al. [82] had considered refactoring-inducing PRs, they might have found

different factors influencing the time to merge a PR; Li et al. [87] could have included

refactoring concerns to the multilevel taxonomy for review comments in the pull-based

development model; Pascarella et al. [113] could have identified further information

to perform a proper code review in presence of refactorings; Paixão et al. [109] could

have complemented the study on the reasons for refactorings during code review when

analyzing projects in Gerrit. Whereas, Pantiuchina et al. [112] could have drown dif-

ferent conclusions on motivations for refactorings in PRs, since they analyzed PRs in

which refactorings were detected even in the initial commit(s) (i.e., these refactorings

were not induced from reviewer discussions). In practice, being unaware of refactoring-

inducing PRs’ characteristics, practitioners and tool builders might miss opportunities

to better manage their resources and to assist developers in PRs, respectively (Section

5.3).

This thesis aims to provide a systematical and practical understanding of the

refactoring-inducing code review process in pull-based development. In this direc-

1.2 Problem Statement 4

tion, we mine merged PRs from Apache’s Java repositories in GitHub (Chapter 3)

and investigate how common are refactoring-inducing PRs and what are the main

similarities/dissimilarities between refactoring-inducing and non-refactoring-inducing

PRs, considering metrics related to changes (e.g., number of changed files), particular

characteristics of reviewing (e.g., review comments), and refactoring edits (Chapter 4);

what are the main properties of code review in refactoring-inducing PRs (Chapter 5);

and what are the typical refactoring types and their respective characteristics (Chapter

6). Specifically, we propose empirical studies driven by quantitative and qualitative

methods in order to produce a more accurate characterization. Those studies are com-

plementary, intending to characterize refactorings and code reviewing-related aspects

in the refactoring-inducement context (Section 1.2).

It is worth mentioning that this thesis has evolved from initial investigations re-

garding refactorings and MCR [18] (summarized in Appendix A), developed in order

to get a better understanding of the topic and plan the research design. For that, we

selected case study as our main empirical strategy due to the possibility of systemati-

cally investigating data collected from real software repositories, intending to identify

aspects influencing a process and relationships between variables [124].

1.2 Problem Statement

Pull-based development, as implemented in GitHub, constitutes an useful strategy for

MCR practice. Through PRs, developers can contribute to source code improvements,

such as triggering refactoring edits [112]. This scenario leads to a question: what

characterizes PRs that induce refactorings?

By filling this knowledge gap, we may provide an extension in the understanding

of MCR in the pull-based development model and support practical recommendations

and further research. In this sense, this thesis investigates the technical aspects of

code review and refactoring edits in GitHub PRs, in light of the following definition

of a refactoring-inducing PR1. Accordingly, we define a PR as refactoring-inducing

1This designation was proposed by professor Nikolaos Tsantalis (Concordia University, Canada) in

one of our technical meetings, so initially inspiring this thesis.

1.2 Problem Statement 5

when refactoring edits are performed after the initial commit(s), as either a result

of discussion among reviewers or spontaneous actions carried out by the PR author.

Thus, we consider the PRs that comprise at least one review comment.

Definition 1. A pull request is refactoring-inducing if refactoring edits are per-

formed in subsequent commits after the initial pull request commit(s), as a result of

the reviewing process or spontaneous improvements by the pull request author. Let

U = ¶u1, u2, ..., uw♢, a set of repositories in GitHub. Each repository uq, 1 ≤ q ≤ w,

has a set of pull requests P (uq) = ¶p1, p2, ..., pm♢ over time. Each pull request pj,

1 ≤ j ≤ m, has a set of commits C(pj) = ¶c1, c2, ..., cn♢, in which I(pj) is the set of

initial commits included in the pull request when it is created and S(pj) is the set of

subsequent commits incorporated into the pull request after its creation, I(pj) ⊆ C(pj)

and S(pj) ⊆ C(pj). A refactoring-inducing pull request is that in which ∃ ck ♣ R(ck) ̸= ∅

and ∃ ci ♣ RC(ci) ̸= ∅, where R(ck) and RC(ci) respectively denote the set of refac-

torings performed in commit ck and the set of review comments left in commit ci,

♣I(pj)♣ < k ≤ n and ci ∈ I(pj) ∪ S(pj).

To clarify our definition, Figure 1.1 depicts a refactoring-inducing PR consisting

of two initial commits (c1 − c2) and two subsequent commits (c3 − c4), which include

refactoring edits, e.g., commit c3 has one Extract Method edit. The PR also comprises

review comments in commits c2 and c3. Our studies explore PR commits subsequent

to the initial ones (c1 − c2).

Figure 1.1: A refactoring-inducing PR (Apache Tinkerpop PR #1110), illustrating

initial commits (c1 − c2) and subsequent commits (c3 − c4).

1.3 Motivating Example 6

It is noteworthy that we recognize different schools leading the refactoring subject

[135]. Thus, we consider refactoring an edit that changes the internal code struc-

ture while preserving its external behavior and as practiced in agile development (in-

terchangeable). More specifically, we assume refactorings as mechanisms defined by

Tsantalis et al. to implement RefactoringMiner [146] – a state-of-the-art tool used for

refactoring detection in this thesis (Chapter 3, Subsection 3.1.2).

1.3 Motivating Example

There are empirical evidence on the benefits of code review and refactoring to concerns

such as code quality [33; 37; 42; 51; 99]. Since code review and performing refactor-

ings are time-consuming tasks [29; 68; 139], a detailed understanding of the practices

around refactorings and code reviewing may contribute to precise directions towards

more productivity for practitioners (e.g., reducing delays in merging code changes in

pull-based development). Moreover, by identifying differences between refactoring-

inducing and non-refactoring PRs, we can support researchers investigating MCR in

pull-based projects in designing more suitable strategies for sampling PRs. We be-

lieve that research questions may have distinct findings if we interchangeably consider

the characteristics of code changes in PRs. In MCR, a reviewer provides suggestions

through comments in code snippets while manually examines changes that, in turn,

may comprise refactoring edits. Given that, we firstly explored the interactions among

authors and reviewers in a pull-based project intending to get an initial understanding

of how review comments induce refactoring edits in code review time.

This thesis has evolved from results of preliminary investigations on refactorings

and code reviews (Appendix A). From those, as a motivating example, we describe a

case history, in which we explored the refactoring-inducement and code review aspects.

We randomly selected 24 PRs from Apache’s Drill repository. Then, we ran Refactor-

ingMiner and obtained 11 (45.8%) refactoring-inducing PRs indicated in Figure 1.2,

which shows the number of initial commits (in red) and refactorings by PR. Moreover,

we show a few review comments that directly induced refactorings.

1.3 Motivating Example 7

Figure 1.2: Examples of refactoring-inducing PRs from Apache Drill repository

We compared refactoring-inducing and non-refactoring-inducing PRs concerning

code churn (number of changed lines), and length of discussion (i.e., number of review

and non-review comments). As a result, we identified that the refactoring-inducing

PRs presented a higher code churn and discussion length than non-refactoring-inducing

PRs. Note that we took into account one measure of each context under investigation:

changes (code churn), code review (length of discussion), besides the number of refac-

toring edits.

Also, we manually analysed the refactoring-inducing PRs, by contrasting the de-

scriptions of the detected refactorings by RefactoringMiner against review comments.

Our strategy of analysis consisted of reading comments and searching for keywords

(e.g., “refac”, “mov”, “extract”, and “renam”). We observed refactorings directly in-

duced by review comments in four refactoring-inducing PRs. To exemplify, in the PR

#17622, the review comment “Lot of code here and in DefaultMemoryAllocationUtilities

are duplicate. May be create a separate MemoryAllocationUtilities to keep the common

code...” motivated one Extract Superclass and four Pull Up Method refactorings.

In a nutshell, those results provided insights on the pertinence of (i) exploring

technical aspects of changes, code review, and refactorings in the PR level, since we

perceived differences between refactoring-inducing and non-refactoring-inducing PRs

in terms of code churn and length of discussion; (ii) considering refactorings as part

of contributions to the code improvement during code review, and (iii) investigating

quantitatively and qualitatively technical aspects in light of our refactoring-inducing

PR definition.

2Apache Drill PR #1762, available in https://git.io/JczHh.

1.4 Objectives 8

1.4 Objectives

The main goal of this thesis is to establish an in-depth understanding of refactoring-

inducing PRs. Given that, we define the following objectives:

• Build datasets of code review data and detected refactorings in merged PRs;

• Identify similarities/dissimilarities between refactoring-inducing and non-

refactoring-inducing PRs;

• Characterize code review aspects in refactoring-inducing PRs;

• Characterize refactoring edits in refactoring-inducing PRs; and

• Provide directions for researchers, practitioners, and tool builders.

1.5 Research Questions

We designed the following studies and respective research questions to address our

objectives. Aiming to identify similarities/dissimilarities between refactoring-inducing

and non-refactoring-inducing PRs, we formulated these research questions:

• RQ1: How common are refactoring-inducing PRs?

• RQ2: How do refactoring-inducing PRs compare to non-refactoring-inducing

ones?

• RQ3: Are refactoring edits induced by code reviews?

To investigate code reviewing-related aspects intending to characterize code review

in refactoring-inducing PR, we designed these research questions:

• RQ1: How are review comments characterized in refactoring-inducing and non-

refactoring-inducing PRs?

• RQ2: What are the differences between refactoring-inducing and non-refactoring-

inducing PRs, in terms of review comments?

• RQ3: How do reviewers suggest refactorings in review comments in refactoring-

inducing PRs?

1.6 Main Results and Implications of Research 9

• RQ4: Do suggestions of refactoring justify the reasons?

• RQ5: What is the relationship between suggestions of refactoring and actual

refactorings in refactoring-inducing PRs?

Intending to characterize refactoring edits in refactoring-inducing PRs, we formu-

lated the following research questions:

• RQ1: What types of refactoring edits often take place in PRs?

• RQ2: How are the refactoring edits characterized?

1.6 Main Results and Implications of Research

By characterizing refactoring-inducing PRs, we can potentially advance the under-

standing of code review process at the PR level and expand the research regarding

contemporary code review. Our main results are:

• We found significant differences between refactoring-inducing and non-

refactoring-inducing PRs (in terms of code churn, number of file changes, number

of subsequent commits, number of review comments, length of discussion, and

time to merge), and empirical evidence on the relevance of code review to refac-

toring edits at the PR level;

• We observed motivating factors behind refactoring-inducing PRs (e.g., their re-

viewers are usually more experienced than their authors), identified technical

aspects of the structure of review comments in both refactoring-inducing and non-

refactoring-inducing PRs (e.g., polite and precise review comments in refactoring-

inducing PRs with refactorings induced by code review), and proposed guidelines

for a more productive code reviewing; and

• We found empirical evidence regarding technical aspects characterizing refactor-

ings (e.g., PR authors tend to perform refactoring edits in initial subsequent

commits for addressing code review suggestions) in refactoring-inducing PRs.

1.6 Main Results and Implications of Research 10

Our findings provide actionable implications, summarized as follows. We give a

complete description of them and other implications in the respective section of our

studies (Chapters 4–6).

From our comparative study between refactoring-inducing and non-refactoring-

inducing PRs, we suggest that:

• future experiment designs on MCR with PRs to consider the distinction between

refactoring-inducing and non-refactoring-inducing PRs,

• PR managers to better manage the reviewers when a PR becomes refactoring-

inducing (e.g., to share the knowledge of design changes caused by subsequent

refactoring edits to more team members), and

• tool builders to develop tools for helping the developers to distinguish refactor-

ing edits from non-refactoring edits directly in the review board of pull-based

development platforms.

From our characterization study on code review in refactoring-inducing PRs, we

propose that:

• future research should explore strategies to support an effective code review par-

ticipation of authors and reviewers, and knowledge transfer at the PR level (e.g.,

by specifying requirements for reviewer recommendation in line with our find-

ings).

• practitioners should follow our guidelines for articulating valuable review com-

ments towards code refactoring.

• tool builders may implement checkers for review comments as a feature available

at code review boards, guided by our guidelines for reviewers.

From our characterization study of refactoring edits in refactoring-inducing PRs,

we recommend that:

• future research on the practice of refactoring at the PR level can investigate code

repositories to identify patterns related to missing opportunities of implementing

more complex refactorings at code review time.

1.7 Document Structure 11

• practitioners should pay more attention to resources for assisting the code review

process (e.g, our guidelines for reviewers).

• tool builders can implement reviewer recommendation tools based on the expe-

rience of them against authors.

Moreover, as a general recommendation for researchers, we point out that re-

searchers can use our mined data, developed tools, and research methods, publicly

available [22], to further investigate code reviewing in pull-based development and

perform replication studies.

1.7 Document Structure

We organize the following chapters. In Chapter 2, we provide a conceptual back-

ground regarding refactorings, MCR, Git-based development and PRs, and Associa-

tion Rule Learning (ARL). We describe the procedures for mining merged PRs and

refactoring edits for our empirical studies in Chapter 3. Then, we present the research

design, results, discussion, and limitations of the studies carried out for characteriz-

ing refactoring-inducing PRs: a comparative study between refactoring-inducing and

non-refactoring-inducing PRs (Chapter 4), a characterization study of code review in

refactoring-inducing PRs (Chapter 5), and a characterization study of refactoring edits

in refactoring-inducing PRs (Chapter 6). In Chapter 7, we discuss the characterization

studies related to this thesis, followed by conclusions in Chapter 8, and appendices.

Chapter 2

Background

This chapter addresses the concepts that contextualize this thesis: the fundamentals of

refactoring (Section 2.1), Modern Code Review (Section 2.2), Git-based development

and PRs (Section 2.3), and Association Rule Learning (Section 2.4).

2.1 Refactoring

As software evolves to meet new requirements, its source code becomes more complex.

Throughout this process, design and quality deserve attention [77]. Design comprises

the internal software structure, while quality addresses the functional requirements and

the structural aspects such as maintainability [133].

For that, restructuring edits, originally named refactorings by Opdyke and Johnson

[105] and popularized by Fowler [60], are performed to directly favor design and the

quality of object-oriented software, whereas preserving its external behavior. To clarify,

suppose that a developer (inspired by Fowler) implemented the Java code 2.1.

1 // A simple Hello World in Java!

2 public class SimpleHelloWorld {

3 public static void main(String ... args) {

4 String name = " developer .", hw = " Hello World !";

5 System .out. println ("Hi , I’m " + name);

6 System .out. println ("This is my " + hw);

7 }

8 }

Listing 2.1: A simple Java source code

12

2.1 Refactoring 13

After compiling and running the code, the developer realizes that it is possible to

create a method that displays the printing details in standard output, encompassing

the last two lines of the code. The developer restructures the code so that the external

behavior (the program output) remains unchanged, as in listing 2.2.

1 // A simple Hello World in Java!

2 public class SimpleHelloWorld {

3 public static void main(String ... args) {

4 String name = " developer .", hw = " Hello World !";

5 printDetails (name , hw);

6 }

7 // this is a simple example of extract method

8 static void printDetails (String name , String hw) {

9 System .out. println ("Hi , I’m " + name);

10 System .out. println ("This is my " + hw);

11 }

12 }

Listing 2.2: A simple refactored Java source code

After compiling and running the restructured code, the developer notes that the

program’s output remains unchanged. This code transformation is a refactoring called

Extract Method, which objective is to extract a method from a code snippet so that

the method’s name indicates its purpose. With this refactoring, developers often aim

at improving code readability, achieved from an internal restructuring of the code,

thereby supporting its maintainability. For further exploration, Fowler provides an

updated catalog of more than 60 types of refactorings [61].

A general recommendation is that refactoring edits should be performed in a sys-

tematic and structured manner based on specific steps to (1) identify candidates for

refactoring, and (2) perform the refactoring edits [60; 104], as described in Subsections

2.1.1 and 2.1.2. As a complement, developers may seek the applied refactoring edits

into code, supported by refactoring detection tools, when performing a few development

tasks, as explained in Subsection 2.1.3.

2.1 Refactoring 14

2.1.1 Identification of Candidates for Refactoring

Refactoring is mainly motivated by changes in the code requirements (e.g., a new fea-

ture) or the presence of bad smells. For instance, an extracted code makes the original

method easier to understand (as exemplified in Listing 2.2) and facilitates adding a

new feature either in the extracted method or in the original one, so illustrating two

of the reasons for such a refactoring: improving readability and promoting extension,

respectively [129]. Bad smells are signs of deeper problematic situations [39], therefore

potential candidates for refactoring in a code. For instance, consider one of the main

problems for object-oriented design – Feature Envy, as exemplified in listing 2.3. This

bad smell arises when a method (printEarthGreetings()) is a member of a class (Hel-

loUniverse), however, its responsibilities are similar to the responsibilities of another

class (HelloEarth).

1 // A simple Hello Universe in Java!

2 class HelloUniverse {

3 private String greeting = " Hello Universe !";

4 public void printGreetings () {

5 System .out. println (greeting);

6 HelloEarth earth = new HelloEarth ();

7 printEarthGreetings (earth);

8 }

9 public void printEarthGreeting (HelloEarth earth) {

10 System .out. println (earth . getGreeting ());

11 }

12 }

13 // A simple Hello Earth in Java!

14 class HelloEarth {

15 private String greeting = " Hello Earth !";

16 public String getGreeting () {

17 return greeting ;

18 }

19 }

Listing 2.3: A simple example of a Java source code with Feature Envy

This situation does not aid software maintainability, because it reduces cohesion

while increasing coupling between the classes. A possible solution to address this issue

is to apply a Move Method [60] refactoring by moving printEarthGreeting() from class

2.1 Refactoring 15

HelloUniverse to class HelloEarth, as in listing 2.4.

1 // A simple Hello Universe in Java!

2 class HelloUniverse {

3 private String greeting = " Hello Universe !";

4 public void printGreetings () {

5 System .out. println (greeting);

6 HelloEarth earth = new HelloEarth ();

7 earth . printEarthGreetings ();

8 }

9 }

10 // A simple Hello Earth in Java!

11 class HelloEarth {

12 private String greeting = " Hello Earth !";

13 public String getGreeting () {

14 return greeting ;

15 }

16 public void printEarthGreetings () {

17 System .out. println (getGreeting ());

18 }

19 }

Listing 2.4: A simple example of a Java source code with no Feature Envy after a Move

Method refactoring

The identification of candidates for refactoring is a time-consuming activity, even

when supported by tools [88]. For this thesis, it is only relevant to be aware that

developers utilize their own techniques or support tools during this task.

2.1.2 Application of Refactoring

Experts and researchers recommend refactoring in small steps, even when in the case

of floss refactoring (including the restructuring and other programming activities, e.g.,

a new feature) [61; 100]. These edits can be performed manually or supported by tools.

When manual, the transformations are time-consuming and susceptible to errors

[29; 56]. For instance, when manually renaming a variable, a programmer needs to

review all references to that variable, apply the refactoring, and then run a test to

validate the behavior of the post-refactoring code [131].

2.1 Refactoring 16

Modern Integrated Development Environments (IDEs), such as Eclipse1, IntelliJ

IDEA2, and Netbeans3 include automatic refactoring engines, which execution com-

prises the following phases:

1. the developer chooses the type of refactoring to apply;

2. the engine checks whether the restructuring meets the preconditions for the type

of refactoring (e.g., no conflicts with existing identifiers is a precondition to re-

name a variable), and the external behavior of the software remains unchanged

after refactoring; and

3. if so, the engine restructures the source code.

2.1.3 Refactoring Detection

Refactoring detection consists of the automatic identification of the refactoring edits

applied in a given code. It is often used for assisting studies on code evolution [15;

36; 110; 148], understanding of changes [115], and code review [29; 65]. In practice,

refactoring detection is supported by tools based on different techniques, such as pred-

icate logic in RefFinder [115], heuristics based on static analysis and code similarity in

RefDiff [130], and Abstract Syntax Tree (AST)-based associations in RefactoringMiner4

[146].

To illustrate tool-supported refactoring detection, Figure 2.1 (a) shows a commit

message5 informing on Rename edits, and Figure 2.1 (b) displays the respective list of

refactorings identified by RefactoringMiner, indicating the types of refactorings applied

to the commit. This suggests that a reviewer could run the refactoring detection tool

for obtaining complementary information to the ones indicated in the commit message

1https://eclipse.org

2https://jetbrains.com/idea/

3https://netbeans.org

4https://github.com/tsantalis/RefactoringMiner

5https://git.eclipse.org/r/#/c/141112/

2.1 Refactoring 17

in Figure 2.1 (a), so getting details regarding the refactoring edits applied in Figure

2.1 (b).

Figure 2.1: The commit message #141112 of the Eclipse’s repository Egit on Gerrit

(a) and the respective RefactoringMiner’s output (b)

The effectiveness of those tools is often measured by accuracy, calculated from the

precision and recall, according to Equations (2.1) and (2.2).

precision =
|TP |

|TP | + |FP |
(2.1)

recall =
|TP |

|TP | + |FN |
(2.2)

where:

|TP | = (True Positive) number of detected refactorings,

2.2 Modern Code Review 18

|FP | = (False Positive) number of instances without refactoring, detected as refac-

toring; and

|FN | = (False Negative) number of undetected (or missing) refactorings.

False positives and false negatives impact tasks that depend on refactoring de-

tection, since they may respectively lead to wrong operations (e.g., when a reviewer

requires a code change based on a detected but non-existent refactoring) or incomplete

operations (e.g., when a reviewer does not require an additional code test due to an

undetected refactoring).

From this perspective, RefactoringMiner is currently considered a state-of-the-art

refactoring detection tool due to its high accuracy (precision of 97.9% and recall of

87.2%) [146]. It is presented as a Java API to detect refactorings applied to in the

history of a Java project [11], which running may be simplified in Equation (2.3).

f(a, b) = list of applied refactorings (2.3)

where:

• a and b are revisions of a project developed in Java (i.e., a commit and its parent

in the history of commits in a Git-based repository [3]);

• list of applied refactorings reports the types of refactoring edits carried out be-

tween revisions a and b, according to Table 3.5.

For this thesis context, it is worth being aware that we investigate refactoring edits

from the output of RefactoringMiner running, thus driven by its refactoring mecha-

nisms.

2.2 Modern Code Review

MCR, as defined by Bacchelli and Bird [33], consists of a lightweight code review

(in opposition to the formal code inspection specified by Fagan [59]), tool-assisted,

asynchronous (i.e., with no needs of face-to-face meetings), and driven by reviewing

code changes. In practice, code review yields a positive impact on software quality in

2.2 Modern Code Review 19

both open-source and industrial development scenarios [94]. This resource is supported

by platforms such as GitHub [6], Gerrit [2], Phabricator [10], and Review Board [12].

Essentially, the code review process is a manual examination of the code changes

(patch), submitted by a developer (author), by another developer (reviewer) – or re-

viewers. The process usually proceeds the following workflow, as illustrated in Figure

2.26, until the changes are accepted or discarded:

1. an author submits code changes – the added lines 117–120 in the file UnRegis-

terEndpointTask, in turn, component of a PULL REQUEST’s commit;

2. the reviewer(s) – REVIEWER – inspects the code changes highlighted by code

differentiating tools (diff tools) – DIFF OUTPUT;

3. the reviewer(s) can raise issues regarding specific lines, through threaded com-

ments – REVIEW COMMENT; and

4. the author decides how to deal with the reviewers’ comments [126] – e.g., the

comment ”done” indicates that the author agrees with the reviewer’s suggestion.

Figure 2.2: A commit from Apache Hadoop-Ozone PR #1033 at GitHub

6Example of a diff output and comments during the code review process of a GitHub’s PR, available

at https://github.com/apache/hadoop-ozone/pull/1033.

2.3 Git-based Development and PRs 20

Empirical studies have investigated code review efficiency and effectiveness in order

to understand the practice, elaborate recommendations, and develop improvements.

Together, these works share a set of useful code review aspects, summarized in Table

2.1.

Table 2.1: A summary of a few code review aspects raised from empirical studies

Code review aspect Empirical study(ies)

change description [45; 141]

code churn (number of changed lines) [38; 80; 120; 143]

length of discussion [80; 94; 120; 143]

number of changed files [45; 80]

number of commits [94; 121]

number of people in the discussion [80]

number of resubmissions [80; 120]

number of review comments [40; 94; 120]

number of reviewers [120; 127]

time to merge [68; 73]

For this thesis, it is essential to know the fundamentals of code reviewing in the

context of PRs on GitHub, in turn, described as follows.

2.3 Git-based Development and PRs

Git, a Distributed Version Control System (DVCS), has been embraced by a large com-

munity of developers and organizations, in both open-source and industrial software

development scenarios. Results from the 2020 Stack Overflow development survey

indicate that more than 82% of developers use GitHub [21] – a collaborative devel-

opment platform built upon Git. GitHub has presented a frequent growth in terms

of the number of developers (more than 40 million) that contribute to more than 2.9

million organizations around the world [19]. Given that, we consider the Git-based

development as implemented in GitHub.

2.3 Git-based Development and PRs 21

As a DVCS, Git supplies collaborative development by mirroring repositories

to the developers’ computers. Each repository is composed of the files and fold-

ers of a project, including a full history of all changes applied to the files [50].

This change history is structured as a linked-list of snapshots, denominated com-

mits that, in turn, are uniquely identified by a hexadecimal characters (e.g.,

0a66da598a986971a77900442e20025ebfc56e9d7) generated using the Secure Hash Al-

gorithm 1 (SHA-1) hash algorithm [102].

Git organizes commits into multiple lines of development, named branches. Each

repository has a main (or master) branch. Each additional line of development consists

of a copy of the repository, which can be modified without altering the main branch.

Figure 2.38 illustrates the idea behind the Git branches, as implemented in GitHub,

displaying two lines of development created after forking (copying) the master-branch.

As result, a developer can alter the repository’s content to submit a new feature, via

the new-feature-branch, and to fix a bug, via the bug-fix-branch, without altering the

repository’s content in the master-branch.

Figure 2.3: Examples of Git branches

After forking a Git branch, a developer can implement contributions (i.e., changes)

through commits, and then, open a PR to submit them for discussion. At this moment,

it occurs the code review process – the focus of investigations of this thesis. In this set-

ting, as shown in Figures 2.4 and 2.59, a developer (author) forks the main repository

branch (master-branch), creating a new branch (pr-branch), to make changes (a set of

7A commit of an Apache repository, available at https://git.io/JUBG5.

8Inspired by https://guides.github.com/activities/hello-world/.

9Both figures are inspired in https://t.ly/EXH9.

2.3 Git-based Development and PRs 22

n commits, i.e., c1, c2, ..., cn) and submit them through a PR (status open pull request).

Next, one or more reviewers examine the submitted commits (CODE REVIEW), re-

sulting in either adding new commits to the PR (CODE UPDATE) or closing the PR

(status closed pull request) by the author.

Figure 2.4: An overview of a Git PR in GitHub

Figure 2.5 emphasizes the MCR process inside an open PR. At that point, any

developer with reading access can review the PR. In this scenario, as exemplified in

Figure 2.6 and 2.7, reviewers can submit comments (REVIEW COMMENT) while

reviewing (REVIEWING) the proposed changes, based on a diff output (detailed in

Figure 2.7) that highlights the CHURN (number of added lines + number of deleted

lines), and the changed lines (DELETED LINE (-) in red and ADDED LINE (+) in

green) in each CHANGED FILE of a commit.

Figure 2.5: An overview of Git PR review in GitHub

A reviewer can leave one of three types of feedback: approve, agreeing with the

merge of the proposed changes; request changes, demanding for new changes before the

2.3 Git-based Development and PRs 23

Figure 2.6: A partial diff output (reviewing feature) of committed changes into the

Apache Drill PR #1888 at GitHub

merge; or comment, submitting comments. As a result, the author and other contrib-

utors can answer the review through general comments (also called PR comments). In

this way, PRs provide a valuable environment for discussion.

After a review, the author can change code to deal with the reviewer’s comments

– a process that lasts until there are no new review submissions, and the mergeability

requirements are met. These requirements consist of a customized set of checks, per-

formed before merging a PR, such as demanding a specified number of reviews before

the merge. In terms of the Git merge in GitHub, there are three options:

• Merge pull request which merges the PR branch into the main branch, through a

merge commit, chronologically ordered, as depicted in Figure 2.8. Note that the

arrows indicate a commit’s parent, and the before and after markers indicate the

commits searchable in the PR, respectively, before and after merging;

• Squash and merge which squashes all PRs commits into a single commit and

merges it into the main branch (Figure 2.9); and

• Rebase and merge which re-writes all commits from one branch onto another, by

updating their SHA, in a manner that unwanted history can be discarded, as illus-

trated in Figure 2.10. In this case, commits 0be3d3f and 66f02d3 received review

2.3 Git-based Development and PRs 24

Figure 2.7: A partial diff output (differentiating feature) of committed changes into

the Apache Drill PR #1888 at GitHub

comments, but they are not accessible via PR. Hence, it is mandatory to recover

the original commits when investigating reviewing-related aspects. Nonetheless,

such a recovery is not trivial [74].

The first option is useful to deal with high commit volumes in branches, the second

one is worthwhile to handle a lot of small commits in the branches, typically useful

in open-source projects, and the third one is useful in case of need to retain the full

details of all commits after merge [63]. Once merged (status merged pull request), the

PRs are searchable, that is, supply the search for code changes history, except in case

of the ”squash and merge” option.

In summary, PRs are a method for providing fast turnaround and decrease the time

to integrate contributions into software development [68]. For this thesis, GitHub PRs

denote a contemporary infrastructure from where it is feasible getting real-life review

data.

2.4 Association Rule Learning 25

Figure 2.8: Illustrating merge PR option (Apache Accumulo-Examples PR #19)

Figure 2.9: Illustrating squash and merge option (Apache Accumulo PR #106)

2.4 Association Rule Learning

Unsupervised learning is an approach for modeling the structure of a dataset by looking

for non-obvious patterns without external guidance [43]. Usually, the process follows

this workflow [149]:

• selecting features for modeling in line with the research context;

• feature engineering by transforming the selected features into proper formats for

modeling;

• choosing and running an appropriate algorithm based on the context and con-

straints of research; and

• interpreting results, by analyzing the meaningfulness of the algorithm’s output

aligned with the research context.

2.4 Association Rule Learning 26

Figure 2.10: Illustrating rebase and merge option (Apache Accumulo PR #190)

Specifically, to the context of this thesis, unsupervised learning through Association

Rule Learning (ARL) plays a role in the comparison between refactoring-inducing and

non-refactoring-inducing PRs detailed in Chapter 3.

ARL figures out rules that denote non-obvious relationships between variables in

large datasets, for instance, that changes comprising a high number of deleted lines

and added lines tend to involve a high number of changed files. Let I = {i1, i2, ..., in},

a set of n binary attributes (items) and D = {t1, t2, ..., tm}, a set of m transactions

(dataset), in which each transaction in D consists of items in I. Thus, an association

rule {X} → {Y } indicates the co-occurrence of the tuples {X} (antecedent) and {Y }

(consequent), where {X}, {Y } ⊆ I, {X} ∩ {Y } = Ø [25]. In this context, support

(Equation 2.4) expresses the number of transactions in D that supports an association

rule, so expressing its statistical significance.

supp({X} → {Y }) =
frequency({X}, {Y })

n
(2.4)

Given that, the following interestingness measures can indicate the strength of an

association rule:

• confidence (Equation 2.5) means how likely {X} and {Y } will occur together;

conf({X} → {Y }) =
supp({X} → {Y })

supp({X})
(2.5)

2.4 Association Rule Learning 27

• lift (Equation 2.6) reveals how X and Y are related to one another, as reported

in Table 2.2 [66]. Particularly, lift overcomes the case in which the confidence,

having a very frequent consequent, will always be high [41].

lift({X} → {Y }) =
supp({X} → {Y })

supp({X}) × supp({Y })
(2.6)

• conviction (Equation 2.7) provides the identification of the direction of an as-

sociation rule. It is a measure of implication instead of co-occurrence, ranging

in the interval [0, ∞]. In practical terms, conviction 1 denotes that antecedent

and consequent are completely unrelated, while conviction ∞ determines logical

implications, in which the confidence is 1 [46].

conv({X} → {Y }) =
1 − supp({Y })

1 − conf({X} → {Y })
(2.7)

Table 2.2: Relationship between antecedent and consequent according to the lift value

Lift Meaning

0 No association

< 1
The occurrence of the antecedent has negative effect

on the occurrence of the consequent and vice versa

> 1
The two occurrences are dependent on one another,

and the association rules are useful

As for the steps of the ARL workflow, feature selection also depends on the

problem context, but in terms of feature engineering, it is required to apply any

encoding technique, such as one-hot enconding, for uniquely identifying the selected

features. The one-hot encoding uses a group of bits to represent mutually exclusive

categories, so each bit on represents a category [151]. For instance, consider a simple

dataset of PRs composed of the following features: each PR is distinguished by a

number (1 – 5), repository’s name to which it belongs (example-one or example-two),

and associated labels (improvement, bug-fix, or new-feature). As shown in Figure

2.4 Association Rule Learning 28

2.11, the dataset comprises eight PR numbers, two distinct repository names, and

three labels. Especially, by using hot-encoding, the repository’s names are identified

by 0 1 (example-one) and 1 0 (example-two), while the labels are recognized by 0 0 1

(new-feature), 0 1 0 (bug-fix), and 1 0 0 (improvement). Thus, the PR number #5,

labeled as “improvement”, belongs to repository example-one.

Figure 2.11: Example of one-hot encoding

From the previous example, it is feasible to identify five items, I = {example-

one, example-two, improvement, bug-fix, new-feature}, and four distinct transactions

as exhibited in Figure 2.12, D = {{example-two, improvement}, {example-one, bug-

fix}, {example-one, new-feature}, {example-two, bug-fix}}. It follows that after feature

engineering, the input data are prepared to the next step of the workflow: selecting

and running an ARL algorithm.

Figure 2.12: Example of transactions

The ARL process comprises the successive phases, namely: discovering of all sets of

frequent itemsets that occur frequently (frequent itemsets) in the dataset, based on the

minimum support level (Phase 1), and creating strong association rules from the most

2.4 Association Rule Learning 29

frequent itemsets, based on the minimum confidence level (Phase 2) [84]. In Phase

1, ARL algorithms require as input the minimum support level for an itemset be

considered frequent. Phase 2 output constitutes a set of association rules that meet

both minimum support and confidence, and that can be searchable for the highest

values of lift and conviction in order to make decisions. For instance, a minimum

support of 80 for the association rule {low number of review comments → low number

of reviewers} denotes that both itemsets {number of review comments} and {number

of reviewers} occur at least 80 times in a dataset of reviewing-related attributes in

GitHub PRs, whereas 80% of the PRs that have a low number of review comments

also have a low number of reviewers, for a minimum confidence level of 80. From that,

a researcher might exclusively select association rules with lift > 1 and conviction > 1

for further investigation.

It is worth clarifying that a lower support level influences the ARL algorithms

performance since a larger number of itemsets will be considered, while higher values

result in fewer frequent itemsets. Concerning the confidence level, lower values cause

association rules that are not very accurate, while higher ones will generate a fewer

number of association rules [84].

Performance is the main issue surrounding ARL algorithms since Phase 1 requires

searching 2|I| sets [67]. Traditional algorithms, such as Apriori [134], perform multiple

scans over the full dataset in order to generate candidate itemsets as from the dataset’s

tuples. At the end of a scan, it is checked if the support for a candidate itemset

reaches the minimum support (defined by the user). Alternatively, Frequent Pattern

(FP)-growth [70] stands out due to the use of an internal structure, named FP-tree, that

gives the algorithm a high performance. Next, the FP-growth algorithm is detailed,

supported by an illustrative example10, based on the data from Figures 2.11 and 2.12,

that is, I = {example-one, example-two, improvement, bug-fix, new-feature}, D =

{{example-two, improvement}, {example-one, bug-fix}, {example-one, new-feature},

{example-two, bug-fix}}, and minimum support of 25%.

In the beginning, FP-growth scans the input data to compute the support count

of each item of the itemset, thus generating a descending order of frequent itemsets,

10Inspired in [140] and https://t.ly/AbFO.

2.4 Association Rule Learning 30

so that non-frequent items are dropped. In the example, the frequent itemsets and re-

spective support count are {{example-two}, 4}, {{example-one}, 4}, {{improvement},

3}, {{bug-fix}, 3}, {{new-feature}, 2}, and none disposal, since a minimum support of

25% determines two occurrences to recognize an item as frequent.

Then, FP-growth scans again the input data to compresses it into a FP-tree (which

goal is to prevent repeated data scans), and mines the frequent itemsets directly from

the FP-tree [140]. At that point, the FP-tree is formed by scanning one transaction at

a time and mapping it onto a branch in the FP-tree. The compression happens when

it occurs overlapping of branches, indicating that distinct transactions present items

in common. Figure 2.13 illustrates the step-by-step of the FP-tree formation.

Figure 2.13: Example of the FP-tree formation

Figure 2.13 (a) displays the representation of the first transaction, in which each

node has a frequency count of 1. A similar representation of the second transaction

is shown in Figure 2.13 (b). The third transaction shares a common item, {example-

one}, with the second one, so the branch for the third transaction overlaps with the

branch for the second one, and the count is updated, as presented in Figure 2.13 (c).

A similar situation takes place with the fourth transaction that has a common item,

2.4 Association Rule Learning 31

{example-one}, with the first transaction, thus, it occurs overlapping of branches and

updating of the count, as registered in Figure 2.13 (d). FP-tree also maintains a list of

pointers connecting nodes consisting of the same items, {bug-fix}, depicted as a blue

arrow in Figure 2.13 (d). The process continues until all transactions are scanned, as

demonstrated in Figure 2.13 (e) – (h).

Next, the generation of frequent itemsets is performed by examining the FP-tree

in a bottom-up manner. The key idea behind this strategy is to derive frequent item-

sets ending with a specific item, by exploring only the branches carrying that item,

as illustrated in Figure 2.14. The nodes are visited in descending order. Accordingly,

after finding the frequent itemsets ending in {new-feature} (Figure 2.14 (a)), the algo-

rithm sequentially search for frequent itemsets ending in {bug-fix} (Figure 2.14 (b)),

{improvement} (Figure 2.14 (c)), {example-one} (Figure 2.14 (d)), and {example-two}

(Figure 2.14 (e)).

It follows that a conditional pattern base is computed for each item, as registered

in Table 2.3 (second column). A conditional pattern base is a set of frequent items

co-occurring with a given item [70]. For instance, when analyzing the item {new-

feature} (Figure 2.14 (a)), it is possible noting two co-occurrences with {example-two},

so {{example-one}, 2} expresses the corresponding conditional pattern base for {new-

feature}. The same reasoning applies to other items, except for {example-one} and

{example-two} that do not have any common co-occurrence with other items (Figure

2.14 (d), (e)).

After that, a conditional FP-tree is built for each item by (i) considering the set

of common items in all branches in the conditional pattern base of that item, and (ii)

adding the frequency counts of all items of the branches in the conditional pattern

base to compute the support count, as outlined in Table 2.3 (third column). Thus, the

conditional FP-tree for {new-feature} consists of {{example-two}, 2}, since there is only

one conditional pattern base. The same occurs for {improvement}, which conditional

FP-tree is composed by {{example-one}, 3}. In case of {bug-fix}, {{example-two}, 1} is

discarded because its support is lower than the support minimum, so {{example-one},

2} is the single node of the FP-tree.

2.4 Association Rule Learning 32

Figure 2.14: Example of the bottom-up approach for generation of frequent itemsets

Table 2.3: Example of conditional pattern base, conditional FP-tree, and the respective

generated frequent pattern rules

Item
Conditional

pattern base

Conditional

FP-tree

Frequent pattern

rules

{new-feature} {example-two}, 2 {example-two}, 2 {example-two, new-feature}, 2

{bug-fix}
{example-two}, 2

{example-two}, 1
{example-two}, 2 {example-two, bug-fix}, 2

{improvement} {example-one}, 3 {example-one}, 3 {example-one, improvement}, 3

{example-one} null null null

{example-two} null null null

Finally, the frequent pattern rules are generated by matching the items of the con-

2.5 Concluding Remarks 33

ditional FP-tree to the respective item, as registered in Table 2.3 (fourth column). As

a result, three frequent pattern rules meet the support threshold minimum. Note that

the association rules can be inferred from frequent pattern rules according to either

{X} → {Y } or {Y } → {X}. For that, the confidence, lift, and conviction can be

regarded to decide on the validity of the generated rules, assisting the interpreting

of the results.

In order to clarify, when analysing the frequent pattern rule {{example-one, im-

provement}, 3}, the confidence of both rules, {example-one} → {improvement} and

{improvement} → {example-one}, can be computed and checked against a confi-

dence threshold minimum. In particular, conf({example-one} → {improvement}) =

0.75 and conf({improvement} → {example-one}) = 1. Then, by considering

the last one association rule, lift({improvement} → {example-one}) = 1.25 and

conv({improvement} → {example-one}) = ∞. Accordingly, this association rule is

useful, since the computed lift is greater than 1, and it is a logical implication because

conviction is ∞.

For this thesis, we rely on ARL to investigate similarities and differences between

refactoring-inducing and non-refactoring-inducing PRs.

2.5 Concluding Remarks

Refactoring, MCR, Git PRs, and ARL constitute the underlying concepts needed to

understand the contextualization of this thesis.

In the next chapter, we describe the mining of refactoring edits and code reviewing-

related data that provides the input datasets considered in the subsequent three em-

pirical studies (Chapters 4–6).

Chapter 3

Mining Refactoring Edits and Code

Review Data

In this chapter, we explain the procedures for collecting refactoring edits and code

reviewing-related data (Subsections 3.1.1–3.1.3), as well as a few countermeasures to

attend to validity and reliability issues (Subsection 3.2).

3.1 Data Mining Design

Our data collection consists of three steps: mining of raw PRs data, detection of

refactoring edits, and mining of raw code reviewing-related data, as illustrated in Figure

3.1 and detailed in the following subsections.

3.1.1 Mining Merged PRs

We carried out the mining of raw PRs data (Step 1) through mining merged PRs

from Apache’s repositories at GitHub. We investigated only merged PRs because they

reveal actions that were in fact finalized; thus, we could explore the refactoring edits

performed and the review comments which constitute the actual history of PRs. We

chose the GitHub platform due to its popularity [19] and to the mining resources

available through public APIs – GitHub REpresentational State Transfer (REST) API

v3 [5] and GitHub GraphQL API v4 [4]. We used GraphQL as an alternative to the

34

3.1 Data Mining Design 35

Figure 3.1: Overview of the data mining design

REST API, for instance, when we need to save bandwidth due to its well-structured

query strategy [144].

The Apache Software Foundation (ASF) manages more than 350 open-source

projects, completely migrated to GitHub since February 2019, and has more than 7,000

contributors from all over the world [16]. Thus, we selected Apache given its popu-

larity and relevance of contributions in the Open-Source Software (OSS) development

context. In special, almost 43% of Apache’s source code is developed in Java language

[20]. Thus, since the version of the refactoring mining tool we selected (Refactoring-

Miner, Subsection 3.1.3) only supports code developed in the Java, we considered Java

repositories.

It is worth emphasizing that although Apache follows a geographically distributed

development as well as other OSS projects [152], the Apache’s development process

obeys particular principles, named ”the Apache way” [17]: collaborative software de-

velopment; commercial-friendly standard license; consistently high-quality software;

respectful, honest, technical-based interaction; faithful implementation of standards;

and security as a mandatory feature.

3.1 Data Mining Design 36

Before mining the data (August 26, 2019), we performed a search for Apache’s non-

archived Java repositories in GitHub (to take into account only actively maintained

repositories) by inputting1 the search string user:apache language:java archived:false,

the results are indicated in Table 3.1. From this, 65,006 merged PRs were detected in

467 from a total of 956 repositories (48.85%).2 We clarify that such a number denotes

only the merged PRs searchable through the GitHub Graphical User Interface (GUI);

thus, there is no guarantee that it includes the PRs merged through any other mean,

such as command line.

Table 3.1: Search results for merged PRs from Apache’s non-archived Java repositories

in GitHub

Number of

repositories

Number of repositories

with merged PRs

Number of merged

PRs

956 467 65,006

Then, we mined those merged PRs from August 26, 2019 to September 7, 2019.

For that, we implemented a Python script3, employing resources available at PyGithub4

and Requests5 libraries to use, respectively, GitHub REST API v3 and GraphQL API

v4. This mining generated two datasets6: pull requests dataset and commits dataset.

The pull requests dataset consists of 48,338 PRs, merged by merge pull request option

(74.4% of the total number of Apache’s merged PRs), from 453 distinct repositories

(Table 3.2 displays the top 5 ones). The commits dataset contains 53,915 recovered

commits from 16,668 PRs (25.6% of the total number of Apache’s merged PRs), merged

1https://github.com/search

2The list of the number of merged PRs by Apache’s repository is available at https://git.io/

J12mV.

3Available at https://git.io/J12Y0.

4https://pygithub.readthedocs.io

5https://requests.readthedocs.io

6Available at https://git.io/J12OD.

3.1 Data Mining Design 37

by squash and merge or rebase and merge options, from 255 different repositories (Table

3.3 shows the top 5 ones).

Table 3.2: Top 5 repositories containing PRs merged by merge pull request option

Repository
Number of merged

PRs

Incubator-Druid 3,702

Beam 2,838

Pulsar 2,805

Incubator-Pinot 2,673

Ambari 2,588

Table 3.3: Top 5 repositories containing PRs merged by squash and merge or rebase

and merge options

Repository
Number of merged

PRs

Beam 2,452

Incubator-Pinot 1,184

Incubator-Druid 1,081

Cloudstack 894

Geode 778

When the commits of a PR are squashed into a single commit (squash and merge

option), in practice, the original commits become not directly accessible when searching

the PR. To deal with this issue, we recovered the commits’ history of each squashed and

merged PR, before any exploration of its original commits, assisted by the HeadRefFor-

cePushedEvent object accessible via GitHub GraphQL API [4]. To clarify, consider the

Apache’s PR #1807 (Figure 3.2) that, originally, had 12 commits (c1 − c12) that were

squashed into single commit (cafterCommit) after a force–pushed event. Consequently,

only one commit may be gathered from the PR (cafterCommit).

3.1 Data Mining Design 38

Figure 3.2: An overview of Apache Drill PR #1807, illustrating squashed commits

(c1 − c12)

Our recovery strategy follows two steps: (1) we recover the commits cafterCommit

and cbeforeCommit through the HeadRefForcePushedEvent object; and (2) we rebuild the

original commits’ history by tracking the commits from cbeforeCommit, which has the

same value of c12, until reaching the same SHA of the cafterCommit’s parent. For that,

we use the compare operation, as available at GitHub REST API v3 [5]. We executed

the strategy’s Step 1 for gathering the after and before commits from 65,006 PRs,

obtaining 53,915 commits after running the strategy’s Step 2.

We implemented the recovery strategy of commits from GitHub and built it in the

mining script3 (lines 33–45, 126–130, 163–164). Aiming to assess the effectiveness of

our recovery strategy, we followed Apache Drill PR #18077 up to the merge, then we

(1) ran the RefactoringMiner to detect refactoring edits in the commits from open PRs;

(2) executed the recovery strategy after the PRs merge; (3) ran the RefactoringMiner

in the recovered commits; and (4) compared the outputs from steps (1) and (3).

We structured the output datasets in line with the input format required to run

the RefactoringMiner, so containing records for the following variables:

• repository’s Uniform Resource Locator (URL), PR number, and commit SHA

(commits dataset)8, and

7https://github.com/apache/drill/pull/1807

8For example, (https://www.github.com/apache/dubbo-admin.git, 481,

77579afb66e1a78eb491f0a783705d40484de5a7).

3.1 Data Mining Design 39

• repository’s URL, and PR number (pull requests dataset).9

Therefore, Step 1 effected a pre-processing of Apache’s merged PRs for detecting

refactoring edits (Step 2), in turn, performed in two levels of running: at the pull

request level for entries from the pull requests dataset, and at the commit level for

entries from the commits dataset. Specifically, the datasets’ entries individually meet

the format of input required for the RefactoringMiner running in accordance with its

API usage guidelines (by invocating the methods detectAtCommit() to commit level

and detectAtPullRequest() to pull request level).10

3.1.2 Detection of Refactoring Edits

RefactoringMiner [11] is a state-of-the-art refactoring detection tool (precision of 97.9%

and recall of 87.2%), which has been shown superior to competitive tools, to detect

refactoring edits applied to Java source codes that follow pull-based development [146].

We considered RefactoringMiner 1.0 – a version closest to version 2.0 [145], available

in September 2019, which supports up to 40 different types of refactoring, including

low-level and high-level refactorings, allowing us to work with a comprehensive list of

refactoring edits. For this reason, we chose RefactoringMiner for refactoring detec-

tion purposes (Step 2).

In essence, it identifies the refactoring edits performed in a commit in relation to

its parent commit, displaying a description of the applied refactorings, that is, type

and associated targets, for instance, the methods and classes involved in an Extract

and Move Method refactoring11, as exposed in Table 3.4. To clarify, the public method

onAssignment() is extracted from the protected method onJoinComplete() in the class

ConsumerCoordinator and moved to another class (PartitionAssignor) in the same

package.

9For example, (https://www.github.com/apache/dubbo-admin.git, 479).

10https://github.com/tsantalis/RefactoringMiner#api-usage-guidelines

11From the refactoring detection in Apache Kafka PR #6763; a commit available at https://git.

io/JUlDq.

3.1 Data Mining Design 40

Table 3.4: A RefactoringMiner output example

Refactoring type Refactoring details

Extract and Move Method

public onAssignment(assignment Assignment, generation

int):void extracted from protected onJoinComplete(

generation int, memberId String, assignmentStrategy

String, assignmentBuffer ByteBuffer):void in class org.

apache.kafka.clients.consumer.internals.Consumer-

Coordinator & moved to class org.apache.kafka.clients.

consumer.internals.PartitionAssignor

RefactoringMiner 1.0 detects up to 40 distinct types of refactoring edits (Table

3.5). Given that, we classified the types of refactoring into low-level and high-level

categories in the light of their impact on code design, based on technical descriptions

provided by Fowler to explain that high-level refactorings are structured in terms of low-

level refactorings [60]. Accordingly, creating a class, changing the type of attributes,

renaming a method, and moving methods between classes are examples of low-level

refactorings. In contrast, high-level refactorings are more complex edits (e.g., creating

a hierarchical inheritance and moving and renaming a class between packages) that

either impact the code structure (Extract Superclass, Extract Interface, Extract Class,

and Extract Subclass) or require a higher number of checking in order to preserve the

code behavior (Pull Up Method, Pull Up Attribute, Push Down Method, Push Down

Attribute, Move Class, Move and Rename Class, and Move and Rename Attribute).

Table 3.5: Types of refactoring edits detectable by RefactoringMiner 1.0 in September

2019, classified in line with technical descriptions by Fowler

Low-level refactorings High-level refactorings

Extract Method Pull Up Method

Inline Method Pull Up Attribute

Rename Method Push Down Method

Move Method Push Down Attribute

Continued on next page

3.1 Data Mining Design 41

Table 3.5 – continued from previous page

Low-level refactorings High-level refactorings

Move Attribute Extract Superclass

Rename Class Extract Interface

Extract and Move Method Move Class

Rename Package Move and Rename Class

Extract Variable Extract Class

Inline Variable Extract Subclass

Parameterize Variable Move and Rename Attribute

Rename Variable

Rename Parameter

Rename Attribute

Replace Variable with Attribute

Replace Attribute (with Attribute)

Merge Variable

Merge Parameter

Merge Attribute

Split Variable

Split Parameter

Split Attribute

Change Variable Type

Change Parameter Type

Change Return Type

Change Attribute Type

Extract Attribute

Move and Rename Method

Move and Inline Method

Since we recognize that most of the practitioners and refactoring tool builders em-

ploy their experience to define refactoring mechanisms [103], it is worth mentioning that

this thesis investigates refactoring in light of the mechanisms specified by Refactoring-

Miner’s developers for each type of refactoring. Aware of challenges related to assurance

of behavior preservation [132], we clarify that, to the best of our knowledge, Refactor-

ingMiner does not check for behavior preservation when mining refactoring edits [145;

3.1 Data Mining Design 42

146]. To illustrate how RefactoringMiner determines refactoring mechanisms, we give

a few examples as follows.

In Figure 3.3, we display a commit that comprises an Inline Method (lines 373–

376). In this case, RefactoringMiner identifies four occurrences of Inline Method at

SimpleConfiguration (lines 185, 201, 211, 221).

Figure 3.3: A commit, from Apache Fluo PR #1077, consisting of four Inline Method

instances as detected by RefactoringMiner

When dealing with a Pull Up Method, RefactoringMiner identifies the occurrences

of such a method in other classes. For instance, it detects two Pull Up Method in-

stances of the method configOrEmptyMap (configMap<String, String>), lines 108–110

at TaskSpec, in the commit presented in Figure 3.4: lines 94–96 at ProduceBenchSpec

and lines 78–80 at RoundTripWorkloadSpec.

3.1 Data Mining Design 43

Figure 3.4: A commit, from Apache Kafka PR #4757, consisting of two Pull Up Method

instances as detected by RefactoringMiner

Regarding an Extract Class, RefactoringMiner also detects the occurrences of

Move Attribute and Move Method. To exemplify, it identifies three Move Attribute

(int MAX QUERY RETRIES, Duration INITIAL BACKOFF, FluentBackoff BACK-

OFF FACTORY in lines 48, 51, 54), and one Move Method (getDefaultCredentials()

in lines 59–73) instances at the extracted class BigqueryClient from BigqueryMatcher,

in the commit shown in Figure 3.5.

In this step, we considered only merged PRs containing two or more commits in-

tending to conform with our refactoring-inducing PR definition. After three weeks

of RefactoringMiner running, we obtained a random sample (sample 1, Figure 3.1)

of 225,127 detected refactorings in 8,761 merged PRs (13.5% of the total number of

Apache’s merged PRs) from 209 distinct repositories, embracing 68,209 commits, as

summarized in Table 3.6. The source of randomness lies in the order in which the

repositories were processed.

3.1 Data Mining Design 44

Figure 3.5: A commit, from Apache Beam PR #6261, consisting of one Extract Class,

three Move Attribute and on Move Method instances as detected by RefactoringMiner

At that point, we checked the commits’ authored date against the PRs’ opening date

in order to identify initial and subsequent commits for the sample’s PRs. Therefore,

the number of refactoring edits of a PR takes into account only subsequent commits.

We ran RefactoringMiner at the PR level for the pull requests dataset, and at

the commit level for the commits dataset, which results are presented in Table 3.7.

Accordingly, the sample is composed of 8,761 PRs, from which 61.5% are PRs merged

by merge pull request option containing 54.6% of the total number of commits, and

61.6% of the detected refactorings. In specific, 5,391 PRs are from 116 repositories,

while 3,370 ones belong to 146 repositories (top 5 repositories are respectively listed

Tables 3.8 and 3.9).

3.1 Data Mining Design 45

Table 3.6: Output of RefactoringMiner execution in Apache’s repositories

Number of

repositories

Number of

PRs

Number of

commits

Number of

detected

refactorings

209 8,761 68,209 225,127

Table 3.7: RefactoringMiner output, at commit and PR levels, for Apache’s repositories

Level
Number of

repositories

Number of

PRs

Number of

commits

Number of

detected

refactorings

commit 146 3,370 30,955 86,414

pull request 116 5,391 37,254 138,713

The output dataset12 after running Step 2 (sample 1) comprises the following vari-

ables: repository’s name, PR number, commit(s) SHA, type(s) of refactoring edits,

detail(s) on the refactoring edits, initial (a flag denoting if a commit is initial or sub-

sequent commit), and level (a flag indicating the RefactoringMiner running level).13

3.1.3 Mining Code Review Data

Empirical studies have investigated code review efficiency and effectiveness to under-

stand the practice, elaborate recommendations, and develop improvements. Together,

these studies share a set of useful code review aspects for further investigation, such

as code churn (number of added lines plus number of deleted lines) [38; 40; 80; 120;

121; 143], review comments [40; 68; 87; 109; 94; 107; 120; 112], length of discussion [68;

80; 82; 94; 120; 143], number of changed files [40; 45; 80], number of commits [94;

12Available at https://git.io/J12Gn.

13For example, (apache/flink, 9595, 886419f12f60df803c9d757e381f201920a8061a, Rename Vari-

able, table:Table to src: Table in method public testPartitionPrunning(): void in class

org.apache.flink.connectors.hive.HiveTableSourceTest, False, commit).

3.1 Data Mining Design 46

Table 3.8: Top 5 repositories containing PRs merged by merge pull request option in

sample 1

Repository
Number of

merged PRs

Kafka 647

Dubbo 611

Beam 604

Tinkerpop 304

Cloudstack 280

Table 3.9: Top 5 repositories containing PRs merged by squash and merge or rebase

and merge options in sample 1

Repository
Number of

merged PRs

Flink 380

Beam 263

Cloudstack 242

Geode 237

Incubator-Pinot 226

121; 150], number of reviewers [75; 119; 120; 121; 127], and time to merge [68; 73;

82]. From those, we selected the code reviewing-related attributes, listed in (Table

3.10), for the mining of raw code review data (Step 3), considering the 8,761 PRs

from Step 2 (sample 2, Figure 3.1).

The attributes number, title, labels, and repository’s name are useful to uniquely

identify a PR. We do not count the set of changed files, but the number of times the

files changed (i.e., the list of file changes) over subsequent PR commits. Hence, the

number of added lines and deleted lines denote the number of lines modified across file

changes. Note that length of discussion and time to merge of a PR are respectively

derived as follows:

3.1 Data Mining Design 47

• length of discussion = review comments + non-review comments (either response

to the review comments or comments not-related to reviewing), and

• time to merge (in number of days) = merge date − creation date.

Table 3.10: Selected PR attributes for mining

Attribute Type Description

number continuous Numerical identifier of a PR

title categorical Title of a PR

repository categorical Repository’s name of a PR

labels categorical Labels associated with a PR

commits continuous Number of subsequent commits in a PR

additions continuous Number of added lines in a PR

deletions continuous Number of deleted lines in a PR

changed files continuous Number of file changes a PR

creation date continuous Date and time of a PR creation

merge date continuous Date and time of a PR merge

reviewers continuous Number of reviewers in a PR

review comments continuous Number of review comments in a PR

non-review comments continuous Number of non-review comments in a PR

review comments text text The review comments of a PR

For mining the code review related-attributes from GitHub, we developed a Python

script14, employing resources available at the PyGithub15 library to use the GitHub

REST API v3 [5]. Specifically, in such step, we imposed one precondition: only merged

PRs, comprising at least one review comment, should be mined aiming to explore

refactoring-inducement and to collect review comments for further investigation. This

mining occurred from February 20 to 26, 2020 and it generated two datasets16, code

14Available at https://git.io/J12Zt.

15https://pygithub.readthedocs.io

16Available at https://git.io/J12Zo.

3.1 Data Mining Design 48

review dataset and review comments dataset, refined according to the following proce-

dures:

• dropping of merged PRs with inconsistencies, such as zero file changes17, and

zero reviewers due to problems with their username18;

• checking for duplicates; and

• mining from non-mirrored repositories19.

Moveover, we discarded PRs merged by rebase and merge option since, in rebas-

ing, some commits within the PR may be due to external changes (outside the scope

of the code review sequence), conveying a threat to the validity, as argued in [108].

Accordingly, we considered the number of HeadRefForcePushedEvent events and PR

commits to identify PRs merged by squash and merge option. In specific, PRs merged

by merge pull request and squash and merge options present zero and one HeadRefFor-

cePushedEvent event, respectively (squashed and merged PRs keep one commit). We

also dropped all PRs containing at least one subsequent commit with two parents, be-

cause such commits may represent external changes rebased onto a branch, as depicted

in Figure 3.6. Note that, once commit ee88dea has two parents, it integrates external

changes, which were not reviewed in PR reviewing time. For that, we implemented a

script20 using resources available at Requests21 library.

Then, we realize that even by performing those actions, a few PRs that suffered

rebasing still remained. To deal with such an issue, we carried out a manual inspection

of 1,845 merged PRs obtained so far, thus identifying rebasing in 206 PRs. Such a

procedure consists of manually revisiting each PR commit searching for any signal of

17In Guacamole-Client PR #328, and Maven-Plugins PR #18.

18In Brooklyn-Server PR #570, Cloudstack PR #2346, Dubbo PRs #1607, #2662, #3326, Flink

PRs #4551, #5561, Geode PRs #1017, #1776, Hadoop PR #663, Incubator-Iceberg PR #21,

Incubator-Iotdb PR #203, Maven-Jxr PR #6, and Netbeans PR #594.

19It is an additional step of checking for replicas to drop duplicates. Anyway, no mirrored repository

was found in the process.

20Available at https://git.io/J12wg.

21https://requests.readthedocs.io

3.1 Data Mining Design 49

Figure 3.6: Illustrating a PR’s commit presenting two parents (Apache Avro PR #537)

rebasing (e.g., a not previously detected commit having two parents) – a task that

lasted almost 93 days (about two hours per day).

As a result, our final sample (sample 2, Figure 3.1) consists of code review data

from 1,639 merged PRs (2.5% of the total number of Apache’s merged PRs from Step

1 and 18.7% of the number of sample’s PRs obtained from Step 2), encompassing 4,000

subsequent commits, 2,104 detected refactorings, and 10,647 review comments, mined

from 73 distinct Apache’s repositories (Table 3.11).

Table 3.11: A summary of the final sample from mining Apache merged PRs in GitHub

Number of

repositories

Number of

PRs

Number of

subsequent

commits

Number of

detected

refactorings

Number of

review

comments

73 1,639 4,000 2,104 10,647

Table 3.12 lists the top 5 repositories. The first three repositories are expressive in

number of commits concerning the other Apache’s repositories, because they together

comprise more than 8% of the Apache’s commits, in 2019 [20]. The final sample

contains 1,580 PRs merged by merge pull request option (96.4%), and 59 PRs merged

by squash and merge option (3.6%).

The final sample includes PRs created from March 18, 2014 to September 02, 2019,

and merged from July 18, 2014 to September 05, 2019. As presented in Figure 3.7,

3.1 Data Mining Design 50

Table 3.12: Top 5 Apache’s repositories in the final sample

Repository
Number of

merged PRs

Kafka 338

Beam 248

Dubbo 145

Servicecomb-Java-Chassis 110

Cloudstack 98

most of these PRs were created and merged in 2018 and 2019, what corroborates with

the progressive migration of Apache’s projects to GitHub [16].

Figure 3.7: Creation and merge dates of the final sample’s PRs

The code review dataset consists of the following variables by PR: repository’s name,

number, title, a list of labels, date and time of creation, date and time of merge, number

of subsequent commits, number of file changes, number of added lines, number of

deleted lines, number of reviewers, number of review comments, number of non-review

comments, length of discussion, a flag indicating the presence of refactoring edits, and

number of detected refactorings.

3.2 Limitations 51

The code review comments dataset encompasses records of reviewers’ comments

related-attributes of all PRs registered in the code review dataset: the name of the

repository that comment comes from, the PR number from which the review comment

comes from, the original commit SHA from which the review comment comes from, the

review comment identifier, the review comment identifier to which the review comment

is a reply, the identifier of the hunk22 from which the review comment comes from, the

review comment body, the date and time of the review comment creation, and the date

and time of the PR creation.

3.2 Limitations

We propose the countermeasures listed in Table 3.13 to deal with the issues of validity

and reliability. To clarify, our data mining design follows well-defined guidelines [124;

125], and was regularly reviewed by the supervisors of this thesis. We make an effort to

systematically explain the performed procedures, taken decisions, and obtained results

in each design step.

By considering concerns on internal validity, it is worth pointing out that we defined

the mining design after conducting two brief case histories in order to get a better

understanding of GitHub’s PRs and the procedures of data mining and refactoring

detection, as reported in Appendix A. Even so, there are risks of threats due to any

non-previously identified deficiencies in the procedures of the mining design. Moreover,

as we mentioned in Subsection 3.1.1, our mining design is restricted to take on only

merged PRs searchable via the GitHub GUI.

We also recognize that the steps and a few procedures within steps could be per-

formed in a distinct sequence, for instance, searching for rebasing in PRs before mining

refactoring edits. Nevertheless, our mining design reveals an incremental and practical

knowledge regarding how to mine data from GitHub. To exemplify, we performed an

22A hunk contains the differing lines between two files, as displayed by the diff tool in GitHub. For

example, @@ -27,7 +27,7 @@ class HelloWorld indicates that the hunk starts at line 27 and has a

total of 7 lines in the previous HelloWorld file, while the hunk starts at line 27 and has a total of 7

lines in the new HelloWorld file.

3.2 Limitations 52

Table 3.13: Validity and reliability countermeasures for mining refactoring edits and

code reviewing-related data

Type Description

Internal validity A design proposal to guide the data collection

Construct validity

Regular revision of the mining design by supervisors

Automatic and manual inspection of PRs to

search for rebasing

Selection of a state-of-the-art tool for refactoring

detection purposes

External validity

Randomness and a confidence level of 99.9% and a

margin of error of 5% for sampling a representative

number of merged PRs

A few directions on how to apply our mining design

to mine data from other pull-based platforms

Reliability
Effort towards clarifying the data collection

procedures in order to enable replications

automatic search for rebasing in PRs from our sample (sample 2, Figure 3.1), however

by manually examining a few PRs, we realized that there were PRs presenting none

force-pushed event while including commits that have two parents (e.g., Avro #537)23,

thus not detected by our automatic search. Accordingly, we carried out a manual in-

spection of PRs to identify undetected rebasing in our sample. As a result, we provide

an accurate code reviewing-related dataset for further studies and replications.

Despite the efforts towards a more accurate data interpretation, we did not validate

the mined refactorings for further studies (since a manual validation of refactoring edits

is a time-consuming task [146]), so expressing a potential threat to construct validity.

In order to overcome this issue, we selected RefactoringMiner, a state-of-the-art tool

(precision of 97.9% and recall of 87.2%), for refactoring detection purposes.

Furthermore, it is noteworthy that, as we argued Subsection 3.1.2, we consider refac-

toring edits in light of the mechanisms defined by RefactoringMiner’s developers – such

23More examples and details are available at https://git.io/J1KB1.

3.2 Limitations 53

an issue is due how RefactoringMiner and other developments tools (and developers) de-

fine the mechanisms of refactoring [103]. In this context, we shed light on a potentially

inflated number and types of refactoring edits, in our sample, due to how Refactoring-

Miner detects specific refactorings (e.g., an Extract Class implies Move Attribute and

Move Method associated instances). We also remember that, to the best of our knowl-

edge, it does not check for behavior preservation when mining refactoring edits [145;

146]. Thus, further studies and replications need to deal with such restriction when

using our refactorings dataset.

Aiming to ensure a representative set of merged PRs for further research, we con-

sider randomness (obtained through a random order of refactoring detection on the

PRs), a confidence level of 99.9%, and a margin of error of 5% at least. Accordingly,

regarding 65,006 merged PRs from 467 distinct repositories (Table 3.1), our final sam-

ple comprises 1,639 merged PRs, thus achieving a confidence level of 99.9% and a

margin of error of 4.01% from 73 distinct repositories (15.6%).

To reduce threats to external validity, we elucidate that is needed customization of

our scripts and dataset structures in Steps 1–3 to mine data in other Git-pull-based

platforms, such as GitLab [9]. In specific, GitLab provides a GraphQL API for query-

ing attributes related to PRs (coined as merge requests) [8]; however, there are a few

distinctions, in terms of performance and attribute names, that should be taken into

account when reproducing our data mining design. For instance, the complexity of

queries is crucial to the response time in GitLab GraphQL API, and the name of at-

tributes are distinct (e.g., reviewcomments in GitHub GraphQL API corresponds to

discussions in GitLab GraphQL API). Even so, we speculate that efforts for such re-

production would be facilitated due to the use of GraphQL resources in both platforms.

Likewise, we clarify that it is not suitable to generalize the conclusions of studies

based on our final sample, except when considering other OSS projects that follow a

geographically distributed development, as it occurs in GitHub, and are aligned to “the

Apache way” principles [17].

To deal with reliability issues, we describe details concerning the procedures and de-

cisions taken in each design step, also provide a reproduction kit to enable replications,

publicly available at [22].

3.3 Concluding Remarks 54

3.3 Concluding Remarks

We present a rigorous design for mining refactoring edits and code review data on PRs

from Apache’s Java repositories in GitHub. In particular, we provide and discuss a few

countermeasures to mitigate validity and reliability issues to support further studies

and replications.

In the next chapter, we describe an empirical study that addresses a comparison

between refactoring-inducing to non-refactoring-inducing PRs, based on the refactoring

edits and code reviewing-related aspects mined as from our data mining design.

Chapter 4

Comparing Refactoring-Inducing

and non-Refactoring-Inducing Pull

Requests

This chapter presents a comparative investigation between refactoring-inducing and

non-refactoring-inducing PRs based on the final sample obtained from mining refac-

toring edits and code review data in Apache’s Java repositories in GitHub (Chapter 3).

In the following sections, we detail the research design (Section 4.1), the results, and

discuss them (Section 4.2), as well as their implications (Section 4.3) and limitations

(Section 4.4).

A preliminary version of this study was published [53]. Since that, we performed

the manual inspection of 1,845 merged PRs in order to deal with rebasing (Chapter 3,

Subsection 3.1.3). Here, we present the updated version of the study considering 1,639

merged PRs.

4.1 Research Design

We hypothesize that refactoring-inducing PRs have distinct characteristics from non-

refactoring-inducing PRs and thus deserve special attention and treatment from re-

searchers, practitioners, and tool builders. Given that, this mixed study (quantitative

and qualitative) explores code reviewing-related aspects intending to identify similari-

55

4.1 Research Design 56

ties/dissimilarities between refactoring-inducing and non-refactoring-inducing PRs. In

this regard, we formulated these research questions:

• RQ1: How common are refactoring-inducing PRs? We firstly explored PRs that

met our refactoring-inducing PR definition.

• RQ2: How do refactoring-inducing PRs compare to non-refactoring-inducing

ones? We quantitatively investigated code reviewing-related aspects aiming to

find out similarities/dissimilarities in PRs based on the refactoring edits per-

formed.

• RQ3: Are refactoring edits induced by code reviews? We qualitatively scruti-

nized a stratified sample of refactoring-inducing PRs to validate the occurrence

of refactoring edits induced by code review by manually examining review com-

ments while cross-referencing their detected refactoring edits.

Accordingly, we designed an empirical study that comprises two steps: ARL and

data analysis, as depicted in Figure 4.1. We describe the research steps in Subsections

4.1.1 and 4.1.2, and argue a few countermeasures to deal with issues concerning validity

and reliability in Section 4.4.

4.1.1 Association Rule Learning

To explore the similarities/dissimilarities between refactoring-inducing and non-

refactoring-inducing PRs, we firstly ran ARL (Step 1) because it assists exploratory

analysis by automatically identifying the data’s inherent structure derived from the re-

lationships between distinct characteristics [43; 49]. Accordingly, by considering ARL

on refactoring-inducing and non-refactoring-inducing PRs, we can identify association

rules that likely support us in the formulation of more accurate hypotheses concerning

similarities/dissimilarities between those two groups.

One may argue that clustering is a better alternative than ARL to find groups of

PRs with distinct characteristics. Nonetheless, we experimentally performed cluster-

ing in our sample of PRs, after conducting a rigorous selection of clustering algorithm,

Ordering Points To Identify the Clustering Structure (OPTICS)[31], and input param-

4.1 Research Design 57

Figure 4.1: An overview of the comparative study between refactoring-inducing and

non-refactoring-inducing PRs

eters, Euclidean distance [32] as similarity metric, but we found a large noise ratio

(76.3%).1

The description of ARL meets the following workflow: selecting features (Phase 1),

feature engineering (Phase 2), choosing and running an appropriate algorithm (Phase

3), and interpreting results (Phase 4).

Phase 1. Selection of features

We selected all features that can be represented as a number regarding changes, code

review, and refactorings, from the code review dataset (Chapter 3, Subsection 3.1.3).

We considered a three-context perspective (changes, code review, and refactorings)

because they together might potentially support the identification of similarities/dis-

similarities between refactoring-inducing and non-refactoring-inducing PRs. These are

the selected features:

1
More details are available at https://git.io/J1i24.

4.1 Research Design 58

• number of subsequent commits,

• number of added lines,

• number of deleted lines,

• number of file changes,

• number of reviewers,

• number of review comments,

• length of discussion,

• time to merge, and

• number of detected refactoring edits.

It is arguable that other features could also be considered; however, (i) the PR title

is written using natural language, so it is subject to ambiguities; (ii) PR labels are not

mandatory, only 312 PRs from our sample have labels (19%); (iii) date and time of

creation/merge are specific values, so we used the difference between them (time to

merge) for exploration; and (iv) the number of non-review comments of a PR is part

of its length of discussion.

Phase 2. Feature engineering

Firstly, we checked the data distribution of the selected features (Appendix B) in

order to identify specific requirements in direction to feature engineering. As a result,

we applied quantile binning to all selected features since the data is non-normally

distributed, and also due to the presence of outliers. Quantile binning is a discretization

technique that groups values into quantiles and discards the actual values, so mapping

a continuous number to a discrete one [151]. Specifically, we scaled the raw data

into quarters (four equal portions of data), so that the outliers were also taken into

account, because in the context of this thesis, outliers do not represent experimental

errors; consequently, they can indicate circumstances for further examination. Thus,

the Very high category includes the outliers.

Then, we applied one-hot encoding based on the quantiles of the features since

ARL algorithms typically require categorical data as input [62], resulting in the binning

4.1 Research Design 59

presented in Table 4.1. We chose such technique due to its simplicity and linear time

and space complexities [151]. To exemplify, such encoding produces four codes for the

number of reviewers in refactoring-inducing PRs in our sample: n reviewers 1 to 2,

n reviewers 2 to 2, n reviewers 2 to 3, and n reviewers 3 to 6 that correspond to Low

number of reviewers (1 reviewer), Medium number of reviewers (2 reviewers), High

number of reviewers (3 reviewers), and Very high number of reviewers (4–6 reviewers).

Table 4.1: One-hot encoding for binning of features

Category Range

None 0

Low 0 < quantile ≤ 0.25

Medium 0.25 < quantile ≤ 0.50

High 0.50 < quantile ≤ 0.75

Very high 0.75 < quantile ≤ 1.0

Phase 3. Selection and Execution of an ARL Algorithm

We selected the FP-growth algorithm due to its performance, since it needs only two

scans of the input data [70]. Then, we developed a Python script2 for the ARL by us-

ing the FP-growth implementation available at the module mlxtend.frequent patterns3

[118].

We set the minimum support threshold to 0.1 to avoid discarding likely association

rules for further analysis [54]. Aiming to get meaningful association rules, we considered

minimum thresholds for confidence ≥ 0.5, lift > 1, and conviction > 1. We performed

a prior experiment concerning values of minimum support and minimum confidence by

taking the thresholds considered in [25] as a reference (support of 0.01, confidence of

0.5). We ran FP-growth considering support values ranging from 0.01 to 0.1 by steps

of 0.01, and confidence 0.5 (Table 4.2). In all these settings, we found association rules

that cover all input features. Since support is a statistical significance measure, we

consider the last setting (minimum support of 0.1, confidence of 0.5) for purposes of

2Available at https://git.io/JMYrj.

3http://rasbt.github.io/mlxtend/api_subpackages/mlxtend.frequent_patterns/

4.1 Research Design 60

FP-growth execution. A lift threshold > 1 reveals useful association rules [41], while a

conviction threshold > 1 denotes association rules with logical implications [46].

Table 4.2: ARL output by experimenting minimum support from 0.01 to 0.1 by steps

of 0.01, and confidence of 0.5

Support ≥ Number of association rules

0.01 58,467

0.02 22,803

0.03 11,431

0.04 7,424

0.05 4,372

0.06 3,006

0.07 1,903

0.08 1,191

0.09 872

0.10 640

Phase 4. Interpretation of Results

We considered feature levels (None, Low, Medium, High, and Very high), instead of

absolute values, as items for composing association rules aiming to identify relative

associations among two groups for investigation, for instance, {high number of review

comments} → {high number of reviewers}. In the case of the presence of only three

levels to some feature, we assumed the medium range to the level containing the median

value. We found such a setting for the number of subsequent commits and reviewers

in non-refactoring-inducing PRs. To exemplify, the number of subsequent commits is

1 on median in our sample; then, we mapped Medium (1), High (2), and Very high (3

– 19).

The association rules work as basis for the formulation of hypotheses regarding

the characterization of our sample’s PRs. In this sense, we carried out the following

procedure:

1. We pre-processed the association rules, by discarding in line with conviction,

in both refactoring-inducing and non-refactoring-inducing PRs. For instance,

4.1 Research Design 61

considering the following association rules, we dropped the first one due to the

conviction values (1.52 < 1.96). In consequence, from 640 initial association rules,

we obtained 222.

[‘n_reviewers_3_to_6’] -> [‘n_review_comments_12_to_82’]

support: 0.1759465478841871

confidence: 0.5163398692810458

lift: 1.9482067336738618

conviction: 1.519593089748992

[‘n_review_comments_12_to_82’] -> [‘n_reviewers_3_to_6’]

support: 0.1759465478841871

confidence: 0.6638655462184874

lift: 1.9482067336738615

conviction: 1.9612472160356347

2. We mapped the association rules to the corresponding feature levels (Low,

Medium, High, and Very High). As an example, consider that n reviewers 1 to 2,

n reviewers 2 to 2, n reviewers 2 to 3, and n reviewers 3 to 6 are mapped re-

spectively to Low number of reviewers (1 reviewer), Medium number of reviewers

(2 reviewers), High number of reviewers (3 reviewers), and Very High number of

reviewers (4–6 reviewers) in all association rules from refactoring-inducing PRs.

3. We dropped identical association rules in both refactoring-inducing and non-

refactoring-inducing PRs. With this action, we filtered the more meaningful

associations to discover similarities/dissimilarities. As a result, we obtained 191

association rules (54 from refactoring-inducing PRs and 137 from non-refactoring-

inducing PRs).

4. We ordered the association rules by conviction in both refactoring-inducing and

non-refactoring-inducing PRs.

5. We searched for and analyzed pairwise association rules to assist the rationale

for the hypotheses formulation. Accordingly, we found and analyzed eight pairs

4.1 Research Design 62

of association rules. To exemplify, we analyzed the first following association

rule (from refactoring-inducing PRs) in contrast to a pair, that is, the second

association rule (from non-refactoring-inducing PRs).

[‘very high reviewers’, ‘very high file changes’] ->

[‘very high subsequent commits’]

support: 0.10690423162583519

confidence: 0.7868852459016393

lift: 2.2081967213114755

conviction: 3.0202158643138595

[‘very high reviewers’, ‘medium file changes’] ->

[‘medium number of subsequent commits’]

support: 0.2848739495798319

confidence: 1.0

lift: 1.8085106382978722

conviction: inf

6. We formulated hypotheses, in light of the pairwise association rules, to quanti-

tatively investigate similarities/dissimilarities between refactoring-inducing and

non-refactoring-inducing PRs.

4.1.2 Data Analysis

Quantitative data analysis

To answer RQ1, we analyzed our code review dataset (Chapter 3, Subsection 3.1.3) by

exploring the detected refactorings by PR. The number of refactorings indicates the

edits detected as in the PR subsequent commit(s). As a complement, we computed a

95% confidence interval for the percentual (proportion) of refactoring-inducing PRs in

Apache’s merged PRs, by performing bootstrap resampling [58].

We applied statistical testing of hypotheses to answer RQ2. That analysis encom-

passed the testing of eight hypotheses formulated from the analysis of the ARL output

4.1 Research Design 63

(Step 1), driven by a comparison between refactoring-inducing and non-refactoring-

inducing PRs. We executed each hypothesis testing in line with this workflow, guided

by [48]:

1. Definition of null and alternative hypotheses.

2. Run the statistical test, as follows:

(a) checking for data normality by using the Shapiro-Wilk test;

(b) checking for homogeneity of variances via Levene’s test;

(c) computation of confidence interval for the difference in average or median

aligned to output from Steps (a) and (b);

(d) performing of either parametric independent t-test and Cohen’s d, or

non-parametric Mann Whitney U test and Common-Language Effect Size

(CLES) in line with the output from Steps (a) and (b). CLES is the prob-

ability, at the population level, that a randomly selected observation from

a sample will be higher/greater than a randomly selected observation from

another sample [93].

We considered a significance level of 5%, and a substantive significance (effect

size) for denoting the magnitude of the differences between refactoring-inducing

and non-refactoring-inducing PRs at the population level. First, we checked

the assumptions for parametric statistical tests (Steps a and b), since the inde-

pendence assumption is already met (i.e., a PR is either a refactoring-inducing

or not). For exploring the difference between refactoring-inducing and non-

refactoring-inducing PRs, we computed a 95% confidence interval by bootstrap-

ping resample according to the output from Steps a and b, in average or median

(Step c). Then, we conducted a proper statistical test and calculated the effect

size (Step d).

3. Deciding if the null hypothesis is supported or refused.

4.1 Research Design 64

Qualitative data analysis

To answer RQ3, three developers (intending to mitigate researcher bias) manually

examined review comments and validated the detected refactorings from a subset of

refactoring-inducing PRs from our sample. We adopted a stratified random sampling to

select refactoring-inducing PRs for an in-depth investigation of review comments while

cross-referencing detected refactoring edits. Moreover, we validated these refactorings

by checking for false positives. As a whole, this analysis lasted 30 days (about four

hours per day).

We chose that sampling strategy because it provides a mean to sample non-

overlapping subgroups based on specific characteristics [91], (e.g. number of refactor-

ings), where each subgroup (stratum) can be sampled using another sampling method

– a setting that quite fits to further investigation of categories of refactoring-inducing

PRs containing a Low, Medium, High, and Very high number of refactorings (Table 4.1).

To define the sample size, we considered a confidence level of at least 95% and a margin

of error of 4.5%. Accordingly, we analyzed 228 PRs, being 57 refactoring-inducing PRs

randomly selected from each category. We split the samples into four categories based

on the numbers of refactorings to check if there is a difference in the effect of code

review refactoring requests/inducement between PRs with massive refactoring efforts

versus PRs with small/focused refactoring efforts.

In the analysis, firstly, we conducted a calibration in which one of the analysts

followed up ten analyses performed by the others. Next, each analyst apart examined

40.3%, 38.2%, and 21.5% of the data. In such subjective decision-making, we consid-

ered the refactoring-inducement in settings where review comments either explicitly

suggested refactoring edits (e.g., “How about renaming to ...?”4) or left any actionable

recommendation that induced refactoring (e.g., “avoid multiple booleans” induced a

Merge Parameter instance5).

4Apache Samza PR #1051, available at https://git.io/J3z9H.

5Apache Fluo PR #1032, available at https://git.io/J3mxZ.

4.2 Results and Discussion 65

4.2 Results and Discussion

4.2.1 How Common are Refactoring-Inducing PRs?

We found 449/1,639 (27.4%) refactoring-inducing PRs, and 2,104 detected refactoring

edits. As shown in Figure 4.2 (a), the histogram of refactoring edits is positively skewed,

presenting outliers (denoting refactoring-inducing PRs comprising 11 to 63 refactoring

edits detected in the subsequent commits). Thus, a low number of refactoring edits is

quite frequent. The number of refactorings by PR is 4.7 on average (SD = 7.4) and 2

as median (IQR = 4), according to Figure 4.2 (b).

(a) Histogram (b) Boxplot

Figure 4.2: Distribution of refactoring edits in the refactoring-inducing PRs

By using bootstrapping resampling and a 95% confidence level, we obtained a con-

fidence interval ranging from 25.3% to 29.6% for the proportion of refactoring-inducing

PRs in Apache’s merged PRs. This is a motivating result that expresses refactoring as

a relevant concern at the PR level, while the presence of outliers can indicate scenarios

scientifically relevant for further exploration.

Finding 1: We found 27.4% of refactoring-inducing PRs, which the percentage

(proportion) in Apache’s merged PRs is in [25.3%, 29.6%], for a 95% confidence

level.

4.2 Results and Discussion 66

This finding corroborates with previous work on refactorings in practice. Murphy-

Hill et al. identified refactorings in 10% of commits of the Eclipse project [100], and

Brito et al. found that most of the refactorings occur in two or three commits when

analyzing ten popular OSS projects in GitHub [47]. These findings together may

explain the proportion of refactoring-inducing PRs in our sample (27.4%) since they

have 3.5 on average (SD = 3.1) and three on median (IQR = 2) subsequent commits.

Moreover, a refactoring-inducing PR presents at least one refactoring edit in one of its

subsequent commit(s). It is noteworthy that those works did not investigate commits

at the PR level nor distinguished PRs in light of our refactoring-inducing PR definition.

Therefore, this study may advance the practical understanding of refactoring and code

review at the PR level.

4.2.2 How Do Refactoring-Inducing PRs Compare to non-

Refactoring-Inducing Ones?

From ARL, we analyzed eight pairwise association rules, four from refactoring-inducing

PRs (AR1–AR4) and four from non-refactoring-inducing PRs (AR5–AR8), all cata-

logued in Table 4.3 in decreasing order of conviction.

Table 4.3: Association rules selected by manual inspection (AR1–AR4 for refactoring-

inducing PRs, AR5–AR8 for non-refactoring-inducing PRs)

Id Association rule Supp Conf Lift Conv

AR1

{Very high no. of refactorings, Very high no.

of added lines, Very high no. of subsequent

commits} → {Very high no. of file changes}

0.11 0.96 3.42 17.98

AR2

{Very high no. of refactorings, Very high no.

of deleted lines, Very high no. of subsequent

commits} → {Very high no. of file changes}

0.10 0.94 3.34 11.75

AR3

{Very high length of discussion, Very high no.

of reviewers} → {Very high no. of

review comments}

0.13 0.82 3.11 4.18

Continued on next page

4.2 Results and Discussion 67

Table 4.3 – continued from previous page

Id Association rule Supp Conf Lift Conv

AR4

{Medium time to merge} → {High no. of

reviewers}
0.15 0.51 1.08 1.08

AR5

{Medium no. of file changes, Low no. of added

lines} → {Low no. of subsequent commits}
0.17 1.0 1.81 ∞

AR6

{Medium no. of file changes, Low no. of

deleted lines} → {Medium no. of subsequent

commits}

0.17 1.0 1.81 ∞

AR7

{High no. of review comments, High length of

discussion} → {Very high no. of reviewers}
0.10 0.92 1.21 3.11

AR8

{High no. of review comments, Medium time

to merge} → {Very high no. of reviewers}
0.11 0.89 1.16 2.11

Afterwards, we formulated eight hypotheses on the similarities/dissimilarities be-

tween refactoring-inducing and non-refactoring-inducing PRs, discussed as follows. As

a complement, Table 4.4 shows a few descriptive statistics of the examined attributes

from refactoring-inducing and non-refactoring-inducing PRs. We present the details

regarding the checking for parametric tests assumptions and statistical testing of hy-

potheses in Appendix C.

Table 4.4: Descriptive statistics of PR attributes

Attribute Average SD Median IQR

refactoring-inducing PRs

No. of added lines 316 2,633.7 50 114

No. of deleted lines 100.2 323.5 30 71

No of file changes 14.7 89.3 5 7

No. of subsequent commits 3.5 3.1 3 2

No. of review comments 9.5 106 6 9

Length of discussion 14.8 12.9 11 13

No. of reviewers 2.3 0.9 2 1

Time to merge (in days) 12.5 47.1 4 10

refactoring-inducing PRs

Continued on next page

4.2 Results and Discussion 68

Table 4.4 – continued from previous page

Attribute Average SD Median IQR

No. of added lines 53.7 528 8 26

No. of deleted lines 35.2 258 6 15.7

No of file changes 5 49.1 2 3

No. of subsequent commits 2 1.9 1 1

No. of review comments 5.3 8 3 4

Length of discussion 9.6 10.4 7 8

No. of reviewers 2 0.8 2 0

Time to merge (in days) 8.5 32.3 2 7

H1 Refactoring-inducing PRs are more likely to have more added lines than

non-refactoring-inducing PRs

Refers to association rules: (AR1,AR5).

H2 Refactoring-inducing PRs are more likely to have more deleted lines

than non-refactoring-inducing PRs

Refers to association rules: (AR2,AR6).

Rationale: Together, AR1 and AR2 in comparison to AR5 and AR6 suggest that

refactoring-inducing PRs comprise more code churn (number of added lines + number

of deleted lines) than non-refactoring-inducing PRs.

Finding 2: Refactoring-inducing PRs comprise significantly more code churn

than non-refactoring-inducing PRs, since refactoring-inducing PRs are signifi-

cantly more likely to present a higher number of added lines (U = 0.42 × e
+06,

p < .05), CLES = 78.9% and deleted lines (U = 0.42 × e
+06, p < .05), CLES =

77.9% than non-refactoring-inducing PRs.

This is an expected result in light of the findings from Hegedüs et al., since refactored

code has significantly higher size-related measurements [71]. Thus, we speculate that

reviewing larger code churn may potentially promote refactorings, supported by Rigby

et al., who observed that the magnitude of code churn influences code reviewing [121;

122], and Beller et al. who discovered that the larger the churn, the more changes

could follow [40].

4.2 Results and Discussion 69

H3 Refactoring-inducing PRs are more likely to have more file changes than

non-refactoring-inducing PRs

Refers to association rules: (AR1,AR5), (AR2,AR6).

Rationale: Together, AR1 and AR2 in comparison to AR5 and AR6 denote that

refactoring-inducing PRs consist of more file changes than non-refactoring-inducing

PRs.

Finding 3: Refactoring-inducing PRs encompass significantly more file changes

than non-refactoring-inducing PRs (U = 0.41 × e
+06, p < .05), CLES = 76.1%.

We conjecture that reviewing code across files may motivate refactorings, an argu-

ment supported by Beller et al. regarding more file changes comprise more changes

during code review [40]. By observing change-related aspects (churn and file changes),

our findings confirm previous conclusions on the influence of the amount and magni-

tude of changes on code review [38; 80; 121; 122]. When analyzing the changes and

refactorings, our findings reinforce prior conclusions on refactored code significantly

present higher size-related measurements (e.g., number of code lines and file changes)

[71], and larger changes promote refactorings [107].

We can not claim that a higher code churn and the number of file changes result

from refactoring edits performed over the subsequent commits in refactoring-inducing

PRs (Findings 2–3). We believe that a qualitative study could provide more precise

arguments regarding the causes (perhaps, floss refactoring).

H4 Refactoring-inducing PRs are more likely to have more subsequent com-

mits than non-refactoring-inducing PRs

Refers to association rules: (AR1,AR5), (AR2,AR6).

Rationale: Together, AR1 and AR2 in comparison to AR5 and AR6 indicate that

refactoring-inducing PRs tend to include a higher number of subsequent commits than

non-refactoring-inducing PRs.

4.2 Results and Discussion 70

Finding 4: Refactoring-inducing PRs comprise significantly more subsequent

commits than non-refactoring-inducing PRs (U = 0.37 × e
+06, p < .05), CLES

= 69.1%.

Based on our previous findings on the magnitude of code churn and file changes,

that result is expected and aligned to Beller et al. concerning the impacts of

larger code churn and wide-spread changes across files on consequent changes [40].

Accordingly, we speculate that reviewing refactoring-inducing PRs might require more

subsequent changes, in turn, denoted by more subsequent commits in comparison with

non-refactoring-inducing PRs.

H5 Refactoring-inducing PRs are more likely to have more review comments

than non-refactoring-inducing PRs

Refers to association rules: (AR3,AR7/AR8).

Rationale: When considering the same number of reviewers in AR3 contrasting to

AR7 and AR8, those association rules propose that code review in refactoring-inducing

PRs tend to encompass a higher number of review comments than in non-refactoring-

inducing PRs.

Finding 5: Refactoring-inducing PRs embrace significantly more review com-

ments than non-refactoring-inducing PRs (U = 0.35 × e
+06, p < .05), CLES =

65.6%.

Beller et al. found that review comments drive the most changes during code

review [40], and Pantiuchina et al. discovered that discussions among developers

motivate almost 35% of refactoring edits, in OSS projects at GitHub [112]. Thus, we

conjecture that, besides change-related aspects, GitHub’s PR model can constitute a

peculiar structure for code review, in which review comments influence the occurrence

of refactorings, therefore explaining our result. This argument originates from the

fact that a pull-based collaboration workflow provides reviewing resources [7] (e.g., a

proper code reviewing GUI) for developers to improve/fix the code while having access

to the history of commits and discussion. Our finding also provides insight for exami-

4.2 Results and Discussion 71

nation of review comments to get an in-depth understanding of refactoring-inducement.

H6 Refactoring-inducing PRs are more likely to present a lengthier discus-

sion than non-refactoring-inducing PRs

Refers to association rules: (AR3,AR7/AR8).

Rationale: Regarding the same number of reviewers in AR3 contrasting to AR7 and

AR8, those association rules suggest that code review in refactoring-inducing PRs tends

to contain a lengthier discussion than in non-refactoring-inducing PRs.

Finding 6: Refactoring-inducing PRs enclose significantly more discussion than

non-refactoring-inducing PRs (U = 0.35 × e
+06, p < .05), CLES = 65.3%.

A more in-depth analysis could tell how profound these lengthier discus-

sions are, although a higher number of comments might represent develop-

ers concerned with the code, willing then to extend their collaboration to

the suggestion of refactorings. Previous findings may support those claims;

Lee and Cole, when studying the Linux kernel development, acknowledged

that the amount of discussion is a quality indicator [86]. Also, empirical

evidence reports on the impact of the number of comments on changes [40;

112].

H7 No significant distinction regarding the number of reviewers

Refers to association rules: (AR3,AR7).

Rationale: When contrasting AR3 to AR7, those association rules suggest no difference

between refactoring-inducing and non-refactoring-inducing PRs as for the number of

reviewers.

Finding 7: We found no statistical evidence that the number of reviewers is

related to refactoring-inducement (U = 0.30 × e
+06, p < .05), CLES = 56.7%.

Refactoring-inducing and non-refactoring-inducing PRs present two reviewers as

median – the same result found by Rigby et al. [119] in the OSS scenario. There are

4.2 Results and Discussion 72

outliers that, in turn, could be justified by other technical factors, such as complexity

of changes, as argued in [120]. However, our study does not address that scope.

H8 Refactoring-inducing PRs are more likely to take a longer time to merge

than non-refactoring-inducing PRs

Refers to association rules: (AR4,AR8).

Rationale: Regarding a gradual increase in the number of reviewers in AR4 and con-

trasting it to AR8 (Finding 7), those association rules propose that refactoring-inducing

PRs take more time to merge than non-refactoring-inducing PRs.

Finding 8: Refactoring-inducing PRs take significantly more time to merge than

non-refactoring-inducing PRs (U = 0.31 × e
+06, p < .05), CLES = 57.4%.

We realize the influence of refactorings on time to merge, concluding that time

for reviewing and performing refactoring edits both impact the time to merge. In

special, this conclusion is aligned to Szoke et al., who observed a correlation be-

tween implementing refactorings and time [139], and from Gousios et al., who

found that review comments and discussion affect time to merge a PR [68]. As

argued by Kononenko et al., size-related factors influence the reviewing time [80;

82]. Accordingly, we also consider the impact of greater code churn and changed

files, as it occurs in refactoring-inducing PRs, on time to merge.

4.2.3 Is Refactoring Induced by Code Reviews?

To answer RQ3, we sampled 228 refactoring-inducing PRs6, 57 ones from each of the

Low, Medium, High, and Very High categories encompassing one, two, three to five,

and six to 63 refactoring edits, respectively. As a result of the manual validation of

refactoring edits, RefactoringMiner 1.0 obtained a precision of 98.2% and a recall of

99.7%, as detailed in Table 4.5.

6Available at https://git.io/JMYo8.

4.2 Results and Discussion 73

Table 4.5: Results of the manual validation of refactoring edits mined by Refactoring-

Miner 1.0

TP FP FN Precision (%) Recall (%)

1,886 35 5 98.2 99.7

By examining 2,096 review comments and 1,207 discussion comments in the sam-

pled PRs, we found 133/228 (58.3%) in which at least one refactoring edit was induced

by review comments. Such PRs comprise 815 subsequent commits, and 1,891 detected

refactorings, 545 of which were induced by review comments. As shown in Table

4.6, most of the refactoring edits are low-level (95.9%), regardless of the category of

refactoring-inducing PRs. We speculate that such a high proportion is due to how

RefactoringMiner defines refactoring mechanisms, as explained in Chapter 2, Subsec-

tion 2.1.3. We found 223/545 (40.9%) Rename edits (being readability a common

motivation cited by reviewers) and 160/545 (29.3%) Change Type edits as the most

induced by review in our stratified sample.

Table 4.6: Refactoring-inducing PRs, in which refactoring edits were induced by code

review, by level of refactoring.

Category
Low-level

refactorings

High-level

refactorings
Proportion

Low 34/35 (97.1%) 1/35 (2.9%) 35/57 (61.4%)

Medium 61/61 (100.0%) none (0.0%) 61/127 (48.0%)

High 134/136 (98.5%) 2/136 (1.5%) 136/285 (47.7%)

Very high 294/313 (93.9%) 19/313 (6.1%) 313/1,422 (22.0%)

All categories 523/545 (95.9%) 22/545 (4.1%) 545/1,891 (28.8%)

Finding 9: In a stratified sample of 228 refactoring-inducing PRs, 133 ones

(58.3%) present at least one refactoring edit induced by code review.

Our finding indicates the influence that code review has at the PR level, thus

corroborating with Paixão et al., who found that refactorings’ motivations may emerge

from code review [109], and Pantiuchina et al., who analyzed discussion in merged PRs

4.3 Implications 74

(containing at least one refactoring in one of their commits) and found refactorings

also triggered from discussion [112]. However, our study differs from those previous

ones because we distinguished refactoring-inducing from non-refactoring-inducing PRs

by exploring reviewing-related aspects and refactoring-inducement (that is, considering

PR subsequent commits).

4.3 Implications

By distinguishing refactoring-inducing from non-refactoring-inducing PRs, we can po-

tentially advance the understanding of code reviewing at the PR level and assist re-

searchers, practitioners, and tool builders in this context.

Researchers: No prior MCR studies made a distinction between refactoring-

inducing and non-refactoring-inducing PRs when analyzing their research questions,

which might have affected their findings or discussions. For instance, by also regarding

refactoring-inducing PRs, Gousios et al. [68] and Kononenko et al. [82] could have

found different factors influencing the time to merge a PR; Pascarella et al. [113]

could have identified further information to perform a proper code review in presence

of refactorings; whereas, Pantiuchina et al. [112] could have different conclusions on

the motivations for refactorings in PRs, as they analyzed PRs with refactorings de-

tected even in the initial commit (i.e., these refactorings were not induced from review

comments). Our findings, except for Findings 1, 7 and 9, indicate that refactoring-

inducing and non-refactoring-inducing PRs have different characteristics. Therefore,

we recommend that future experiment designs on MCR with PRs to make a distinc-

tion between refactoring-inducing and non-refactoring-inducing PRs, or consider their

different characteristics when sampling PRs. As the motivating findings from Aniche

et al.[30], when exploring supervised Machine Learning (ML) to recognize relevant

refactoring opportunities in OSS projects, we speculate that researchers can use super-

vised ML in order to identify refactoring-inducing and non-refactoring-inducing PRs

based on our findings. Researchers can also use our mined data, developed tools, and

research methods, publicly available [22], to investigate code reviewing in pull-based

development.

4.3 Implications 75

Practitioners: Our findings indicate that there is no statistical difference in the

number of reviewers between refactoring-inducing and non-refactoring-inducing PRs

(Finding 7). But, all other findings show that refactoring-inducing PRs are associated

with more code churn (Finding 2), more file changes (Finding 3), more subsequent com-

mits (Finding 4), more review comments (Finding 5), lengthier discussions (Finding

6), and more time to merge (Finding 8) than non-refactoring-inducing PRs. Thus, we

suggest to project managers to invite more reviewers when a PR becomes refactoring-

inducing, to share the expected increase in review workload, and, perhaps more im-

portantly, to share the knowledge of design changes caused by subsequent refactoring

edits to more team members.

Tool builders: In connection to our implication for practitioners, tool builders

can develop bots [136; 85] that recommend reviewers based on some criteria [97]

when a PR becomes refactoring-inducing, to assist the project managers in invit-

ing additional reviewers. Our findings indicate that refactoring-inducing PRs have

higher complexity in code churn (Finding 2) and file changes (Finding 3). Therefore,

it is necessary to help developers distinguish refactoring edits from non-refactoring

edits directly in the review board of pull-based development platforms, such as

GitHub and Gerrit, where the reviews are actually taking place. In the past, re-

searchers implemented refactoring-awareness in the code diff mechanism of IDEs [64; 28;

65]. Even though not directly related to our results, we believe that adding refactoring-

awareness directly in the GitHub or Gerrit review board – such as the refactoring-aware

commit review Chrome browser extension [90] – would allow reviewers to trace the

refactorings performed throughout the commits of a PR, provide prompt feedback,

and concentrate efforts on other aspects of the changes, such as collateral effects of

refactorings and proposing specific tests. This recommendation is in agreement with

Gousios et al. [69], who emphasized the need for untangling code changes and sup-

porting change impact analysis directly in the PR interface.

4.4 Limitations 76

4.4 Limitations

Table 4.7 lists the procedures proposed to deal with the issues of validity and reliabil-

ity regarding data interpretation. It is worth emphasizing that, since we consider data

obtained in line with our data mining design, this study relies on its countermeasures

and threats to validity and reliability (Chapter 3, Section 3.2). Nevertheless, we pro-

pose a few actions intending to increase the validity of the study, methods triangulation

[125]. In order to mitigate researcher bias, the manual examination of review comments

was conducted by three developers, after an initial calibration. Despite our efforts to

perform an initial calibration, there may be limitations concerning conclusions, since

we carried out apart analyses. We persist in making an effort to systematically explain

the performed procedures, taken decisions, and the obtained results in each design step.

Table 4.7: Validity and reliability countermeasures for comparing refactoring-inducing

and non-refactoring-inducing PRs

Type Description

Internal validity A design proposal to guide the study

Construct validity

Regular revision of the mining design by supervisors

Establishment of a chain of evidence based on the methods

triangulation (quantitative and qualitative data analysis)

Randomness and a confidence level of 95% and a margin

of error of 4.5% for sampling a representative number of

refactoring-inducing PRs for the qualitative analysis

Reliability
Effort towards clarifying the data processing and data

analysis procedures to enable replications

Firstly, we propose methods triangulation (statistical testing of hypotheses and a

manual analysis of a stratified sample of refactoring-inducing PRs) intending to reduce

deficiencies from any single method and enhance our study’s validity [124].

It is noteworthy that we defined the study design after a pre-running of the clus-

tering and ARL processes. However, for clustering, we obtained a noise of 76.3%. We

carried out a rigorous selection of algorithms and input parameters for ARL and we

4.5 Concluding Remarks 77

carefully defined workflows for our research design procedures aiming to explain the

decisions taken. Even so, there might be other risks of threats to internal validity due

to any non-previously identified deficiencies in our research design.

Although we established a chain of evidence for the data interpretation and de-

scription of the study design, we did not validate the detected refactorings before data

analysis, so expressing a potential threat to construct validity (RQ1 and RQ2), since

this study relies on our data mining design (Chapter 3, Section 3.2). When addressing

RQ3, we validated all detected refactorings in our stratified sample, so identifying 1,886

true positives, 35 false positives, and five false negatives.

Furthermore, as already admitted in the refactoring-inducing PR definition, we

cannot claim that all refactoring edits were caused by reviewing. To deal with such

limitation, we carried out a qualitative analysis of review comments from 228 randomly

selected refactoring-inducing PRs, considering a sample size meeting a confidence level

of 99.9% and a margin of error of 4.5%. Thus, this empirical study provides a partic-

ular motivation for a further qualitative investigation of review comments to acquire

in-depth knowledge on code reviewing practice in refactoring-inducing PRs; in this

direction, we perform a characterization study (Chapter 6).

As explained in Chapter 3, it is not suitable to generalize the conclusions, except

when considering other OSS projects that follow a geographically distributed develop-

ment [152] and are aligned to “the Apache way” principles [17]. Thus, our findings are

exclusively extended to cases that have common characteristics with Apache’s projects.

Also, we systematically structured all procedures to deal with reliability issues, thus

providing a reproduction kit to enable replications, publicly available at [22].

4.5 Concluding Remarks

We investigated technical aspects characterizing refactoring-inducing PRs, through an

ARL process on features of a dataset containing 1,639 merged PRs, followed by a

methods triangulation for analysis. Concerning the preliminary version of this study

[53], our previous findings and implications remain. Our results reveal significant dif-

ferences between refactoring-inducing and non-refactoring-inducing PRs, and a sub-

4.5 Concluding Remarks 78

stantial number of refactoring edits induced by code reviewing.

Our findings are motivating, so directing efforts towards a further investigation in-

tending to achieve an in-depth understanding of refactoring-inducing PRs. In this

sense, we describe a characterization study regarding code review in refactoring-

inducing PRs in the next Chapter.

Chapter 5

Characterizing Code Review in

Refactoring-Inducing Pull Requests

In this chapter, we describe a qualitative characterization study on code reviewing-

related aspects in refactoring-inducing PRs, based on the sample obtained from mining

Apache’s Java repositories in GitHub (Chapter 3).

Following, we describe the research design (Section 5.1); then, we present the results

and discuss them (Section 5.2). Next, we argue a few implications and guidelines

(Section 5.3), and limitations (Section 5.4).

5.1 Research Design

From our previous study (Chapter 4), Finding 6 indicates a statistical difference in

the number of review comments between refactoring-inducing and non-refactoring-

inducing PRs. This finding motivated us to conjecture that refactoring-inducing and

non-refactoring-inducing PRs have distinct characteristics regarding review comments.

Given that, this qualitative study investigates code reviewing-related aspects (review

comments and discussion) intending to characterize code review in refactoring-inducing

PRs. Note that discussion, as we deemed, denotes either a dialog between a PR author

and reviewer(s) or an author’s response in opposition to a specific review comment –

we give examples forward. Thus, we designed these research questions:

79

5.1 Research Design 80

• RQ1: How are review comments characterized in refactoring-inducing and non-

refactoring-inducing PRs? We first identified the characteristics of review com-

ments in refactoring-inducing and non-refactoring-inducing PRs.

• RQ2: What are the differences between refactoring-inducing and non-refactoring-

inducing PRs, in terms of review comments? Then, we investigated the existence

of similarities/dissimilarities regarding review comments in refactoring-inducing

non-refactoring-inducing PRs by contrasting their corresponding characteristics.

• RQ3: How do reviewers suggest refactorings in refactoring-inducing PRs? We

scrutinized the review comments in refactoring-inducing PRs in order to identify

patterns for suggesting refactorings.

• RQ4: Do suggestions of refactoring justify the reasons? While scrutinizing the

suggestions of refactoring, by manually examining review comments, we explored

whether/how reviewers provide rationales for their proposals.

• RQ5: What is the relationship between suggestions and actual refactorings in

refactoring-inducing PRs? Likewise, while scrutinizing suggestions of refactor-

ing in review comments, we also investigated patterns that would denote any

relationship between suggestions and actual refactorings.

Accordingly, we designed a qualitative study that comprises four rounds of analysis

(performed from June 21 to October 08, 2021), where each one follows the procedures

depicted in Figure 5.1, as described in the next subsections.

5.1.1 Selection of a Purposive Sample

At each round, we investigated review comments from a purposive sample of PRs while

cross-referencing their detected refactoring edits. We adopted such a non-probability

sampling to select refactoring-inducing and non-refactoring-inducing PRs from the code

review dataset (Chapter 3, Subsection 3.1.3). It is worth clarifying that we followed

that sampling strategy until we reached data saturation (when no new information

emerges) [96] – it was achieved after four rounds of analysis.

At each round, we examined a purposive sample (Step 1) fitting a valuable sce-

nario to the current purposes of the analysis. We chose purposive sampling because it

5.1 Research Design 81

Figure 5.1: An overview of round i of our characterization study of code review in

refactoring-inducing PRs

provides an in-depth understanding of the data by exploring scenarios suitable at each

round, in line with emergent patterns or ideas [92; 114]. Note that, in all rounds, we se-

lected more representative samples, in line with emergent patterns, intending to obtain

more accurate results than those achieved from selecting other probability sampling

strategies. For instance, in the second round, we explored refactoring-inducing PRs

containing only one low-level refactoring edit. Then, in the third round, we examined

refactoring-inducing PRs comprising high-level refactoring edits in order to investigate

whether the emerged patterns from Round 2 remain in Round 3. Table 5.1 outlines

the main objective of each round of analysis. The emerged patterns from Round 1

continue until Round 4, in which we reach the saturation point.

Table 5.1: A summary of the main objective of each round of qualitative analysis

Round Main objective

Round 1 Investigating an initial random sample of PRs

Round 2
Checking if emerged patterns remain in refactoring-inducing pull

requests consisting of only one refactoring edit

Continued on next page

5.1 Research Design 82

Table 5.1 – continued from previous page

Round Main objective

Round 3
Exploring if emerged patterns persist in refactoring-inducing pull

requests consisting of high-level refactorings

Round 4
Inspecting if emerged patterns continue regardless of the sequence

of refactoring edits

Based on guidelines [55], we empirically considered 20 as the minimum size for the

purposive samples. In specific, Creswell has recommended 15-20 interviewers during a

grounded theory study, which comes closest to our characterization study (when inves-

tigating comments from reviewers). Thus, as a PR has at least one reviewer, we took

into account 20: ten refactoring-inducing PRs and ten non-refactoring-inducing PRs.

Then, for the first round of analysis (sample 1), looking for a fair comparison between

groups when addressing RQ1 and RQ2, we randomly selected ten refactoring-inducing

and ten non-refactoring-inducing PRs that contain five review comments and two re-

viewers – intermediate values regarding the average and median of number of review

comments and reviewers in both refactoring-inducing and non-refactoring-inducing PRs

(Chapter 4, Table 4.4).

We also considered 20 as the size for the second purposive sample (sample 2, Round

2): ten refactoring-inducing and ten non-refactoring-inducing PRs that contain only

one subsequent commit. At that point, we investigated whether the patterns that

emerged from distinct compositions of refactoring edits (Round 1, in which the number

of refactorings is 5.7 on average and 2.5 on the median) even remain in refactoring-

inducing PRs consisting of only one refactoring edit – the most simple setting of refac-

toring in a PR. We addressed PRs comprising a single subsequent commit in order to

compare refactoring-inducing and non-refactoring-inducing PRs (RQ1 and RQ2).

In the third purposive sample (sample 3, Round 3), to address RQ3 to RQ5, we

considered 13 refactoring-inducing PRs from 36 that present high-level refactorings

in order to explore whether the emergent patterns from the previous rounds (which

comprise less complex PRs) persist. Those 13 refactoring-inducing PRs embrace a

diversified setting of refactoring edits of distinct types (found in those 36), including

only one type of refactoring (e.g., Dubbo #3654) and a mix of types of refactoring (e.g.,

5.1 Research Design 83

Incubator-Iceberg #183). We decided to explore refactoring-inducing PRs consisting

of high-level refactorings because only 2/24 (8.3%) refactoring-inducing PRs contain

high-level refactoring edits in the previous samples (Rounds 1 and 2). To deal with

RQ1 and RQ2, we examined a randomly selected sample of 13 non-refactoring-inducing

PRs that present ten review comments – median of the number of review comments

in those 13 refactoring-inducing PRs. To be concise, we use the format <Repository

#number> to represent a PR of an Apache repository.

In the fourth purposive sample (sample 4, Round 4), to address RQ3 to RQ5, we

studied the 26 refactoring-inducing PRs that present distinct sequences of refactoring

edits (of different types) in PR commits history (e.g., instances of Rename Variable

and Extract Variable in a single commit against ones in two separated commits). In

particular, we explored whether the emergent patterns from the previous rounds persist

regardless of the sequence of refactoring edits applied to the commits history. To ad-

dress RQ1 and RQ2, we investigated a randomly selected sample of 26 non-refactoring-

inducing PRs that present seven review comments – the median value of the number

of review comments in those 26 refactoring-inducing PRs.

Table 5.2 summarizes the number of refactoring-inducing and non-refactoring-

inducing PRs, review comments, subsequent commits, and refactoring edits considered

in each round of analysis.1 The different number of refactoring-inducing and non-

refactoring-inducing PRs in rounds 1, 2, and 4 are due to the manual validation of

refactoring edits mined by RefactoringMiner, described in Subsection 5.1.2. We pro-

vide more details regarding the characteristics of our samples and results in Appendix

D.

The magnitude of both refactoring-inducing and non-refactoring-inducing PRs in-

creases in the following order: sample 2 < sample 1 < sample 4 < sample 3, when

considering size-related aspects (number of subsequent commits, number of file changes,

number of added lines, and number of deleted lines), as displayed in Appendix D (Ta-

bles D.1 and D.2).

1More details on each purposive sample are available at https://git.io/JMbnV.

5.1 Research Design 84

Table 5.2: Summary of the purposive samples

Round

No. of

refactoring-

inducing

PRs

No. of non-

refactoring-

inducing

PRs

No. of

review

comments

No. of

subsq.

commits

No. of

refactoring

edits

Round 1 13 7 100 40 68

Round 2 11 9 87 20 11

Round 3 13 13 327 126 209

Round 4 28 24 409 160 78

All rounds 65 53 923 346 366

5.1.2 Sanity Check of Refactoring Edits and Manual Analysis

of Review Comments

As shown in Figure 5.1, at each round, three researchers checked all commits searching

for false positives and false negatives in refactoring edits (Step 2), supported by the

refactorings dataset (Chapter 3, Subsection 3.1.2). Thus, the researchers individually

verified the type and description of the refactoring data generated from Refactoring-

Miner.

RefactoringMiner mistakenly detected an edit as a Rename Method (Kafka #6565,

sample 2) and did not identify edits of Extract Attribute (Accumulo-Examples #19,

sample 4), Extract Variable (Commons-Text #39, sample 1 and Tinkerpop #893, sam-

ple 4), Extract Method (Hadoop #942, sample 1), Inline Variable (Dubbo #3185, sam-

ple 2), Move Attribute (Beam #6261, sample 3), and Rename Method (Kafka #7132,

sample 2). Therefore, as shown in Table 5.3, RefactoringMiner achieved a precision of

99.7% and recall of 98.1% for refactoring detection in 118 PRs.

Table 5.3: Results of the manual validation of refactoring edits mined by Refactoring-

Miner 1.0

Sample TP FP FN Precision (%) Recall (%)

Sample 1 66 0 2 100 97.1

Continued on next page

5.1 Research Design 85

Table 5.3 – continued from previous page

Sample TP FP FN Precision (%) Recall (%)

Sample 2 9 1 2 90 81.8

Sample 3 208 0 1 100 99.5

Sample 4 76 0 2 100 97.4

All samples 359 1 7 99.7 98.1

Next, each researcher apart examined the review comments from all PRs of the

sample (Step 3), assisted by the refactorings dataset and code review dataset. To

clarify, besides seeking patterns in review comments, the researchers cross-referenced

the type of refactorings performed (if so) and the review comments left in all commits

of a PR. In such a procedure, it was crucial to directly examine PRs at GitHub because

we could access commits and review comments in chronological order.

5.1.3 Merging of Results

At each round, one researcher checked all individual judgments in order to achieve a

concluding judgment concerning the sample (Step 4). As decision criteria, we con-

sidered the agreement of responses by at least two researchers. To support such a

procedure, we used worksheets2 structured with the following fields:

• repo: repository name,

• pr number : PR number,

• category: refactoring-inducing PR or non-refactoring-inducing PR,

• pr url: PR URL,

• commit: commit SHA,

• initial flag: whether a commit is initial or subsequent commit,

• refactoring type: type of a refactoring edit,

• refactoring detail: description of a refactoring edit, as RefactoringMiner output,

• confirmed refactoring flag: if a refactoring is a true positive,

2Available at https://git.io/JMbnV.

5.2 Results and Discussion 86

• covered refactoring flag: if a refactoring edit was induced by code review,

• floss refactoring flag: if there is the presence of floss refactoring in a commit,

• direct review comment flag: if a review comment directly suggest a refactoring

edit,

• discussion flag: if there was discussion related to a review comment in a commit,

• rationale flag: if a review comment presents a rationale to suggest a refactoring

edit, and

• notes: specific comments of a researcher.

It is noteworthy that, in such subjective analysis, the researchers considered the

refactoring-inducement in settings where review comments either explicitly suggested

refactoring edits or left any actionable recommendation that induced refactoring. For

example, “... the name is really misleading ...” induced a Rename Method (Avro

#525), whereas “Won’t you need to use a single instance for both arguments?” inspired

an Extract Attribute (Beam #4407).

Furthermore, a researcher explored the individual answers for all research questions

intending to identify emerged patterns. Therefore, the concluding analysis of each step

denotes an incremental knowledge regarding refactoring-inducing PRs in light of our

research questions. Those intermediate judgments and emerged patterns are available

in our reproduction kit [22].

5.2 Results and Discussion

It is noteworthy that this qualitative study aims to advance the knowledge regarding

code review in refactoring-inducing PRs. Therefore, the following findings are supple-

mentary to those from our previous study (Chapter 4). For instance, note that we

designed distinct sampling strategies in the two studies – a stratified sampling to ex-

plore refactorings induced by code review (Chapter 4, Subsection 4.2.3) and purposive

sampling in this study (Subsection 5.1.1).

Before answering the research questions, we describe a few preliminary results from

the analysis of the general characteristics of refactoring-inducing and non-refactoring-

5.2 Results and Discussion 87

inducing PRs, intending to support the following results and discussion (Subsections

5.2.2–5.2.6).

5.2.1 Preliminary Results

During the analysis of review comments, a few peculiarities emerged.

Refactoring-inducement rates

First, as we can see in Table 5.4, 49/65 (75.4%) of refactoring-inducing PRs are due

to code review, being the refactoring edits induced by code review and led by the

PR authors in 14/49 (28.6%) ones. To clarify, a refactoring-inducing PR in which a

refactoring was led by its author expresses that there is no mention (direct or indirect)

of the refactoring in the review comments. We identified refactoring edits led only

by authors in 16/65 (24.6%) of refactoring-inducing PRs, comprising 3/13 (23.1%)

in sample 1 (Beam #4460, Flink #7971, Samza #1030), 2/11 (18.2%) in sample 2

(Incubator-Pinot #479, Kafka #5423), 4/13 (30.8%) in sample 3 (Beam #6261, Dubbo

#3654, Kafka #6657, Usergrid #102), and 7/28 (25%) in sample 4 (Accumulo #151,

Dubbo #2445, Dubbo #4099, Logging-log4j #213, Kafka #4574, Tinkerpop #893,

Tomee #89). We identified 35/65 (53.8%) refactoring-inducing PRs that exclusively

consist of refactorings induced by code review – an almost similar result to our Finding

9 (Chapter 5), in which we indicate 58.3% of such setting.

Table 5.4: Inducement by code review in refactoring-inducing PRs

Sample Judgement PRs

Induced by code review

Sample 1 10/13 (76.9%)

Dubbo #3299, Commons-text #39, Flink

#9143, Fluo #837, Hadoop # 942,

Incubator-iceberg #254, Kafka #5194

Continued on next page

5.2 Results and Discussion 88

Table 5.4 – continued from previous page

Sample Judgement PRs

Sample 2 9/11 (81.8%)

Beam #4407, Beam #4458, Brooklyn-

Server #1049, Dubbo #3185, Kafka #5784,

Kafka #7132, Samza #1051, Servicecomb-

Java-Chassis #346, Tomee #275

Sample 3 9/13 (69.2%)
Cloudstack #2071, Cloudstack #3454,

Kafka #5590

Sample 4 21/28 (75%)

Accumulo-Examples #19, Brooklyn-Server

#964, Cloudstack #2833, Dubbo #3174, Dubbo

#3257, Kafka #4796, Kafka #6853, Knox #69,

Knox #74, Sling-Org-Apache-Sling-Feature-

Analyser #16, Struts #43, Tika #234,

Tinkerpop #1110, Tomee #407

All samples 49/65 (75.4%)

(also) Led by the author

Sample 1 3/10 (30%) Dubbo #2279, Flink #7970, Flink #7945

Sample 2 none

Sample 3 6/9 (66.7%)

Flink #8222, Incubator-Iceberg #119,

Incubator-Iceberg #183, Kafka #4735,

Kafka #4757, Servicecomb-Java-Chassis #678

Sample 4 7/21 (33.3%)

Avro #525, Flink #7165, Flink #8620,

Kafka #5501, Kafka #5946, Kafka #6848,

Rocketmq-Externals #45

All samples 14/49(28.6%)

Note that, in sample 2, 9/11 refactoring-inducing PRs present refactoring edits

exclusively induced by code review (2/11 have refactorings solely led by the authors).

Thus, in 9/9 refactoring-inducing PRs, code review induced the refactorings. In sample

3, code review induced refactorings in 9/13 refactoring-inducing PRs, being exclusively

induced by code review in 3/9 of them. In 6/9 of refactoring-inducing PRs, the refac-

torings were induced by code review and also led by the authors. Figures 5.2 and

5.3 depict refactoring-inducing PRs in which authors conducted refactorings and code

review induced refactorings, respectively. Figure 5.2 displays a single review comment,

5.2 Results and Discussion 89

suggesting the use of Assertion in Incubator-Pinot #479, which resulted in no effect in

terms of refactoring. In this case, the author led the refactoring edit, an Extract Vari-

able. Figure 5.3 shows a review comment indicating an outdated protocol in Cloudstack

#2071, which influenced a Rename Package edit.

Figure 5.2: A single review comment, from Apache Incubator-Pinot PR #479, which

induced no refactoring edit

Figure 5.3: A review comment, from PR Apache Cloudstack #2071, which induced a

Rename Package edit

Almost half of refactoring-inducing PRs in which code review induced the refac-

torings, figuring 168/359 (46.8%) edits. For comparison purposes, Pantiuchina et al.

found that reviewing discussion triggered about 35% of refactoring edits when analyz-

ing 551 PRs from 150 distinct projects in GitHub [112]. Nonetheless, they considered

5.2 Results and Discussion 90

refactoring edits occurring in any PR commits (including the initial ones), regardless

of what led to the refactorings. Therefore, although considering a distinct research de-

sign, our result corroborates with Pantiuchina et al. because it emphasizes refactoring

as a relevant aiding from code reviewing in the pull-based development model, already

associated with a large number of contributions [153].

How authors document refactoring edits

Second, we observed the presence of self-affirmed refactorings or self-admitted refactor-

ings (when a refactoring is cited explicitly in a commit message by using keywords like

“Refactor...”, “Mov...”, “Renam...”), as illustrated in Figure 5.4, in subsequent com-

mits of 9/65 (13.8%) refactoring-inducing PRs (Table 5.5). In five of those PRs (Beam

#6261, Dubbo #4099, Flink #7971, Tomee #407, and Usergrid #102), all refactorings

edits were led by the author. In the other ones (Avro #525, Struts #43, Tinkerpop

#1110, and Tomee #407), authors submitted self-affirmed refactorings to meet code

review suggestions.

Figure 5.4: Example of self-affirmed refactoring in five subsequent commits, from

Apache Usergrid PR #102

5.2 Results and Discussion 91

Table 5.5: Refactoring-inducing PRs containing self-affirmed refactorings in their sub-

sequent commits

Sample No. of PRs PRs

Sample 1 1/13 (7.7%) Flink #7971

Sample 2 0/11 (0%)

Sample 3 2/13 (15.4%) Beam #6261, Usergrid #102

Sample 4 6/28 (21.4%)

Avro #525, Dubbo #4099,

Struts #43, Tinkerpop #1110,

Tomee #89, Tomee #407

All samples 10/65 (15.4%)

In an effort of comparing, this result slightly differs from the findings of AlOmar et

al., who manually analyzed how developers document refactoring edits during software

evolution exploring PR commits (including initial and subsequent ones) on GitHub [27].

They identified that authors use a variety of expressions to target the commits, as well

as we observed. However, while they detected explicit specification of improvements

(e.g., quality attributes and code smell) in the commit messages as well we noticed, we

also found direct mentions such as “Refactor” (Avro #525).

Types of change

Third, refactoring-inducing and non-refactoring-inducing PRs comprise the three pri-

mary types of change (adaptive, corrective, and perfective), as indicated in Table 5.6.

We list the refactoring-inducing PRs by type of change in Appendix D (Table D.3). To

clarify, the researchers manually explored the objective of each sample of PRs (thus,

considering initial and subsequent commits, PR descriptions, and commit messages) by

searching for keywords that could denote type of changes. Thus, we classified the type

of changes according to maintenance activities, as defined in previous guidelines [98;

137]. In specific, adaptive, corrective, and perfective changes comprise adding new fea-

tures (e.g., “add”, “new”, “update”), fixing faults (e.g., “fix”, “correct”), and restruc-

turings to accommodate future changes (e.g., “simplify”, “optimize”), respectively. We

emphasize that such a judgment is subjective and endorsed by the researchers. In a few

5.2 Results and Discussion 92

refactoring-inducing PRs, they found both adaptive and corrective changes (Accumulo

#151 and Dubbo #2279) and corrective and perfective changes (Dubbo #3654 and

Tomee #275). Only (1/38) 2.6% of non-refactoring-inducing PRs comprise perfective

changes related to enhancements of code documentation.

Table 5.6: Type of changes by category of PRs

Sample
Type of changes

Adaptive Corrective Perfective

Refactoring-inducing PRs

Sample 1 3/13 (23.1%) 5/13 (38.5%) 4/13 (30.8%)

Sample 2 4/11 (36.4%) 4/11 (36.4%) 2/11 (18.2%)

Sample 3 7/13 (53.8%) 3/13 (23.1%) 2/13 (15.4%)

Sample 4 11/28 (39.2%) 8/28 (28.6%) 8/28 (28.6%)

All samples 25/65 (38.5%) 20/65 (30.8%) 16/65 (24.6%)

non-Refactoring-inducing PRs

Sample 1 none 4/4 (100.0%) none

Sample 2 none 6/6 (100.0%) none

Sample 3 6/11 (54.5%) 4/11 (36.4%) 1/11 (9.1%)

Sample 4 9/17 (52.9%) 8/17 (47.1%) none

All samples 15/38 (39.5%) 22/38 (57.9%) 1/38 (2.6%)

We clarify that, even in Java repositories, PRs can present non-Java files (e.g.,

Scala and Python code), sometimes resulting in no review comment about Java files.

We found such a characteristic in 15/53 (28.3%) of the non-refactoring-inducing PRs

examined (Beam #4261, Beam #4419, Beam #5772, Beam #5785, Beam #7696,

Beam #8140, Cloudstack #2706, Flink #4055, Flink #9451, Incubator-Iotdb #342,

Kafka #6298, Kafka #5368, Kafka #6758, Parquet-Format #98, Tinkerpop #690).

Accordingly, we considered 38/53 non-refactoring-inducing PRs when computing the

number of PRs by type of change.

We carried out such a classification aiming to explore potential emergent pat-

terns from distinct types of changes towards a more comprehensive characterization

of refactoring-inducing PRs. Our results corroborate with Palomba et al., who found

evidence of refactoring edits in the presence of those different types of changes when

5.2 Results and Discussion 93

exploring 63 releases of three distinct projects [110]. Accordingly, we can also consider

adaptive, corrective, and perfective changes as opportunities for refactoring edits at

the PR level.

Self-affirmed minor PRs and review comments

We define a self-affirmed minor PR as one in which the title or description self-declares

as a minor PR, whereas a self-affirmed minor review comment is one in which a reviewer

declares it as minor. For that, we searched for the keywords “minor” and “nit” (e.g.,

“LGTM, just a minor comment. Should 32 be chunkSize?” in Kafka #4574 and

“nit: Null value is encoded... –> A null value is encoded...” in Kafka #4735).3 We

performed such an exploration in order to investigate potential patterns that could

emerge from that self-affirmations; for instance, would they be present only in non-

refactoring-inducing PRs?

We found self-affirmed minor PRs and self-affirmed minor review comments in

both refactoring-inducing and non-refactoring-inducing PRs (Appendix D, Tables D.4

and D.5). We observed self-affirmed review comments that induced edits of Rename

(Brooklyn-Server #964, Flink #7945, Flink #8620, Kafka #5784, Kafka #6848),

Split (Brooklyn-Server #1049), Inline (Dubbo #3185), and Extract (Flink #8620,

Kafka #4735). Therefore, we distinguished no association between self-affirmed mi-

nor PRs/review comments and refactoring-inducement because they occur in both

refactoring-inducing and non-refactoring-inducing PRs.

Code review bots

Fourth, the researchers identified that 8/65 (12.3%) of refactoring-inducing PRs and

1/53 (1.9%) of non-refactoring-inducing PRs ran a code review bot (Appendix D, Table

D.6). A repository’s code review bot is easily detectable since it leaves comments in a

PR, including the bot commands. For instance, the Apache flinkbot4 checks the PR

3Reviewers may prefix review comments with “nit:”, meaning that to fix a point is not mandatory

but welcome.

4https://github.com/flinkbot

5.2 Results and Discussion 94

description, whether a PR needs attention from a specific reviewer, the architecture,

and the overall code quality. Thus, we observed no association between running a code

review bot and refactoring-inducement.

Finding 1: We found almost 50% of refactoring-inducing PRs, in which code

review induced refactoring edits. The refactorings happen in PRs consisting of

distinct types of change. Self-affirmed refactorings and code review bots are not

frequent.

Reviewers’ experience

Fifth, we investigated the experience of PR authors and reviewers, by manually exam-

ining their contributions in GitHub profiles. For counting the number of contributions

of a PR author/reviewer, we computed the number of contributions considering the

joining date of their profiles in GitHub until the PR creation date. To illustrate our

counting strategy, consider Kafka #5784, a PR created in October 2018. Each one of

the contributors has a profile from which we can access the number and the description

of their contributions by year, as exemplified in Figure 5.5.5 Specifically, the author of

such a PR joined GitHub in 2015; thus, we manually counted the number of his contri-

butions from 2015 until September 2018 (the previous month to the PR date creation)

– 1,123 contributions. Accordingly, we computed the number of contributions for all

authors and reviewers in our sample’s PRs.

We explored such a subject because there is empirical evidence that the reviewer

experience is the main factor influencing code review quality as perceived by developers

[80]. We considered the number of contributions instead of contributions due to a high

number of them in our samples (Appendix D, Table D.7), so expressing a time-intensive

task. This setting differs from Rigby et al. that computed experience in terms of the

length of time a developer has been with a project [121]. They found that reviewers

typically have more experience than authors when investigating Apache HTTP Server.

Thus, we extend the knowledge on the experience of Apache authors and reviewers by

studying their experience in refactoring-inducing and non-refactoring-inducing PRs.

5Available at https://github.com/rajinisivaram

5.2 Results and Discussion 95

Figure 5.5: Example of a GitHub profile (author of Apache Kafka PR #5784)

Furthermore, Apache designates roles for contributors [23]. A contributor is a de-

veloper who contributes to a project in the form of code or documentation; a committer

is a contributor who has a write access to the code repository, and a Project Manage-

ment Committee (PMC) member is a committer who has a write access to the code

repository and can approve/disapprove the changes. Not all PR participants indicate

their Apache’s roles. Thus, we inferred such scenario from examining the profile of

authors and reviewers (Appendix D, Table D.8). In addition to Apache contributors,

we recognized that committers and PMC members also submit PRs to Apache repos-

itories. It is noteworthy that we did not include the PRs with no review in Java code

to compute the experience.

Given that, we could realize that authors of refactoring-inducing PRs are less expe-

rienced than authors of non-refactoring-inducing PRs, whereas reviewers of refactoring-

inducing PRs are slightly more experienced than reviewers of non-refactoring-inducing

PRs. For that, we analyzed the distribution of contributions of authors and reviewers

in both groups of PRs (Appendix D, Table D.7). Since we found no statistical evidence

that the number of reviewers is related to refactoring-inducement (Finding 7, Chapter

4), such scenario denotes a relevant motivating factor behind refactoring-inducing, by

considering reviewing-related apart from review comments.

5.2 Results and Discussion 96

Finding 2: The experience of the PR author, inferred from the number of

contributions, is a motivating factor behind refactoring-inducing PRs.

Based on this finding, we conjecture that less problem-prone code tends to give

origin to non-refactoring-inducing PRs more often, which can be partially explained

by the authors’ experience. We contextualize the importance of reviewers to charac-

terize refactoring-inducing PRs in Subsection 5.2.3. Even so, we claim that a further

investigation on the content of contributions could provide a better understanding of

the relationship between the experience of authors/reviewers and refactoring-inducing

PRs.

Moreover, we identified a few particular scenarios when considering experience con-

cerning the number of authors’ and reviewers’ contributions. First, code review in-

duced refactoring edits in Fluo #837, although the number of the author’s contribu-

tions (3,127) is greater than the number of contributions of its reviewers (3,040 and

2,192). The same occurs in Dubbo #3174. We conjecture that the aggregate of ex-

periences might explain those cases. Code review also induced refactorings in PRs in

which the authors have a higher number of contributions than their reviewers. In this

setting, Beam #4458, Dubbo #3185, Samza #1051, Sling-Org-Apache-Sling-Feature-

Analyser #16, Tika #234, Tomee #275, and Tomee #407 present only one reviewer

while Brooklyn-Server #964 and Tinkerpop #1110, two reviewers. The authors of

Brooklyn-Server #964 and Tinkerpop #1110 present a higher number of contributions

(13,955 and 14,288) concerning the reviewers (1,660/2,933 and 24/556). Accordingly,

this seems counter-intuitive in contrast to previous findings with two reviewers provid-

ing a more effective code review [119].

Second, we observed that a few PR authors led refactoring edits, even when their

number of contributions was shorter in contrast to reviewers, as occurred in Accumulo

#151, Beam #4460, Beam #6261, Dubbo #2445, Dubbo #3654, Dubbo #4099, Kafka

#4574, Kafka #5423, Kafka #6657, Logging-Log4j #213, Samza #1030, and Tomee

#89. We believe that an in-depth examination of code might help to explain that

scenario.

5.2 Results and Discussion 97

5.2.2 How Are Review Comments Characterized in

Refactoring-Inducing and non-Refactoring-Inducing

PRs?

We structure this answer considering code review in non-refactoring-inducing PRs and

in three dimensions of refactoring-inducing PRs: those with refactorings led by authors

(16/65, 24.6%), those with refactorings induced by code review (35/65, 53.9%), and

those with refactorings both led by the authors and induced by code review (14/65,

21.5%). In refactoring-inducing PRs Beam #6261, Dubbo #3654, Flink #8620, and

Kafka #4757, we found the presence of floss refactoring to accommodate new tests

in the three first ones and a new feature in a class in the last one – all suggested

by reviewers. Thereby, we judged the associated refactoring edits as led by the PR

authors.

Review comments in refactoring-inducing PRs with refactorings led by PR

authors

Table 5.7 summarizes the emerged characteristics of code reviews in refactoring-

inducing PRs, with refactoring edits submitted entirely by the authors. Particularly,

the authors properly provide clarifications to reviewers’ questions not related to poten-

tial refactorings. A typical review comment in this case:

• address code aesthetics (e.g., “whitespace between braces and other symbol.” in

Flink #7971),

• present questions on simple issues regarding code logic in contrast to those in PRs

in with refactorings induced by code review (e.g., “Should 32 be chunkSize?” in

Kafka #4574), and

• sometimes, give reasons and suggestions on code logic, using expressions such as

“could we use...?”, “use...”, “can be replaced with...” (e.g., “token.sum() can be

replaced with getToken()” in Dubbo #3654).

5.2 Results and Discussion 98

Table 5.7: Characteristics of review comments in refactoring-inducing PRs, with refac-

torings led by the authors

Characteristic Examples (PRs)

Addressing

code aesthetics

Code format (Flink #7971, Dubbo #2445), e.g.,

“format your code, pls.”

Questioning

simple issues on

code logic

Access by name or index (Beam #4460), e.g., “Don’t we still

use this for Dataflow in the NonFnApi mode (which passes

connections by index)?”

Error in conditional statement (Kafka #6657, Tomee #89), e.g.

“if the endTime is less than 0 wouldn’t we want to throw an

exception?”

Treatment of specific values (Samza #1030, Kafka #4574), e.g.

“Does it make sense to fail if the partition is empty?”

Dealing with potential failure (a version in Accumulo #151, a

generic class in Dubbo #4099, a license in Logging-Log4j #213,

a file system in Tinkerpop #893), e.g., “Logback is EPL/

LGPLv2.1. Not sure if the licensing is compatible here.”

Method calls (questioning the effect of a call in Beam #6261),

“e.g., Is the mockstatic call why we’re adding powermock here?”

Suggesting

improvements

to the code

Adding case tests (Kafka #5423, Incubator-Pinot #479, Dubbo

#2445), e.g., “Add a unit test for this case?”

Method calls (proposing a method replacement in Dubbo

#3654, Kafka #6657), e.g., “nit: use Objects.requireNonNull

with the same message here and below”

Adding code documentation (Beam #6261, Logging-Log4j

#213), e.g., “Could you add detail on the documentation?

perhaps some small examples, etc?”

Change the content of test files (Usergrid #102, Tomee #89),

e.g., “Could we put this into a resource file instead of having it

hang around in the test?”

Use of assertion (Incubator-Pinot #479), e.g., “you could even

use Assert instead of Preconditions.check()?”

5.2 Results and Discussion 99

Review comments in refactoring-inducing PRs with refactorings induced by

code review

Table 5.8 indicates the emerged characteristics of reviews in refactoring-inducing PRs

with refactoring edits induced only by code review. We observed that review comments:

• ask questions about code logic (e.g., “should we simply keep Timeout instance

(instead of keeping it in a map)?” in Dubbo #3299),

• suggest improvements to the code (e.g., “Maybe put the table name in a variable,

so the string parameter is more obviously the table name in this API call, rather

than something else.” in Accumulo-Examples #19),

• and provide warnings on good development practices (e.g., “Constants, private

static final, are usually all caps: MAX RETRY COUNT. Within the context of

a retryAnalyzer you could get away with count and MAX. They are both private.”

in Brooklyn-Server #1049).

Also, uncertain review comments (like “I’m not sure ...”, “wondering if...”, “just

thinking loud here ...”, and “As far as I remember ...”) are not usually welcome; for in-

stance, a reviewer wondering whether another strategy is appropriate to deal with code

logic led to discussion but no effect (in Flink #9143 and Kafka #7132), as illustrated in

Figure 5.6. Also, using embedded code in review comments is only appreciated when it

is a suggestion instead of an imposition. For instance, Dubbo #3299’s author ignored

a review comment containing an embedded code (for treating a variable status); how-

ever, Dubbo #3185’s author embraced a review comment proposing an embedded code

(“what do you say ...?”) as an alternative for simplifying a code. We speculate that

such scenarios may affect code ownership, so explaining the behavior of PR authors.

We provide more examples in Subsection 5.2.6.

5.2 Results and Discussion 100

Table 5.8: Characteristics of review comments in refactoring-inducing PRs, with refac-

torings induced by code review

Characteristic Examples (PRs)

Questioning

issues on

code logic

Use of specific types (Dubbo #3174 and Dubbo #3299), e.g.,

“Be careful that this attachment TIMEOUT FILTER START

TIME will be passed throughout the RPC chain because of the

drawback of RpcContext.”

Method calls (a question on a method signature at Commons-

Text #39, a doubt in Fluo #837, a question on using a single

instance to distinct arguments in Beam #4407, a question on a

method call as a substitute for other ones in Kafka #5590, and

Struts #43, a question on a parameter value in Accumulo-

Examples #19 and Cloudstack #2833, a question on the return

value in Kafka #4796), e.g., “Is it safe to call toString here on

arbitrary bytes?”

Continued on next page

5.2 Results and Discussion 101

Table 5.8 – continued from previous page

Characteristic Examples (PRs)

Suggesting

improvements

to the code

Refactoring (Accumulo-Examples #19, Beam #4458, Brooklyn-

Server #964, Cloudstack #2071, Cloudstack #3454, Dubbo

#3257, Flink #9143, Hadoop #942, Incubator-Iceberg #254,

Kafka #4796, Kafka #5194, Kafka #5590, Kafka #5784, Kafka

#6853, Kafka #7132, Knox #69, Knox #74, Samza #1051,

Servicecomb-Java-Chassis #346, Sling-Org-Apache-Sling-Feature-

Analyser #16, Struts #43, Tomee #275, Tomee #407, Tika

#234, Tinkerpop #1110), e.g., “Can we pass in a Path instead

of a String for keystorePath?”

Adding code documentation (due to obfuscated name in Fluo

#837, to deal with a move refactoring in Kafka #5194, due to a

code update in Beam #4407, asking for comments in English in

Servicecomb-Java-Chassis #346, to add a header in Tomee

#407), e.g., “it’s better to write new comments in english.”

Adding case tests (Beam #4458, Flink #9143, Kafka #5194,

Tinkerpop #1110), e.g., “nit: add also another case for

something not ending in ConfigProvider?”

Adding an exception handling (Kafka #5590), e.g., “Same as

with deserialize. Should we consider throwing an exception?”

Discard a method, by providing explanations about code design

(Incubator-Iceberg #254), e.g., “I don’t think there is a need for

this to be left. The truncate length should always be included

when getting metrics.”

Issues on GUI layout (Cloudstack #3454), e.g., “it’s better now,

but can you make them centered left, they seem to be bottom

left now.”

Warnings

on good

development

practices

Code conventions (Brooklyn-server #1049), e.g., “Constants,

private static final, are usually all caps”

Switch-case against multiple if-else (Cloudstack #2833), e.g.,

“it would be better to use a switch case instead of multiple if

else, especially for comparing multiple enums”

5.2 Results and Discussion 102

Figure 5.6: An uncertain review comment Apache Flink PR #9143

Review comments in refactoring-inducing PRs with refactorings both led

by PR authors and induced by code review

In refactoring-inducing PRs, comprising refactoring edits both led by the authors and

induced by code review, the review comments present characteristics that already

emerged from exploring the refactoring-inducement in PRs (Table 5.9). Uncertain

review comments remain in such a scenario, where the sentences include terms such as

“Looks like...” and “not sure if...” in Incubator-Iceberg #183.

Table 5.9: Characteristics of review comments in refactoring-inducing PRs, with refac-

torings both led by the authors and induced by code review

Characteristic Examples (PRs)

Addressing

code

aesthetics

Indentation and code format (Incubator-Iceberg #119, Incubator-

Iceberg #183, Kafka #6848), e.g., “Nit: extra blank line.”

Continued on next page

5.2 Results and Discussion 103

Table 5.9 – continued from previous page

Characteristic Examples (PRs)

Questioning

issues on

code logic

Use of specific types (Dubbo #2279, Kafka #4735), e.g.,

“Collection is useless.”

Error in a conditional statement (Kafka #5501), e.g., “nit: do

we want to consider setting producer to null here as well if

eosEnabled?”

Treatment of specific values (Rocketmq-Externals #45), e.g.,

“Do we need use the next begin offset in other PullStatus?”

Method calls (missing a method implementation in Dubbo

#2279, doubt on the return type of a method in Flink #8222,

generalization of methods in Incubator-Iceberg #183, the

content of a method output in Kafka #4735, optimization in a

method call in Flink #8620, Kafka #4757, Servicecomb-Java-

Chassis #678), e.g., “Can you not use .withClientSslSupport().

withClientSaslSupport()?”

Suggesting

improvements

to the code

Refactoring (Avro #525, Flink #7165, Flink #7945, Flink

#8222, Flink #8620, Incubator-Iceberg #119, Incubator-

Iceberg #183, Kafka #4735, Kafka #5501, Kafka #5946,

Kafka#6848, Rocketmq-Externals #45), e.g., “After adding

the time conversions to this method the name (or the

behavior) is really misleading.”

Adding an exception handling (Dubbo #2279, Flink #7970),

e.g., “I think we should not easily catch on Throwable for

simplicity but instead it is clear here that we should only

expect IOException or ClassCastException.”

Adding code documentation (to make it consistent with other

classes in Flink #8222, to update a method description after a

change in Incubator-Iceberg #119), e.g., “Gets -> Get, let’s

to be consistent with javadoc of other methods.”

Adding case tests (Flink #8222, Flink #8620, Incubator-

Iceberg #119, Kafka #5946), e.g., “renameTable too? maybe

add test?”

Continued on next page

5.2 Results and Discussion 104

Table 5.9 – continued from previous page

Characteristic Examples (PRs)

Warnings

on good

development

practices

Use of methods in tests (Incubator-Iceberg #183), e.g., “Tests

shouldn’t use methods in other tests because they are hard to

keep track of.”

Use of global instances (Servicecomb-Java-Chassis #678), e.g.,

“global instance. it’s better do not use this directly. you can

save a reference in filter when UT create a new instance for it.”

Instructions to create integration tests (Kafka #5946), e.g.,

“Adding the exception is fine, but you can just throw it directly:

throw new OffsetOutOfRangeException(...) Not need to assign

it to variable first :)”

Based on Tables 5.7–5.9, when code review induces refactoring edits, we realize that

review comments deal with more complex issues regarding code logic and concerns on

good development practices.

Finding 3: In refactoring-inducing PRs in which code review induces refactoring

edits, review comments address major issues on code logic, major improvements

to the code (including refactorings directly), and warnings on good development

practices.

Finding 4: In refactoring-inducing PRs in which the authors lead refactoring

edits, the review comments address code aesthetics, minor issues on code logic,

and minor improvements to the code.

Review comments in non-refactoring-inducing PRs

Review comments in non-refactoring-inducing PRs directly address minor issues on

code logic through questions and suggestions (Table 5.10). We also found review com-

ments including embedded code as an imposition for substituting the code (“should

we change...”), with no effect (Dubbo #4870 and Kafka #5111). However, such a

structure of review comment is welcomed when the author asks for support from the

5.2 Results and Discussion 105

reviewer, as it occurs in Fluo #929. Therefore, using embedded code is appreciated in

the form of a suggestion, as we previously argued.

Table 5.10: Characteristics of review comments in non-refactoring-inducing PRs

Characteristic Examples (PRs)

Examining

code

aesthetics

Extra blank lines, code format (Cloudstack #3430, Dubbo #4208,

Fluo #929, Kafka #4430), e.g., “Code formatting for this section

of code is different (spaces used)”

Addressing

issues on

code logic

Error in conditional statements (Flink #2096, Fluo #929, Kafka

#6818,Servicecomb-Java-Chassis #691, Servicecomb-Java-

Chassis #698), e.g., “I think b==0?true:false can be replaced

with b==0.”

Exception handling (Brooklyn-Server #411, Cloudstack #2553,

Dubbo #3748, Servicecomb-Java-Chassis #691), e.g.,

“IllegalStateException is better?”

Method calls (using another version of an overloaded method in

Beam #6050, doubt on a specific method call in Dubbo #3184,

Dubbo #3447, Servicecomb-Java-Chassis #691, Servicecomb-

Java-Chassis #744, suggesting a method overriding in Cloudstack

#2714, doubt on visibility modifiers in Struts #191), e.g., “What

about overriding the method getCause to return this value here?”

Reverting of changes (Cloudstack #2553, Cloudstack #3276,

Dubbo #3447, Incubator-Iotdb #67, Kafka #5111), e.g., “L116

and 118 also have changes that should be reverted.”

Removing of code fragments (Dubbo #3184, Dubbo #3317,

Dubbo #4870, Kafka #5219, Kafka #6818), e.g., “why those

code are removed? are we still need -Djava.net.preferIPv4Stack=

true after this change are made?”

Requiring additional states for sessions (Kafka #6427), e.g., “I

wonder if we could include any additional state from the session

itself to get closer to the root of the problem.”

Continued on next page

5.2 Results and Discussion 106

Table 5.10 – continued from previous page

Characteristic Examples (PRs)

Suggesting

improvements

to the code

Adding assertion (Beam #6317, Dubbo #3447), e.g., “nit: Add

assertion for a part of the exception message?”

Adding case tests (Cloudstack #2714, Cloudstack #3276, Fluo

#929, Kafka #6818), e.g., “can you implement a marvin test

for the test-case.”

Adding code documentation (Accumulo-Testing #21, Brooklyn-

server #411, Cloudstack #3430, Incubator-Pinot #880, Kafka

#4430, Servicecomb-Java-Chassis #691, Tomee #283), e.g.,

“It might nice to add some comments describing the difference

between informational and comparison.”

Fixing code documentation (Accumulo-Examples #50, Beam

#6050, Dubbo #4208, Plc4x #9), e.g., “This comment could be

improved to explain why the client needs to be left open here.

I don’t think it’s merely a matter of ‘simplicity’.”

Alternatives to code fragments (Beam #6050, Cloudstack #3276,

Incubator-Pinot #880, Kafka #4430, Kafka #5111, Servicecomb-

Java-Chassis #691, Servicecomb-Java-Chassis #969, Tinkerpop

#282, Tinkerpop #524), e.g., “we should not copy the code from

the old addGlobalStore() but rather call the old addGlobalStore()

passing the generated names.”

Alternatives to error/output messages (Dubbo #3317, Fluo

#929, Incubator-Iotdb #67, Servicecomb-Java-Chassis #691),

e.g., “Suggest using ‘LOGGER.error(”Cannot get PID of IoTDB

process because ”, e);”’

Fixing a typo (Flink #91), e.g., “typo: terminated”

Use of better argument values (Cloudstack #3333, Cloudstack

#3430, Dubbo #3331, Kafka #6438, Kafka #6565), e.g., “I think

this may cause an issue, because the vlan.getVlanTag() could be

something like a range 100-200, so if vlanId is 101 the check

should be done in the range.”

Those minor issues denote subjects having no relation to refactoring, such as fixing

an error in conditional statements and using the correct range of variables. Usually,

5.2 Results and Discussion 107

the authors provide answers to the reviewers, even in the presence of discussions,

resulting in no effect (Beam #7696, Brooklyn-server #411, Cloudstack #2553, Cloud-

stack #2714, Cloudstack #3276, Dubbo #3184, Dubbo #3317, Dubbo #3748, Dubbo

#4870, Incubator-Iotdb #67, Kafka #5111, Kafka #6818, Servicecomb-Java-Chassis

#691, Servicecomb-Java-Chassis #744, Tinkerpop #282, Tinkerpop #524).

Finding 5: In non-refactoring-inducing PRs, review comments address code

aesthetics, marginal issues on code logic, and marginal improvements to the

code.

5.2.3 What Are the Differences Between Refactoring-

Inducing and non-Refactoring-Inducing PRs, in Terms

of Review Comments?

We realize that review comments in refactoring-inducing and non-refactoring-inducing

PRs are different concerning the following criteria:

• Addressed issues. Based on Tables 5.7–5.10, code reviewing addresses code

aesthetics, code logic, and improvements in both refactoring-inducing and non-

refactoring-inducing PRs. From Findings 3–5, we recognize that review comments

concern trivial issues on code logic and suggestions of minor improvements to the

code occurred more in non-refactoring-inducing PRs than in refactoring-inducing

PRs. In a typical PR with refactorings induced by code review, usually, review

comments point out a structural problem, as in Samza #1051 (Figure 5.7), in

which the author applied a Rename Class after a review comment. Reviewers ask

questions regarding issues of minor scope in non-refactoring-inducing PRs (in this

case, a typical review comment asks on alternatives already implemented by the

author, e.g., a question on an overloaded method in Beam #6050, Figure 5.8),

whereas they deal with major issues that can induce refactoring in refactoring-

inducing PRs (in this case, a typical review comment addresses more complex

structural issues, as in Tinkerpop #1110 when concerning a potential Extract

Method, Figure 5.9).

5.2 Results and Discussion 108

Figure 5.7: A typical suggestion of Rename edit from Apache Samza PR #1051

Figure 5.8: A review comment on a minor scope issue from Apache Beam PR #6050

Also, reviewers provide suggestions of minor improvements to the code (e.g.,

alternatives to output messages) in non-refactoring-inducing PRs, whereas di-

rectly suggest refactoring (e.g., alternative to a method signature) in refactoring-

inducing PRs. The same patterns emerged when comparing review comments

in refactoring-inducing PRs, where authors led the refactoring edits (Table 5.7),

and non-refactoring-inducing PRs (Table 5.10). In such a context, we found more

questions on minor issues on code logic in non-refactoring-inducing PRs (e.g., a

doubt concerning a method call) than in refactoring-inducing PRs (e.g., a ques-

tion on the effect of a method call); and suggestions of minor improvements in

non-refactoring-inducing PRs (e.g., proposing the use of “A”, “B”, ... instead

of “X”, “Y ”, ... as method arguments) than in refactoring-inducing PRs (e.g.,

suggesting a method replacement). We found warnings on good practices of de-

5.2 Results and Discussion 109

Figure 5.9: A review comment on a major scope issue from Apache Tinkerpop PR

#1110

velopment only in refactoring-inducing PRs that, in turn, may induce refactorings

(Tables 5.8 and 5.9).

• Discussion. We found reviewing discussion in 19/65 (29.2%) refactoring-

inducing PRs and 15/38 (39.5%) non-refactoring-inducing PRs, where 38 in-

dicates the number of non-refactoring-inducing PRs that contain reviewed Java

files. We also detected reviewing discussion in two non-refactoring-inducing PRs

(Dubbo #3447 and Dubbo #3184), in which reviewers agree with each other when

addressing code issues (those issues concern no structural changes, so no induc-

ing refactorings). In refactoring-inducing PRs, reviewing discussion tends to arise

as from either warning on good practices of development (authors may require

explanations due to no knowledge of such practices – Kafka #4757) or ques-

tions/opinions concerning code logic, such as addressing potential failures and

alternatives to a specific decision making (e.g., change a package name to meet

project standards may break external plugins to use of a service – Servicecomb-

Java-Chassis #678). We realize that authors properly provide clarifications for

questions/opinions of reviewers. The reviewing discussion in non-refactoring-

inducing PRs usually fits a pattern: everything begins with a review comment

suggesting some change to the code, followed by direct arguments from the au-

5.2 Results and Discussion 110

thor to refute such a suggestion. As a result, the author’s view prevailed (Figure

5.10).

Figure 5.10: A typical discussion in non-refactoring-inducing PRs, from Apache

Brooklyn-Server PR #411

• Structure of the content. We observed that, usually, review comments are

more polite in refactoring-inducing PRs than in non-refactoring-inducing PRs.

They consist of sentences that incorporate expressions like “Maybe we should ...”

and “How about ...?”, so triggering the authors to think better concerning the

code reviewed, which tends to result in refactoring. Furthermore, we identify a

lot of review comments that impose a change in non-refactoring-inducing PRs by

using expressions such as “... should be ...”, which tends to have no effect.

• Experience of reviewers. By counting the number of contributions of authors

and reviewers (Appendix D, Table D.7), we realized that review comments are

submitted by reviewers more experienced than authors in refactoring-inducing

PRs, while the opposite happens in non-refactoring-inducing PRs. Accordingly,

the experience of authors of non-refactoring-inducing PRs reflects in both char-

acteristics of their code and their ability to provide clarifications and win discus-

sions; whereas the experience of reviewers in refactoring-inducing PRs reflects in

precise review comments that may induce or inspire authors to refactor the code.

Moreover, we analyzed the experience of authors and reviewers (number of con-

5.2 Results and Discussion 111

tributions) in the three subgroups of refactoring-inducing PRs (with refactoring

led by the author, with refactorings induced by code review, and with refactor-

ings both led by the author and induced by code review). We noticed that, in

all subgroups, the reviewers are more experienced (in the number of contribu-

tions) than the authors (Appendix D, Table D.9). Thus, based on Finding 2, we

conjecture that less problem-prone code seems to give origin to non-refactoring-

inducing PRs more often, which can be partially explained by the experience of

their authors.

Finding 6: The addressed issues and content structure of review comments

(polite and precise), usually leveraged due to a higher experience (inferred from

the number of contributions) of a reviewer concerning an author, are motivating

factors behind refactoring-inducing PRs.

In practice, precise and polite review comments tend to induce refactoring edits

because they shed light on code issues of significant scope, therefore causing authors

to embrace refactoring suggestions or get inspired by these suggestions. In this con-

text, polite denotes review comments that make suggestions rather than impositions,

while precise expresses opposition to uncertain review comments. Thus, the benefits

of refactoring the code become apparent already in code review time, either through a

direct suggestion of refactoring (Figure 5.11), a rationale (Figure 5.12), or a warning

on good development practices (Figure 5.13). In those examples, the review comments

trigger a new authors’ perception, causing their agreement with the suggestions. Thus,

in such a scenario, the experience of the PR reviewer(s) became crucial.

Therefore, our analysis suggests there is a strong relation between code review and

refactoring edits because polite and precise review comments trigger refactorings at the

PR level, thus corroborating with previous works regarding the effectiveness of code

review on refactoring the code [112; 109].

5.2 Results and Discussion 112

Figure 5.11: A direct review comment, from Apache Dubbo PR #3299, which induced

a Change Variable Type edit

Figure 5.12: A review comment providing a reason (code conventions), from Apache

Brooklyn-Server PR #1049, which induced a Split Attribute edit

5.2.4 How Do Reviewers Suggest Refactorings in Refactoring-

Inducing PRs?

Suggestions of refactoring are usually polite and precise, being well-understood by the

PR authors in refactoring-inducing PRs. Those suggestions use expressions such as

“Maybe introduce variable long expiredCheckpoint = 1L; and pass into StateRestorer

to make this clearer?” in Kafka #5946 and “So to be more ”future proof”, can we send

in the filterConfig and move the boolean into the createSSLContext? This way we can

use other filterconfig items later if needed to configure the SSLContext” in Knox #74.

We conjecture that the experience of reviewers against authors in refactoring-inducing

PRs might explain such a pattern.

5.2 Results and Discussion 113

Figure 5.13: A warning on a conditional to deal with enumerations, from Apache

Cloudstack PR #2833, which induced a Change Variable Type and a Rename Variable

edits

Also, sometimes, the reviewers provide a rationale for their suggestions, such as

security-related issues in Cloudstack #3454 (Figure 5.14). In brief, the purpose of a

rationale is likely to let the author know that an adjustment is not necessary for the

code operation but to bring more benefits. Review comments, in the form of warning

on good practices of development, may induce refactoring and provide explanations and

examples (using structures of the code under analysis, e.g., a class, a method) of how to

deal with problematic points (e.g., single responsibility of methods in Incubator-Iceberg

#119, Figure 5.15).

Finding 7: Reviewers tend to make polite and precise suggestions of refactoring.

5.2.5 Do Suggestions of Refactoring Justify the Reasons?

Reviewers provide reasons that induced refactoring edits in 26/65 (40.0%) of the

refactoring-inducing PRs. Specifically, we identified reasons in 12/26 (46.1%), 2/26

(7.8%), and 12/26 (46.1%) of the refactoring-inducing PRs with refactorings led by the

authors, with refactorings induced by code review, and with refactorings both led by

author and induced by code review, respectively. Nevertheless, the type of refactoring

is not explicitly pointed, except for a few Rename, Move, and Extract instances, as

it occurs in Cloudstack #2071 (Figure 5.3). In addition, even suggestions of low-level

refactorings may provide reasons, as in Kafka #5946 (Figure 5.16). Indeed, only review

5.2 Results and Discussion 114

Figure 5.14: A review comment providing a reason (secure-related issues), from Apache

Cloudstack PR #3454, which induced two Push Down Attribute and two Push Down

Method edits

comments in Cloudstack #2071, Flink #7945, Incubator-Iceberg #119, Incubator-

Iceberg #183 submit reasons for high-level refactoring instances (Figure 5.17).

Reasons are contextualized sentences regarding problematic situations, structured

like alerts (e.g., constants format in Brooklyn-Server #1049, Figure 5.12), sometimes

accompanied by examples (e.g., code’s structure under analysis in Kafka #5194). In

other cases, reasons begin with a question on code logic (“Is this type over-kill?”, “Can

we ... ?”) assisted by examples (e.g., questioning a class functionality in Flink #7945,

Figure 5.17). In other cases, reviewers provide a direct explanation (e.g., informing

about a class useless in Dubbo #2279, Figure 5.18). This result emphasizes code

review as a traditional practice, conducted by expert reviewers, in Apache projects

[122]. Furthermore, we identified no suggestion of refactoring edits providing a reason

for non-refactoring-inducing PRs.

Finding 8: Reviewers tend to provide reasons, occasionally supported by exam-

ples, to elucidate the benefits of refactoring.

5.2 Results and Discussion 115

Figure 5.15: A warning on responsibility of methods, from Apache Incubator-Iceberg

PR #119, which induced a Change Return Type, a Rename Method, a Change Param-

eter Type, and a Rename Parameter edits

5.2.6 What Is the Relationship Between Suggestions and Ac-

tual Refactorings in Refactoring-Inducing PRs?

When the reviewers provide direct suggestions of refactoring, refactoring edits are per-

formed. We identify such a pattern in 43/43 (100%) of refactoring-inducing PRs, in

which code review induced refactoring edits. Those direct suggestions may include

explanations using examples in the code under analysis (e.g., suggesting a rename in

Flink #8620, Figure 5.19) and reasons (e.g., a large class body in Flink #7945, Figure

5.17).

Nevertheless, when there is space for discussion, refactorings may not be done. To

reinforce such emerged pattern, as we previously argued, the proportion of reviewing

discussion is higher in non-refactoring-inducing PRs than in refactoring-inducing PRs.

In particular, we identified a few discussions due to uncertain review comments (e.g.,

in Flink #9143, Figure 5.6), and to impositions of change consisting of embedded code

(e.g., a reviewer suggests a method change, using “should we ...”, by indicating an

embedded code in Dubbo #4870, Figure 5.20). In both cases, the authors presented

arguments leading to no subsequent change.

Finding 9: Direct suggestions of refactoring tend to be embraced by the PR

authors.

5.3 Implications and Guidelines 116

Figure 5.16: A suggestion of a refactoring, from Apache Kafka PR #5946, which

induced an Extract Variable edit

5.3 Implications and Guidelines

By characterizing code review in refactoring-inducing PRs, we can potentially advance

the understanding of code reviewing at the PR level while assisting researchers, prac-

titioners, and tool builders in such a scenario.

Researchers: To the best of our knowledge, no prior MCR studies investigated PRs in

light of our refactoring-inducing definition, thus exploring the refactorings performed

specifically during the code review time (subsequent commits). In this context, Finding

1 sheds light on a novel view for works concerning pull-based development. Based on

our findings, we provide directions for researchers towards three dimensions.

First, our study points out a few motivating factors behind refactoring-inducing

PRs (Findings 2 and 6). Finding 2 is an expected result since we suppose that more

experienced developers implement less problem-prone code. Nevertheless, Finding 6

indicates distinct characteristics of code reviewing in refactoring-inducing and non-

refactoring-inducing PRs. Thus, reviewers of refactoring-inducing PRs are usually

more experienced than their authors then such a pattern assists the knowledge transfer

and learning of a less experienced author. This result corroborates Bacchelli and Bird

that, when defining MCR, emphasize knowledge transfer as its relevant characteristic

[33]. However, the authors of non-refactoring-inducing PRs may miss opportunities

of improving their code quality due to reviewer limitations (e.g., less experienced),

5.3 Implications and Guidelines 117

Figure 5.17: A review comment providing a reason (long class body), from Apache

Flink PR #7945, which induced two Move and Rename Class edits

Figure 5.18: A warning on a class useless, from Apache Dubbo PR #2279, which

induced a Change Variable Type and a Rename Variable edits

although such a scenario provides a learning opportunity to a less experienced reviewer.

This result reinforces other works on code review practice, such as Sadowski et al. that

discovered education aspects as one of the main motivations behind code review at

Google [126]. Therefore, we recommend future research to explore strategies to support

an effective code review participation of authors and reviewers, knowledge transfer,

and awareness of the changes among team members at the PR level; for instance, by

specifying requirements for reviewer recommendation in line with our findings.

Second, Findings 3–5 reinforce the need for future (qualitative) research on MCR

with PRs, distinguishing refactoring-inducing and non-refactoring-inducing PRs or con-

sidering their different characteristics when sampling PRs, as we claimed in Chapter 4,

5.3 Implications and Guidelines 118

Figure 5.19: A review comment, from Apache Flink PR #8620, which induced a

Rename Method edit

Figure 5.20: A review comment including an embedded code from Apache Dubbo PR

#4870

Section 4.3. Since we found patterns in the context of review comments, future stud-

ies may leverage supervised machine learning techniques to advance in understanding

code review practice. We also conjecture that using embedded code in review com-

ments may be understood, by PR authors, as a ready-made solution. Such a structure

is not welcome by the authors; maybe, this could affect code authorship (in the devel-

oper’s perception). For further investigation, the design of future studies may consider

surveys with PRs authors.

Third, we strongly recommend reproduction studies intending to confirm or re-

fute our findings by considering other GitHub projects and pull-based platforms. We

provide a reproduction kit as support in this direction [22].

5.3 Implications and Guidelines 119

Practitioners: Based on our Findings 6–8, we provide a few guidelines for reviewers

composing valuable review comments towards code refactoring:

• Be polite when suggesting refactorings, using expressions such as “can we ...?”,

“maybe ...”;

• Be precise in both suggestions of refactoring and reasons6;

• Use the structure of the author’s code (e.g., classes, methods, etc.) when provid-

ing explanations. This usually leads to thought by the code author(s)7;

• Be direct when questioning the code logic8, employing expressions that use the

first person plural such as “should we ...?”;

• Avoid imposing any change, mainly by providing embedded code.9

Those guidelines may improve reviewers’ productivity when recommending pat-

terns to compose more effective review comments. Thus, reviewing discussions may be

reduced. As a consequence, the time to merge PRs may also decrease, as argued by

Gousios et al. when investigating factors influencing the pull-based development effec-

tiveness [68] – they found empirical evidence that code review affects time to merge

a PR. In addition, those more effective review comments represent a rich learning

opportunity for less experienced authors.

Tool builders: Supported by empirical evidence that integrating static analysis tools

can improve the quality of code review [34], we suggest the implementation of checkers

of review comments as a feature available at code review boards. To emphasize the

feasibility of this suggestion, Rahman et al. developed a machine learning prediction

model for assisting developers when formulating code review comments, based on the

text and reviewer experience. Thus, tool builders may leverage our guidelines in the

sense of assisting more effective code review at the PR level since PRs authors may miss

opportunities to improve code due to not well-structured review comments. Although

6e.g., https://git.io/JMyJL.

7e.g., https://git.io/JMyLu.

8e.g., https://git.io/JMyUL.

9Examples available at https://git.io/JMyTE and https://git.io/JMyt6.

5.4 Limitations 120

such a checker deals with natural language, we already identified a few terms and

expressions to be avoided (e.g., “not sure if ...”) and others that proved to be well

accepted (e.g., “How about ...?”) in code reviews, which can be used in preliminary

tools.

5.4 Limitations

To deal with the issues of validity and reliability of our study, we propose the

countermeasures introduced in Table 5.11. Because we consider data obtained in line

with our data mining design, this study relies on its countermeasures and threats to

validity and reliability (Chapter 3, Section 3.2).

Table 5.11: Validity and reliability countermeasures for characterizing code review in

refactoring-inducing PRs

Type Description

Internal validity A design proposal to guide the study

Construct validity

Regular revision of the study design by supervisors

Establishment of a chain of evidence based on data

analyzed by three developers

Manual validation of refactoring edits in refactoring-

inducing and non-refactoring-inducing PRs

Establishment of a chain of evidence based on data

analyzed by three developers

Reliability
Effort towards clarifying the data analysis procedures

to enable replications

Note that we elaborated the research design supported by guidelines [55; 96],

whereas we employed special attention for sampling representative PRs in each round

of analysis. Accordingly, each purposive sample comprises one refactoring-inducing

PR from the diversity of settings available at that moment. For instance, the 13

refactoring-inducing PRs of sample 3 (Round 3) represent a set of available composi-

tions of high-level refactorings found in 36 refactoring-inducing PRs, having high-level

5.5 Concluding Remarks 121

refactorings, at the beginning of the round.

Moreover, for each round of analyses, we used randomness to select non-refactoring-

inducing PRs, having an equal median of the number of review comments in the set of

refactoring-inducing PRs, intending a fair comparison for answering RQ1 and RQ2. We

considered the median value because review comments present a non-normal distribu-

tion in our whole sample (Appendix B). Even so, there are risks of threats to internal

validity due to any non-previously identified deficiencies in our research design.

We made an effort to establish a chain of evidence for the data interpretation and

systematically explain the procedures, decisions, and obtained results in each design

step. In addition, we propose a few actions intending to increase validity, including

a sanity check of refactoring edits (checking false positives and false negatives in 118

PRs) and a data analysis performed by three researchers in order to reduce researcher

bias.

The subjective nature of our qualitative study does not allow generalizations. How-

ever, we speculate that we can potentially extend our findings to cases that have

common characteristics with Apache’s projects, that is, other OSS projects that follow

a geographically distributed development [152] and are aligned to “the Apache way”

principles [17].

We systematically structured all procedures to deal with reliability issues, thus

providing a reproduction kit to enable replications, publicly available at [22].

5.5 Concluding Remarks

In this qualitative study, we explored 118 PRs, the experience of their reviewers, 923

review comments, and 366 refactoring edits aiming at characterizing code review in

refactoring-inducing PRs. Our results reveal motivating factors behind refactoring-

inducing PRs, technical aspects of the structure of review comments, and guidelines

for a more productive code reviewing.

By considering the samples of pull requests used in our previous studies (Chapters

4 and 5), we designed a mixed-methods study for characterizing refactoring edits in

refactoring-inducing PRs, described in the next chapter.

Chapter 6

Characterizing Refactoring Edits in

Refactoring-Inducing Pull Requests

In this chapter, we detail a characterization study of refactoring edits in refactoring-

inducing PRs. For that, we investigated two samples: 449 refactoring-inducing PRs for

quantitative analysis (sample 1, Chapter 3) and 65 ones for qualitative analysis (four

purposive samples, Chapter 5). That 65 refactoring-inducing PRs are a subsample

from the 449 ones. Note that our previous studies considered the refactoring-inducing

definition in order to compare refactoring-inducing and non-refactoring-inducing PRs

(Chapter 4) and characterize code review in refactoring-inducing PRs (Chapter 5).

Thus, we describe the research design (Section 6.1); then, we present the results

and discuss them (Section 6.2). Next, we argue a few implications (Section 6.3) and

limitations (Section 6.4).

6.1 Research Design

This study explores refactoring-related aspects at the PR level, aiming to characterize

refactoring edits in Apache’s refactoring-inducing PRs. In this sense, we formulated

the following research questions:

• RQ1: What types of refactoring edits often take place in PRs? First, we examined

the types of refactoring edits, detected in refactoring-inducing PRs, intending to

understand the practice of code refactoring at the PR level.

122

6.1 Research Design 123

• RQ2: How are the refactoring edits characterized? Then, we sought and analyzed

technical aspects of refactoring edits in refactoring-inducing PRs, to compose a

more comprehensive characterization of refactorings at the PR level. In this

context, the level of refactorings (low-level or high-level) is one of the examined

aspects.

As shown in Figure 6.1, our study design consists of a mixed-methods analysis.

First, we analyze quantitative data from the refactorings dataset, mined from Apache’s

Java repositories in Github (sample 1, Chapter 3). Then, we analyze qualitative data

using the worksheets derived from examining four purposive samples in order to char-

acterize code review in refactoring-inducing PRs (Merging of results, Chapter 4).

Figure 6.1: An overview of the characterization study of refactoring edits in refactoring-

inducing PRs

Our quantitative analysis provides additional results and discussion about refac-

toring edits performed in light of refactoring-inducement, discussing subjects such as

types of refactorings induced by code review or led by the PR authors, for instance.

Given that, we performed both data analyses to answer each research question.

We ran the quantitative data analysis on the refactorings dataset (sample summarized

in Table 6.1) to explore the number of refactoring edits, types of refactorings, and

frequency of low-level and high-level refactorings by PR. We developed a Python script1

1Available at https://git.io/JDY9A.

6.1 Research Design 124

to perform such an analysis and made it available in our reproduction kit [22].

Table 6.1: Sample of refactoring-inducing PRs for the quantitative analysis

Number of

repositories

Number of pull

requests

Number of

subsequent commits

Number of detected

refactorings

50 449 1,563 2,104

As we argued in Chapter 3, we did not validate the refactoring edits in the refac-

toring dataset. Then, we carried out a qualitative analysis based on a validated sample

of refactoring edits in 65 refactoring-inducing PRs (summarized in Table 6.2), thus

providing further investigation of the answers achieved by quantitative data analysis

for our research questions.

Table 6.2: Sample of refactoring-inducing PRs for the qualitative analysis

Number of

repositories

Number of pull

requests

Number of

subsequent commits

Number of detected

refactorings

29 65 346 366

The examined types of refactoring edits consider the catalog of 40 types detectable

by RefactoringMiner 1.0 in September 2019 (Table 3.5, Chapter 3) – a version closest to

version 2.0 [145]. It is worth remembering that we classified those types of refactoring

in line with technical descriptions by Fowler [60] in low-level and high-level refactor-

ings. We considered such levels intending to investigate the practice of refactoring

that configure more complex changes (or that changes the code design) in relation to

less complex ones at the PR level. Also, since our quantitative data analysis relies on

RefactoringMiner detection, we answer the research questions in light of the mecha-

nisms specified by RefactoringMiner’s developers for each type of refactoring. Thus,

we recognize a potential inflated number and types of refactoring edits, as argued in

Chapter 3, Section 3.2.

6.2 Results and Discussion 125

6.2 Results and Discussion

To address each research question, we present the results from the quantitative analysis

accompanied by further qualitative examinations, then we discuss them.

6.2.1 What Types of Refactoring Edits often Take Place in

PRs?

In our sample of 449 refactoring-inducing PRs, RefactoringMiner detected 34 distinct

types of refactorings (Table 6.3). As we can see, Rename Method edits are the most

frequent, also found by Vassalo et al. when investigating refactoring practice in Apache

projects [147]. Given this diversity of types of refactoring edits, we understand that

distinct subjects are addressed by refactorings at the PR level.

Table 6.3: Types of refactoring edits detected by RefactoringMiner 1.0 in the 449

refactoring-inducing PRs

Type of refactoring
Number of

detections

Proportion

(%)

Rename Method 355 16.87

Change Variable Type 209 9.93

Rename Variable 199 9.46

Extract Method 172 8.17

Change Parameter Type 156 7.41

Rename Parameter 155 7.37

Change Attribute Type 118 5.61

Change Return Type 114 5.42

Rename Attribute 105 4.99

Extract Variable 95 4.51

Rename Class 64 3.04

Move Attribute 44 2.09

Move Class 41 1.95

Extract And Move Method 34 1.61

Inline Variable 34 1.61

Continued on next page

6.2 Results and Discussion 126

Table 6.3 – continued from previous page

Type of refactoring
Number of

detections

Proportion

(%)

Inline Method 30 1.42

Move Method 26 1.23

Replace Variable With Attribute 26 1.23

Pull Up Method 23 1.09

Extract Attribute 18 0.85

Push Down Method 16 0.76

Move And Rename Class 12 0.57

Parameterize Variable 10 0.47

Extract Interface 10 0.47

Push Down Attribute 10 0.47

Pull Up Attribute 8 0.40

Extract Class 7 0.35

Extract Superclass 4 0.20

Change Package (Rename) 3 0.15

Merge Parameter 2 0.10

Split Parameter 1 0.05

Move Source Folder 1 0.05

Merge Variable 1 0.05

Split Attribute 1 0.05

Total 2,104 100.0

Kinds of refactoring edits

When grouping the types of refactorings by kind (Table 6.4), Rename edits are the

most common. As a whole, we realized that Rename, Change Type, Extract, and Move

edits represent a significant number of refactorings (almost 90%) in our sample, what

suggests development efforts concerning code readability [110], understandability [147],

maintainability [142], and cohesion and coupling [106]. Moreover, we recognize that

high-level refactorings are defined in terms of low-level ones [60].

6.2 Results and Discussion 127

Table 6.4: Kinds of refactoring edits detected by RefactoringMiner 1.0 in the 449

refactoring-inducing PRs

Kind of refactoring
Number of

detections

Proportion

(%)

Rename 878 41.73

Change Type 597 28.37

Extract 306 14.54

Move 112 5.32

Inline 64 3.04

Extract and Move 34 1.62

Pull Up 31 1.47

Push Down 26 1.24

Replace 26 1.24

Move and Rename 12 0.57

Parameterize 10 0.47

Change Package 3 0.15

Merge 3 0.15

Split 2 0.09

Total 2,104 100.0

Change Type edits are not in the Fowler’s catalog [61; 61], but they are detectable

by RefactoringMiner [145] and available at IntelliJ IDEA, as an automatic refactoring

coined as Type Migration [24]. Change Type edits consist of changing a class’s member

type. For instance, suppose that a developer implemented the Java source code 6.1

and wants to change the type of the variable age to better accommodate input values.

Then, the developer can refactor the code applying a Change Variable Type (int →

byte), as demonstrated in source code 6.2. Change Type refactorings are essential for

class/library migration because it contributes to code maintainability [142].

1 public void simpleMethod () {

2 int age;

3 // do something

4 }

Listing 6.1: A simple Java method

6.2 Results and Discussion 128

1 public void simpleMethod () {

2 byte age;

3 // do something

4 }

Listing 6.2: A simple Java refactored method

Refactoring-inducing PRs consisting of a single type of refactoring

RefactoringMiner detected a single type of refactoring in 136/449 (30.3%) of

refactoring-inducing PRs that, in turn, comprise 204/2,104 (9.7%) of refactoring ed-

its in our sample. When examining the most frequent types of refactoring in those

136 PRs, we identified 22 distinct types of refactoring, among which Rename Method,

Change Variable Type, Rename Variable, and Extract Method remain in the top 5

(Table 6.5).

Table 6.5: Types of refactoring edits detected by RefactoringMiner 1.0 in 136

refactoring-inducing PRs consisting of a single type of refactoring

Type of refactoring
Number of

detections

Proportion

(%)

Rename Method 77 37.74

Extract Method 24 11.76

Extract Variable 18 8.82

Rename Variable 15 7.35

Change Variable Type 13 6.37

Rename Attribute 8 3.93

Change Return Type 7 3.44

Rename Class 7 3.44

Move Class 6 2.94

Rename Parameter 5 2.45

Change Parameter Type 4 1.96

Extract Attribute 4 1.96

Move Attribute 3 1.47

Change Attribute Type 2 0.98

Continued on next page

6.2 Results and Discussion 129

Table 6.5 – continued from previous page

Type of refactoring
Number of

detections

Proportion

(%)

Move Method 2 0.98

Move And Rename Class 2 0.98

Inline Variable 2 0.98

Replace Variable With Attribute 1 0.49

Split Attribute 1 0.49

Push Down Method 1 0.49

Extract Interface 1 0.49

Pull Up Attribute 1 0.49

Total 204 100.0

Regarding kinds of refactoring, we realize that the top 5 (Rename, Change Type,

Extract, Move, and Inline) remain in the 136 refactoring-inducing PRs (Table 6.6).

Therefore, we conclude that even when a PR embraces a single type of refactoring,

those edits often reflect concerns on code readability (e.g., a Rename Class in Samza

#1051), maintainability (e.g., a Change Variable Type in Tomee #275), and cohesion

(e.g., a Extract Method in Servicecomb-Java-Chassis #346).

Table 6.6: Kinds of refactoring edits detected by RefactoringMiner 1.0 in 136

refactoring-inducing PRs consisting of a single type of refactoring

Kind of refactoring
Number of

detections

Proportion

(%)

Rename 112 54.91

Extract 47 23.04

Change Type 26 12.74

Move 11 5.39

Inline 2 0.98

Move and Rename 2 0.98

Replace 1 0.49

Split 1 0.49

Continued on next page

6.2 Results and Discussion 130

Table 6.6 – continued from previous page

Kind of refactoring
Number of

detections

Proportion

(%)

Pull Up 1 0.49

Push Down 1 0.49

Total 204 100.0

Finding 1: The most common refactorings are Rename, Change Type, Extract

and Move edits. We believe that code improvements concerning readability,

maintainability, cohesion, and coupling are frequent at the PR level. This is

valid even when a PR addresses a single type of refactoring.

In terms of most typical refactorings, our result corroborates the findings of Murphy-

Hill and colleagues, which found Rename refactorings as the most frequent when study-

ing the refactoring practices in two other OSS projects [100]; however, it differs from

recent studies. Pantiuchina and colleagues observed Extract refactorings as the most

common when exploring motivations behind refactoring edits at PR level in 150 projects

in GitHub [112]. Whereas, Paixão and colleagues identified Extract Method and Move

Method as the most typical types when investigating refactorings over reviews on Ger-

rit [109]. It is worth mentioning that the catalog of refactorings, considered by those

studies, differs from the ones detectable by RefactoringMiner [145]; mainly concerning

Change Type refactorings.

Additionally, as shown in Figure 6.2, the refactoring-inducing PRs present 3.5 on

average (SD = 3.3) and 2 on median (IQR = 3) distinct types of refactoring edits.

Thus, most of them address refactoring edits of different types. These results are

aligned with findings from Brito and colleagues, who identified that most refactorings

are composed of more than one type of refactoring over commits [47].

Validated refactoring edits in refactoring-inducing PRs

When qualitatively studying our sample of 65 refactoring-inducing PRs, firstly, we

observed that a single review comment may induce multiple refactorings. The num-

ber of refactoring edits in a PR may depend on the context (e.g., number of file

6.2 Results and Discussion 131

Figure 6.2: Number of types of refactoring detected by refactoring-inducing PR

changes and code churn) and how RefactoringMiner defines its refactoring mecha-

nisms. For instance, the review comment “New private method with obfuscated name

should have some comment describing what it’s supposed to do.” induced seven Re-

name Method edits in Fluo #837, so renaming seven distinct methods. The review

comment “just a note, SSL is outdated, the official name would be TLS, name the

package tls?” induced a Change Package (Rename) in Cloudstack #2071 – Refactor-

ingMiner also detected two Move Class edits because such a package contained the

classes. Moreover, we realized that Change Type edits may be due to other refactor-

ings. To illustrate, consider a Change Attribute Type edit in Flink #8222 (Figure 6.3).

Such refactoring is accompanied by a Change Return Type in createPartitionKeys() in

GenericInMemoryCatalogTest, a Change Parameter Type in GenericCatalogTable (Ta-

bleSchema, TableStats, LinkedHashSet<String>, Map<String,String>) in Generic-

CatalogTable, and a Change Parameter Type in createPartitionedTable(TableSchema,

LinkedHashSet<String>, Map<String, String>, String) in CatalogTestUtil.

We also identified refactoring-inducing PRs that configure a counter-intuitive sce-

nario: when a refactoring edit produces a reviewer’s comment. For instance, in Kafka

#5194 (Figure 6.4), a reviewer suggested adding a test case after a Move Class of

ConfigProvider in the first subsequent commit (induced by code review).

6.2 Results and Discussion 132

Figure 6.3: A Change Attribute Type edit in Apache Flink PR #8222

In addition, we also explored the kinds of refactoring edits, so realizing that the

top 4 remain in refactoring-inducing PRs (Table 6.7). We observed an almost similar

result regardless of how refactoring edits were triggered (led by the authors or induced

by code review). Specifically, our purposive sample has 13/65 (20%) of refactoring-

inducing PRs comprising high-level refactorings, which explain the number of Pull Up

and Move and Rename edits. In Beam #6261, Dubbo #3654, Flink #8620, and Kafka

#4757, we found the presence of floss refactoring to accommodate new tests in the

three first ones and a new feature in a class in the last one – all suggested by reviewers.

Thereby, we judged the associated refactoring edits as led by the PR authors. Given

that, our qualitative analysis reinforces Finding 1 and its discussion.

Table 6.7: Kinds of refactorings in 65 refactoring-inducing PRs (validated refactorings)

Kind of

refactorings

Refactoring-inducement

Led by authors Induced by code review Total

Change Type 50 65 115/366 (31.4%)

Continued on next page

6.2 Results and Discussion 133

Table 6.7 – continued from previous page

Kind of

refactoring

Refactoring-inducement

Led by authors Induced by code review Total

Rename 56 45 101/366 (27.6%)

Extract 19 19 38/366 (10.4%)

Move 27 5 32/366 (8.7%)

Extract and Move 18 3 21/366 (5.8%)

Pull Up 6 13 19/366 (5.2%)

Push Down 15 4 19/366 (5.2%)

Replace 2 5 7/366 (1.8%)

Move and Rename none 7 7/366 (1.8%)

Inline 1 1 2/366 (0.6%)

Split 1 1 2/366 (0.6%)

Parameterize 2 none 2/366 (0.6%)

Merge 1 none 1/366 (0.3%)

Total 198/366 (54.1%) 168/366 (45.6%) 366/366 (100%)

Note that floss refactoring can occur in PR initial commits – what is out of the

refactoring-inducing PR definition. For instance, in Flink #7945 that submits adap-

tative changes (a new feature), RefactoringMiner detected an Extract Superclass and

Change Type edits in the initial commits. Our data analysis did not include them

because we concentrated effort on investigating changes over PR subsequent commits.

6.2.2 How are the Refactoring Edits Characterized?

We explored the number of detected refactorings by RefactoringMiner over the PR

subsequent commits and the levels of refactoring in order to answer this question.

Refactoring edits over PR subsequent commits

As depicted in Figure 6.5 (a), the histogram of number of subsequent commits is

positively skewed, thus a low number of them by PR is quite frequent. Refactoring-

inducing PRs have 3.5 on average (SD = 3.1) and 3 on median (IQR = 2) subsequent

commits, as shown in Figure 6.5 (b).

6.2 Results and Discussion 134

Figure 6.4: A Move Class edit that induced a review comment in Apache Kafka PR

#5194

We visually explored the relationship between number of subsequent commits and

number of refactorings (Figure 6.6) and got no clear general trend. Then, we ran

Spearman’s correlation test, considering 3-quantiles binning of data, and found a weak

and positive monotonic correlation between the two variables (rs = 0.24, n = 449, p

< .05). Further, by examining the number of refactorings detected from the first until

the third subsequent commit (Table 6.8), we realized that almost 78% of refactorings

occur in a decreasing number of edits over the three first subsequent commits.

Given that, we conjecture that most refactoring edits occur in the initial PR sub-

sequent commits and their number gradually decreases over them. When examin-

ing 65 refactoring-inducing PRs (validated refactorings), we identified six refactoring-

inducing PRs that do not follow the pattern of decreasing the number of refactorings

over subsequent commits: Dubbo #4099, Flink #7945, Flink #8222, Kafka #4735,

Servicecomb-Java-Chassis #678, and Usergrid #102. In particular, they include refac-

toring edits led by the author. However, most refactoring-inducing PRs comprising

only refactorings induced by code review (33/35) follow the pattern (Dubbo #3174

6.2 Results and Discussion 135

(a) Histogram (b) Boxplot

Figure 6.5: Number of subsequent commits in refactoring-inducing PRs

Table 6.8: Number of detected refactorings from the first until the third subsequent

commit in refactoring-inducing PRs

Subsequent

commit

Number of detected

refactorings
Proportion

1st 855 855/2,104 (40.6%)

2nd 428 428/2,104 (20.3%)

3rd 346 346/2,104 (16.5%)

Total 1,629 1,629/2,104 (77.3%)

and Sling-Org-Apache-Sling-Feature-Analyser #16 are exceptions) – 35/65 (53.8%)

refactoring-inducing PRs consist of edits induced only by code review.

Finding 2. PR authors tend to perform refactoring edits in the initial subsequent

commits for addressing the suggestions from code review.

Previous research found that changes are driven by review comments [40], and

refactorings are also triggered by discussion [112]. Finding 2 reinforces the capacity

of code reviewing on refactoring edits because the subsequent commits can express

the implemented changes in response to reviewers’ comments. We clarify that we

extended the knowledge on the practice of refactoring at the PR level because we

6.2 Results and Discussion 136

Figure 6.6: Scatterplot of number of refactorings in relation to number of subsequent

commits in 449 refactoring-inducing PRs

explored refactorings as one of the changes occurring in code under review (Beller

and colleagues do not deal with such a context) and we examined PRs in light of

our refactoring-inducing PR definition (Pantiuchina and colleagues included initial PR

commits in their study [112]).

Furthermore, we observed that the relevance of code review reflects on the time to

merge a PR. In this context, refactoring-inducing PRs, in which code review induced

refactorings, take 8.8 on average (SD = 13.8) and three on median (IQR = 10) days to

merge; whereas, the other refactoring-inducing PRs take 24.8 on average (SD = 44.9)

and 5.5 on median (IQR = 20.5) days to merge.

Low-level and high-level refactorings

We categorize 2,104 refactoring edits detected by RefactoringMiner in low-level and

high-level refactorings, as our classification introduced in Chapter 3, Table 3.5. In the

sample of 449 refactoring-inducing PRs, the most of refactorings are low-level edits

(about 95%), as shown in Table 6.9. Moreover, Table 6.10 presents the types of high-

level refactorings detected in our sample.

6.2 Results and Discussion 137

Table 6.9: Low-level and high-level refactorings detected by RefactoringMiner in 449

refactoring-inducing PRs

Level
Number of detected

refactorings

Proportion

(%)

High-level 119 5.7

Low-level 1,985 94.3

Total 2,104 100.0

Table 6.10: Types of high-level refactorings detected by RefactoringMiner 1.0 in 449

refactoring-inducing PRs

Type of

refactoring

Number of

detections

Proportion

(%)

Move Class 41 34.5

Pull Up Method 23 19.3

Push Down Method 16 13.4

Push Down Attribute 10 8.4

Extract Interface 10 8.4

Pull Up Attribute 8 6.7

Extract Class 7 5.9

Extract Superclass 4 3.4

Total 119 100.0

Finding 3. Most of the refactorings detected in Apache’s refactoring-inducing

PRs consist of low-level edits.

We categorized the types of refactoring into low-level and high-level edits in the light

of their impact on code design, based on technical descriptions provided by Fowler to

explain that high-level refactorings are structured in terms of low-level refactorings

[60]. Hence, our classification scheme may differ from previous research at that point.

Our result reinforces the conclusions of Murphy-Hill and colleagues concerning the

significant number of refactorings performed in low level [100], since those edits do not

alter the interface of programs, constituting reduced impacts of change in comparison

6.2 Results and Discussion 138

to high-level refactorings. It is worth remembering that our strategy for counting low-

level and high-level refactorings considers each refactoring edit individually; that is,

we compute a high-level refactoring independently of the low-level refactorings that it

may include. For instance, we count one Extract Superclass, which comprises one Move

Attribute and one Move Method edits, as one high-level and two low-level refactorings

(e.g., Incubator-Iceberg #183).

In our purposive sample of 65 refactoring-inducing PRs (validated refactorings),

low-level refactorings also happen more often – 297/366 (81.1%) edits (Table 6.11),

which also corroborates results from a stratified sample in our comparative study be-

tween refactoring-inducing and non-refactoring-inducing PRs (Chapter 4, Table 4.6).

Of those 297 low-level refactoring edits, 238 (80.1%) are not part of high-level edits.

We explored the age of PRs by computing the difference between the creation

date of repositories and the creation date of PRs (in years). We realize that newer

refactoring-inducing PRs present a higher number of high-level refactoring edits (Ap-

pendix D, Table D.10). Accordingly, it seems that high-level refactorings are more likely

to happen in newer refactoring-inducing PRs, maybe denoting their repositories’ code

evolution. In addition, we identified high-level refactorings in ten refactoring-inducing

PRs in which code review induced edits (Extract Interface and Extract Superclass were

suggested only in this category), and eight, in which authors led the refactorings. This

result reinforces the occurrence of more low-level refactorings than high-level ones.

Table 6.11: Number of low-level and high-level refactorings in 65 refactoring-inducing

PRs (validated refactorings)

Refactoring-inducement Low-level edits High-level edits

Code review 138 30

Author 159 39

Total 297/366 (81.1%) 69/366 (18.9%)

In addition, we leveraged the classification of 65 refactoring-inducing PRs into the

primary types of change (adaptive, corrective, and perfective) from the previous study

(Chapter 5), and we contrasted them to kinds of refactoring edits (Table 6.12).2 Then,

2(*) Including high-level edit(s).

6.2 Results and Discussion 139

we realize that the most typical kinds of refactoring (Change Type, Rename, Extract

and Move edits) are performed in refactoring-inducing PRs regardless of refactoring-

inducement and type of change. The least common refactorings (Merge, Parameterize,

Replace, and Split) are more frequent in refactoring-inducing PRs in which code review

induced edits, regardless of the type of change.

Table 6.12: Kinds of refactorings by type of change in 65 refactoring-inducing PRs

(validated refactorings)

Refactoring-

inducement

Type of change

Adaptive Corrective Perfective

Author

Change Package

Change Type

Extract*

Extract and Move

Move*

Rename

Change Type

Extract*

Extract and Move

Inline

Move*

Pull Up*

Push Down*

Rename

Change Type

Move*

Rename

Code review

Change Package

Change Type

Extract*

Extract and Move

Merge

Move*

Move and Rename*

Parameterize

Pull Up*

Push Down*

Rename

Replace

Change Type

Extract*

Pull Up*

Rename

Split

Change Package

Change Type

Extract

Inline

Move*

Parameterize

Push Down*

Replace

Rename

Split

Although considering a distinct catalog of types, refactoring detection tool, and

level under investigation (commit versus PR), this result embraces previous findings

from Palomba et al. that investigated the relationship between types of refactoring and

6.3 Implications 140

the type of change [110]. After all, we identified refactorings dealing with principles of

object-oriented programming (Extract, Move, and inheritance-related refactorings) in

adaptative changes, comprehensibility (Rename) and maintainability (Change Type)

in corrective changes, and comprehensibility (Rename) in perfective changes.

In addition, we observed that code review induced more high-level refactorings

(Move and Rename, Pull Up, and Push Down edits) in refactoring-inducing PRs that

consist of adaptative and perfective changes. Whereas, authors addressed high-level

refactorings (Extract, Move, Pull Up, and Push Down) in refactoring-inducing PRs

that focus on corrective changes. Thus, we speculate that authors tend to conduct

more complex refactoring edits to deal with corrective changes.

Although we do not investigate the intentions behind refactorings, our result corrob-

orates findings from Paixão and colleagues on developers commonly employing refac-

toring to address adaptative and perfective changes [109].

6.3 Implications

As follows, we provide a few directions for researchers, practitioners, and tool builders.

Researchers: Findings 1 and 3 suggest that most refactoring-inducing PRs concen-

trate effort in low-level refactorings (including, low-level refactorings can be part of

high-level refactorings [60]). Hence, perhaps a PR can be understood as an isolated

unit at code review time, which makes more complex changes (e.g., refactor the code

design) a challenge. We propose that future research regarding the practice of refac-

toring at the PR level to investigate code repositories to identify patterns related to

missing opportunities of implementing more complex refactorings at code review time.

Empirical evidence on a lack of discussing architectural changes during code review

supports our claim [108]. For that, researchers may start exploring repositories over

their initial phases (i.e., over the first months/years), which could facilitate some vi-

sualization of missing opportunities of code improvement. As a result, researchers can

potentially achieve guidelines for practitioners and tool builders towards more effec-

tive code review practice. We strongly recommend replication studies in order to get

advanced knowledge on the practice of code refactoring at the PR level.

6.4 Limitations 141

Practitioners: Finding 2 indicates that when code review induces refactoring, the

authors apply them in the initial subsequent commits, which likely reduces the time to

merge a PR – maybe, this indicates that restructuring code is the priority of reviewers.

Therefore, we claim that practitioners should pay more attention to resources for as-

sisting the code review process, such as the guidelines proposed in Chapter 5, Section

5.3.

Tool builders: As a whole, our findings highlight the relevance of code review as a

trigger for code refactoring, including a reduction in time to merge. Therefore, we sug-

gest the development of tools for recommending reviewers based on the experience of

them against authors, aiming to provide opportunities for more complex code improve-

ments such as code design changes at reviewing time. Previous research found empirical

evidence that the reviewer experience is the main factor influencing code review quality

[80], but we consider that such a subject deserves more attention. Specifically, when

dealing with cases in which, for instance, a PR author is already an experienced con-

tributor (author/reviewer). Our claim is supported by empirical evidence on the need

for user-centric approaches to design reviewer recommendation solutions [83]. Review

Bot, for instance, provides a reviewer recommendation based on the change history of

code lines [34], but we suggest another route: the contributions of reviewers against

authors (accessible from GitHub profiles) may be considered, as we argued in Chapter

5, Section 5.3.

6.4 Limitations

This characterization study presents a few limitations, despite the efforts in the purpose

of countermeasures to deal with validity and reliability issues (Table 6.13).

First, we made an effort to design the analysis procedures and systematically explain

them in order to establish a chain of evidence when describing the sequence of results

and conclusions. For that, we considered both quantitative and qualitative refactoring-

related data. Nevertheless, there are risks of threats to internal validity due to any

non-previously identified deficiencies in the research questions and procedures of the

research design.

6.5 Concluding Remarks 142

Table 6.13: Validity and reliability countermeasures for the characterization study of

refactoring edits in refactoring-inducing PRs

Type Description

Internal validity
Proposal for a research design to guide the data analysis

procedures

Construct validity

Establishment of a chain of evidence based on a mixed-

methods data analysis (quantitative and qualitative)

Quantitative study based on refactoring-inducing pull

requests found in a representative sample of Apache’s

merged PRs

Qualitative study based on a manually validated sample

of refactoring-inducing PRs

Reliability
Effort towards clarifying the data analysis procedures in

order to enable replications

The quantitative analysis investigates a representative sample of Apache’s merged

PRs, as explained in Chapter 3, Section 3.2. Three researchers validated the refactor-

ings edits of a sample of refactoring-inducing PRs for the qualitative analysis.

We reinforce that our findings, in potential, are exclusively extended to cases that

have common characteristics with Apache’s projects. To enable replications, we provide

a few instructions in our reproduction kit publicly available [22].

6.5 Concluding Remarks

In this chapter, we describe a characterization study about refactoring-inducing PRs,

focusing on refactoring edits. In particular, this study complements our two previous

studies towards a more comprehensive understanding of the code review process at the

PR level.

Next, we discuss our findings and contributions in relation to previous research.

Chapter 7

Related Work

This thesis aims to characterize refactoring-inducing PRs. For that, we mined merged

PRs from GitHub (Chapter 3) and carried out three inter-dependent characterization

studies (Chapters 4–6). Accordingly, the related works enclose contributions from two

fields: characterization of code review and characterization of refactorings throughout

code evolution, described in the following sections.

7.1 Characterization of Code Review

The code review practice has been the focus of characterization studies that explore

both OSS and industrial scenarios. Hence, it is perceptible the enhancement of tech-

niques, tools, and recommendations for supporting the code review over time as a

result of research initiatives over time. Table 7.1 lists the projects and data analyzed

by related works.

Table 7.1: A summary of characterization studies on code review

Related

work
Year Type

Analyzed

project(s)

Analyzed

data

[122] 2008
Case

study

Apache HTTP

Server

Archival of email discussion

Version history data

Continued on next page

143

7.1 Characterization of Code Review 144

Table 7.1 – continued from previous page

Related

work
Year Type

Analyzed

project(s)

Analyzed

data

[123] 2011
Empirical

study

Apache HTTP

Server, FreeBSD,

Linux Kernel

KDE, Subversion

Archival of email discussion

[120] 2013
Empirical

study

Google

Android and

Chromium OS

Microsoft

Bing, Office

and MS SQL

Code review data from Gerrit and

CodeFlow

[33] 2013
Empirical

study

Microsoft

projects

Survey and interviews data

Code review data from CodeFlow

[121] 2014
Empirical

study

Apache HTTP

Server, FreeBSD,

Linux, KDE

Subversion

Interviews data

Archival of email discussion

Version history data

[94] 2014
Case

study

Qt, VTK, and

ITK
Code review data from Gerrit

[40] 2014
Empirical

study

ConQAT and

GROMACS
Code review data from Gerrit

[68] 2014
Empirical

study

GitHub

projects
PRs data

[45] 2015
Empirical

study

Microsoft

projects

Interviews data

Code review data from CodeFlow

[81] 2015
Empirical

study

Mozilla

projects

Version history data

Issues tracking data from Bugzilla

[73] 2016
Case

study

Xen

project
Archival of email discussions

[95] 2016
Empirical

study

Qt, VTK, and

ITK
Code review data from Gerrit

Continued on next page

7.1 Characterization of Code Review 145

Table 7.1 – continued from previous page

Related

work
Year Type

Analyzed

project(s)

Analyzed

data

[80] 2016
Empirical

study

Mozilla

projects
Survey data

[116] 2017
Empirical

study

Proprietary

projects
PRs data from GitHub

[87] 2017
Empirical

study

Angular.js,

ElasticSearch,

and Rails

PRs data from GitHub

[44] 2017
Empirical

study

OSS and

Microsoft

projects

Surveys data

[126] 2018
Case

study

Google

projects

Interviews and Survey data

Code review data from CRITIQUE

[82] 2018
Empirical

study

Active

Merchant

Survey data

PRs data from GitHub

Initially, the characterization studies of code review aimed to understand the dif-

ferences between software inspection as performed in industry and peer code review in

OSS development. Rigby et al., in this purpose, provide theory and study methodol-

ogy in light of metrics similar to those considered in software inspection [122]. They

characterized Apache’s peer reviews as early, frequent reviews of small, independent,

complete contributions conducted asynchronously by a small number of expert review-

ers. These findings express code reviewing as a traditional practice in Apache projects,

which inspired us to explore refactoring-inducing PRs in its repositories.

Rigby and Storey studied reviewers interactivity in five OSS projects. They iden-

tied a few benefits and weaknesses of broadcast peer review – a modality in which

hundreds of potential reviewers could examine a code. At that point, code review has

expanded the reach of collaborative development [123]. The differential of OSS code

review practices for code quality has become evident, as claimed by Rigby et al., when

suggesting a few recommendations suitable to the industry as from the OSS code re-

viewing [119]. In this context, Rigby and Bird studied convergent code review practices

7.1 Characterization of Code Review 146

in both industrial and OSS scenarios aiming at discovering efficient methods of review

[120]. Also, Rigby et al. extended the knowledge on peer review practice, examining a

lot of aspects, including the experience (i.e., length of time a developer has been with a

project) of authors and reviewers [121]. They found the reviewers typically have more

experience than authors. We expand the knowledge about the experience of Apache

authors and reviewers by providing arguments denoting a difference between the expe-

rience of authors and reviewers in refactoring-inducing and non-refactoring-inducing

PRs (Chapter 5, Section 5.2.1).

As a whole, the previous findings signal a review process that fits MCR – a

lightweight review, focusing on solving problems instead of finding defects. Bacchelli

and Bird characterized the motivations behind code review and the associated chal-

lenges for researchers and practitioners while defining the current MCR process – an

informal, tool-based, and asynchronous code review [33]. Such a work sheds light on

a code review addressing code improvements while favoring knowledge transfer. This

motivated us investigating code review as a process driven by initiatives towards code

improvement. By considering refactoring as a potential code improvement (as empiri-

cal evidence of its benefits [57; 71; 138]) in code review time, we drew the foundations

of this thesis.

Later, we notice a series of research initiatives to better understand MCR. Sad-

owski et al. studied code review practice at Google, discovering educational aspects

as one of the motivations behind such a process [126]. As well, our findings (Chap-

ter 5, Section 5.3) reinforce the intrinsic nature of code review in terms of learning

opportunities. McIntosh et al. explored the relationship between MCR and software

quality, identifying that a low proportion of changes reviewed and involvement degree

of reviewers generate additional post-release defects [94; 95]. Beller et al. investigated

the benefits of MCR by examining the issues fixed at code review time in OSS projects.

They found that most of the changes are due to review comments, concerning code

improvement instead of fixing defects [40]. As a whole, those findings reinforce code

improvement as a relevant objective of MCR, thus motivating us to advance knowledge

on code reviewing-related aspects such as review comments.

7.1 Characterization of Code Review 147

Also, studies explored code review quality. In this context, Kononenko et al found

empirical evidence that aspects such as reviewer experience (i.e., the overall number

of completed reviews) and the thoroughness of feedback are associated with the code

review quality [81; 80]. Bosu et al. identified factors influencing the review comments

usefulness [45] – for instance, review comments asking questions to understand code

were considered non-useful. But, such an aspect may induce refactoring edits at the

PR level in line with our findings. In this context, the guidelines for structuring review

comments denote a differential of our studies (Chapter 5, Section 5.3).

The analysis of technical aspects of code reviewing has been the focus of several

empirical studies, thus constituting an enriched set of technical aspects from which

we selected the ones under investigation in our studies. In this perspective, we can

consider:

• code churn [68; 80; 95],

• number of file changes [68; 80; 82],

• number of commits [68; 82],

• number of review comments [68; 80],

• length of discussion [80; 82; 95],

• number of reviewers [75; 95],

• time to merge [73; 68],

• reviewer experience [82; 116], and

• review comments [40; 120].

Pull-based development is the focus of a few empirical studies. In this context,

Gousios et al. investigated GitHub PRs data for understanding the factors influencing

their effectiveness (e.g., code churn, number of commits, number of file changes, and

number of review comments) [68]. In particular, besides providing us with a few

features for exploring in our studies, this work found empirical evidence that code

review affects the time to merge a PR. We advanced the knowledge regarding pull-based

development when we found that refactoring-inducing PRs with refactorings induced by

7.2 Characterization of Refactoring Edits throughout Code Evolution 148

code review take less time to merge than refactoring-inducing PRs with refactorings led

by PR authors (Chapter 6, Subsection 6.2.2).

Review comments in pull-based development has been examined in a few studies.

Rahman et al. developed a machine learning prediction model for assisting develop-

ers when formulating code review comments after comparing useful and non-useful

review comments based on the content of review comments and reviewer experience

[116]. This work emphasizes the reviewer experience as a relevant factor influencing the

useful review comments, whereas our studies shed light on considering the experience

of reviewers against authors when dealing with refactorings at the PR level. Li et al.

found 15 typical code review patterns in GitHub PRs such as reviewing for code cor-

rectness (e.g., indicating blank lines) [87]. We go further in the sense of encompassing

code review properties while investigating the refactoring-inducing and non-refactoring-

inducing PRs. Bosu et al. revisited the OSS and industrial scenario to investigate code

review practice, including interactivity aspects and human effort required in review-

related tasks [44]. They identified a few subjects for further research, such as assisting

reviewers in articulating review comments. In particular, our guidelines are an initia-

tive to meet such a claim.

7.2 Characterization of Refactoring Edits through-

out Code Evolution

Table 7.2 summarizes projects and data analyzed in characterization studies on refac-

torings over code evolution.

Table 7.2: A summary of characterization studies on refactorings over code evolution

Related

work
Year Type

Analyzed

project(s)

Analyzed

data

[100] 2012
Empirical

study

Eclipse and

Mylyn

Usage data from developers

Version history data

Continued on next page

7.2 Characterization of Refactoring Edits throughout Code Evolution 149

Table 7.2 – continued from previous page

Related

work
Year Type

Analyzed

project(s)

Analyzed

data

[78] 2012
Empirical

study

Microsoft

Windows 7

Interviews

Version history data

[132] 2013 Experiment

Apache

Commons

Collections

and

JHotDraw

Software versions

[79] 2014 Experiment
Microsoft

Windows 7
Version history data

[129] 2016
Empirical

study

GitHub

projects

Version history data

Survey

[110] 2016
Empirical

study

Apache Ant

and Xerces

Argo UML

Version history data

[147] 2019
Empirical

study

Android,

Apache, and

Eclipse

Version history data

[47] 2020
Empirical

study

GitHub

projects
Version history data

[112] 2020
Empirical

study

GitHub

projects
Version history data

[109] 2020
Empirical

study

Couchbase

and Eclipse
Code review data from Gerrit

[111] 2020
Empirical

study

Eclipse

projects

Survey data

Code review data from Gerrit

[26] 2021
Case

study

Xerox

projects

Survey data

Code review data from Xerox review

framework

Empirical characterization studies of refactorings have explored code change histo-

ries for distinct purposes. Murphy-Hill et al., when exploring refactoring practices in

the OSS scenario, found empirical evidence on frequent use of floss refactoring, rare

7.2 Characterization of Refactoring Edits throughout Code Evolution 150

self-affirmed refactorings in commits, and about 50% of high-level refactoring edits

[100]. Kim et al. explored refactoring in the industrial setting, and they identified ben-

efits (e.g., a reduction of post-release defects [78]) and challenges (e.g., measuring the

impact of refactoring requires multi-dimensional assessment [79]). As a whole, those

findings shed light on the relevance of examining code repositories to better understand

the refactoring practice.

In another research line, Soares et al. compared three distinct approaches (manual

analysis, commit message, and dynamic analysis) to check behavioral preservation,

besides evaluating two techniques to identify refactoring edits between two software

versions [132]. Their findings identify the challenges related to assurance of behavior

preservation and the limitations of automatic refactoring detection. To deal with these

constraints in our studies, we propose a few countermeasures (Limitations, Chapters

3–6).

Motivations behind refactoring edits have been empirically explored in both OSS

and industrial settings. In this perspective, Kim et al. identified readability

[79], Vassallo et al. uncovered understandability and maintainability [147], AlO-

mar et al. found readability and understandibility [26], whereas Silva et al. and

Palomba et al. discovered changes in the requirements (e.g., bug fixes requests) [129;

110] as main reasons to refactor code. These studies are relevant because they drive

future research and advance in developing support tools. In this sense, Silva et al. sug-

gest that refactoring recommendation systems should refocus from code-smell-oriented

to maintenance-task-oriented solutions [129]. Brito et al. mined refactorings is PR

commits and figured that most of the edits are of different types and performed in

up to three commits [47]. These studies focus on the commit level and represent a

reference for our studies regarding refactorings at the PR level. Also, they reinforce

the relevance of the analysis of changes applied to the code as a means to get details

on the practices of refactoring.

Distinct from the previous works (that focus in the commit level), Pantiuchina et

al. observed that code readability, change- and fault-proneness, and experience of de-

velopers are factors influencing refactorings, when exploring refactoring at the PR level

[112]. It is worth clarifying that Pantiuchina et al. analyzed discussion and commits of

7.3 Concluding Remarks 151

merged PRs, containing at least one refactoring in any one of their commits, without

pre-processing squashed and merged PRs (to the best of our knowledge). They found

that most of the refactorings are triggered from either the original intents of PRs or

discussion with other developers. Findings from Pantiuchina et al. are motivating,

since they indicate the influence that code review has on refactoring edits at the PR

level. Our studies differ from such previous work because we specifically provide a char-

acterization of refactoring edits in refactoring-inducing PRs (Chapter 6). Particularly,

we propose an exploration of refactorings performed as part of changes at subsequent

commits from merged PRs, as a complementary study to the investigation regarding

code reviewing-related aspects and refactoring-inducement (Chapters 4 and 5).

Recently, Paixão et al. investigated intentions behind refactorings performed during

code reviewing, by analyzing Gerrit reviews, and found that motivations for refactor-

ings may emerge from code reviews and, in turn, influence the composition of edits

and number of reviews [109]. Their findings suggest aspects of refactoring and code

review to be explored at the GitHub PR level (e.g., typical types of refactoring edits).

In specif, Paixão et al. answered their research questions based on the evolution of

refactorings at code reviewing time in light of distinct types of developers’ intents.

In addition, Panichella and Zaugg proposed a taxonomy for types of review changes,

including refactoring as a structural change [111]. This thesis, aiming to characterize

refactoring-inducing PRs, provides a study of refactorings-related aspects according to

the refactoring-inducement context, independently of developers’ intents.

7.3 Concluding Remarks

Figure 7.1 shows an overview of related works closest to this thesis. In particular, we

emphasize that our main objective is to fill up the knowledge gap on PRs aligned to our

refactoring-inducing definition instead of investigating motivations behind refactoring

edits in time of code review. For this purpose, we firstly investigated the differences

between refactoring-inducing and non-refactoring-inducing PRs (Chapter 4). There-

fore, we speculate that our findings complement the related studies in the sense of a

better understanding of MCR practice concerning code evolution.

7.3 Concluding Remarks 152

Figure 7.1: An overview of this thesis concerning other works

Our empirical studies consider 1,639 Apache’s merged PRs, comprising 4,000 sub-

sequent commits, 2,104 refactoring edits identified within 449 PRs, considering up to

40 distinct types of refactoring detectable by a state-of-the-art tool.

In the next chapter, we provide a few conclusions and actionable directions for

future research.

Chapter 8

Conclusions

This thesis tries to cope with an existing knowledge gap in the characterization of

refactoring-inducing PRs. For that, we mined refactorings and code review data

from GitHub and designed three complementary empirical studies. First, we con-

centrated on discovering similarities/dissimilarities between refactoring-inducing and

non-refactoring-inducing PRs in a mixed-methods study. We found significant differ-

ences concerning code churn, number of file changes, number of subsequent commits,

number of review comments, length of discussion, and time to merge in the quantitative

study supported by ARL. This unsupervised machine learning technique was crucial

to formulate hypotheses on similarities/dissimilarities. By following such an approach

based on similarities/dissimilarities, we could identify the initial group of change- and

code reviewing-related properties towards a characterization of refactoring-inducing

PRs. We identified a relevant number of refactoring-inducing PRs (133/228, 58.3%) in

which code review induced one refactoring edit, at least, in the qualitative study.

Based on the found results, we conceived a study to qualitatively investigate review

comments in both refactoring-inducing and non-refactoring-inducing PRs in order to

understand how review comments might induce refactoring edits at code review. We

observed differences between refactoring-inducing and non-refactoring-inducing PRs

when analyzing review comments. In particular, we found that beyond the content and

structure of review comments following specific patterns (including direct suggestions

of refactorings), the experience of reviewers and authors is a factor motivating for

refactoring-inducing PRs. Then, we carried out a mixed-methods analysis of refactoring

153

154

edits in refactoring-inducing PRs to characterize refactoring practices. From that, we

found typical code improvements addressed at the PR level, confirming findings from

previous works, while we claim that practitioners might miss opportunities to promote

more complex changes (e.g., high-level refactorings).

In contrast to non-refactoring-inducing PRs, refactoring-inducing PRs incorporate

a higher workload in size (code churn, file changes, and subsequent commits) and code

review (review comments). Their review comments address more complex issues, fol-

lowing a few patterns, which we compiled through guidelines for practitioners towards

a more effective code review. The refactorings comprise mostly low-level edits, indi-

cating that practitioners need support from researchers and tool builders in order to

leverage opportunities to manage more complex edits (e.g., architectural changes) at

the PR level.

It is worth emphasizing how the findings from our three empirical studies conceived

a more comprehensive characterization of refactoring-inducing PRs, thus providing

implications for researchers, practitioners, and tool builders. In our first study, we

recommended that future experiment designs on MCR with PRs make a distinction

between refactoring-inducing and non-refactoring PRs (Chapter 4, Findings 2-6 and 8).

By exploring the review comments in our second study, we advanced the knowledge of

the differences between refactoring-inducing and non-refactoring-inducing PRs and also

among subgroups of refactoring-inducing PRs: with refactorings led by the authors,

with refactorings induced by code review, and with refactorings both led by the author

and induced by code review (Chapter 5, Findings 3–6). Those findings reinforce our

initial recommendations for researchers because they emphasize differences among PRs

that might affect answers to research questions.

In our first study, we suggested project managers to invite more reviewers when a

PR becomes refactoring-inducing in order to share the expected workload in review-

ing and the knowledge of changes caused by refactoring edits to more team members

(Chapter 4, Finding 7). In our second study, we realized the importance of considering

reviewers more experienced than authors to reduce the missing opportunities for code

improvements due to reviewer limitations (Chapter 5, Findings 2 and 6). Moreover,

findings from our third study reinforce such a claim because we identified a high pro-

155

portion of low-level refactorings in contrast to high-level ones in refactoring-inducing

PRs (Chapter 6, Findings 1 and 3). In light of such a perception, we propose that

future research specifies requirements for reviewer recommendations intending a more

effective code reviewing.

Based on findings from our second study (Chapter 5, Findings 6–8), we proposed

a few guidelines for composing valuable review comments towards code refactoring.

In our third study, one of our findings reinforces our initial recommendations since it

emphasizes the importance of code review inducing refactoring edits to reduce time to

merge a PR (Chapter 6, Finding 2).

In summary, to the best of our knowledge, this is the first research work exploring

aspects concerning refactorings and code review in light of refactoring-inducing PRs. As

we conjectured, there are differences between refactoring-inducing and non-refactoring-

inducing PRs. Although we can not claim the completeness of our methodology to deal

with such a subject, we believe that our findings indicate actionable implications for

researchers, practitioners, and tool builders towards a better understanding of code

review practice as well as the implementation of novel resources to assist pull-based

development. Our main contributions are:

• We investigated PRs merged by merge pull request and squash and merge options.

We avoid either PRs merged by rebase and merge or merged PRs that suffered

rebasing, intending to reduce threats to validity. To deal with squashed commits,

we implemented a script that recovers them (git squash converts all commits in

a PR into a single commit).

• We performed a quantitative and qualitative analysis of both code review and

refactorings aspects in three empirical studies that, together, provide the first

results towards a theory on refactoring-inducing PRs.

• We provided guidelines for articulating more effective review comments intending

code improvements by refactoring. In this context, we observed that refactoring-

inducing PRs, in which code review induced refactorings, present more effective

code reviews than those which authors led the edits in terms of time to merge.

156

• We made available a complete reproduction kit including the mined datasets,

implemented scripts, and instructions to enable replications and future research

[22].

As future research, we propose a few directions:

• Investigating code characteristics and types of refactoring in refactoring-inducing

PRs in order to get an in-depth understanding of how refactorings directly af-

fect code changes. For instance, checking if file changes are a consequence of

refactoring edits and specific types of refactoring;

• Exploring the association rules from our comparative study between refactoring-

inducing and non-refactoring-inducing PRs to determine meaningful cause/effect

relationships among features, also examining the types of refactoring, thus en-

riching our conclusions.

• Designing surveys with developers to enhance our conclusions, in specific, to

confirm/refute our guidelines for more effective review comments. Also, assessing

the guidelines for valuable review comments towards code refactoring by running

a controlled experiment in which we instruct a group of reviewers and observe

both the quality of review comments and code changes during reviewing;

• Considering our research design to investigate projects implemented in other

programming languages rather than Java, for instance, using RefDiff to mine

refactorings [128];

• Confirming/refuting our findings, by replication, in other projects in both OSS

and industrial scenarios, so providing foundations for a theory on refactoring-

inducing PRs; and

• Since refactoring can introduce subtle bugs, investigating the bug-proneness in

refactoring-inducing and non-refactoring-inducing PRs. In this context, the com-

plexity of bugs concerning refactorings might be explored, aiming to advance the

knowledge regarding code review practices in pull-based development.

References

[1] Eclipse code review on Gerrit. https://git.eclipse.org/r/. Accessed on:

June 2020.

[2] Gerrit code review system. https://www.gerritcodereview.com. Accessed on:

June 2020.

[3] Git version control system. https://git-scm.com/. Accessed on: June 2020.

[4] GitHub developer guide GraphQL API v4. https://developer.github.com/

v4/. Accessed on: June 2020.

[5] GitHub developer guide REST API v3. https://developer.github.com/v3/.

Accessed on: June 2020.

[6] GitHub platform. https://github.com. Accessed on: June 2020.

[7] GitHub pull requests. https://help.github.com/en/github/

collaborating-with-issues-and-pull-requests. Accessed on: June

2020.

[8] GitLab developer guide GraphQL API. https://docs.gitlab.com/ee/api/

graphql/. Accessed on: November 2021.

[9] GitLab platform. https://gitlab.com. Accessed on: November 2021.

[10] Phabricator code review system. https://www.phacility.com/phabricator/.

Accessed on: June 2020.

[11] RefactoringMiner – a refactoring detection tool. https://github.com/

tsantalis/RefactoringMiner. Accessed on: September 2019.

157

REFERENCES 158

[12] Review Board code review system. https://www.reviewboard.org/. Accessed

on: June 2020.

[13] Synopsys repositories comparison – report. https://www.openhub.net/

repositories/compare. Accessed on: June 2020.

[14] Manifesto for Agile software development. https://agilemanifesto.org/,

February 2001. Accessed on: August 2020.

[15] An experimental investigation on the innate relationship between quality and

refactoring. Journal of Systems and Software, 107(C):1–14, September 2015.

[16] The Apache® Software Foundation expands infrastructure with

GitHub integration. https://blogs.apache.org/foundation/entry/

the-apache-software-foundation-expands, April 2019. Accessed on:

June 2020.

[17] Briefing: The Apache way. https://www.apache.org/theapacheway/, 2019.

Accessed on: June 2020.

[18] Preliminary investigations on refactorings and modern code review. https://

git.io/JTLum, July 2019.

[19] The state of the Octoverse – GitHub 2019 report. https://octoverse.github.

com/, September 2019. Accessed on: July 2020.

[20] The Apache® Software Foundation projects statistics. https://projects.

apache.org/statistics.html, November 2020. Accessed on: December 2020.

[21] Stack Overflow annual developer survey. https://insights.stackoverflow.

com/survey/2020#most-popular-technologies, 2020. Accessed on: December

2020.

[22] Characterizing refactoring-inducing pull requests – Reproduction kit. https://

github.com/flaviacoelho/thesis-reproduction-kit, November 2021.

[23] Community-led development “The Apache Way”. https://apache.org/

foundation/how-it-works.html#roles, 2021. Accessed on: June 2021.

REFERENCES 159

[24] Type migration. https://www.jetbrains.com/help/idea/type-migration.

html, March 2021. Accessed on: August 2020.

[25] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules

between sets of items in large databases. ACM SIGMOD Record, 22(2):207–216,

June 1993.

[26] Eman A. AlOmar, Hussein AlRubaye, Mohamed W. Mkaouer, Ali Ouni, and

Marouane Kessentini. Refactoring practices in the context of modern code review:

An industrial case study at Xerox. In Proceedings of the IEEE/ACM 43rd Inter-

national Conference on Software Engineering: Software Engineering in Practice,

ICSE-SEIP ’21, pages 348–357, Virtual, May 2021. ACM.

[27] Eman A. AlOmar, Mohamed W. Mkaouer, and Ali Ouni. Can refactoring be self-

affirmed? An exploratory study on how developers document their refactoring

activities in commit messages. In Proceedings of the 3rd International Workshop

on Refactoring, IWoR ’19, pages 51–58, Montreal, Canada, May 2019. IEEE

Computer Society Press.

[28] Everton L. G. Alves, Myoungkyu Song, and Miryung Kim. RefDistiller: A

refactoring-aware code review tool for inspecting manual refactoring edits. In Pro-

ceedings of the 22nd ACM SIGSOFT International Symposium on Foundations

of Software Engineering, FSE ’14, pages 751–754, Hong Kong, China, November

2014. ACM.

[29] Everton L. G. Alves, Myoungkyu Song, Tiago Massoni, Patricia D. L. Machado,

and Miryung Kim. Refactoring inspection support for manual refactoring edits.

IEEE Transactions on Software Engineering, 44(4):365–383, April 2018.

[30] Mauricio Aniche, Erick Maziero, Rafael Durelli, and Vinicius Durelli. The effec-

tiveness of supervised machine learning algorithms in predicting software refac-

toring. IEEE Transactions on Software Engineering, pages 1–1, September 2020.

Early access article.

REFERENCES 160

[31] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. OP-

TICS: Ordering points to identify the clustering structure. In Proceedings of the

1999 ACM SIGMOD International Conference on Management of Data, SIG-

MOD ’99, pages 49–60, Philadelphia, USA, May 1999. ACM.

[32] Howard Anton and Chris Rorres. Elementary Linear Algebra: Applications Ver-

sion. Wiley publishing, eleventh edition, 2014.

[33] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges

of modern code review. In Proceedings of the 35th International Conference on

Software Engineering, ICSE ’13, pages 712–721, San Francisco, USA, May 2013.

IEEE Computer Society Press.

[34] Vipin Balachandran. Reducing human effort and improving quality in peer code

reviews using automatic static analysis and reviewer recommendation. In Pro-

ceedings of the 35th International Conference on Software Engineering, ICSE ’13,

pages 931–940, San Francisco, USA, May 2013. IEEE Computer Society Press.

[35] Mike Barnett, Christian Bird, João Brunet, and Shuvendu K. Lahiri. Helping de-

velopers help themselves: Automatic decomposition of code review changesets. In

Proceedings of 37th International Conference on Software Engineering - Volume

1, ICSE ’15, pages 134–144, Florence, Italy, May 2015. IEEE Computer Society

Press.

[36] Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia, Massimiliano Di

Penta, Rocco Oliveto, and Orazio Strollo. When does a refactoring induce bugs?

an empirical study. In Proceedings of the 12th International Working Conference

on Source Code Analysis and Manipulation, SCAM ’12, pages 104–113, Trento,

Italy, September 2012. IEEE Computer Society Press.

[37] Gabriele Bavota and Barbara Russo. Four eyes are better than two: On the

impact of code reviews on software quality. In Proceedings of the 31st IEEE

International Conference on Software Maintenance and Evolution, ICSME ’15,

pages 81–90, Bremen, Germany, September 2015. IEEE Computer Society Press.

REFERENCES 161

[38] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W. Godfrey. In-

vestigating technical and non-technical factors influencing modern code review.

Empirical Software Engineering, 21(3):932–959, June 2016.

[39] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley

Longman Publishing, USA, 1999.

[40] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. Modern

code reviews in open-source projects: Which problems do they fix? In Proceedings

of the 11th Working Conference on Mining Software Repositories, MSR ’14, pages

202–211, Hyderabad, India, May 2014. ACM.

[41] Fernando Berzal, Ignacio Blanco, Daniel Sánchez, and Maŕıa-Amparo Vila. Mea-

suring the accuracy and interest of association rules: A new framework. Intelli-

gent Data Analysis, 6(3):221–235, August 2002.

[42] Ana Carla Bibiano, Eduardo Fernandes, Daniel Oliveira, Alessandro Garcia,

Marcos Kalinowski, Baldoino Fonseca, Roberto Oliveira, Anderson Oliveira, and

Diego Cedrim. A quantitative study on characteristics and effect of batch refac-

toring on code smells. In Proceedings of the 13th ACM/IEEE International Sym-

posium on Empirical Software Engineering and Measurement, ESEM ’19, pages

1–11, Porto de Galinhas, Brazil, September 2019. IEEE Computer Society Press.

[43] Giuseppe Bonaccorso. Machine Learning Algorithms. Packt Publishing, first edi-

tion, 2017.

[44] Amiangshu Bosu, Jeffrey C. Carver, Christian Bird, Jonathan Orbeck, and

Christopher Chockley. Process aspects and social dynamics of contemporary code

review: Insights from open source development and industrial practice at Mi-

crosoft. IEEE Transaction on Software Engineering, 43(1):56–75, January 2017.

[45] Amiangshu Bosu, Michaela Greiler, and Christian Bird. Characteristics of useful

code reviews: An empirical study at Microsoft. In Proceedings of the 12th Working

Conference on Mining Software Repositories, MSR ’15, pages 146–156, Florence,

Italy, May 2015. IEEE Computer Society Press.

REFERENCES 162

[46] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dynamic

itemset counting and implication rules for market basket data. In Proceedings

of the 1997 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’97, pages 255–264, Tucson, USA, May 1997. ACM.

[47] Aline Brito, Andre Hora, and Marco T. Valente. Refactoring graphs: Assessing

refactoring over time. In Proceedings of the 27th International Conference on

Software Analysis, Evolution and Reengineering, SANER ’20, pages 367–377,

Ontario, Canada, February 2020. IEEE Computer Society Press.

[48] Neil Burdess. Starting statistics: a short, clear guide. Sage Publications, 2010.

[49] M. Emre Celebi and Kemal Aydin. Unsupervised Learning Algorithms. Springer

Publishing Company, first edition, 2016.

[50] Scott Chacon and Ben Straub. Pro Git. Apress, second edition, 2014.

[51] Oscar Chaparro, Gabriele Bavota, Andrian Marcus, and Massimiliano Di Penta.

On the impact of refactoring operations on code quality metrics. In Proceedings of

the 30th IEEE International Conference on Software Maintenance and Evolution,

ICSME ’14, pages 456–460, Victoria, Canada, October 2014. IEEE Computer

Society Press.

[52] Flávia Coelho, Tiago Massoni, and Everton L. G. Alves. Refactoring-aware code

review: A systematic mapping study. In Proceedings of the 3rd International

Workshop on Refactoring, IWoR ’19, pages 63–66, Montreal, Canada, May 2019.

IEEE Computer Society Press.

[53] Flávia Coelho, Nikolaos Tsantalis, Tiago Massoni, and Everton L. G. Alves. An

empirical study on refactoring-inducing pull requests. In Proceedings of the 15th

ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement, ESEM ’21, pages 1–12, Bari, Italy, October 2021. ACM.

[54] Frans Coenen, Graham Goulbourne, and Paul Leng. Tree structures for mining

association rules. Data Mining and Knowledge Discovery, 8(1):25–51, January

2004.

REFERENCES 163

[55] J. W. Creswell. Qualitative Inquiry and Research Design: Choosing among Five

Traditions. Sage Publications, third edition, 2012.

[56] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated testing

of refactoring engines. In Proceedings of the 6th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT Symposium on The

Foundations of Software Engineering, ESEC/FSE ’07, pages 185–194, Dubrovnik,

Croatia, September 2007. ACM.

[57] Massimiliano Di Penta, Gabriele Bavota, and Fiorella Zampetti. On the rela-

tionship between refactoring actions and bugs: A differentiated replication. In

Proceedings of the 28th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering, ES-

EC/FSE ’20, pages 556–567, Virtual, November 2020. ACM.

[58] Bradley Efron and Robert J. Tibshirani. An introduction to the bootstrap. Mono-

graphs on Statistics and Applied Probability. Chapman and Hall, 1993.

[59] Michael E. Fagan. Design and code inspections to reduce errors in program de-

velopment. IBM Systems Journal, 15(3):182–211, 1976.

[60] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-

Wesley Longman Publishing, 1999.

[61] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-

Wesley Professional, second edition, 2018.

[62] Johannes Fürnkranz and Tomáš Kliegr. A brief overview of rule learning. In

Proceedings of the 9th International Symposium on Rules and Rule Markup Lan-

guages for the Semantic Web, RuleML ’15, pages 54–69, Berlin, Germany, August

2015. Springer International Publishing.

[63] Tate Galbraith. Which code merging method should I use in GitHub? https:

//t.ly/BDL9, May 2020. Accessed on June 2020.

REFERENCES 164

[64] Xi Ge, Saurabh Sarkar, and Emerson Murphy-Hill. Towards refactoring-aware

code review. In 7th International Workshop on Cooperative and Human Aspects

of Software Engineering, CHASE ’14, pages 99–102, Hyderabad, India, June

2014. ACM.

[65] Xi Ge, Saurabh Sarkar, Jim Witschey, and Emerson Murphy-Hill. Refactoring-

aware code review. In Proceedings of the 2017 IEEE Symposium on Visual Lan-

guages and Human-Centric Computing, VL/HCC ’17, pages 71–79, Raleigh,

USA, 2017. IEEE Computer Society Press.

[66] Liqiang Geng and Howard J. Hamilton. Interestingness measures for data mining:

A survey. ACM Computing Surveys, 38(3):9–es, September 2006.

[67] Bart Goethals. Frequent set mining. In Oded Maimon and Lior Rokach, editors,

Data Mining and Knowledge Discovery Handbook, pages 321–338. Springer US,

Boston, USA, 2010.

[68] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An exploratory study

of the pull-based software development model. In Proceedings of the 36th Interna-

tional Conference on Software Engineering, ICSE ’14, pages 345–355, Hyderabad,

India, May 2014. ACM.

[69] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. Work practices

and challenges in pull-based development: The contributor’s perspective. In Pro-

ceedings of the 38th International Conference on Software Engineering, ICSE ’16,

pages 285–296, Austin, USA, May 2016. ACM.

[70] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate

generation. SIGMOD Record, 29(2):1–12, May 2000.

[71] Péter Hegedüs, István Kádár, Rudolf Ferenc, and Tibor Gyimóthy. Empirical

evaluation of software maintainability based on a manually validated refactoring

dataset. Information and Software Technology, 95:313–327, March 2018.

REFERENCES 165

[72] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation. Addison-Wesley Professional,

first edition, 2010.

[73] Daniel Izquierdo-Cortazar, Lars Kurth, Jesus M. Gonzalez-Barahona, Santiago

Dueñas, and Nelson Sekitoleko. Characterization of the Xen project code review

process: An experience report. In Proceedings of the 13th International Confer-

ence on Mining Software Repositories, MSR ’16, pages 386–390, Austin, USA,

May 2016. ACM.

[74] Tao Ji, Liqian Chen, Xin Yi, and Xiaoguang Mao. Understanding merge conflicts

and resolutions in Git rebases. In Proceedings of the 31st International Symposium

on Software Reliability Engineering, ISSRE ’20, pages 70–80, Coimbra, Portugal,

October 2020. IEEE Computer Society Press.

[75] Yujuan Jiang, Bram Adams, and Daniel M. German. Will my patch make it?

And how fast?: Case study on the Linux kernel. In Proceedings of the 10th Work-

ing Conference on Mining Software Repositories, MSR ’13, pages 101–110, San

Francisco, USA, May 2013. IEEE Computer Society Press.

[76] Philip M. Johnson. Reengineering inspection. Communications of ACM,

41(2):49–52, February 1998.

[77] Yoshio Kataoka, Takeo Imai, Hiroki Andou, and Tetsuji Fukaya. A quantitative

evaluation of maintainability enhancement by refactoring. In Proceedings of the

International Conference on Software Maintenance, ICSM ’02, pages 576–585,

Montreal, Canada, October 2002. IEEE Computer Society Press.

[78] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. A field study

of refactoring challenges and benefits. In Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software Engineering, FSE ’12,

Cary, EUA, November 2012. ACM.

REFERENCES 166

[79] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. An empirical

study of refactoring challenges and benefits at Microsoft. IEEE Transactions on

Software Engineering, 40(7):633–649, July 2014.

[80] Oleksii Kononenko, Olga Baysal, and Michael W. Godfrey. Code review qual-

ity: How developers see it. In Proceedings of the 38th International Conference

on Software Engineering, ICSE ’16, pages 1028–1038, Austin, EUA, May 2016.

ACM.

[81] Oleksii Kononenko, Olga Baysal, Latifa Guerrouj, Yaxin Cao, and Michael W.

Godfrey. Investigating code review quality: Do people and participation matter?

In Proceedings of the 2015 IEEE International Conference on Software Mainte-

nance and Evolution, ICSME ’15, pages 111–120, Bremen, Germany, September

2015. IEEE Computer Society Press.

[82] Oleksii Kononenko, Tresa Rose, Olga Baysal, Michael Godfrey, Dennis Theisen,

and Bart de Water. Studying pull request merges: A case study of Shopify’s

active merchant. In Proceedings of the 40th International Conference on Software

Engineering: Software Engineering in Practice, ICSE-SEIP ’18, pages 124–133,

Gothenburg, Sweden, May 2018. ACM.

[83] Vladimir Kovalenko, Nava Tintarev, Evgeny Pasynkov, Christian Bird, and Al-

berto Bacchelli. Does reviewer recommendation help developers? IEEE Trans-

actions on Software Engineering, 46(7):710–731, July 2020.

[84] Robert Layton. Learning Data Mining with Python. Packt Publishing, first edi-

tion, 2015.

[85] Carlene Lebeuf, Margaret-Anne Storey, and Alexey Zagalsky. Software bots.

IEEE Software, 35(1):18–23, January/February 2018.

[86] Gwendolyn K. Lee and Robert E. Cole. From a firm-based to a community-

based model of knowledge creation: The case of the Linux kernel development.

Organization Science, 14(6):633–649, December 2003.

REFERENCES 167

[87] Zhi-Xing Li, Yue Yu, Gang Yin, Tao Wang, and Huai-Min Wang. What are they

talking about? Analyzing code reviews in pull-based development model. Journal

of Computer Science and Technology, 32(6):1060–1075, November 2017.

[88] Hiu Liu, Zhiyi Ma, Weizhong Shao, and Zhendong Niu. Schedule of bad smell de-

tection and resolution: A new way to save effort. IEEE Transactions on Software

Engineering, 38(1):220–235, January/February 2012.

[89] Mehran Mahmoudi, Sarah Nadi, and Nikolaos Tsantalis. Are refactorings to

blame? An empirical study of refactorings in merge conflicts. In Proceedings

of the IEEE 26th International Conference on Software Analysis, Evolution and

Reengineering, SANER ’19, pages 151–162, Hangzhou, China, February 2019.

IEEE Computer Society Press.

[90] Hassan Mansour and Nikolaos Tsantalis. Refactoring-aware commit review

chrome extension. https://t.ly/J3Wr, 2020. Accessed on: November, 2020.

[91] Martin N. Marshall. Sampling for Qualitative Research. Family Practice,

13(6):522–526, December 1996.

[92] Joseph A. Maxwell. Designing a qualitative study. In Leonard Bickman and De-

bra J. Rog, editors, The SAGE Handbook of Applied Social Research Methods,

pages 214–253. Sage Publications, 1997.

[93] Kenneth O. McGraw and Seok P. Wong. A common language effect size statistic.

Psychological Bulletin, 111(2):361–365, March 1992.

[94] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. The

impact of code review coverage and code review participation on software quality:

A case study of the Qt, VTK, and ITK projects. In Proceedings of the 11th

Working Conference on Mining Software Repositories, MSR ’14, pages 192–201,

Hyderabad, India, May 2014. ACM.

[95] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. An

empirical study of the impact of modern code review practices on software quality.

Empirical Software Engineering, 21(5):2146–2189, October 2016.

REFERENCES 168

[96] M. B. Miles and A. M. Huberman. Qualitative Data Analysis: An Expanded

Sourcebook. Sage Publications, second edition, 1994.

[97] Ehsan Mirsaeedi and Peter C. Rigby. Mitigating turnover with code review rec-

ommendation: Balancing expertise, workload, and knowledge distribution. In

ACM/IEEE 42nd International Conference on Software Engineering, ICSE ’20,

pages 1183–1195, Seoul, South Korea, June 2020. ACM.

[98] Audris Mockus and Lawrence G. Votta. Identifying reasons for software changes

using historic databases. In Proceedings of the 2000 International Conference on

Software Maintenance, ICSM ’00, pages 120–130, Washington, USA, October

2000. IEEE Computer Society Press.

[99] Rodrigo Morales, Shane McIntosh, and Foutse Khomh. Do code review practices

impact design quality? A case study of the Qt, VTK, and ITK projects. In

Proceedings of the 22nd IEEE International Conference on Software Analysis,

Evolution, and Reengineering, SANER ’15, pages 171–180, Montreal, Canada,

March 2015. IEEE Computer Society Press.

[100] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. How we refactor,

and how we know it. IEEE Transactions on Software Engineering, 38(1):5–18,

January 2012.

[101] Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. Johnson, and Danny

Dig. A comparative study of manual and automated refactorings. In Proceedings

of the 27th European Conference on Object-Oriented Programming, ECOOP ’13,

pages 552–576, Montpellier, France, July 2013. Springer-Verlag.

[102] U.S. Department of Commerce, National Institute of Standards, and Technology.

Secure Hash Standard - SHS: Federal Information Processing Standards Publica-

tion 180-4. CreateSpace Independent Publishing Platform, North Charleston,

USA, 2012.

[103] Jonhnanthan Oliveira, Rohit Gheyi, Felipe Pontes, Melina Mongiovi, Márcio

Ribeiro, and Alessandro Garcia. Revisiting refactoring mechanics from tool devel-

REFERENCES 169

opers’ perspective. In Gustavo Carvalho and Volker Stolz, editors, Formal Meth-

ods: Foundations and Applications, pages 25–42, Ouro Preto, Brazil, November

2020. Springer International Publishing.

[104] William F. Opdyke. Refactoring: A Program Restructuring Aid in Designing

Object-Oriented Application Frameworks. PhD thesis, University of Illinois at

Urbana-Champaign, 1992.

[105] William F. Opdyke and Ralph E. Johnson. Refactoring: An aid in designing

application frameworks and evolving object-oriented systems. In Proceedings of

the Symposium on Object Oriented Programming Emphasizing Practical Applica-

tions, New York, USA, September 1990.

[106] Ali Ouni, Marouane Kessentini, Houari Sahraoui, Katsuro Inoue, and Kalyanmoy

Deb. Multi-criteria code refactoring using search-based software engineering: An

industrial case study. ACM Transactions on Software Engineering Methodology,

25(3):1–53, June 2016.

[107] Matheus Paixão, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul, and

Mark Harman. The impact of code review on architectural changes. IEEE Trans-

actions on Software Engineering, 47(5):1041–1059, May 2021.

[108] Matheus Paixão and Paulo H. Maia. Rebasing in code review considered harm-

ful: A large-scale empirical investigation. In Proceedings of the 19th Interna-

tional Working Conference on Source Code Analysis and Manipulation, SCAM

’19, pages 45–55, Cleveland, USA, September 2019.

[109] Matheus Paixão, Anderson Uchôa, Ana Carla Bibiano, Daniel Oliveira, Alessan-

dro Garcia, Jens Krinke, and Emilio Arvonio. Behind the intents: An in-depth

empirical study on software refactoring in modern code review. In Proceedings

of the 17th International Conference on Mining Software Repositories, MSR ’20,

pages 125–136, Virtual, June 2020. ACM.

[110] Fabio Palomba, Andy Zaidman, Rocco Oliveto, and Andrea De Lucia. An ex-

ploratory study on the relationship between changes and refactoring. In Pro-

REFERENCES 170

ceedings of the 25th International Conference on Program Comprehension, ICPC

’17, pages 176–185, Buenos Aires, Argentina, May 2017. IEEE Computer Society

Press.

[111] Sebastiano Panichella and Nik Zaugg. An empirical investigation of relevant

changes and automation needs in modern code review. Empirical Software Engi-

neering, 25:4833–4872, January 2020.

[112] Jevgenija Pantiuchina, Fiorella Zampetti, Simone Scalabrino, Valentina Pianta-

dosi, Rocco Oliveto, Gabriele Bavota, and Massimiliano Di Penta. Why develop-

ers refactor source code: A mining-based study. ACM Transactions on Software

Engineering Methodology, 29(4):1–30, September 2020.

[113] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto

Bacchelli. Information needs in contemporary code review. Proceedings of the

ACM on Human-Computer Interaction, 2(CSCW):1–27, November 2018.

[114] Michael Q. Patton. Qualitative Research Evaluation Methods: Integrating Theory

and Practice. Sage Publications, fourth edition, 2014.

[115] Kyle Prete, Napol Rachatasumrit, Nikita Sudan, and Miryung Kim. Template-

based reconstruction of complex refactorings. In Proceedings of the 2010 IEEE

International Conference on Software Maintenance, ICSM ’10, pages 1–10,

Timisoara, Romania, September 2010. IEEE Computer Society Press.

[116] Mohammad M. Rahman, Chanchal K. Roy, and Raula G. Kula. Predicting use-

fulness of code review comments using textual features and developer experience.

In Proceedings of the 14th International Conference on Mining Software Repos-

itories, MSR ’17, pages 215–226, Buenos Aires, Argentina, May 2017. IEEE

Computer Society Press.

[117] Achyudh Ram, Anand A. Sawant, Marco Castelluccio, and Alberto Bacchelli.

What makes a code change easier to review: An empirical investigation on code

change reviewability. In Proceedings of the 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software

REFERENCES 171

Engineering, ESEC/FSE ’18, pages 201–212, Lake Buena Vista, USA, November

2018. ACM.

[118] Sebastian Raschka. Mlxtend: Providing machine learning and data science util-

ities and extensions to Python’s scientific computing stack. Journal of Open

Source Software, 3(24):638, April 2018.

[119] Peter Rigby, Brendan Cleary, Frederic Painchaud, Margaret-Anne Storey, and

Daniel M. German. Contemporary peer review in action: Lessons from open

source development. IEEE Software, 29(6):56–61, November 2012.

[120] Peter C. Rigby and Christian Bird. Convergent contemporary software peer

review practices. In Proceedings of the 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE ’13, pages 202–212, Saint Petersburg, Russia,

August 2013. ACM.

[121] Peter C. Rigby, Daniel M. German, Laura Cowen, and Margaret-Anne Storey.

Peer review on open-source software projects: Parameters, statistical models,

and theory. ACM Transactions on Software Engineering Methodology, 23(4):1–

33, September 2014.

[122] Peter C. Rigby, Daniel M. German, and Margaret-Anne Storey. Open source

software peer review practices: A case study of the apache server. In Proceedings

of the 30th International Conference on Software Engineering, ICSE ’08, pages

541–550, Leipzig, Germany, May 2008. ACM.

[123] Peter C. Rigby and Margaret-Anne Storey. Understanding broadcast based peer

review on open source software projects. In Proceedings of the 33rd International

Conference on Software Engineering, ICSE ’11, pages 541–550, Honolulu, USA,

May 2011. ACM.

[124] Per Runeson and Martin Höst. Guidelines for conducting and reporting

case study research in Software Engineering. Empirical Software Engineering,

14(2):131–164, April 2009.

REFERENCES 172

[125] Per Runeson, Martin Höst, Austen Rainer, and Bjorn Regnell. Case Study Re-

search in Software Engineering: Guidelines and Examples. Wiley Publishing, first

edition, 2012.

[126] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto

Bacchelli. Modern code review: A case study at Google. In Proceedings of the

40th International Conference on Software Engineering: Software Engineering in

Practice, ICSE-SEIP ’18, pages 181–190, Gothenburg, Sweden, May 2018. ACM.

[127] Chris Sauer, David R. Jeffery, Lesley Land, and Philip Yetton. The effectiveness

of software development technical reviews: A behaviorally motivated program of

research. IEEE Transactions on Software Engineering, 26(1):1–14, January 2000.

[128] Danilo Silva, João P. da Silva, Gustavo Santos, Ricardo Terra, and Marco T.

Valente. Refdiff 2.0: A multi-language refactoring detection tool. IEEE Transac-

tions on Software Engineering, 47(12):2786–2802, December 2021.

[129] Danilo Silva, Nikolaos Tsantalis, and Marco T. Valente. Why we refactor? con-

fessions of GitHub contributors. In Proceedings of the 24th ACM SIGSOFT In-

ternational Symposium on Foundations of Software Engineering, FSE ’16, pages

858–870. ACM, November 2016.

[130] Danilo Silva and Marco T. Valente. Refdiff: Detecting refactorings in version

histories. In Proceedings of the 14th International Conference on Mining Software

Repositories, MSR ’17, pages 269–279, Buenos Aires, Argentina, May 2017. IEEE

Computer Society Press.

[131] Gustavo Soares, Rohit Gheyi, and Tiago Massoni. Automated behavioral testing

of refactoring engines. IEEE Transactions on Software Engineering, 39(2):147–

162, February 2013.

[132] Gustavo Soares, Rohit Gheyi, Emerson Murphy-Hill, and Brittany Johnson.

Comparing approaches to analyze refactoring activity on software repositories.

Journal of Systems and Software, 86(4):1006–1022, April 2013.

[133] Ian Sommerville. Software Engineering. Pearson, tenth edition, 2015.

REFERENCES 173

[134] Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules and Se-

quential Patterns. PhD thesis, University of Wisconsin–Madison, 1996.

[135] Volker Stolz, Larissa Braz, Anna M. Eilertsen, Fernando Maćıas, and Rohit

Gheyi. Modern refactoring. https://tinyurl.com/373ec2m4, 2017. Accessed

on: December, 2021.

[136] Margaret-Anne Storey and Alexey Zagalsky. Disrupting developer productivity

one bot at a time. In Proceedings of the 24th ACM SIGSOFT International Sym-

posium on Foundations of Software Engineering, SIGSOFT ’16, pages 928–931,

Seattle, USA, November 2016. ACM.

[137] E. Burton Swanson. The dimensions of maintenance. In Proceedings of the 2nd

International Conference on Software Engineering, ICSE ’76, pages 492–497, San

Francisco, USA, October 1976. IEEE Computer Society Press.

[138] Gábor Szőke, Gábor Antal, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimóthy.

Empirical study on refactoring large-scale industrial systems and its effects on

maintainability. Journal of Systems and Software, 129(C):107–126, July 2017.

[139] Gábor Szőke, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimóthy. A case study

of refactoring large-scale industrial systems to efficiently improve source code

quality. In Proceedings of the 14th International Conference on Computational

Science and its Applications, ICCSA ’14, pages 524–540, Guimarães, Portugal,

June 2014. Springer International Publishing.

[140] Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. Introduc-

tion to Data Mining. Pearson, second edition, 2018.

[141] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. How

do software engineers understand code changes? An exploratory study in indus-

try. In Proceedings of the ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering, FSE ’12, pages 1–11, Cary, USA, Novem-

ber 2012. ACM.

REFERENCES 174

[142] Cédric Teyton, Jean-Rémy Falleri, Marc Palyart, and Xavier Blanc. A study

of library migrations in Java. Journal of Software: Evolution and Process,

26(11):1030–1052, November 2014.

[143] Patanamon Thongtanunam, Shane Mcintosh, Ahmed E. Hassan, and Hajimu

Iida. Review participation in modern code review. Empirical Software Engineer-

ing, 22(2):768–817, April 2017.

[144] Garen Torikian, Brandon Black, Brooks Swinnerton, Hailey Somerville, David

Celis, and Kyle Daigle. The GitHub GraphQL API. https://github.blog/

2016-09-14-the-github-graphql-api/, 2016. Accessed on: November, 2021.

[145] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. RefactoringMiner 2.0. IEEE

Transactions on Software Engineering, pages 1–1, July 2020. Early access article.

[146] Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazinanian,

and Danny Dig. Accurate and efficient refactoring detection in commit history. In

Proceedings of the 40th International Conference on Software Engineering, ICSE

’18, pages 483–494, Gothenburg, Sweden, May 2018. ACM.

[147] Carmine Vassallo, Giovanni Grano, Fabio Palomba, Harald C. Gall, and Alberto

Bacchelli. A large-scale empirical exploration on refactoring activities in open

source software projects. Science of Computer Programming, 180:1–15, July 2019.

[148] Peter Weißgerber and Stephan Diehl. Are refactorings less error-prone than other

changes? In Proceedings of the 2006 International Workshop on Mining Software

Repositories, MSR ’06, pages 112–118, Shanghai, China, May 2006. ACM.

[149] Dongkuan Xu and Yingjie Tian. A comprehensive survey of clustering algorithms.

Annals of Data Science, 2:165–193, August 2015.

[150] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan

Vasilescu. Wait for it: Determinants of pull request evaluation latency on GitHub.

In Proceedings of the 12th Working Conference on Mining Software Repositories,

MSR ’15, pages 367–371, Florence, Italy, May 2015. IEEE Computer Society

Press.

REFERENCES 175

[151] Alice Zheng and Amanda Casari. Feature Engineering for Machine Learning:

Principles and Techniques for Data Scientists. O’Reilly Media, Inc., first edition,

2018.

[152] Hao Zhong, Ye Yang, and Jacky Keung. Assessing the representativeness of open

source projects in empirical software engineering studies. In Proceedings of the

19th Asia-Pacific Software Engineering Conference, APSEC ’12, pages 808–817,

Hong Kong, China, December 2012. IEEE Computer Society Press.

[153] Jiaxin Zhu, Minghui Zhou, and Audris Mockus. Effectiveness of code contribu-

tion: From patch-based to pull-request-based tools. In Proceedings of the 24th

ACM SIGSOFT International Symposium on Foundations of Software Engineer-

ing, FSE ’16, pages 871–882, Seattle, USA, November 2016. ACM.

Appendix A

Initial Investigations on Refactoring

and Modern Code Review

In an efort to explore how refactorings impact code review, we carried out the following

phases:

1. (Q2 2018 Ű Q3 2018) a replication of the empirical study, developed by Tsantalis

and colleagues [146], on refactoring detection,

2. (Q3 2018) a study about multiple refactorings in a single commit,

3. (Q4 2018) a systematic literature mapping about refactoring-aware code review;

presented as a position paper at the International Workshop on Software Refac-

toring 2019 [52]1,

4. (Q1 2019) a pre-test of a quasi-experiment concerning refactoring-aware code

review with members of the e-Pol, a Brazilian Federal Police's system, developed

at SPLab/UFCG to support the process and access to information coming from

investigations,

5. (Q2 2019) a brief Ťcase historyŤ about refactoring-aware code review on Gerrit

[2],

1The details and the reproduction kit of this systematic literature mapping study, conducted from

September 2018 to January 2019, are available in https://github.com/flaviacoelho/racr-sysmap

176

177

6. (Q3 2019) a brief ”case history” regarding refactoring-inducing code review in

open PRs on GitHub [6], and

7. (Q4 2019) a brief ”case history” relating to refactoring-inducing code review in

merged PRs on GitHub [6].

Table A.1 succinctly provides the rationale, result, and respective impact of each

phase fulfilled towards the thesis proposal. In order to obtain more details, consult

[18].

It should be noted that phases 1, 2, and 3 were essential for understanding the fun-

damentals of refactorings and code review, selecting an accurate refactoring detection

tool, and identifying research opportunities on refactoring-aware code review.

The results of phase 4 supported the decision to expand the research in terms of

the number of reviewers, software complexity, and research method (from a quasi-

experiment to a case study), aiming more relevant findings. For that, we selected the

Gerrit code review system, because it is an open-source web-based tool, which provides

repository management for the Git version control system [3], and it is utilized by large

scale projects, such as Eclipse [1].

Despite the motivating results from phase 5, at that point, it was noticeable the

growth of GitHub in terms of engaged organizations [19], such as the Apache Software

Foundation, which has completely migrated its projects to GitHub, in February 2019

[16].

As a result, we conducted phases 6 and 7 to understand the GitHub pull-based

development model and explore possibilities for the research design. Concurrently, a

regular literature review and technical meetings with the participation of the professor

Nikolaos Tsantalis (Concordia University, Canada) promoted a change in the Thesis

proposal topic towards refactoring-inducing PRs.

178

Phase Rationale Result Impact for the research

1

Find an accurate refactoring

detection tool for source code

written in the Java language

RefactoringMiner [11]

Knowledge on the

state-of-the-art in

refactoring detection

2

Check the RefactoringMiner

accuracy in detection of

multiple refactorings in a

single commit

Affirmative

Selection of the

RefactoringMiner for

the purpose of

refactoring detection

3
Search for refactoring-aware

solutions to support MCR
Systematic mapping

A few potential

research directions

4

Verify the feasibility of an

experiment about refactoring

-aware code review in a

midsize project

Infeasible

Selection of Gerrit

for an in-depth

exploration

5

Investigate a case study

feasibility from Gerrit

review data

Brief ”case history” Motivating results

6

Investigate a case study

feasibility from GitHub

open PRs

Brief ”case history”

Motivating results

towards a case study

on merged pull

requests

7

Investigate a case study

feasibility from GitHub

merged PRs

Brief ”case history”

Decision for

performing a case study

on data from GitHub

merged PRs

Table A.1: A summary of the preliminary investigation results

Appendix B

Descriptive Statistics of pull

requests data

In this appendix, we present the descriptive statistics and data distribution (histogram

and boxplot) of our sample of Apache’s PRs, by considering the code review dataset

(Chapter 3, Subsection 3.1.3). In the boxplots, a dashed line denotes the average value,

whereas a solid line indicates the median value.

Specifically, we describe number of subsequent commits, number of added lines,

number of deleted lines, number of file changes, number of reviewers, number of review

comments, length of discussion, time to merge, and number of refactorings.

Number of subsequent commits

Table B.1: Descriptive statistics – number of subsequent commits

Statistic Value

average 2.4

standard deviation 2.4

median 2

interquartile range 2

179

180

(a) Histogram (b) Boxplot

Figure B.1: Number of subsequent commits in the sample’s PRs

Number of Added Lines

Table B.2: Descriptive statistics – number of added lines

Statistic Value

average 125.5

standard deviation 1,453.7

median 14

interquartile range 47

(a) Histogram (b) Boxplot

Figure B.2: Number of added lines in the sample’s PRs

181

Number of Deleted Lines

Table B.3: Descriptive statistics – number of deleted lines

Statistic Value

average 52.9

standard deviation 278.8

median 9

interquartile range 29

(a) Histogram (b) Boxplot

Figure B.3: Number of deleted lines in the sample’s PRs

Number of File Changes

Table B.4: Descriptive statistics – number of file changes

Statistic Value

average 7.6

standard deviation 62.8

median 3

interquartile range 5

182

(a) Histogram (b) Boxplot

Figure B.4: Number of file changes in the sample’s PRs

Number of Reviewers

Table B.5: Descriptive statistics – number of reviewers

Statistic Value

average 2.1

standard deviation 0.8

median 2

interquartile range 0

(a) Histogram (b) Boxplot

Figure B.5: Number of reviewers in the sample’s PRs

183

Number of Review Comments

Table B.6: Descriptive statistics – number of review comments

Statistic Value

average 6.5

standard deviation 8.9

median 4

interquartile range 6

(a) Histogram (b) Boxplot

Figure B.6: Number of review comments in the sample’s PRs

Length of Discussion

Table B.7: Descriptive statistics – length of discussion

Statistic Value

average 11.1

standard deviation 11.4

median 8

interquartile range 8

184

(a) Histogram (b) Boxplot

Figure B.7: Length of discussion in the sample’s PRs

Time to Merge

Table B.8: Descriptive statistics – time to merge

Statistic Value

average 9.6

standard deviation 36.9

median 3

interquartile range 7

(a) Histogram (b) Boxplot

Figure B.8: Time to merge in the sample’s PRs

185

Number of Refactoring Edits

Table B.9: Descriptive statistics – number of refactoring edits

Statistic Value

average 1.3

standard deviation 4.4

median 0

interquartile range 1

(a) Histogram (b) Boxplot

Figure B.9: Number of refactoring edits in the sample’s PRs

Appendix C

Checking for Parametric Tests

Assumptions and Results of

Statistical Testing of Hypotheses

Following, we present the results from checking for data normality and homogeneity

of variance of refactoring-inducing and non-refactoring-inducing PRs, and statistical

testing of hypotheses, according to this structure:

1. Definition of null and alternative hypotheses.

2. Performing of statistical test. For that, we considered a statistical significance of

5%, and a substantive significance (effect size) for denoting the magnitude of the

differences between refactoring-inducing PRs and non-refactoring-inducing ones

at the population level. First, we checked the assumptions for parametric statis-

tical tests, (a) and (b). It is worth observing that the independence assumption is

already met, since two groups are mutually exclusive, that is, a sample’s PR is a

refactoring-inducing PR or a non-refactoring-inducing PR. In case of exploration

on the difference between refactoring-inducing PRs and non-refactoring-inducing

ones, we computed a 95% confidence interval by bootstrapping resample for the

difference, according to the output from (a) and (b), in mean or median (c).

Then, we conducted a proper statistical test and calculated the effect size (d).

(a) checking for data normality through Shapiro-Wilk test;

186

187

(b) checking for homogeneity of variances via Levene’s test;

(c) computation of confidence interval for the difference in mean or median,

based on the output from (a) and (b); and

(d) performing of either parametric independent t-test and Cohen’s d, or

non-parametric Mann Whitney U test and Common-Language Effect Size

(CLES) in line with the output from (a) and (b). CLES is the probability,

at the population level, that a randomly selected observation from a sample

will be higher/greater than a randomly selected observation from another

sample [93].

3. Deciding whether the null hypothesis is supported or refused.

To check descriptive statistics of the analyzed features from refactoring-inducing

and non-refactoring-inducing PRs, see Table 4.4.

H1 Refactoring-inducing pull requests are more likely to have more added

lines than non-refactoring-inducing pull requests

1. Null and alternative hypotheses:

H10
Refactoring-inducing and non-refactoring-inducing pull requests are equally

likely to have more added lines.

H1a
Refactoring-inducing pull requests are more likely to have more added lines

than non-refactoring-inducing pull requests.

2. Statistical tests. Figure C.1 displays the distribution of number of added lines

according to the presence of refactoring edits in the PRs. The computed 95% CI

[35.0, 52.5] of the difference in medians does not contain 0, thus there is a sta-

tistically significant difference in the number of added lines between refactoring-

inducing and non-refactoring-inducing PRs. Table C.1 presents the computed

statistics and p-value for each applied statistical test.

188

Figure C.1: Number of added lines by presence of refactorings

Table C.1: Statistical tests output – number of added lines by presence of refactorings

Statistical test Statistic p-value

Shapiro-Wilk
False: 0.05

True: 0.07

0.0

7.19 × e
−42

Levene’s 9.23 0.002

Mann Whitney 0.42 × e
+6 9.04 × e

−74

3. Decision. Based on Mann Whitney one-sided test, the result provides support for

reject the null hypothesis in favor to the alternative hypothesis (U = 0.42 × e
+6,

p < .05). Thus, there is evidence that refactoring-inducing PRs are significantly

more likely to have a higher number of added lines than non-refactoring-inducing

PRs. There is a 78.9% probability (CLES = 0.789) that a random observation

of the number of added lines from refactoring-inducing PRs will be higher than

one from non-refactoring-inducing PRs, at the population level.

H2 Refactoring-inducing pull requests are more likely to have more deleted

lines than the non-refactoring-inducing pull requests

1. Null and alternative hypotheses:

189

H20
Refactoring-inducing pull requests and non-refactoring-inducing pull re-

quests are equally likely to have more deleted lines.

H2a
Refactoring-inducing pull requests are more likely to have more deleted lines

than the non-refactoring-inducing pull requests.

2. Statistical tests. Figure C.2 presents the distribution of number of deleted lines

according to the presence of refactoring edits in the PRs. The computed 95% CI

[20.0, 31.0] of the difference in medians does not contain 0, thus there is a statis-

tically significant difference in the number of deleted lines between refactoring-

inducing and non-refactoring-inducing PRs. Table C.2 presents the computed

statistics and p-value for each applied statistical test.

Figure C.2: Number of deleted lines by presence of refactorings

Table C.2: Statistical tests output – number of deleted lines by presence of refactorings

Statistical test Statistic p-value

Shapiro-Wilk
False: 0.08

True: 0.24

0.0

4.32 × e
−39

Levene’s 12.49 0.0004

Mann Whitney 0.42 × e
+6 7.02 × e

−69

3. Decision. Based on Mann Whitney one-sided test, the result provides support to

reject the null hypothesis in favor to the alternative hypothesis (U = 0.42 × e
+6,

190

p < .05). Therefore, there is evidence that refactoring-inducing PRs are signifi-

cantly more likely to have a higher number of deleted lines than non-refactoring-

inducing PRs. There is a 77.9% probability (CLES = 0.779) that a random

observation of the number of deleted lines from refactoring-inducing PRs will be

higher than one from non-refactoring-inducing PRs, at the population level.

H3 Refactoring-inducing pull requests are more likely to have more file

changes than the non-refactoring-inducing pull requests

1. Null and alternative hypotheses:

H30
Refactoring-inducing and non-refactoring-inducing pull requests are equally

likely to have more file changes.

H3a
Refactoring-inducing pull requests are more likely to have more file changes

than the non-refactoring-inducing pull requests.

2. Statistical tests. Figure C.3 shows the distribution of number of file changes

according to the presence of refactoring edits in the PRs. The computed 95%

CI [3.0, 4.0] of the difference in medians does not contain 0, thus there is a sta-

tistically significant difference in the number of file changes between refactoring-

inducing and non-refactoring-inducing PRs. Table C.3 presents the computed

statistics and p-value for each applied statistical test.

Table C.3: Statistical tests output – number of file changes by presence of refactorings

Statistical test Statistic p-value

Shapiro-Wilk
False: 0.03

True: 0.08

0.0

9.67 × e
−42

Levene’s 5.17 0.02

Mann Whitney 0.41 × e
+6 1.98 × e

−62

3. Decision. Based on Mann Whitney one-sided test, the result provides support to

reject the null hypothesis in favor to the alternative hypothesis (U = 0.41 × e
+6,

p < .05). Therefore, there is evidence that refactoring-inducing PRs are signifi-

cantly more likely to have a higher number of file changes than non-refactoring-

191

Figure C.3: Number of file changes by presence of refactorings

inducing PRs. There is a 76.1% probability (CLES = 0.761) that a random

observation of the number of changed files from refactoring-inducing PRs will be

higher than one from non-refactoring-inducing PRs, at the population level.

H4 Refactoring-inducing pull requests are more likely to have more subse-

quent commits than non-refactoring-inducing pull requests

1. Null and alternative hypotheses:

H40
Refactoring-inducing and non-refactoring-inducing pull requests are equally

likely to have more subsequent commits.

H4a
Refactoring-inducing pull requests are more likely to have more subsequent

commits than the non-refactoring-inducing pull requests.

2. Statistical tests. Figure C.4 displays the distribution of number of subsequent

commits by the presence of refactoring edits in the PRs. The computed 95% CI

[1.0, 2.0] of the difference in medians does not contain 0, so there is a statistically

significant difference in the number of subsequent commits between refactoring-

inducing and non-refactoring-inducing PRs. Table C.4 presents the computed

statistics and p-value for each applied statistical test.

192

Figure C.4: Number of subsequent commits by presence of refactorings

Table C.4: Statistical tests output – number of subsequent commits by presence of

refactorings

Statistical test Statistic p-value

Shapiro-Wilk
False: 0.60

True: 0.71

0.0

3.03 × e
−27

Levene’s 62.96 3.88 × e
−15

Mann Whitney 0.37 × e
+6 2.59 × e

−37

3. Decision. Based on Mann Whitney one-sided test, the result provides support

for reject the null hypothesis in favor to the alternative hypothesis (U =

0.37 × e
+6, p < .05). Thus, there is evidence that refactoring-inducing PRs

are significantly more likely to have a higher number of subsequent commits

than non-refactoring-inducing PRs. There is a 69.1% probability (CLES =

0.691) that a random observation of the number of subsequent commits from

refactoring-inducing PRs will be higher than one from non-refactoring-inducing

PRs, at the population level.

193

H5 Refactoring-inducing PRs are more likely to have more review comments

than the non-refactoring-inducing pull requests

1. Null and alternative hypotheses:

H50
Refactoring-inducing and non-refactoring-inducing pull requests are equally

likely to have more review comments.

H5a
Refactoring-inducing pull requests are more likely to have more review com-

ments than the non-refactoring-inducing pull requests.

2. Statistical tests. Figure C.5 displays the distribution of number of review com-

ments according to the presence of refactoring edits in the PRs. The computed

95% CI [2.0, 4.0] of the difference in medians does not contain 0, therefore there

is a statistically significant difference in the number of review comments between

refactoring-inducing and non-refactoring-inducing PRs. Table C.5 presents the

computed statistics and p-value for each applied statistical test.

Figure C.5: Number of review comments by presence of refactorings

194

Table C.5: Statistical tests output – number of review comments by presence of refac-

torings

Statistical test Statistic p-value

Shapiro-Wilk
False: 0.41

True: 0.71

0.0

2.86 × e
−27

Levene’s 44.22 3.98 × e
−11

Mann Whitney 0.35 × e
+6 3.81 × e

−23

3. Decision. Based on Mann Whitney one-sided test, the result provides support for

reject the null hypothesis in favor to the alternative hypothesis (U = 0.35 × e
+6,

p < .05). Thus, there is evidence that refactoring-inducing PRs are significantly

more likely to have a higher number of review comments than non-refactoring-

inducing PRs. There is a 65.6% probability (CLES = 0.656) that a random

observation of the number of review comments from refactoring-inducing PRs

will be higher than one from non-refactoring-inducing PRs, at the population

level.

H6 Refactoring-inducing pull requests are more likely to present a lengthier

discussion than the non-refactoring-inducing pull requests

1. Null and alternative hypotheses:

H60
Refactoring-inducing and non-refactoring-inducing pull requests are equally

likely to present lengthier discussion.

H6a
Refactoring-inducing pull requests are more likely to present a lengthier

discussion than the non-refactoring-inducing pull requests.

2. Statistical tests. Figure C.6 displays the distribution of length of discussion

according to the presence of refactoring edits in the PRs. The computed 95%

CI [3.0, 5.0] of the difference in medians does not contain 0, therefore there is

statistically significant difference in the length of discussion between refactoring-

inducing and non-refactoring-inducing PRs. Table C.6 presents the computed

statistics and p-value for each applied statistical test.

195

Figure C.6: Length of discussion by presence of refactorings

Table C.6: Statistical tests output – length of discussion by presence of refactorings

Statistical test Statistic p-value

Shapiro-Wilk
False: 0.58

True: 0.79

0.0

2.87 × e
−23

Levene’s 32.41 1.47 × e
−8

Mann Whitney 0.35 × e
+6 4.32 × e

−22

3. Decision. Based on Mann Whitney one-sided test, the result provides support

to reject the null hypothesis (U = 0.35 × e
+6, p < .05). In particular, there

is evidence that refactoring-inducing PRs are significantly more likely to have

a lengthier discussion than non-refactoring-inducing PRs in opposition to the

alternative hypothesis. There is a 65.3% probability (CLES = 0.653) that a

random observation of the length of discussion from refactoring-inducing PRs

will be larger than one from non-refactoring-inducing PRs, at the population

level.

H7 Refactoring-inducing and non-refactoring-inducing are equally likely to

have a higher number of reviewers

1. Null and alternative hypotheses:

196

H70
Refactoring-inducing and non-refactoring-inducing pull requests are not

equally likely to have a higher number of reviewers.

H7a
Refactoring-inducing and non-refactoring-inducing pull requests are equally

likely to have a higher number of reviewers.

2. Statistical tests. Figure C.7 displays the distribution of number of reviewers

according to the presence of refactoring edits in the PRs. The computed 95%

CI [0.0, 0.0] of the difference in medians contains 0, thus there is no statistically

significant difference in the number of reviewers between refactoring-inducing PRs

and non-refactoring-inducing ones. Table C.7 presents the computed statistics

and p-value for each applied statistical test.

Figure C.7: Number of reviewers by presence of refactorings

Table C.7: Statistical tests output – number of reviewers by presence of refactorings

Statistical test Statistic p-value

Shapiro-Wilk
False: 0.82

True: 0.86

2.18 × e
−34

1.53 × e
−19

Levene’s 19.24 1.22 × e
−5

Mann Whitney 0.30 × e
+6 2.00 × e

−6

3. Decision. Based on Mann Whitney two-sided test, the result provides support to

reject the null hypothesis in favor to the alternative hypothesis (U = 0.30 × e
+6,

197

p < .05). Thus, there is evidence that refactoring-inducing and non-refactoring-

inducing PRs are significantly likely to have a higher number of reviewers. There

is a 56.7% probability (CLES = 0.567) that a random observation of the number

of reviewers from refactoring-inducing PRs will be as high as one from non-

refactoring-inducing PRs, at the population level.

H8 Refactoring-inducing pull requests are more likely to take a longer time

to merge than non-refactoring-inducing pull requests

1. Null and alternative hypotheses:

H80
Refactoring-inducing and non-refactoring-inducing pull requests are equally

likely to take a longer time to merge.

H8a
Refactoring-inducing pull requests are more likely to take a longer time to

merge than the non-refactoring-inducing pull requests.

2. Statistical tests. Figure C.8 displays the distribution of time to merge according

to the presence of refactoring edits in the PRs. The computed 95% CI [1.0, 3.0]

of the difference in medians does not contain 0, therefore there is statistically

significant difference in time to merge between refactoring-inducing and non-

refactoring-inducing PRs. Table C.8 lists the computed statistics and p-value for

each applied statistical test. It is worth noting that only one of the assumptions,

homogeneity of variances, was met (F = 0.09, p > .05).

Table C.8: Statistical tests output – time to merge by presence of refactorings

Statistical test Statistic p-value

Shapiro-Wilk
False: 0.20

True: 0.19

0.0

6.19 × e
−40

Levene’s 2.81 0.09

Mann Whitney 0.31 × e
+6 1.00 × e

−6

3. Decision. Based on Mann Whitney one-sided test, the result provides support for

reject the null hypothesis (U = 0.31 × e
+6, p < .05). Particularly, we found evi-

dence that refactoring-inducing PRs are significantly more likely to take a longer

198

Figure C.8: Time to merge by presence of refactorings

time to merge than non-refactoring-inducing PRs. There is a 57.4% probability

(CLES = 0.574) that a random observation of time to merge from refactoring-

inducing PRs will be longer than one from non-refactoring-inducing PRs, at the

population level.

Appendix D

Complements to the

Characterization of Code Review in

Refactoring-Inducing Pull Requests

Following, we provide more details regarding the characteristics of code review in

refactoring-inducing PRs in complement to Chapter 5.

As displayed in Tables D.1 and D.2, the magnitude of both refactoring-inducing

and non-refactoring-inducing PRs, in our purposive samples, increases in the following

order: sample 2 < sample 1 < sample 4 < sample 3, when considering size-related

aspects (number of subsequent commits, number of file changes, number of added lines,

and number of deleted lines).

Table D.1: Descriptive statistics (refactoring-inducing PRs)

Sample Attribute Average SD Median IQR

Sample 1 No. of reviewers 2 0 2 0

No. of review comments 5 0 5 0

No. of subsequent commits 2.4 1.2 2 1.2

Time to merge 3.2 6.1 1 2.2

No. of file changes 8.2 8.7 5 7

No. of added lines 93.1 170.5 31 56.7

No. of deleted lines 43.3 58.3 13.5 39.5

Continued on next page

199

200

Table D.1 – continued from previous page

Sample Attribute Average SD Median IQR

No. of refactoring edits 5.7 7.2 2.5 5

Sample 2 No. of reviewers 1.8 0.6 2 0.5

No. of review comments 4 4.3 2 2

No. of subsequent commits 1 0 1 0

Time to merge 3.5 6.6 1 3

No. of file changes 1.7 0.6 2 1

No. of added lines 35.4 63.5 6 21.5

No. of deleted lines 26.9 56.4 6 13

No. of refactoring edits 1 0 1 0

Sample 3 No. of reviewers 3.1 1.1 3 1

No. of review comments 15.1 13.7 10 14

No. of subsequent commits 5.8 3.6 5 6

Time to merge 11.5 14.8 6 8

No. of file changes 26.5 34.6 16 22

No. of added lines 550 1198.8 143 332

No. of deleted lines 297.9 490.7 104 281

No. of refactoring edits 16.1 18.6 10 12

Sample 4 No. of reviewers 2.3 0.9 2 1

No. of review comments 8.7 5.8 7 8.7

No. of subsequent commits 3.8 3.3 3 2

Time to merge 22.4 37 6.5 15.7

No. of file changes 9.2 13.2 5 6

No. of added lines 288.5 811.8 40 109.2

No. of deleted lines 56.1 80.5 24.5 28.7

No. of refactoring edits 2.9 1.1 2.5 2

Table D.2: Descriptive statistics (non-refactoring-inducing PRs)

Sample Attribute Average SD Median IQR

Sample 1 No. of reviewers 2 0 2 0

No. of review comments 5 0 5 0

No. of subsequent commits 1.4 0.5 1 1

Continued on next page

201

Table D.2 – continued from previous page

Sample Attribute Average SD Median IQR

Time to merge 2.5 4 0.5 3

No. of file changes 2.9 2 2 2

No. of added lines 17.5 19.2 8.5 24.5

No. of deleted lines 16.6 19.2 9 24.5

Sample 2 No. of reviewers 2.1 0.6 2 0

No. of review comments 4.8 4.2 4 4

No. of subsequent commits 1 0 1 0

Time to merge 2.9 2.3 3 4

No. of file changes 2.1 1.7 1 1

No. of added lines 115.1 293 2 46

No. of deleted lines 107.5 295.3 3 8

Sample 3 No. of reviewers 2.8 0.9 3 1

No. of review comments 10 0 10 0

No. of subsequent commits 3.8 1.9 3 2

Time to merge 10.9 23.2 2 7

No. of file changes 7.7 4.6 6 4

No. of added lines 47.2 48.5 23 40

No. of deleted lines 29.9 39.4 18 16

Sample 4 No. of reviewers 2.4 0.7 2 1

No. of review comments 7 0 7 0

No. of subsequent commits 2.3 2.2 2 2

Time to merge 6.8 8.1 3 10.5

No. of file changes 4.5 4.9 3 3.7

No. of added lines 53.3 90.6 21 20.2

No. of deleted lines 30.7 62.1 6.5 22

Refactoring-inducing and non-refactoring-inducing PRs comprise the three primary

types of change (adaptive, corrective, and perfective), as indicated in Table D.3.

202

Table D.3: Type of changes by category of PRs

Sample
Type of changes

Adaptive Corrective Perfective

Refactoring-inducing PRs

Sample 1 3/13 (23.1%) 5/13 (38.5%) 4/13 (30.8%)

Sample 2 4/11 (36.4%) 4/11 (36.4%) 2/11 (18.2%)

Sample 3 7/13 (53.8%) 3/13 (23.1%) 2/13 (15.4%)

Sample 4 11/28 (39.2%) 8/28 (28.6%) 8/28 (28.6%)

All samples 25/65 (38.5%)1 20/65 (30.8%)2 16/65 (24.6%)3

non-Refactoring-inducing PRs

Sample 1 none 4/4 (100.0%) none

Sample 2 none 6/6 (100.0%) none

Sample 3 6/11 (54.5%) 4/11 (36.4%) 1/11 (9.1%)

Sample 4 9/17 (52.9%) 8/17 (47.1%) none

Continued on next page

1Flink #7945, Hadoop #942, Samza #1030 (sample 1); Beam #4458, Incubator-Pinot #479,

Samza #1051, Servicecomb-Java-Chassis #346 (sample 2); Beam #6261, Flink #8222, Incubator-

Iceberg #119, Kafka #4735, Kafka #4757, Kafka #5590, Servicecomb-Java-Chassis #678 (sample

3); Avro #525, Dubbo #4099, Kafka #5501, Knox #69, Logging-log4j #213, Rocketmq-Externals

#45, Sling-Org-Apache-Sling-Feature-Analyser #16, Struts #43, Tinkerpop #893, Tinkerpop #1110,

Tomee #407 (sample 4).

2Commons-Text #39, Flink #7970, Flink #7971, Flink #9143, Fluo #837 (sample 1); Beam

#4407, Brooklyn-Server #1049, Kafka #5784, Kafka #7132 (sample 2); Incubator-Iceberg #183,

Kafka #6657, Usergrid #102 (sample 3); Dubbo #2445, Dubbo #3174, Dubbo #3257, Flink #7165,

Kafka #4796, Kafka #5946, Kafka #6848, Kafka #6853 (sample 4).

3Beam #4460, Dubbo #3299, Incubator-Iceberg #254, Kafka #5194 (sample 1); Dubbo #3185,

Kafka #5423 (sample 2); Cloudstack #2071, Cloudstack #3454 (sample 3); Accumulo-Examples #19,

Brooklyn-Server #964, Cloudstack #2833, Flink #8620, Kafka #4574, Knox #74, Tika #234, Tomee

#89 (sample 4).

203

Table D.3 – continued from previous page

Sample
Type of changes

Adaptive Corrective Perfective

All samples 15/38 (39.5%)4 22/38 (57.9%)5 1/38 (2.6%)6

We found self-affirmed minor PRs (Table D.4) and self-affirmed minor review com-

ments (Table D.5) in both refactoring-inducing and non-refactoring-inducing PRs. We

observed self-affirmed review comments that induced edits of Rename (Brooklyn-Server

#964, Flink #7945, Flink #8620, Kafka #5784, Kafka #6848), Split (Brooklyn-Server

#1049), Inline (Dubbo #3185), and Extract (Flink #8620, Kafka #4735).

Table D.4: Presence of self-affirmed minor PRs

Sample

Refactoring-

inducing pull

requests

Pull

requests

non-Refactoring-

inducing pull

requests

Pull

requests

Sample 1 1/13 (7.7%) Kafka #5194 2/7 (28.6%)

Brooklyn-

server #411,

Kafka #5111

Sample 2 1/11 (9.1%) Kafka #5423 0/9 (0%)

Sample 3 1/13 (7.7%) Kafka #5590 1/13 (7.7%) Kafka #6438

Continued on next page

4Dubbo #3184, Dubbo #3447, Dubbo #4208, Incubator-Iotdb #67, Servicecomb-Java-Chassis

#691, Servicecomb-Java-Chassis #744 (sample 3); Accumulo-Testing #21, Beam #6317, Flink #2096,

Incubator-Pinot #880, Kafka #4430, Plc4x #9, Servicecomb-Java-Chassis #969, Tinkerpop #282,

Tomee #283 (sample 4).

5Brooklyn-server #411, Dubbo #4870, Flink #91, Kafka #5111 (sample 1); Beam #6050, Dubbo

#3317, Kafka #5219, Kafka #6565, Kafka #6818, Tinkerpop #524 (sample 2); Cloudstack #2553,

Cloudstack #2714, Cloudstack #3276, Fluo #929 (sample 3); Accumulo-Examples #50, Cloudstack

#3333, Cloudstack #3430, Dubbo #3331, Dubbo #3748, Kafka #6427, Servicecomb-Java-Chassis

#698, Struts #191 (sample 4).

6Kafka #6438 (sample 3).

204

Table D.4 – continued from previous page

Sample

Refactoring-

inducing

PRs

Pull

requests

non-Refactoring-

inducing

pull

requests

Pull

requests

Sample 4 2/28 (7.1%)
Kafka #4574,

Kafka #6853
3/24 (12.5%)

Kafka #5368,

Kafka #6427,

Kafka #6758

All samples 5/65 (7.7%) 6/53 (11.3%)

Table D.5: Presence of self-affirmed minor review comments

Sample

Refactoring-

inducing

pull

requests

Pull

requests

non-

Refactoring-

inducing

pull

requests

Pull

requests

Sample 1 1/13 (7.7%) Flink #7945 2/7 (28.6%)

Brooklyn-

server #4111,

Flink #91

Sample 2 3/11 (27.3%)

Brooklyn-

Server #1049,

Dubbo #3185,

Kafka #5784

2/9 (22.2%)
Beam #5785,

Flink #9451

Sample 3 3/13 (23.1%)

Kafka #4735,

Kafka #4757,

Kafka #6657

0/13 (0%)

Continued on next page

205

Table D.5 – continued from previous page

Sample

Refactoring-

inducing

pull

requests

Pull

requests

non-Refactoring-

inducing

pull

requests

Pull

requests

Sample 4 8/28 (28.6%)

Brooklyn-

Server #964,

Cloudstack

#2833,

Flink #8620,

Kafka #4574,

Kafka #4796,

Kafka #5501,

Kafka #6848,

Logging-

Log4j #213

2/24 (8.3%)
Beam #6317,

Kafka #4430

All samples 15/65 (23.1%) 6/53 (11.3%)

We identified that 8/65 (12.3%) of refactoring-inducing PRs and 1/53 (1.9%) of

non-refactoring-inducing PRs ran a code review bot (Table D.6).

Table D.6: Presence of code review bot in PRs

Sample Proportion PRs

Refactoring-inducing PRs

Sample 1 5/13 (38.5%)

Flink #7970, Flink #7971,

Flink #7945, Flink #9143,

Hadoop #942

Sample 2 none

Sample 3 1/13 (7.7%) Flink #8222

Sample 4 2/28 (7.1%) Flink #8620, Struts #43

All samples 8/65 (12.3%)

non-Refactoring-inducing PRs

Sample 1 none

Continued on next page

206

Table D.6 – continued from previous page

Sample Proportion PRs

Sample 2 1/9 (11.1%) Flink #9451

Sample 3 none

Sample 4 none

All samples 1/53 (1.9%)

We investigated the number of contributions (Table D.7) and Apache’s roles (Table

D.8) of the PR participants.

Table D.7: Descriptive statistics of participants of PRs by category

Sample Category Stats Author Reviewer

Sample 1 Refactoring-inducing

PRs

Average 668.9 2801.6

SD 853.3 3417.6

Median 424 1414

IQR 794 3698

Outliers 3127 14442

Non-refactoring-inducing

PRs

Average 5375.6 2907.6

SD 10982.5 4358.2

Median 511 1373

IQR 12862.5 1228

Outliers none 12678

Sample 2 Refactoring-inducing

PRs

Average 758.2 956.1

SD 547.5 974.9

Median 1032 438

IQR 1024.5 1909

Outliers 3699, 28964 10853, 14688

Non-refactoring-inducing

PRs

Average 3137 1645.5

SD 4058.6 1311.3

Median 1674.5 1639

IQR 3499 2765

Outliers 11965 none

Sample 3 Refactoring-inducing

PRs

Average 723.5 2683.1

SD 1447.2 4637.7

Continued on next page

207

Table D.7 – continued from previous page

Sample Category Stats Author Reviewer

Median 99 912

IQR 697 2543.5

Outliers 5254
14216, 15197,

18995

Non-refactoring-inducing

PRs

Average 2091.1 2432.4

SD 3114.8 4872.1

Median 380.5 828

IQR 3752 1190

Outliers none
5808, 18728,

18866

Sample 4 Refactoring-inducing

PRs

Average 839.3 1657.1

SD 978.1 1532.3

Median 476 1302

IQR 1329 2387

Outliers

7171, 12467,

13205, 13955,

14288

12305, 14188,

14215, 28364

Non-refactoring-inducing

PRs

Average 940.3 783.5

SD 1312.1 522.8

Median 215 755

IQR 1728.5 903

Outliers 11068, 30032

2715, 3009,

3917, 4614,

4716, 9892,

30104

Table D.8: Apache roles of the participants of PRs by category

Sample Category Author Reviewer

Sample 1
Refactoring-inducing

PRs

2 committers

1 commiter/PMC

6 PMC

2 committers

3 commiters/PMC

Continued on next page

208

Table D.8 – continued from previous page

Sample Category Author Reviewer

Non-refactoring-inducing

PRs
1 committer/PMC

1 PMC

2 committer/PMC

Sample 2
Refactoring-inducing

PRs

1 committer

1 commiter/PMC

4 PMC

3 commiters/PMC

Non-refactoring-inducing

PRs
3 committer/PMC

4 PMC

4 committers/PMC

Sample 3
Refactoring-inducing

PRs
none

1 committer

10 PMC

3 commiters/PMC

Non-refactoring-inducing

PRs
none

1 committer

14 PMC

1 committers/PMC

Sample 4
Refactoring-inducing

PRs

1 committer

2 committers/PMC

10 PMC

12 committers/PMC

Non-refactoring-inducing

PRs

1 PMC

2 committers/PMC

7 PMC

2 committers/PMC

We also explored the number of contributions in the three subgroups of refactoring-

inducing PRs: with refactorings led by the authors, with refactorings induced by code

review, and with refactorings both led by the authors and induced by code review

(Table D.9).

Table D.9: Descriptive statistics of participants by subgroup of refactoring-inducing

PRs

Subgroup Stats Author Reviewer

Authors led refactorings Average 1621.4 2642.7

SD 3242.1 3549.3

Median 904 1388

IQR 1293.5 2443.5

Outliers 5334, 13205 12305, 14188

Code review induced refactorings Average 3481.1 3204.6

Continued on next page

209

Table D.9 – continued from previous page

Subgroup Stats Author Reviewer

SD 6036.6 5370.8

Median 1123 1280

IQR 3111.5 2721

Outliers
12467, 13955,

14288, 28964

8132, 10853,

14215, 14422,

14688, 15197,

18995, 28364

Authors and reviewers led/induced

refactorings

Average 458.5 1800.1

SD 703.1 2647.1

Median 173 871

IQR 486 1720

Outliers 1451, 2610
4706, 4910,

5906, 14216

We observed the age of the PRs, by computing the difference between the creation

date of repositories and the creation date of PRs, in number of years (Table D.10).

Table D.10: Age of PRs (in number of years)

Sample Statistic
Refactoring-inducing

PRs

non-Refactoring-inducing

PRs

Sample 1

Average 6 4.8

SD 2.6 1.8

Median 6.2 5.4

IQR 4.7 3

Outliers none none

Sample 2

Average 5.4 5.3

SD 3.3 1.8

Median 5.7 5.5

IQR 3.5 2.9

Outliers 12.9 none

Sample 3

Average 4.9 5.6

SD 2.6 2.7

Continued on next page

210

Table D.10 – continued from previous page

Sample Statistic
Refactoring-inducing

PRs

non-Refactoring-inducing

PRs

Median 5.2 6.6

IQR 4.4 4.8

Outliers none None

Sample 4

Average 6.6 4.9

SD 2.8 3.2

Median 6.3 4.6

IQR 2.7 4.0

Outliers 0.9, 1.2,13.0 12.8

	Introduction
	Motivation

	Problem Statement
	Motivating Example
	Objectives
	Research Questions
	Main Results and Implications of Research
	Document Structure
	Background
	Refactoring

	Identification of Candidates for Refactoring
	Application of Refactoring
	Refactoring Detection
	Modern Code Review
	Git-based Development and PRs
	Association Rule Learning
	Concluding Remarks
	Mining Refactoring Edits and Code Review Data
	Data Mining Design
	Mining Merged PRs

	Detection of Refactoring Edits
	Mining Code Review Data
	Limitations
	Concluding Remarks
	Comparing Refactoring-Inducing and non-Refactoring-Inducing Pull Requests
	Research Design

	Association Rule Learning
	Data Analysis
	Results and Discussion
	How Common are Refactoring-Inducing PRs?

	How Do Refactoring-Inducing PRs Compare to non-Refactoring-Inducing Ones?
	Is Refactoring Induced by Code Reviews?
	Implications
	Limitations
	Concluding Remarks
	Characterizing Code Review in Refactoring-Inducing Pull Requests
	Research Design

	Selection of a Purposive Sample
	Sanity Check of Refactoring Edits and Manual Analysis of Review Comments
	Merging of Results
	Results and Discussion
	Preliminary Results
	How Are Review Comments Characterized in Refactoring-Inducing and non-Refactoring-Inducing PRs?
	What Are the Differences Between Refactoring-Inducing and non-Refactoring-Inducing PRs, in Terms of Review Comments?
	How Do Reviewers Suggest Refactorings in Refactoring-Inducing PRs?
	Do Suggestions of Refactoring Justify the Reasons?
	What Is the Relationship Between Suggestions and Actual Refactorings in Refactoring-Inducing PRs?
	Implications and Guidelines
	Limitations
	Concluding Remarks
	Characterizing Refactoring Edits in Refactoring-Inducing Pull Requests
	Research Design

	Results and Discussion
	What Types of Refactoring Edits often Take Place in PRs?

	How are the Refactoring Edits Characterized?
	Implications
	Limitations
	Concluding Remarks
	Related Work
	Characterization of Code Review

	Characterization of Refactoring Edits throughout Code Evolution
	Concluding Remarks
	Conclusions
	References
	Initial Investigations on Refactoring and Modern Code Review
	Descriptive Statistics of pull requests data
	Checking for Parametric Tests Assumptions and Results of Statistical Testing of Hypotheses
	Complements to the Characterization of Code Review in Refactoring-Inducing Pull Requests

