
Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática
Coordenação de Pós-Graduação em Ciência da Computação

Dissertação de Mestrado

Comparing the Refactoring Mechanics of

Refactoring Detection Tools and IDEs

Osmar Leandro Dantas da Silva

Campina Grande, Paraíba, Brasil

04/2022

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Comparing the Refactoring Mechanics of

Refactoring Detection Tools and IDEs

Osmar Leandro Dantas da Silva

Dissertação submetida à Coordenação do Curso de Pós-Graduação em

Ciência da Computação da Universidade Federal de Campina Grande -

Campus I como parte dos requisitos necessários para obtenção do grau

de Mestre em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Engenharia de Software

Rohit Gheyi

(Orientador)

Campina Grande, Paraíba, Brasil

©Osmar Leandro Dantas da Silva, 28/04/2022

S586c

Silva, Osmar Leandro Dantas da.

 Comparing the refactoring mechanics of refactoring detection tools

and IDEs / Osmar Leandro Dantas da Silva. – Campina Grande, 2022.

 81 f. : il. color.

 Dissertação (Mestrado em Ciência da Computação) – Universidade

Federal de Campina Grande, Centro de Engenharia Elétrica e

Informática, 2022.

 "Orientação: Prof. Dr. Rohit Gheyi”.
 Referências.

 1. Software Engineering. 2. IDEs. 3. Refactoring. 4. Detection

Tools. 5. Mechanics. I. Gheyi, Rohit. II. Título.

 CDU 004.41(043)
 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA SEVERINA SUELI DA SILVA OLIVEIRA CRB-15/225

à
MINISTÉRIOàDáàEDUCáÇÃOà

UNIVERSIDADE FEDERAL DE CAMPINA GRANDEà
POS-GRáDUáCáOàCIENCIáSàDáàCOMPUTáCáOà

RuaàápƌigioàVeloso,àϴϴϮ,à-àBaiƌƌoàUŶiveƌsitaƌio,àCaŵpiŶaàGƌaŶde/PB,àCEPàϱϴϰϮϵ-ϵϬϬà

àà

FOLHA DE ASSINATURA PARA TESES E DISSERTAÇÕES

à

OSMAR LEANDRO DANTAS DA SILVA

à

COMPáRINGàTHEàREFáCTORINGàMECHáNICSàOFàREFáCTORINGàDETECTIONàTOOLSàáNDàIDES

à

à

Disseƌtaçãoà apƌeseŶtadaà aoà Pƌogƌaŵaà deà Pós-
GƌaduaçãoàeŵàCiġŶĐiaàdaàCoŵputaçãoàĐoŵoàpƌĠ-
ƌeƋuisitoà paƌaà oďteŶçãoà doà ơtuloà deà Mestƌeà eŵ
CiġŶĐiaàdaàCoŵputação.

à

ápƌovadaàeŵ:àϮϴ/Ϭϰ/ϮϬϮϮ

à

à

Pƌof.àDƌ.àROHITàGHEYI,àOƌieŶtadoƌ,àUFCG

Pƌof.àDƌ.àMÁRCIOàDEàMEDEIROSàRIBEIRO,ààExaŵiŶadoƌàIŶteƌŶo,àUFáL

Pƌof.àDƌ.àLEOPOLDOàMOTTáàTEIXEIRá,àExaŵiŶadoƌàExteƌŶo,àUFPE

DoĐuŵeŶtoàassiŶadoàeletƌoŶiĐaŵeŶteàpoƌàROHIT GHEYI,àPROFESSOR DO MAGISTERIO SUPERIOR,àeŵ
Ϯϴ/Ϭϰ/ϮϬϮϮ,àăsàϭϭ:ϰϬ,àĐoŶfoƌŵeàhoƌĄƌioàofiĐialàdeàBƌasília,àĐoŵàfuŶdaŵeŶtoàŶoàaƌt.àϴº,àĐaput,àdaàPoƌtaƌia
SEIàŶºàϬϬϮ,àdeàϮϱàdeàoutuďƌoàdeàϮϬϭϴ.

DoĐuŵeŶtoàassiŶadoàeletƌoŶiĐaŵeŶteàpoƌàLeopoldo MoƩa Teixeira,àUsuário Externo,àeŵàϮϴ/Ϭϰ/ϮϬϮϮ,àăs
ϭϮ:ϯϳ,àĐoŶfoƌŵeàhoƌĄƌioàofiĐialàdeàBƌasília,àĐoŵàfuŶdaŵeŶtoàŶoàaƌt.àϴº,àĐaput,àdaàPoƌtaƌiaàSEIàŶºàϬϬϮ,àde
ϮϱàdeàoutuďƌoàdeàϮϬϭϴ.

DoĐuŵeŶtoàassiŶadoàeletƌoŶiĐaŵeŶteàpoƌàMárĐio de Medeiros Riďeiro,àUsuário Externo,àeŵ
Ϯϴ/Ϭϰ/ϮϬϮϮ,àăsàϮϬ:ϱϬ,àĐoŶfoƌŵeàhoƌĄƌioàofiĐialàdeàBƌasília,àĐoŵàfuŶdaŵeŶtoàŶoàaƌt.àϴº,àĐaput,àdaàPoƌtaƌia
SEIàŶºàϬϬϮ,àdeàϮϱàdeàoutuďƌoàdeàϮϬϭϴ.

áàauteŶƟĐidadeàdesteàdoĐuŵeŶtoàpodeàseƌàĐoŶfeƌidaàŶoàsiteàhƩps://sei.ufĐg.edu.ďƌ/auteŶƟĐidade,
iŶfoƌŵaŶdoàoàĐódigoàveƌifiĐadoƌàϮϯϯϭϰϮϰàeàoàĐódigoàCRCàEϱϲEϲϲϯϱ.

ReferênĐia:àPƌoĐessoàŶºàϮϯϬϵϲ.ϬϮϲϬϰϰ/ϮϬϮϮ-ϲϳ SEIàŶºàϮϯϯϭϰϮϰ

Resumo

Ferramentas de detecção de refatoração, como REFACTORINGMINER e REFDIFF, são úteis

para estudar refatorações aplicadas a repositórios de software. Para avaliá-las, os autores

das ferramentas estudam repositórios de software e classificam manualmente as transfor-

mações como refatorações. Entretanto, esta é uma atividade que consome bastante tempo

e propensa a erros. Além disso, não está claro até que ponto a mecânica de refatoração é

consistente com as implementações de refatoração disponíveis em IDEs. Neste trabalho,

propomos uma técnica para testar ferramentas de detecção de refatoração. Em nossa técnica,

aplicamos uma única refatoração usando um IDE popular e, em seguida, executamos a ferra-

menta de detecção de refatoração para verificar se ela detecta a transformação aplicada pelo

IDE. Avaliamos nossa técnica executando automaticamente 9.885 transformações em quatro

projetos reais de código aberto usando oito tipos de refatoração do ECLIPSE IDE. Nosso

principal objetivo é verificar se existem diferenças na mecânica de refatoração de IDEs e

ferramentas de detecção de refatoração e discutir essas diferenças. REFACTORINGMINER e

REFDIFF detectam mais refatorações em 20,41% e 14,11% das transformações analisadas,

respectivamente. Nos casos restantes, REFACTORINGMINER e REFDIFF não detectaram ou

a classificam como outros tipos. Relatamos 34 relatórios de problemas para as ferramen-

tas de detecção de refatoração. Os desenvolvedores corrigiram 16 bugs e 3 relatórios foram

estavam duplicados. Em outros casos, 3 relatórios de problemas não foram aceitos.

iii

Abstract

Refactoring detection tools, such as REFACTORINGMINER and REFDIFF, are helpful to

study refactorings applied to software repositories. To evaluate them, the tools’ authors

study software repositories and manually classify transformations as refactorings. However,

this is a time-consuming and error-prone activity. It is unclear to what extent the refactoring

mechanics is consistent with refactoring implementations available in IDEs. In this work,

we propose a technique to test refactoring detection tools. In our technique, we apply a sin-

gle refactoring using a popular IDE, and then we run the refactoring detection tool to check

whether it detects the transformation applied by the IDE. We evaluate our technique by au-

tomatically performing 9,885 transformations on four real open-source projects using eight

ECLIPSE IDE refactorings. Our main goal is to see whether there are some differences in the

refactoring mechanics of IDEs and refactoring detection tools and discuss the differences in

the refactoring mechanics. REFACTORINGMINER and REFDIFF detect more refactorings in

20.41% and 14.11% of the analyzed transformations, respectively. In the remaining cases,

REFACTORINGMINER and REFDIFF either do not detect the refactoring or classify it with

other types of refactorings. We report 34 issues to refactoring detection tools, and developers

fixed 16 bugs, and 3 bugs are duplicated. In other cases, 3 issues are not accepted.

iv

Agradecimentos

Agradeço aos meus pais, Osmano e Maria de Lourdes, que mesmo a distância nunca medi-

ram esforços para a minha educação. A minha esposa, Emília, que durante o período de

mestrado mostrou incentivo irrestrito e apoio fundamental para que estes resultados fossem

por mim alcançados. Agradeço ao professor Rohit Gheyi como meu orientador nesses dois

anos de mestrado na UFCG. Partir de um ponto mais simples para um ponto melhor e mais

complexo, que é a escrita de um trabalho científico, me fez perceber o quanto ainda preciso

melhorar e aprender com meus professores. Agradeço ao Rohit por me mostrar que a ciên-

cia é um trabalho de paciência, dedicação e muita técnica. Agradeço aos meus revisores da

banca, os professores Márcio Ribeiro (UFAL), Leopoldo Teixeira (UFPE) e Tiago Massoni

(UFCG) por promoverem sugestões e ideias bastantes esclarecedoras que contribuíram para

melhoria deste trabalho. Agradeço a UFCG, aos professores e aos funcionários do DSC/-

COPIN por todo comprometimento e auxílio prestada ao longo deste período. Agradeço a

Capes pelo apoio ao meu trabalho.

v

Contents

1 Introduction 1

1.1 Problem . 2

1.2 Motivating Example . 2

1.3 Solution . 3

1.4 Summary of Contributions . 4

1.5 Organization . 4

2 Background 6

2.1 Code Refactoring . 6

2.2 Refactoring Implementations . 7

2.2.1 Code Examples . 8

2.2.2 Automating Refactorings . 11

2.3 Refactoring Detection Tools . 12

2.3.1 REFACTORINGMINER . 13

2.3.2 REFDIFF . 16

2.3.3 Refactoring Names . 19

3 Technique to Compare Refactoring Mechanics 20

3.1 Overview . 20

3.2 Steps . 21

3.3 Tool Support . 25

4 Comparing Refactoring Mechanics 29

4.1 Refactoring Detection Tools and IDE . 29

4.1.1 Study Definition . 29

vi

CONTENTS vii

4.1.2 Experimental Setup . 30

4.1.3 Results . 33

4.1.4 Discussion . 36

4.1.5 Threats to Validity . 49

4.1.6 Answers to Research Questions 50

4.2 Composite Refactorings . 51

4.2.1 Study Definition . 51

4.2.2 Experimental Setup . 52

4.2.3 Results . 53

4.2.4 Discussion . 54

4.2.5 Threats to Validity . 55

5 Related Works 56

6 Conclusions 62

6.1 Refactoring Detection Tools and IDE . 62

6.2 Composite Refactorings . 63

6.3 Future Work . 63

List of Figures

2.1 A brief illustration of refactoring specification from Fowler’s [9] catalog. . . 8

2.2 Refactor menu of ECLIPSE 4.14, NETBEANS 8.2, and INTELLIJ 11. 11

3.1 A technique to compare refactoring mechanics of refactoring detection tools

and refactoring implementation. 21

3.2 A diff tool shows the differences between two versions of code: deleted

lines (red) and added lines (green). The original code (B) is the parent of

refactored code (A), and the tool shows the differences between them (C).

Each new commit (D) is based on the original code and stored in a new

branch (E). 27

4.1 Summary of issues by the status and refactoring type. 38

4.2 Summary of issues per refactoring detection tool. We submit a total of 14

and 20 issues to REFDIFF and REFACTORINGMINER, respectively. 39

viii

List of Tables

2.1 Evolution of refactoring types supported by REFACTORINGMINER. 14

2.2 Evolution of refactoring types supported by REFDIFF. 17

2.3 Matching the refactoring names in REFACTORINGMINER to relationship

types applied to code elements in REFDIFF. 19

3.1 Classification of transformations: x = refactoring type applied by the refac-

toring implementation A; Y = the list of refactorings detected by the refac-

toring detection tool B. 24

3.2 An example of the technique’s report [19]. We simplify it by changing the

project names and removing some columns, such as the packages and classes

columns. 28

4.1 Projects used in our evaluation. 30

4.2 ECLIPSE modified parameters used in the experiments. 31

4.3 ECLIPSE default parameters for each refactoring implementation. 32

4.4 Summary of the results of our technique. The second from the last column

indicates the total number of refactorings applied by ECLIPSE JDT 4.16. The

last column indicates the total number of reported issues. RM = REFACTOR-

INGMINER; RD = REFDIFF. 34

4.5 Projects used in our evaluation. 52

4.6 Results of the composite refactorings in feasibility study. RM = REFACTOR-

INGMINER; RD = REFDIFF. 53

ix

Listings

1.1 Using the ECLIPSE Rename Method refactoring. 2

2.1 Using the ECLIPSE Extract Method refactoring. 9

2.2 Using the ECLIPSE Rename Method refactoring. 10

2.3 Using the ECLIPSE Inline Method refactoring. 10

2.4 Detection at between commits of REFACTORING-TOY-EXAMPLE project. . 15

2.5 Detection at single commit of REFACTORING-TOY-EXAMPLE project. . . . 16

2.6 Detection at all commits in repository. 16

2.7 REFDIFF detection at specific commit. 19

3.1 Using the ECLIPSE Move Method refactoring. 21

3.2 Using the ECLIPSE Rename Class refactoring. 23

3.3 Using the ECLIPSE Extract Method refactoring. 23

4.1 Using the ECLIPSE Move Method refactoring. 41

4.2 Using the ECLIPSE Rename Method refactoring. 42

4.3 Using the ECLIPSE Push Down Method refactoring. 42

4.4 Using the ECLIPSE Rename Method refactoring. 43

4.5 Using the ECLIPSE Extract Interface refactoring. 44

4.6 Using the ECLIPSE Inline Method refactoring. 44

4.7 Using the ECLIPSE Push Down Method refactoring. 45

4.8 Using the ECLIPSE Rename Method refactoring. 45

4.9 Using the ECLIPSE Rename Class refactoring. 47

4.10 Using the ECLIPSE Move Method refactoring. 47

4.11 Multiple instances of the Push Down Method refactoring in REFACTORING-

MINER and REFDIFF. 48

x

LISTINGS xi

4.12 The Rename Variable and Extract Method refactoring in REFACTORING-

MINER. 49

4.13 Using the ECLIPSE Rename Class refactoring. 54

4.14 Using the ECLIPSE Extract Interface, Push Down Method, and Rename

Method. 54

Chapter 1

Introduction

Refactoring [9, 20, 29] is the process of changing a program to improve its internal structure

while preserving its observable behavior. For a given refactoring, we use the term mechan-

ics to denote the informal description of how to carry out such refactoring, as some works

describe [9, 20, 29]. Over the years refactoring has become a central part of software de-

velopment processes, such as eXtreme Programming [1]. In addition, IDEs (ECLIPSE [7],

NETBEANS [30], INTELLIJ [16]) have automated a number of refactorings, such as Rename

Class, Extract Method, Inline Method and Move Method.

Some works explain the refactoring mechanics [9, 20, 29], which is a concise step-by-

step description of how to carry out the refactoring. Tools that detect refactorings have

been proposed in the literature. Currently, the best tools available in the state of the art are

REFACTORINGMINER [49] and REFDIFF [37].

Recovering refactoring information can provide useful insights to researchers focused on

understanding software evolution. Some studies address important aspects of refactorings,

such as the motivations behind refactoring [24, 25, 51], improvements of detection algo-

rithms [26, 32, 37, 49], understanding the perspective of developers [17, 24, 25, 27], and de-

tecting behavioral changes introduced by refactorings [41, 42]. Knowing which refactoring

operations were applied in the version history of a system may help in several practical tasks,

such as proposing better diff visualization tools, helping during code review, and simplifying

API library migration [37].

1

1.1 Problem 2

1.1 Problem

To evaluate the accuracy of refactoring detection tools, developers manually mine open-

source projects to identify transformations based on their experience. Then, they create a

dataset of manually classified transformations to evaluate their tools. For example, Tsantalis

et al. [49] manually identified 7,226 refactorings in open-source projects for 40 different

refactoring types.

However, this process is time-consuming and error-prone. Since there is no refactoring

mechanics specification widely accepted by developers, developers may have different refac-

toring mechanics [27]. It is unclear to what extent the refactoring mechanics is consistent

with refactoring implementations available in IDEs. Moreover, there is no study evaluating

whether the manually classified transformations are consistent with the refactoring engi-

nes/mechanics implemented by popular IDEs. It is important to mention that developers

typically use IDEs to apply refactorings [27].

1.2 Motivating Example

Fowler [9] describes the mechanics of some refactorings. For instance, Rename Method is a

refactoring that changes a method name to a new one that better reveals its purpose. There

are popular IDEs that implement this refactoring, such as ECLIPSE.

Consider the RefactoringSet class declared in a project source code. In this ex-

ample, we use the source code of REFACTORINGMINER project. We can apply the Re-

name Method refactoring to the getRevision method, changing its name to getRevi-

sionID. This process can be automated using the ECLIPSE IDE.

Listing 1.1: Using the ECLIPSE Rename Method refactoring.

1 @@ class RefactoringSet

2 - public getRevision() {

3 + public getRevisionID() {

4 return revision;

5 } ...

1.3 Solution 3

Listing 1.1 presents part of the actual transformation applied using ECLIPSE. We sim-

plify the listing code to allow more readability and focus on main changes. ECLIPSE also

performed similar transformations in all places where getRevision is used. The lines

with - (red) and + (green) indicates the lines of code that are removed and added, respec-

tively.

We can use some refactoring detection tools, such as REFACTORINGMINER and REFD-

IFF, to detect refactorings applied by developers. If we use them to evaluate the transfor-

mation presented in Listing 1.1, REFACTORINGMINER 2.0.3 indicates that the Rename Pa-

rameter refactoring was applied, while REFDIFF yields the Rename Method refactoring. We

reported the issue #141 of Listing 1.1 and developers fixed it in REFACTORINGMINER 2.1.0.

Refactoring detection tool developers create datasets (oracles) to evaluate their tools.

They manually mine open-source projects to identify refactorings based on their experience.

For instance, Silva [36] uses a manual-validated dataset proposed by Tsantalis et al. [50],

which contains non-refactoring and refactoring changes. However, this process is time-

consuming and error-prone. It is important to propose other techniques to test refactoring

detection tools.

Since developers may have different refactoring mechanics in mind when applying refac-

torings, and they use IDEs to apply refactorings [27], it is relevant to evaluate to what extent

the refactoring mechanics of refactoring detection tools and IDEs have consistent results.

Our research may help the developers’ community to improve refactoring detection tools

and refactoring automation tools. Likewise, it alerts the research community about the risks

of not considering related biases in their work.

1.3 Solution

In this work, we propose a technique to test refactoring detection tools. In short, the tech-

nique consists of applying a refactoring using a popular IDE and then running the refactoring

detection tool to check whether it detects the transformation by the IDE. For instance, we

apply the Move Method refactoring to an open-source project using ECLIPSE. Then, we run

REFDIFF to see whether it correctly detects the Move Method refactoring.

To evaluate the technique, we use the ECLIPSE IDE to apply 9,885 transformations of

1.4 Summary of Contributions 4

the following refactoring types: Rename Method, Rename Class, Move Method, Pull Up

Method, Push Down Method, Extract Interface, Inline Method, and Extract Method. All of

these refactorings are supported by both REFACTORINGMINER and REFDIFF. This allows

comparing the mechanics of these tools and the ECLIPSE IDE.

REFACTORINGMINER and REFDIFF are aligned with the refactoring mechanics of

ECLIPSE in 74.28% and 78.45% of the transformations, respectively. They detect more

refactorings in 20.41% and 14.11% of the analyzed transformations, respectively. REFAC-

TORINGMINER and REFDIFF do not detect refactorings or detect other types of refactorings

in other cases.

We reported 34 issues to the developers of refactoring detection tools, out of which 16

were fixed. At the moment, 12 bug reports are still open, 3 bugs are duplicated, and 3 issues

are not accepted, which might indicate possible problems in the mechanics of refactoring

implementations. Developers fixed bugs related to the Move Method (4), Inline Method (3),

Rename Method (3), Extract Method (2), Extract Interface (2), Pull Up Method (1), and Push

Down Method (1) refactorings.

This technique may help the refactoring detection tool developers to improve the evalu-

ation and the performance of their tools in combination with manually identifying transfor-

mations in software repositories.

1.4 Summary of Contributions

In summary, our main contributions are the following:

• A technique to test refactoring detection tools (Chapter 3);

• We evaluate our technique in 9,885 transformations (Section 4.1.3), and;

• We find 34 issues, out of which 16 are fixed (Section 4.1.4).

1.5 Organization

We organize this work as follows. Chapter 2 introduce some relevant concepts about refac-

torings and refactoring tools. Chapter 3 presents our technique, explains how it works and

1.5 Organization 5

shows some implementation details. Section 3.1 presents an overview of our technique and

its main steps. Next, Section 3.2 details the steps of our technique. Then, Section 3.3 shows

some implementation details. Next, in Chapter 4 we evaluate our technique. In Section 4.1,

we apply the technique to analyze the refactoring mechanics of refactoring detection tools

and ECLIPSE. Section 4.2 studies the composite refactorings in refactoring detection tools.

Then, Chapter 5 shows a brief history about refactoring studies and relates our study to oth-

ers. Finally, Chapter 6 presents the findings of the experiments and Section 6.3 proposes

some future works.

Chapter 2

Background

In this chapter we present the background of some concepts needed for understanding this

work. We organize this chapter as follows. Section 2.1 explains the code refactoring. Next,

Section 2.2 shows an overview about refactoring tools. Finally, we introduce some concepts

about the refactoring detection tools in Section 2.3.

2.1 Code Refactoring

The life cycle of software consists of continuous changes, such as fixing bugs, introducing

new features, or improving the development process and reusable parts [29]. The software

must change to stay relevant. As software is adapted, it becomes more complex. Thus, the

effort to carry out new adaptations also grows. Thus, making the software easier to change

makes subsequent design iterations easier, and then more reusable.

Coined by Opdyke [29], define a set of program restructuring operations that support

the design, evolution and reuse of object-oriented programs. Later, Fowler [9] defines code

refactoring as the process of modifying a software system to improve its internal quality

while preserving the observable behavior. Furthermore, the essence of code refactoring con-

sists of several small changes that preserve the program’s behavior. Mens and Tourwé [20]

define some refactoring activities, such as identifying where the program should be refac-

tored, determining which refactoring should be applied, guaranteeing that the applied refac-

toring preserves behavior, and then applying the refactoring.

Common refactorings have been identified, automated and incorporated into refactor-

6

2.2 Refactoring Implementations 7

ing tools, such as VISUAL STUDIO CODE [21], INTELLIJ [16], ECLIPSE [7], and NET-

BEANS [30], and detection tools, such as REFACTORINGMINER [49], REFDIFF [37], REF-

FINDER [32], and REFACTORINGCRAWLER [6]. Furthermore, some commercial develop-

ment methodology have refactoring as the major activity of their workflows, such as eXtreme

Programming [1].

Empirical studies have investigated the refactoring benefits and its developers’ percep-

tion. Silva et al. [39] investigated the reasons that drive developers to refactor their code.

They asked developers of 748 Java projects why they performed the identified refactorings.

Their results indicate that fixing a bug or feature additions mainly drives refactorings. Kim

et al. [18] conduct a field study of refactoring benefits and challenges at Microsoft through

complementary methods: a survey, semi-structured interviews with professional software

engineers, and quantitative analysis of version history data. The survey participants reported

the benefits they have observed from refactoring and cite readability and maintainability. The

quantitative analysis finds the main refactored modules had a higher reduction in the number

of inter-module dependencies.

2.2 Refactoring Implementations

Refactorings can occurs in high-level, or major design changes, and low-level, when a scope

is minimum such as renaming a variable. The high-level refactorings can be implemented in

terms of several low-level refactorings [29].

The availability of catalogs allows widely adopting the refactoring practices and describ-

ing both high and low-level refactorings. These catalogs give names and describe common

operations to apply the refactorings, named refactoring mechanics. For example, Rename

Class is the name of refactoring, and its mechanics consists of changing the class name and

updating its references.

Fowler [9] published a catalog that had a high impact on the world of software develop-

ment. The catalog describes the refactorings through specifications of 72 refactoring types.

The standard format for each specification has five parts: a name, a summary, a motivation,

the mechanics, and examples. Figure 2.1 shows a brief of refactoring specification from the

author’s specification. According to Fowler, the name is important to build a refactoring

2.2 Refactoring Implementations 8

vocabulary. Later, Fowler [10] improved his catalog by adding, renaming, and removing

refactorings. For example, the Add Parameter, the Remove Parameter, and the Rename

Method refactorings are part of the Change Function Declaration refactoring.

Figure 2.1: A brief illustration of refactoring specification from Fowler’s [9] catalog.

Rename Method

Methods should be named

to communicate their intention.

public class A {

 int name(){ return 0; }

}

public class A {

 int meaning(){ return 0; }

}

Refactoring Name

Motivation

Example

Before

After

Preconditions are an essential part of refactoring specification. When satisfying its pre-

conditions, the program preserves the behavior. For example, if we run the program before

and after refactoring with the same input, the program yields the same output. Some refactor-

ings are simple to implement, but for a few refactorings, their preconditions are undecidable.

Fortunately, it can be determined whether these refactorings can be applied safely [29].

2.2.1 Code Examples

To read the following examples, ponder the refactoring specifications of Fowler’s [9] cata-

log. The listings are reduced for didactic purposes and simple reading. Consider the Java

programming language to read the listings and discard some implementation details that are

not necessary to understand the refactoring mechanics, in other words, the way to apply the

refactoring. Furthermore, consider the red lines as the deleted lines of code and green lines

as the new lines of code.

2.2 Refactoring Implementations 9

The Extract Method refactoring is a popular refactoring, and several instances can be

found on public code repositories, such as GitHub1, GitLab2, and Bitbucket.3 This refac-

toring can be applied when the method is too long or its purpose is hard to understand.

Accordingly to Fowler [9], the mechanics of the Extract Method refactoring consists of se-

lecting statements from a long method with a purpose in common and creating a new one, as

seen in Listing 2.1. The new method (lines 10 to 14) has a distinct purpose from the original

method (lines 1 to 8).

Listing 2.1: Using the ECLIPSE Extract Method refactoring.

1 public void show(Step step) {

2 ...

3 - float value = step.getValue();

4 - boolean isCelsius = step.getMetric();

5 - float temp = isCelsius ? (1.8*value + 32) : (value-32)*1.8;

6 + float temp = convert(step);

7 ...

8 }

9

10 + private float convert(Step step) {

11 + float value = step.getValue();

12 + boolean isCelsius = step.getMetric();

13 + float temp = isCelsius ? (1.8*value + 32) : (value-32)*1.8;

14 + return temp;

15 + }

As another example, the Rename Method refactoring is also popular in public code repos-

itories. It can be applied when the method’s name does not reflect its purpose. For example,

suppose we manually rename the method named as getNumber to getEven in Listing 2.2.

According to Fowler’s [9] mechanics, the Rename Method refactoring aims to replace the old

name (line 4) with the new name (line 5). Moreover, the mechanics updates the references

from the old method to the new method, as seen in lines 1 and 2.

1https://github.com
2https://gitlab.com
3https://bitbucket.org

2.2 Refactoring Implementations 10

Listing 2.2: Using the ECLIPSE Rename Method refactoring.

1 - String number = getNumber(obj);

2 + String number = getEven(obj);

3 ...

4

5 - private int getNumber(int number) {

6 + private int getEven(int number) {

7 return number%2 > 0 ? number++ : number;

8 }

As another example, consider the Inline Method refactoring can be applied to remove a

method. Fowler’s [9] mechanic of the Inline Method refactoring aims to put the method’s

body into the body of its callers and then delete the method’s declaration. The Inline Method

refactoring has several motivations, such as when a group of methods can be composed or

when delegations can be simplified. Consider we apply the Extract Method refactoring to the

getName method in Listing 2.3. First, we copy the body of the getName method to the

show method (lines 3 and 4). Then, we remove references to the getName method (line 2)

and finally we delete its declaration (lines 8 to 12).

Listing 2.3: Using the ECLIPSE Inline Method refactoring.

1 public void show(Object obj) {

2 - String number = getName(obj);

3 + String number = obj.getValue();

4 + number += 10;

5 ...

6 }

7

8 - private String getName(Object obj) {

9 - String number = obj.getValue();

10 - number += 10;

11 - return number;

12 - }

2.2 Refactoring Implementations 11

2.2.2 Automating Refactorings

In his dissertation, Roberts [33] examines techniques for using runtime analysis to assist

refactoring and identifies the criteria that are necessary for any refactoring tool to succeed.

Furthermore, he describes several ways to make a refactoring tool that is both fast and re-

liable. His approach, the REFACTORING BROWSER, automated several refactorings for the

Smalltalk object-oriented programming language.

Since then, researchers have improved the correctness and applicability of refactorings

by using formal techniques through refactoring tools, such as JastAdd Refactoring Tools

(JRRT). Schafer and Moor [35] proposed specifications to improve refactoring implementa-

tions of Eclipse in terms of correctness. They implemented some Java refactorings in JRRT.

Moreover, a number of modern development tools have automated refactorings to program-

ming languages, such as VISUAL STUDIO CODE [21], INTELLIJ [16], ECLIPSE [7], and

NETBEANS [30]. Figure 2.2 shows side-by-side the refactor menu of three IDEs: ECLIPSE,

NETBEANS, and INTELLIJ.

Figure 2.2: Refactor menu of ECLIPSE 4.14, NETBEANS 8.2, and INTELLIJ 11.

2.3 Refactoring Detection Tools 12

We can notice some additional refactorings names, such as Replace Constructor with

Builder in INTELLIJ and Introduce Factory in ECLIPSE. Moreover, INTELLIJ and VISUAL

STUDIO CODE can enable refactoring functionalities on demand, according to the user’s

selection. Oliveira et al. [27] surveyed 107 developers and find the developers use IDEs to

apply refactorings, and 71.02% expect different programs as output. Besides, about 7% of

them consider the meaning of the refactoring names, and it can impact their communication.

2.3 Refactoring Detection Tools

Some works detail the refactoring mechanics [9, 20, 29], which is a concise step-by-step

description of how to carry out the refactoring. In addition, IDEs e.g. INTELLIJ, ECLIPSE,

and NETBEANS have automated several refactorings. Tools that detect refactorings have

been proposed in the literature. Currently, the best tools available in the state of the art are

REFACTORINGMINER [49] and REFDIFF [37].

Recovering refactoring information can provide valuable insights to researchers who fo-

cus on understanding software evolution. Some studies address relevant aspects of refac-

torings, such as the motivations behind refactoring [24, 25, 51], improvements in detection

algorithms [26, 32, 37, 49], understanding of the developers’ perspective [17, 24, 25, 27], and

detection of behavioral changes introduced by refactorings [41,42]. Knowing the performed

refactorings in the version history may help in several practical tasks, such as proposing bet-

ter diff visualization tools, helping during code review, and simplifying API migration [37].

REFACTORINGMINER and REFDIFF are refactoring detection tools that may help re-

searchers empirically investigate several aspects of refactorings, including their benefits.

They create an oracle based on refactorings applied to real open-source projects and hosted

on GitHub and identified by professional developers to evaluate their tools.

To evaluate the accuracy of refactoring detection tools, developers manually mine open-

source projects to identify transformations based on their experience. Then, they create a

dataset of manually classified transformations to evaluate their tools. For example, Tsantalis

et al. [49] manually identified 7,226 refactorings in open-source projects for 40 different

refactoring types. However, this process is time-consuming and error-prone. Since there is

no refactoring mechanics specification widely accepted by developers, developers may have

2.3 Refactoring Detection Tools 13

different refactoring mechanics [27].

The lack of universally accepted definitions of refactoring mechanics is one of the main

challenges for refactoring detection tools. Oliveira et al. [27] show the developers and IDE

refactoring tools use different mechanics for most refactoring types. Additionally, it is chal-

lenging to account for all Java constructs that may affect refactoring mechanics, such as

generics and lambda expressions.

In the following sections, we show the improvement of the mainstream refactoring de-

tection tools. The tools can detect several refactoring types in different programming levels

and run through programming languages such as JavaScript and C/C++.

2.3.1 REFACTORINGMINER

REFACTORINGMINER [49] is a refactoring detection tool used as a library and API. The

project has been written and specializes in the Java programming language. Moreover, it can

automatically detect refactorings applied in the version history of a Java project.

The first version of the tool is called RMINER 1.0 [50]. Its approach relies on an Ab-

stract Syntax Tree (AST) statement matching algorithm that determines refactoring candi-

dates without requiring a well-defined calibration process. The authors present two novel

techniques to deal with relationships of refactoring candidates: the concept of abstraction,

which deals with AST type changes in statements due to refactoring, and the concept of ar-

gumentization, which deals with changes in subexpressions due to parameterization. From

these techniques, RMINER 1.0 can match AST statements with detection rules to support 15

refactoring types.

The next version of the tool was renamed REFACTORINGMINER 2.0 [49] and had rel-

evant increments of the detection algorithms. The improvements support the detection of

low-level and submethod-level refactorings. In other words, it means the REFACTORING-

MINER can detect refactorings in a level of variables, such as Rename Variable and Extract

Variable refactorings. Thereby, the authors expand the supported refactorings to 40 types.

Some types are present in Fowler’s catalog [11], such as Extract Class, automated by IDEs,

such as Move Class, and manually applied by developers, such as Change Variable Type.

In addition, the authors improved the precision and recall by supporting new heuristics and

replacement types to match statements and consequently refactoring candidates.

2.3 Refactoring Detection Tools 14

In the recent version available in the public repository,4 REFACTORINGMINER 2.2 en-

hances the fine-grained detections, for example, the Add Parameter Modifier, the Remove

Variable Modifier, and the Replace Attribute with Variable refactorings. Besides, it improves

the language-specific statements, such as anonymous class and lambdas. Thereby, it supports

a total of 85 types of refactorings. Table 2.1 shows the evolution of supported refactoring

types along with tool versions.

Table 2.1: Evolution of refactoring types supported by REFACTORINGMINER.

RMINER 1.0 REFACTORINGMINER 2.0 REFACTORINGMINER 2.1 REFACTORINGMINER 2.2

Extract Method

Inline Method

Rename Method

Move Method

Move Attribute

Pull Up Method

Pull Up Attribute

Push Down Method

Push Down Attribute

Extract Superclass

Extract Interface

Move Class

Rename Class

Extract and Move Method

Rename Package

Move and Rename Class

Extract Class

Extract Subclass

Extract Variable

Inline Variable

Parameterize Variable

Rename Variable

Rename Parameter

Rename Attribute

Move and Rename Attribute

Replace Variable with Attribute

Replace Attribute (with Attribute)

Merge Variable

Merge Parameter

Merge Attribute

Split Variable

Split Parameter

Split Attribute

Change Variable Type

Change Parameter Type

Change Return Type

Change Attribute Type

Extract Attribute

Move and Rename Method

Move and Inline Method

Add Method Annotation

Remove Method Annotation

Modify Method Annotation

Add Attribute Annotation

Remove Attribute Annotation

Modify Attribute Annotation

Add Class Annotation

Remove Class Annotation

Modify Class Annotation

Add Parameter Annotation

Remove Parameter Annotation

Modify Parameter Annotation

Add Variable Annotation

Remove Variable Annotation

Modify Variable Annotation

Add Parameter

Remove Parameter

Reorder Parameter

Add Thrown Exception Type

Remove Thrown Exception Type

Change Thrown Exception Type

Change Method Access Modifier

Change Attribute Access Modifier

Encapsulate Attribute

Parameterize Attribute

Replace Attribute with Variable

Add Method Modifier

Remove Method Modifier

Add Attribute Modifier

Remove Attribute Modifier

Add Variable Modifier

Add Parameter Modifier

Remove Variable Modifier

Remove Parameter Modifier

Change Class Access Modifier

Add Class Modifier

Remove Class Modifier

Move Package

Split Package

Merge Package

Localize Parameter

Change Type Declaration Kind

Collapse Hierarchy

Replace Loop with Pipeline

Replace Anonymous with Lambda

REFACTORINGMINER can be imported as a library into Java projects or used as a

command-line tool by generating a bundle from the source code. Since version 2.0, REFAC-

TORINGMINER is available on Maven projects by adding as a dependency. The tool works

with remote or local Git-based repositories and can detect refactorings between two versions

4https://github.com/tsantalis/RefactoringMiner

2.3 Refactoring Detection Tools 15

of source code, such as commits or tags, at a specific version or the entire project. Next,

we show some detection examples by running the library of REFACTORINGMINER 2.2 in

the REFACTORING-TOY-EXAMPLE5 project. We publish the following examples in a Maven

project on Github.6

Listing 2.4 presents the detectBetweenCommits method, which accepts four argu-

ments: first, a repository object, the start commit (line 1), the end commit (line 2), and a

callback. Then, the tool yields a list of detected refactorings for each commit present be-

tween these commits (line 7). In this example, we have a unique commit between them, and

the tool finds a single instance of Rename Method refactoring.

Listing 2.4: Detection at between commits of REFACTORING-TOY-EXAMPLE project.

1 String s = "9921a4c"; // start commit

2 String e = "124ce1c"; // end commit

3 miner.detectBetweenCommits(repo, s, e, new RefactoringHandler() {

4 @Override

5 public void handle(String c, List<Refactoring> refs) {

6 for (Refactoring r : refs)

7 System.out.println(r.toString());

8 }

9 });

As another example, REFACTORINGMINER allows detecting refactorings at a specific

commit. Listing 2.5 shows the detectAtCommit method accepts three arguments: an ob-

ject, which references the Git repository, a commit hash (line 1), which contains refactorings,

and a callback, which is called after processing. In this case, the tool verifies the modified

statements between the commit and its parent from the history. Then, the tool yields a unique

instance of the Extract Method refactoring (line 6).

The next example shows the detection of all refactoring in the Git project. Listing 2.6

shows the detectAllmethod accepts three arguments: an object that references the repos-

itory, the branch name (line 1), and a callback. REFACTORINGMINER starts from the most

recent commit and scans its successive parents from the same branch. Then, it yields a list of

5https://github.com/osmarleandro/refactoring-toy-example
6https://github.com/osmarleandro/mining-refactorings-example

2.3 Refactoring Detection Tools 16

detected refactorings for each commit (line 5). The results can take a long time of processing,

depending on repository history size.

Listing 2.5: Detection at single commit of REFACTORING-TOY-EXAMPLE project.

1 String commit = "124ce1c";

2 miner.detectAtCommit(repo, commit, new RefactoringHandler() {

3 @Override

4 public void handle(String c, List<Refactoring> refs) {

5 for (Refactoring r : refs)

6 System.out.println(r.toString());

7 }

8 });

Listing 2.6: Detection at all commits in repository.

1 String branch = "master";

2 miner.detectAll(repo, branch, new RefactoringHandler() {

3 @Override

4 public void handle(String c, List<Refactoring> refs) {

5 for (Refactoring r : refs)

6 System.out.println(r.toString());

7 }

8 });

2.3.2 REFDIFF

REFDIFF [40] is a detection tool to find relationships between code elements in the commit

history of git repositories. The relationships are refactoring types and denote is the elements

are the same or there is a refactoring operation. The tool has a language-agnostic design,

which allows supporting programming languages by the implementation of plugins.

The first versions of REFDIFF employ a combination of heuristics based on static analysis

and code similarity to detect 13 well-known refactoring types. The tool’s approach uses the

classical TF-IDF similarity measure from information retrieval to compute code similarity.

2.3 Refactoring Detection Tools 17

It relies on similarity thresholds to find relationships between the entities and needs to be

calibrated by applying a well-defined calibration process.

For example, the REFDIFF 1.0 calibration process used ten random sets of commits that

contain refactorings from a public dataset. Then, the authors run the tool using different

thresholds values, ranging from 0.1 to 0.9 by 0.1 increments. Later, the output of REFDIFF

was compared to the known refactorings from the dataset to verify precision and recall. The

goal is to optimize the precision and recall by adjusting thresholds.

The strategy of REFDIFF 2.0 [37] is to design a new core that supports language-

independent implementations. Beyond Java, the authors created plugins to support the pop-

ular general-purpose programming languages JavaScript and C/C++. Besides, some rela-

tionships have no support in the second version, for example, the Move Field, the Pull Up

Field, and the Push Down Field refactorings. Table 2.2 shows the refactoring types and

relationships supported by each tool version.

Table 2.2: Evolution of refactoring types supported by REFDIFF.

REFDIFF 1.0 REFDIFF 2.0

Java Java, JavaScript, C/C++

Rename Type, Rename Method

Move Type, Move Method,

Move and Rename Type,

Extract Supertype

Change Method Signature,

Pull Up Method, Push Down Method

Extract Method, Inline Method

Rename,

Move,

Move and Rename,

Extract Supertype

Change Signature

Pull Up, Push Down,

Extract, Inline

- Extract and Move

Pull Up Field,

Push Down Field,

Move Field

-

- Convert Type

The REFDIFF’s approach has two main steps: first, it performs a Source Code Analysis,

and then a Relationship Analysis. In the Source Code Analysis, the authors build tree models

that represent the source code, called Code Source Tree (CST). They parse the source code

2.3 Refactoring Detection Tools 18

and generate an Abstract Syntax Tree (AST) that is used to build the CST for a specific

language. Each language plugin defines the code elements to be extracted.

For example, suppose we rename the getNumber method to getEven as seen in List-

ing 2.2. To build the CST nodes from Java REFDIFF extracts methods, classes, enums, and

interfaces. In this example, it extracts the methods from the AST of before and after renam-

ing versions.

In the next step, Relationship Analysis, the tool mine the refactorings relationships from

CSTs. REFDIFF finds the set of relationships R between the CST sets. Each relationship

r ∈ R is a combination of v1 ∈ V1, v2 ∈ V2, t = RelationshipType. REFDIFF’s authors

define several relationship types and conditions to find them, such as Pull Up, Rename,

Move, Inline, and Extract. For example, consider the same example of Listing 2.2. The

CSTs contains the following relationship: v1 = getNumber, v2 = getEvent, t = Rename.

REFDIFF’s authors evaluated the precision and recall by a dataset of 3,248 real refac-

toring instances from Java repositories on GitHub. They achieved an overall precision and

recall of 96% and 80%, respectively. To evaluate JavaScript and C/C++ languages, they

selected the 20 most popular GitHub projects of each programming language. Then, they

randomly selected ten instances of each refactoring type and manually count the true and

false positives. Following this process, they calculate an overall precision of 91% and 88%

and recall of 88% and 91% for JavaScript and C/C++, respectively.

Next, we present the using of the REFDIFF library. We create a Maven project with

its dependency and run the Java program. This source-code is available in the online reposi-

tory.7 The following example of Listing 2.7 shows the detection of refactoring from a specific

commit at the REFACTORING-TOY-EXAMPLE project. Listing 2.7 shows the computeD-

iffForCommit method from the REFDIFF’s API. It accepts two arguments: a repository

object, which references the Git repository (lines 2 and 6), and the commit hash (line 3).

REFDIFF internally computes the differences between the commit and its parent (line 7),

selects candidates from modified code, and yields an object that contains the relationships

between refactoring candidates (line 9). Finally, our program prints a description of each

refactoring relationship (line 10). Listing 2.7 prints the Extract Method refactoring.

7https://github.com/osmarleandro/mining-refactorings-example

2.3 Refactoring Detection Tools 19

Listing 2.7: REFDIFF detection at specific commit.

1 public static void main(String[] args) {

2 String url = ".../refactoring-toy-example.git",

3 String commit = "0d3a06c";

4

5 RefDiff refDiffJava = new RefDiff(new JavaPlugin(...));

6 File repo = refDiffJava.cloneGitRepository(... url);

7 CstDiff diff = refDiffJava.computeDiffForCommit(repo, commit));

8

9 for (Relationship rel : diff.getRefactoringRelationships())

10 System.out.println(rel.getStandardDescription());

11 }

2.3.3 Refactoring Names

The names of refactorings can differ in each automation tool, such as IDEs, as well in detec-

tion tools, such as REFACTORINGMINER and REFDIFF. For example, REFDIFF’s Change

Signature Method refactoring refers to low-level refactorings applied by REFACTORING-

MINER, such as the Change Parameter Type refactoring. Table 2.3 presents a comparison

between the names of some refactorings in both tools.

Table 2.3: Matching the refactoring names in REFACTORINGMINER to relationship types

applied to code elements in REFDIFF.

REFACTORINGMINER 2.2 REFDIFF 2.0

Rename Method, Rename Class Rename Method, Class

- Convert Type

Pull Up Method, Push Down Method Pull Up Method, Push Down Method

Move Method, Move Class Move Method, Class

Extract and Move Method Extract and Move Method

Inline Method Inline Method

Extract Method, Extract Superclass, Extract Interface Extract Method, Interface, Superclass

Change Parameter Type Change Signature Method

Move and Rename Method, Move and Rename Class Move and Rename Class

Chapter 3

Technique to Compare Refactoring

Mechanics

In this chapter, we propose a technique to compare refactoring detection tools. Section 3.1

presents an overview of our technique and its main steps. Next, Section 3.2 details the steps

of our technique. Then, Section 3.3 explains how we implement our technique.

3.1 Overview

Figure 3.1 shows the main steps of our technique. It receives as input a program and a par-

ticular refactoring type, hereafter called X, to be evaluated. First, we search for all possible

locations where X can be applied in the input program. Then, for each location, we apply a

single refactoring to the input program using an implementation of X, producing as output a

new version of the input program. Notice that this step yields a set of output programs con-

taining the application of a single refactoring for each possible location identified in Step 1.

Finally, we run a refactoring detection tool (Y) to check whether Y detects the application

of refactoring X in each pair (Input and Output Programs). The technique then produces a

report indicating whether the refactoring detection tool was able to detect each refactoring.

20

3.2 Steps 21

Figure 3.1: A technique to compare refactoring mechanics of refactoring detection tools and

refactoring implementation.

3.2 Steps

Step 1 consists of identifying all locations where we can apply a refactoring (X). In this step,

we search for all possible refactoring targets in the input source code. We followed a similar

approach proposed by Gligoric et al. [13].

For example, suppose we would like to evaluate the Rename Class refactoring. Our

technique finds all classes (locations) in the program received as input. As another example,

consider we would like to evaluate the Rename Method refactoring. Our technique searches

for all methods (locations) declared in the input program.

The result of Step 1 is a set of locations (L). This way, locations are dependent on the

particular refactoring type. For instance, it might be a method for the Inline Method refac-

toring, statements for the Extract Method refactoring, or a method declaration for the Move

Method refactoring.

In Step 2, we apply the refactoring implementation of X to all possible locations L. For

example, suppose we would like to apply the Move Method refactoring. In Step 1, we

find all methods in the input program. In Step 2, we apply the Move Method refactoring

to each location, in this case a method, such as the doHealthCheck method presented

in Listing 3.1. Then, we move it from the ElasticsearchRestHealthIndicator

class to the Health class. In real scenarios, the user must choose a target class for moving.

For this example, consider the target class that was selected previously.

3.2 Steps 22

Listing 3.1: Using the ECLIPSE Move Method refactoring.

1 @@ class ElasticsearchRestHealthIndicator

2 - doHealthCheck(builder, ...);

3 + builder.doHealthCheck(this, ...);

4

5 - private void doHealthCheck(Health.Builder b, String json) { ...

6 - builder.withDetails(response);

7 - }

8

9 @@ class Health

10 + public void doHealthCheck(ElasticsearchRestHealthIndicator e,

11 + String json) { ...

12 + withDetails(response);

13 + }

For simplicity, we use a default parameter for other options available in the refactoring

implementation. Listing 3.1 presents one pair of input and output program. We repeat this

process to all locations identified in Step 1. The result of this step is a set of pairs (P)

containing the input program and the output program. It is important to mention that each

pair consists of an output program yielded by a single application of X to the input program.

We only apply a single refactoring using the IDE to make it simpler to compare with the

refactoring detection tool output. It is also easier for us to report an issue to developers. If

the refactoring implementation does not apply a transformation, or the resulting code does

not compile, we ignore it.

In Step 3, we run the refactoring detection tool for each pair in P. For example, con-

sider Listing 3.1 in which we apply the Move Method refactoring to the getAnnotation

method using the ECLIPSE implementation. REFACTORINGMINER yields a single instance

of the Move Method refactoring. For this pair, we then report that the refactoring mechanics

of REFACTORINGMINER is consistent with the refactoring implementation of ECLIPSE.

Now, consider the example presented in Listing 3.2. Suppose we would like to apply the

Rename Class refactoring to the UMLJavadoc class using the ECLIPSE implementation.

For this pair, REFACTORINGMINER yields seven refactorings: Rename Class (1), Change

3.2 Steps 23

Return Type (2), Change Attribute Type (2), and Change Parameter Type (2). For this pair,

since the output of REFACTORINGMINER contains the refactoring applied by ECLIPSE and

other refactorings, we report that the refactoring mechanics of REFACTORINGMINER is par-

tially consistent with the refactoring implementation of ECLIPSE.

Listing 3.2: Using the ECLIPSE Rename Class refactoring.

1 @@ class UMLJavadoc

2 - public class UMLJavadoc {

3 + public class UMLDocJava {

4

5 @@ class UMLClass

6 - public void setJavadoc(UMLJavadoc javadoc) {

7 + public void setJavadoc(UMLDocJava javadoc) {

As another example, suppose we would like to apply the Rename Method refactoring

using ECLIPSE to rename the getRevision method to getRevisionID. Part of this

refactoring in presented in Listing 1.1. Running REFACTORINGMINER on this pair yields

the Rename Parameter refactoring. For this pair, since the output of REFACTORINGMINER

is not the refactoring applied by ECLIPSE and the output is not empty, we report that the

refactoring mechanics of REFACTORINGMINER is different from the refactoring applied by

ECLIPSE.

In some cases, REFACTORINGMINER yields an empty output. Suppose we would like to

apply the Extract Method refactoring illustrated in Listing 3.3. REFACTORINGMINER 2.0.3

yields an empty set of refactorings, and does not detect the refactoring applied by ECLIPSE.

The issue #159 of Listing 3.3 was fixed, and REFACTORINGMINER 2.1.0 correctly detects

the applied refactoring.

Listing 3.3: Using the ECLIPSE Extract Method refactoring.

1 @@ class PrometheusPushGatewayManager

2 catch (UnknownHostException ex) {

3 - String host = ex.getMessage();

4 - String message = ...

5 + String message = extracted(ex);

6

3.2 Steps 24

7 @@ class PrometheusPushGatewayManager

8 + private String extracted(UnknownHostException ex) {

9 + String host = ex.getMessage();

10 + String message = ...

11 + return message;

12 + }

Our technique classifies each pair into one of the four categories previously mentioned

with the examples, and reports the results to the user. We summarize our categorization in

Table 3.1. Our main goal is to see whether there are differences in the refactoring mechan-

ics of IDEs and refactoring detection tools. When such a difference is found, it does not

necessarily mean that the issue is on the refactoring detection tool side. Moreover, when a

refactoring detection tool reports more information, it does not always mean that they are

wrong. Sometimes, the refactoring mechanics implemented by the IDE may add some ad-

ditional optional changes, such as introducing temporary variables when inlining a method.

As future work, we aim to study the mechanics implemented by IDEs and see how they can

be modified to be consistent with refactoring detection tools.

Table 3.1: Classification of transformations: x = refactoring type applied by the refactoring

implementation A; Y = the list of refactorings detected by the refactoring detection tool B.

Category Definition

A and B are different x /∈ Y ∧ Y ̸= ∅

A is consistent with B x ∈ Y ∧ #Y=1

A is partially consistent with B x ∈ Y ∧ #Y>1

B yields an empty set Y = ∅

Automating the technique significantly increases the number of differences. Further-

more, we have two main advantages of our technique: first, we can raise discussions about

the aspects that make the mechanics of IDEs and detection tools have differences, and sec-

ond, it allows us to find bugs in both mechanics. In short, Step 1 provides a set of locations.

Locations are methods, classes or statements read from the Abstract Syntax Tree (AST).

The detection of refactoring opportunities consists of iterating on each location and verify-

3.3 Tool Support 25

ing preconditions to apply the refactoring. After Step 2, and before Step 3, our technique

filters uncompilable refactorings. Then, we store the input and output versions. Thus, we

can isolate the resulting code between refactorings, and we compare them more easily.

3.3 Tool Support

In Step 1, we use ECLIPSE’s AST to perform code analysis and identify the possible loca-

tions where we might apply refactorings: classes, methods, interfaces, and so on. We use the

refactoring implementations from ECLIPSE [7] in Step 2. So far, we have tool support for

the following refactoring implementations: Rename Method, Rename Class, Move Method,

Push Down Method, Pull Up Method, Extract Interface, Inline Method, and Extract Method.

Finally, in Step 3 we consider two refactoring detection tools currently, namely REFACTOR-

INGMINER [49] and REFDIFF [37].

Our technique works from any IDE, and we select the popular IDE ECLIPSE [7] to

perform transformations. Moreover, we select the state-of-art refactoring detection tools

REFACTORINGMINER and REFDIFF to mine refactorings from the source code transformed

by ECLIPSE. Moreover, we use other tools to build and run tests and manage code versions.

Gradle [15] is an open-source build automation system that is based on the concepts of

Apache Ant1 and Apache Maven.2 The initial plugins are primarily focused around Java

development and deployment, Groovy and Scala. We use Gradle to check compilation errors

and run testing tasks when available.

Git [12] is a distributed version control system initially designed and developed by Li-

nus Torvalds for Linux kernel development but has been adopted by many other software

projects. In this work, we use some concepts of Git to arrange the massive refactoring in-

stances, such as branches and commits. A commit object, or only commit, is a checkpoint

of the actual file state and is identified by a hash. A branch is simply a lightweight movable

pointer to one commit.

Once we select a GitHub project, Step 2 processes all possible code elements to apply

refactorings, such as classes, interfaces, and methods. The ECLIPSE IDE evaluates precon-

1https://ant.apache.org/
2https://maven.apache.org/

3.3 Tool Support 26

ditions to apply the refactoring. If some precondition fails, our technique implementation

selects the next code element. For each code element, we apply a unique refactoring type

and perform all steps of the technique. For example, suppose we want to apply Rename

Class to all classes in a Java project called SPRING-BOOT. First, the technique implemen-

tation reads a class, performs the Rename Class refactoring, and checks if the project still

compiles. If the project does not compile, we discard all modified files and select the next

class.

Each Eclipse’s refactoring implementation has specific parameters and mechanics. We

studied these refactoring implementations and defined the default parameters according to

Table 4.2. Suppose we would like to apply the Rename Method refactoring. The first step

is to select a method to rename. Next, we give a new name to the method as a parameter.

Then, the IDE evaluates some preconditions and replaces the old method name with a new

method name in all locations that call the old method. In this case, the user needs to give one

parameter: the new method name.

After applying the refactoring in Step 2, we use the Gradle tool to build and run testing

tasks when available. If the output code does not pass in some build or testing task, we use

the Git tool to discard all files modifications and return to the original code. Otherwise, we

save the resulting code as a new refactoring instance.

For example, Figure 3.2 shows the GITG3, an open-source graphical user interface for

Git. In this example, we apply the Rename Method refactoring to the sleep method of the

GOOGLE-MAPS-SERVICE-JAVA project. Notice the file modifications (C) have the resulting

code (green) and original code (red). The green code is stored in a new commit (B) and a

new branch (E) points to it. Thus, this commit can be compared with its parent (A) to show

file modifications (C) after applying the Rename Method refactoring.

Once a new Git commit has the refactored code, we run the refactoring detection tools

REFACTORINGMINER and REFDIFF. The refactoring detection tools read the refactored

code, present in the commit, and yield a list of detected refactorings or an empty list. Then,

we verify whether their results contain the applied refactoring, according to categories of

Table 3.1. These categories help to analyze the differences between the mechanics of the

refactoring detection tools and IDEs.

3https://wiki.gnome.org/Apps/Gitg

3.3 Tool Support 27

Figure 3.2: A diff tool shows the differences between two versions of code: deleted lines

(red) and added lines (green). The original code (B) is the parent of refactored code (A),

and the tool shows the differences between them (C). Each new commit (D) is based on the

original code and stored in a new branch (E).

C. file modifications

B. before refactoring
A. after refactoring

D. commits

E. branch name

For example, Table 3.2 shows a technique report produced after Step 3. The first column

(Project) shows the project name, and the second column (Method) shows the code ele-

ment to apply the refactoring, in this case, a method. Then, the third column (Refactoring)

shows the refactoring implementation of ECLIPSE. The fourth and fifth columns (Refac-

toringMiner, Count) show the results of REFACTORINGMINER and its count, respectively.

Finally, the last two columns (RefDiff, Count) show the results of REFDIFF and its count,

respectively.

The Count columns represent each category. Consider the definition of Table 3.1 of a

refactoring implementation A and a list of refactoring types detected B. When A is consistent

with B, count = 1. When A is partially consistent with B, count > 1. When A and B are

different, count < 0. When B is empty, count = 0.

We manually analyze a number of refactoring instances from the technique’s report to

find the categories between the refactoring detection tools and ECLIPSE IDE. For example,

3.3 Tool Support 28

Table 3.2: An example of the technique’s report [19]. We simplify it by changing the project

names and removing some columns, such as the packages and classes columns.

Project Method Refactoring REFACTORINGMINER Count REFDIFF Count

A renamedMethodA# Rename Method

Rename Method,

Change Variable Type,

Change Variable Type

3 Rename Method 1

B extractedMethodB# Extract Method Extract Method 1 NA 0

C movedMethodC# Move Method NA 0

Inline Method,

Inline Method,

Inline Method

-3

consider the negative value of Table 3.2. We intend to understand the output of the refactoring

detection tool by analyzing the resulting code. So, we use a diff tool to compare the code

before and after refactoring, as seen in Figure 3.2. We discuss our findings in Section 4.1.4.

Chapter 4

Comparing Refactoring Mechanics

We compare the refactoring mechanics of refactoring detection tools and ECLIPSE by con-

ducting studies from different perspectives. First, we apply our technique to detect differ-

ences between the mechanics (Section 4.1). Then, we verify whether composite refactorings

impact the results of refactoring detection tools (Section 4.2). We organize this chapter as

follows. Section 4.1 presents the evaluation of the technique and discusses the results. Next,

Section 4.2 shows the evaluation of the composite refactorings.

4.1 Refactoring Detection Tools and IDE

In this study, we use our technique to evaluate eight refactoring implementations of ECLIPSE

using two refactoring detection tools in four open-source projects. We run two instances of

the technique for each detection tool, first using ECLIPSE and REFACTORINGMINER, and

next using ECLIPSE and REFDIFF. Section 4.1.1 presents our study definition. Section 4.1.2

describes the experimental setup. Sections 4.1.3 and 4.1.4 present results and discuss them,

respectively. Section 4.1.5 describes some threats to validity, and Section 4.1.6 answers our

research questions.

4.1.1 Study Definition

Our goal is to apply our technique to check the consistency of the refactoring mechanics used

by refactoring detection tools and refactoring implementations of ECLIPSE. We analyze

29

4.1 Refactoring Detection Tools and IDE 30

REFACTORINGMINER, REFDIFF, and the refactoring implementations of ECLIPSE. We

address the following research questions:

RQ1 To what extent the refactorings applied by ECLIPSE are detected by REFACTORING-

MINER or REFDIFF?

We count the number of refactorings detected by REFACTORINGMINER (RQ1.1) or

REFDIFF (RQ1.2) that are consistent with ECLIPSE, as well as the number of refactor-

ings that are partially consistent and different. Finally, we also count the number of

times that the detection tool yields an empty set.

RQ2 How many bugs can our technique detect in REFACTORINGMINER and REFDIFF?

We submit issues to the developers of refactoring detection tools and count the number

of accepted and fixed bugs in each tool.

4.1.2 Experimental Setup

We ran the experiment on a laptop computer with Core i7 3.1 GHz and 8 GB RAM running

Fedora 33 and Oracle JDK 1.8. Table 4.1 shows the four open-source projects used as inputs:

APACHE GOBBLIN, GOOGLE MAPS SERVICES JAVA, REFACTORINGMINER, and SPRING

BOOT. We deliberately select Gradle1 projects to allow integration with build automation.

In addition, we verify compilation of the stable branch and prefer projects with at least 30

KLOC. The selected projects allow to generate 9,885 transformations.

Table 4.1: Projects used in our evaluation.

Project Domain KLOC Stars Contributors

APACHE GOBBLIN
A distributed data

integration framework
454 1.8K 78

GOOGLE MAPS SERVICES JAVA
A Java client for

Google Maps Services
38 1.4K 90

SPRING BOOT
A framework to create

Spring-based applications
674 9.6K 320

REFACTORINGMINER A refactoring detection tool 127 173 12

1https://gradle.org/

4.1 Refactoring Detection Tools and IDE 31

We use eight refactoring implementations of ECLIPSE JDT 4.16 in Step 2. ECLIPSE

JDT is a widely used IDE and has several refactoring implementations. In this work, we

consider the following refactoring implementations: Rename Method, Rename Class, Move

Method, Push Down Method, Pull Up Method, Extract Interface, Inline Method, and Extract

Method refactorings. We select refactoring types that both refactoring detection tools support

in common. It allows comparing the mechanics of refactoring detection tools and IDE. In

addition, the total of transformations is superior to previous oracles [37, 49, 50] and was

enough to provide pertinent discussions.

In Step 3, we use two refactoring detection tools: REFACTORINGMINER 2.0.32 (to an-

swer RQ1.1), and REFDIFF 2.03 (to answer RQ1.2). Although there are other refactoring

detection tools, such as REF-FINDER [32] and REFACTORINGCRAWLER [6], we are re-

stricted to the most recent detection tools, which have the higher precision and recall and

are compatible with the Java language. To answer RQ2, we verify several transformations

to see whether it is possible to arrive at the refactored version of the code by applying the

detected refactorings. Then, we create an issue to discuss that behavior with the refactoring

detection tool developers. Finally, the experimental data are available online [19].

Table 4.2: ECLIPSE modified parameters used in the experiments.

Refactoring Modified Parameters

Extract Interface
Members to declare in the interface: select all;

Interface name: class name with "I" prefix.

Extract Method Selection: see Algorithm 1.

Inline Method Inline a random method.

Move Method New target for the method: the first type from the list.

Pull Up Method Specify actions for members: check a random method.

Push Down Method Specify actions for members: check a random method.

Rename Class New name: old class name with a suffix.

Rename Method New name: old method name with a suffix.

Table 4.2 presents the modified parameters for each refactoring implementation. For

example, when applying the Rename Method refactoring using the graphical user interface

2https://github.com/tsantalis/RefactoringMiner/commit/fee2968
3https://github.com/aserg-ufmg/RefDiff/commit/2a06cfd

4.1 Refactoring Detection Tools and IDE 32

of ECLIPSE, the user must provide a new method name. We define this parameter as the

method’s name with a suffix. As another example, applying the Move Method refactoring,

the user provides a target class to move. We define this user parameter as the first element

from a target class list provided by the IDE. In addition, Table 4.3 shows the parameters that

we did not set in this experiment, and they come as default in ECLIPSE JDT 4.16.

Table 4.3: ECLIPSE default parameters for each refactoring implementation.

Refactoring Default Parameters

Extract Interface Use the extracted interface type where possible: checked;

Extract Method

Method name: extracted;

Access modifiers: private;

Declare thrown runtime exceptions: unchecked;

Generate method comment: unchecked;

Inline Method Delete method declaration: checked.

Move Method
New method name: unchanged;

Keep original method as delegate to moved method: unchecked;

Pull Up Method

Select destination type: unchanged;

Use the destination type where possible: checked;

Use the destination type in ’instanceof’ expressions: unchecked;

Push Down Method -

Rename Class

Update references: checked;

Update similarly named variables and methods: unchecked;

Update textual occurrences in comments and strings: unchecked;

Update fully qualified names in non-Java text files: unchecked.

Rename Method
Update references: checked;

Keep original method as delegate to renamed method: unchecked.

The refactoring implementation of IDEs also contain several preconditions that must be

satisfied before applying a refactoring. For instance, when applying the Rename Method

refactoring, ECLIPSE verifies some preconditions to avoid naming conflicts. It also checks a

valid range of statements or expressions when applying the Extract Method refactoring. Fur-

thermore, it verifies whether the class has a superclass before applying the Pull Up Method

refactoring. Similarly, it checks whether a class has a subclass before applying the Push

Down Method refactoring.

Algorithm 1 describes how we apply the Extract Method refactoring. It applies the Ex-

4.1 Refactoring Detection Tools and IDE 33

tract Method refactoring to methods containing at least three statements. First, it tries to

extract the second statement. If it cannot apply a refactoring, it tries to extract the second

and third statements. We repeat this process by adding more statements until we successfully

apply a refactoring using the IDE, or we reach the last statement.

Algorithm 1 Applying the Extract Method refactoring.

1: function applyExtractMethod(method, tool)

2: stmts← method.getStatements()

3: if stmts.size() < 3 then

4: return false ▷ It is not possible to apply a refactoring.

5: end if

6: stmts = stmts− first(stmts)− last(stmts) ▷ Remove first and last statements.

7: extract← ∅

8: for stmt ∈ stmts do ▷ Iterate all statements in order of declaration

9: extract = extract.concat(stmt) ▷ Add stmt in the end of extract

10: if tool.applyExtractMethod(extract) then ▷ Can extract the statements?

11: return true ▷ It applies the refactoring, and concludes the process.

12: end if

13: end for

14: return false ▷ It is not possible to apply a refactoring.

15: end function

4.1.3 Results

Our technique analyzed a total of 9,885 transformations applied by ECLIPSE using eight

refactoring types implemented by ECLIPSE, which were evaluated using REFACTORING-

MINER and REFDIFF. Table 4.4 summarizes our results.

We apply 2,740 transformations using the Rename Method refactoring implementation.

REFACTORINGMINER and REFDIFF are aligned in 2,696 (98.39%) and 2,380 (86.86%)

transformations with ECLIPSE’s refactoring mechanics, respectively. In five of the trans-

formations, REFACTORINGMINER detects more refactorings. For instance, it detects the

Change Variable Type and the Rename Parameter refactorings. In seven transformations,

4.1 Refactoring Detection Tools and IDE 34

Table 4.4: Summary of the results of our technique. The second from the last column in-

dicates the total number of refactorings applied by ECLIPSE JDT 4.16. The last column

indicates the total number of reported issues. RM = REFACTORINGMINER; RD = REFDIFF.

Refactoring Tool Consistent
Partially

Consistent
Different Empty Total Issues

RM 2,696 5 0 39 3
Rename Method

RD 2,380 0 7 353
2,740

3

RM 399 234 7 3 1
Rename Class

RD 523 118 2 0
643

2

RM 720 669 15 154 4
Move Method

RD 1,432 0 17 109
1,558

4

RM 10 130 0 5 2
Push Down Method

RD 10 134 1 0
145

2

RM 23 0 0 2 1
Pull Up Method

RD 25 0 0 0
25

0

RM 1,000 373 1 2 2
Extract Interface

RD 740 636 0 0
1,376

1

RM 263 396 13 229 4
Inline Method

RD 503 346 0 52
901

1

RM 2,212 205 1 52 3
Extract Method

RD 2,121 157 0 192
2,470

1

REFDIFF detects other refactoring types. For example, REFDIFF detects a combination of

the Extract and Move Method refactorings instead of the Rename Method refactoring. Fi-

nally, REFACTORINGMINER and REFDIFF do not detect any refactoring in 39 (1.42%) and

353 (12.88%) transformations, respectively.

We apply 643 transformations using the Rename Class refactoring implementation of

ECLIPSE. REFACTORINGMINER and REFDIFF are aligned in 399 (62.05%) and 523

(81.34%) transformations with ECLIPSE’s refactoring mechanics, respectively. In 234

(36.39%) and 118 (18.35%) transformations, REFACTORINGMINER and REFDIFF detect

more refactorings. For instance, REFACTORINGMINER detects the Change Attribute Type,

4.1 Refactoring Detection Tools and IDE 35

the Change Parameter Type, the Change Return Type, and the Change Variable Type refac-

torings. REFACTORINGMINER did not detect any refactoring in seven transformations,

while REFDIFF failed to detect refactorings in two transformations. Finally, REFACTOR-

INGMINER detects other refactorings in three transformations. For example, it reports

the Change Attribute Type, the Change Parameter Type, the Change Return Type, and the

Change Variable Type refactorings instead of the Rename Class refactoring.

We apply 1,558 transformations using the Move Method refactoring implementation.

REFACTORINGMINER and REFDIFF are aligned in 720 (46.21%) and 1,432 (91.91%) trans-

formations with ECLIPSE’s refactoring mechanics, respectively. In 669 (42.94%) transfor-

mations, REFACTORINGMINER yields more refactorings. For example, it yields up to 11

different refactoring types, such as the Add Parameter, the Change Parameter Type, the Inline

Method and the Pull Up Method refactorings. REFACTORINGMINER and REFDIFF detect

other refactorings in 15 and 17 transformations, respectively. Finally, REFACTORINGMINER

and REFDIFF do not detect any refactoring in 154 (9.88%) and 109 (7%) transformations, re-

spectively. For example, REFDIFF yields the Change Signature Method, the Extract Method,

the Inline Method, the Pull Up Method refactorings instead of the Move Method refactoring.

Using the Push Down Method refactoring implementation, we apply 145 transforma-

tions. Both tools are aligned with the ECLIPSE refactoring mechanics in 10 transformations.

In 130 (89.66%) and 134 (92.41%) transformations, REFACTORINGMINER and REFDIFF

identify more refactorings. For example, they consider an instance of the Push Down Method

refactoring for each subclass we push down instead of a single transformation. If we push

down a method to five subclasses using ECLIPSE, the refactoring detection tools yield five in-

stances of the Push Down Method refactoring. In 5 transformations, REFACTORINGMINER

does not detect any refactoring. REFDIFF detects the Move Method refactoring when we

apply Push Down Method to a method that has a parameterized type replaced by a concrete

type. We discuss this behavior in issue #16.

We use the Pull Up Method refactoring implementation to apply 25 transformations.

REFACTORINGMINER and REFDIFF are aligned in 23 (92%) and 25 (100%) transformations

with ECLIPSE’s refactoring mechanics, respectively. In two (8%) transformations, REFAC-

TORINGMINER does not yield any transformation.

Using the Extract Interface refactoring implementation, we apply 1,376 transformations.

4.1 Refactoring Detection Tools and IDE 36

REFACTORINGMINER and REFDIFF are aligned with ECLIPSE’s refactoring mechanics in

1,000 (72.67%) and 740 (53.78%) transformations, respectively. REFACTORINGMINER and

REFDIFF detect more refactorings in 373 (27.11%) and 636 (46.22%) transformations, re-

spectively. For instance, REFACTORINGMINER detects the Change Variable Type and the

Change Parameter Type refactorings. In addition, REFACTORINGMINER does not report any

refactoring only in a single transformation. For example, it yields the Change Return Type

refactoring, but it does not detect the Extract Interface refactoring. Finally, REFACTORING-

MINER detects other refactorings in two transformations.

We apply 901 transformations using the Inline Method refactoring implementation.

REFACTORINGMINER and REFDIFF are aligned in 263 (29.19%) and 503 (55.83%) trans-

formations with ECLIPSE’s refactoring mechanics, respectively. REFACTORINGMINER and

REFDIFF detect more refactorings in 396 (43.95%) and 346 (38.40%) transformations, re-

spectively. For instance, REFACTORINGMINER detects the Extract Variable and the Rename

Parameter refactorings. Besides, REFACTORINGMINER and REFDIFF do not detect any

refactoring in 229 (25.42%) and 52 (5.77%) transformations, respectively. Finally, REFAC-

TORINGMINER detects other refactorings in 13 transformations. For example, it yields the

Change Variable Type and Extract Variable refactorings instead of the Inline Method refac-

toring.

Finally, we apply 2,470 transformations using the Extract Method refactoring imple-

mentation. REFACTORINGMINER and REFDIFF are aligned in 2,212 (89.55%) and 2,121

(85.87%) transformations with ECLIPSE’s refactoring mechanics, respectively. REFACTOR-

INGMINER and REFDIFF detect more refactorings in 205 (8.30%) and 157 (6.36%), respec-

tively. For instance, REFACTORINGMINER detects the Parameterize Variable, Rename Pa-

rameter and Rename Variable refactorings. Moreover, REFACTORINGMINER and REFDIFF

do not yield any transformation in 52 (2.11%) and 192 (7.77%) transformations, respectively.

Finally, REFACTORINGMINER detects another refactoring in a single transformation only.

For this case, it yields the Change Parameter Type instead of the Extract Method refactoring.

4.1.4 Discussion

We organize this section as follows. Next, we present our process to inspect the results and

report the issues. Then, we discuss the cases when the refactoring detection tools yield an

4.1 Refactoring Detection Tools and IDE 37

empty set of refactorings. Following, we discuss the transformations in which the refactoring

detection tools do not detect the applied refactoring. Finally, we discuss the cases that the

refactoring detection tools detect the applied transformation and more refactoring types.

Bug Reports

After the last step of the technique (Figure 3.1), we manually classify failures into distinct

issues, and then we report to developers. We analyze all transformations in the Partially

Consistent, Different, and Empty categories (Table 3.1). We analyze the results of each

refactoring detection tool separately and discuss the main issues in the following sections.

For the Different and Empty categories, we deliberately select one transformation to

manually analyze. For the transformations in the Partially Consistent category, we cluster

the outputs based on the types of refactorings yielded by each refactoring detection tool.

Then, we select one instance of each cluster to manually analyze. To make it simpler to

explain to refactoring detection tool developers, we modify the program by removing the

parts that are unrelated to the bug, inspired by delta debugging [31, 53]. Next, we manually

analyze each candidate and discard the ones that are not bugs. For example, if a tool reports

refactoring A and it is not possible to transform, or partially transform, the code before into

the code after applying A, we consider the candidate as an issue. For the remaining ones, we

report each pair of small input and output programs to refactoring detection tool developers

stating that we expected the application of a single refactoring type.

By following this process, we find 34 issues. Figure 4.1 presents a summary of the

submitted issues per refactoring type. Developers fixed bugs in all refactoring types, except

for the Rename Class refactoring. In this case, we classify it as Duplicate, because developers

fixed the issue before submission. In addition, three issues are rejected (Not a Bug). Until

the writing of this work, the open issues have no answer.

During our analysis, we notice refactoring detection tools have similar output in trans-

formations of the same refactoring type. Then, we cluster these transformations as the same

issue. We analyze the results of each refactoring detection tool separately and discuss the

main issues in next sections. Our technique helps to find 34 issues4 related to comparing the

consistency with ECLIPSE.

4https://github.com/osmarleandro/refs/blob/master/issues.csv

4.1 Refactoring Detection Tools and IDE 38

Figure 4.1: Summary of issues by the status and refactoring type.

Duplicated

Fixed

Not a Bug

Open

0 2 4 6 8 10 12 14 16

Extract Interface

Extract Method

Inline Method

Move Method

Pull Up Method

Push Down Method

Rename Class

Rename Method

From the refactoring detection tools’ perspective, we present the bug reports by status.

Figure 4.2 shows the quantitative summary of issues per refactoring detection tool. Devel-

opers fixed 16 bugs, where REFACTORINGMINER fixed 15 bugs and REFDIFF fixed 1 bug.

Moreover, 3 issues are duplicated, 3 issues are not bugs, and 12 issues are still open. We run

the technique in REFACTORINGMINER 2.1.05 and REFDIFF 2.06 after bugs fixing, and our

technique does not detect new issues.

As mentioned before, we aim to see whether there are differences between the refactoring

mechanics of IDEs and refactoring detection tools. Therefore, when inconsistencies arise,

it does not mean that the issue is on the refactoring detection tool side. Furthermore, when

a refactoring detection tool reports multiple potential results, and we classify it as Partially

Consistent, it does not always mean that they are wrong. Sometimes the refactoring me-

chanics implemented by the IDE may add some additional optional changes. For example,

we apply the Inline Method refactoring7 to argumentIntersectionSize method. REFACTOR-

5https://github.com/tsantalis/RefactoringMiner/commit/149468e
6https://github.com/aserg-ufmg/RefDiff/commit/3dabc79
7https://github.com/osmarleandro/RefactoringMiner/commit/58213a7

4.1 Refactoring Detection Tools and IDE 39

Figure 4.2: Summary of issues per refactoring detection tool. We submit a total of 14 and 20

issues to REFDIFF and REFACTORINGMINER, respectively.

0

3

6

9

12

15

Fixed Not a Bug Duplicated Open

RefDiff RefactoringMiner

INGMINER detects the Inline Method and Rename Variable refactoring. We consider the

Rename Variable refactoring a true instance, but ECLIPSE could avoid it.

To determine the causes for all bugs [19], we need to study the source code of each tool

and the proposed correction by the author, which can also be mixed with other bug fixes.

Understanding the root cause of a bug is not an easy task, given that we are not the tool

developers. In what follows, we discuss our results in light of some of the comments we re-

ceived while submitting bugs to the developers [19] in REFACTORINGMINER and REFDIFF.

First example, we analyze the source code of Listing 4.3. Its cause may be related to

the support to Generic Types in the Push Down Method refactoring added by REFACTOR-

INGMINER’s developers. When moving a method that returns Generic Types, it returns the

actual type corresponding to the type in each subclass.

A similar issue of that in Listing 4.3 was reported to REFDIFF’s developers. It detects

the Move Method refactoring when we apply the Push Down Method refactoring. Devel-

opers explain that the tool enforces the same signature when searching Push Down Method

candidates. Moreover, they do not deal with situations when generic types are replaced by

4.1 Refactoring Detection Tools and IDE 40

concrete types. REFDIFF may have classified it as the Move Method refactoring because this

type allows changes to the signature.

As another example, Listing 4.2 may be caused because fan-in relationships (methods

which call the refactored method) are ignored in the replacement function implemented by

the matching algorithm in REFACTORINGMINER.

On the other hand, in Listing 4.4 REFDIFF detects the Extract and Move Method refac-

toring, but we apply the Rename Method refactoring. Some code fragments are updated to

a new method name. The renamed method is a single-line method, and this can increase the

similarity score when comparing with updated code fragments.

Concerning the Extract Method refactoring in Listing 4.12, some of the additional refac-

toring types reported by REFACTORINGMINER are due to the IDE refactoring mechanics,

and REFACTORINGMINER reports correct changes. For example, the Parameterize Vari-

able refactoring is reported when local variables declared in the original method become

parameters of the extracted method. As another example, REFACTORINGMINER reports the

Rename Parameter refactoring when a parameter of the original method is passed with a

different name in the extracted method.

We tried to contact REFDIFF developers a few times, but we did not receive an answer

for 12 out of 14 issues reported. So, we compare the output of REFACTORINGMINER to

the same code from the issues of REFDIFF. In 6 out of 12 unanswered issues of REFD-

IFF, REFACTORINGMINER is consistent with ECLIPSE. In 3 out of 12 unanswered issues,

REFDIFF and ECLIPSE are different, while REFACTORINGMINER is partially consistent

with ECLIPSE.

Finally, we base our conclusions on accepted and fixed bugs in both tools, largely from

REFACTORINGMINER. However, we understand the interpretation of mechanics can be dif-

ferent, and we report some issues to both tools: issues #20, #21, and #24 (REFDIFF). From

these, we address discussions that were made in both tools, such as repeated transforma-

tions in issue #122 (REFACTORINGMINER) and issue #24 (REFDIFF), about the Push Down

Method in issue #153 (REFACTORINGMINER) and issue #21 (REFDIFF) and the Partially

Consistent category in issue #20 (REFDIFF).

4.1 Refactoring Detection Tools and IDE 41

Refactoring Detection Tools yield an empty set.

In some cases, the refactoring detection tools do not detect the applied refactoring using

ECLIPSE. For example, Listing 4.1 shows the application of the Move Method refactoring to

the doHealthCheck method (Step 1). ECLIPSE moves the method to the Health class,

changes its signature, and removes the original doHealthCheck method. REFACTOR-

INGMINER does not detect this transformation.

The Move Method refactoring mechanics described by Fowler [9] allows changing the

signature of the method. In our study, we identify 8 issues related to this type of refactor-

ing. This example may help developers discuss the correct refactoring mechanics for the

Move Method refactoring. One may argue that correct refactoring mechanics is to enclose

operations that change the signature of the moved method, such as Add parameter, Remove

Parameter, Change Parameter Type involving the Source or Target class types. We reported

this problem on issue #133 and developers fixed it.

Listing 4.1: Using the ECLIPSE Move Method refactoring.

1 @@ class ElasticsearchRestHealthIndicator

2 - doHealthCheck(builder, ...));

3 + builder.doHealthCheck(this, ...));

4

5 @@ class ElasticsearchRestHealthIndicator

6 - private void doHealthCheck(

7 - Health.Builder b, ...) {

8

9 @@ class Health

10 + public void doHealthCheck(

11 + ElasticsearchRestHealthIndicator e, ...) {

As another example, Listing 4.2 shows the result of ECLIPSE applying the Rename

Method refactoring to the setAttribute method. REFACTORINGMINER does not de-

tect this refactoring. We analyzed the resulting code and identified that the transformation

applied by ECLIPSE happens in a method containing a single line of code. The developers

fixed issue #140 of Listing 4.2 in REFACTORINGMINER 2.1.0. Furthermore, they mention

4.1 Refactoring Detection Tools and IDE 42

that single-line methods are tricky to detect. In general, it is harder to match statements near

to similar single-line methods.

REFACTORINGMINER [49] uses two pre-processing techniques called abstraction and

argumentization to deal with changes taking place in code statements whem applying the

Extract, Inline and Move Method refactorings. It matches two versions of the same method

if they have an identical signature, that is same name, parameters, return type, parent class,

and body. Their algorithm matches the added and deleted code elements to find code ele-

ments with signature changes, but similar methods in same class can confuse the detection

of Listing 4.2.

Listing 4.2: Using the ECLIPSE Rename Method refactoring.

1 @@ class UMLModelASTReader

2 - variableDeclaration.setAttribute(true);

3 + variableDeclaration.setAttr(true);

4

5 @@ class VariableDeclaration

6 - public void setAttribute(boolean isAttribute) {

7 + public void setAttr(boolean isAttribute) {

8 this.isAttribute = isAttribute;

9 }

In Listing 4.3, ECLIPSE applies the Push Down Method refactoring to the awaitIg-

noreError method that returns a generic type. The actual return type is replaced in each

subclass. REFACTORINGMINER 2.0.3 does not yield any refactoring. We submitted the is-

sue #137 to REFACTORINGMINER 2.1.0, and it is fixed. REFDIFF developers replied to the

submitted issue #16 and explained that this behavior is a limitation of their implementation.

Some language constructs, such as generic types and lambdas, are challenging for refactor-

ing detection tools in Java programs. Our technique can help to improve them by showing

some examples that may expose new rules to be considered in refactoring detection tools.

Listing 4.3: Using the ECLIPSE Push Down Method refactoring.

1 @@ abstract class PendingResultBase

2 - @Override

3 - public final T awaitIgnoreError() { ... }

4.1 Refactoring Detection Tools and IDE 43

4

5 @@ class DistanceMatrixApiRequest

6 + @Override

7 + public final DistanceMatrix awaitIgnoreError() { ... }

Mechanics Are Different

In Listing 4.4, ECLIPSE applies the Rename Method refactoring to the isConstructor

method. REFDIFF yields an Extract and Move Method refactoring for each method call, in

this case. This result shows that REFDIFF does not yield the applied refactoring, but several

others that were not applied. We report the issue #19 to REFDIFF’s developers, but they do

not answer yet.

Listing 4.4: Using the ECLIPSE Rename Method refactoring.

1 @@ class UMLOperation

2 - public boolean isConstructor() {

3 + public boolean isConst() {

4 return isConstructor;

5 }

6

7 @@ class UMLModelDiff

8 private void checkForOperationMoves()

9 ...

10 - else if(r.isConstructor() == a.isConstructor() ...) {

11 + else if(r.isConst() == a.isConst() ...) {

As another example, ECLIPSE applies the Extract Interface refactoring to the Stat-

icMapsRequest class. REFACTORINGMINER 2.0.3 does not detect the Extract Interface

refactoring. Moreover, it yields the Change Return Type (12) refactoring (see Listing 4.5).

We verify the resulting code and the default parameter of ECLIPSE (Table 4.3) is to replace

types where possible to the extracted interface type. This parameter is optional for the me-

chanics of Extract Interface refactoring, but in ECLIPSE IDE it is a default parameter. In this

way, it produces additional transformations, such as Change Return Type refactoring, that

4.1 Refactoring Detection Tools and IDE 44

can directly impact the number of results in refactoring detection tools. Issue #146 of List-

ing 4.5 is fixed, and REFACTORINGMINER 2.1.0 correctly detects the applied refactoring.

Listing 4.5: Using the ECLIPSE Extract Interface refactoring.

1 @@ class StaticMapsRequest

2 - public StaticMapsRequest center(LatLng location) {

3 + public IStaticMapsRequest center(LatLng location) {

4

5 @@ interface IStaticMapsRequest

6 + public interface IStaticMapsRequest {

7 + ...

8 + IStaticMapsRequest center(LatLng location);

ECLIPSE applies the Inline Method refactoring to the locationBias method (see

Listing 4.6). REFACTORINGMINER detects the Extract Variable (4) refactoring. The method

is called in four different locations. This example may help developers to discuss more the

temporary variables introduced by the Inline Method refactoring mechanics. ECLIPSE’s en-

gine introduces additional statements, causing variable renames or the extraction of tempo-

rary variables. Thus, REFACTORINGMINER correctly reports the Extract Variable refactor-

ing. We report issue #121, and it is fixed in REFACTORINGMINER 2.1.0. On the other

hand, REFDIFF yields the Inline Method (4) refactoring.

Listing 4.6: Using the ECLIPSE Inline Method refactoring.

1 @@ class FindPlaceFromTextRequest

2 - public ... locationBias(LocationBias lb) {

3 - return param("locationbias", lb);

4 - }

5

6 @@ class PlacesApiTest

7 + LocationBias lb = new LocationBiasIP();

8 ...

9 .fields(...)

10 - .locationBias(new LocationBiasIP())

11 + .param("locationbias", lb)

4.1 Refactoring Detection Tools and IDE 45

In another case, Listing 4.7 shows the Push Down Method applied to a method that has

a generic type as the parameter. A generic type is a generic class or interface that is pa-

rameterized over types. The type parameter section is delimited by angle brackets (<>), and

it specifies the type parameters, called type variables, T1, T2, and Tn.8 ECLIPSE replaces

the parameterized type with the concrete types. Then, REFDIFF yields the Move Method

refactoring. We submit issue #16 to REFDIFF’s developers. They explain that the algorithm

looks for Push Down candidates, and it enforces the signature of the method is the same.

However, it does not deal with the case of replacing a parameterized type with a concrete

type. Thus, the algorithm ends up and incorrectly classifies it as Move Method refactoring.

The developers know this limitation and can fix it in future versions of the tool.

Listing 4.7: Using the ECLIPSE Push Down Method refactoring.

1 @@ abstract class ManagementWeb<T>

2 - @Override

3 - public final void customize(T factory) {

4 - ...

5 - }

6

7 @@ class ServletManagement extends ManagementWeb<ConfigurableF>

8 + @Override

9 + public final void customize(ConfigurableF factory) {

10 + ...

11 + }

Mechanics Are Partially Consistent

In Listing 4.8, ECLIPSE renames the getNonMappedLeavesT1 method. REFACTOR-

INGMINER 2.0.3 yields that the Change Variable Type refactoring is applied to the state-

ment variable. We have checked the generated code after perform the Rename Method

refacotring and noticed no changes in the type of this variable. We report issue #139, and

developers fixed it in REFACTORINGMINER 2.1.0.

8https://docs.oracle.com/javase/tutorial/java/generics/types.html

4.1 Refactoring Detection Tools and IDE 46

Listing 4.8: Using the ECLIPSE Rename Method refactoring.

1 @@ class UMLOperationBodyMapper

2 - public ... getNonMappedLeavesT1(){

3 + public ... getNonMLeavesT1(){

4 return nonMappedLeavesT1;

5

6 @@ class InlineOperationRefactoring

7 - for(StatementObject s : b.getNonMappedLeavesT1()) {

8 + for(StatementObject s : b.getNonMLeavesT1()) {

9 ...

10 for(CompositeStatementObject s : b.getNonMappedInnerNodesT1()) {

Listing 4.9 shows that ECLIPSE applies the Rename Class refactoring to the Replace-

ment class. REFACTORINGMINER detects the Rename Class refactoring along with other

245 refactoring instances, such as the Change Attribute Type, the Change Parameter Type,

the Change Return Type, and the Change Variable Type refactorings, since the renamed class

are used in several parts of the program. REFDIFF has a similar behavior, and yields 18

instances of the Change Signature Method refactoring. The other refactoring types reported,

such as the Change Variable/Attribute/Return/Parameter Type refactorings, are updates to

the places where the renamed type is referenced in variable types, return types, parameter

types, and field types.

Fowler [9] states that changing each use to the new class name is a step in the refactoring

mechanics of the Rename Class refactoring. REFACTORINGMINER yields a coarse-grained

refactoring, such as the Rename Class refactoring, and a number of fine-grained transforma-

tions used to derive the coarse-grained refactoring, such as, the Change Attribute Type, the

Change Parameter Type, the Change Return Type, and the Change Variable Type refactor-

ings. REFACTORINGMINER developers reply a related issue #120 explaining that they prefer

to show multiple instances. The refactoring community should discuss about the granularity

of each refactoring, and how they relate to coarse-grained transformations.

This example may help developers to discuss more about the correct refactoring mechan-

ics for the Rename Class refactoring. One may argue that the correct refactoring mechanics

is to exclude the instances of Change Variable/Attribute/Return/Parameter Type refactoring

4.1 Refactoring Detection Tools and IDE 47

for which the type change corresponds to the Renamed Class.

Listing 4.9: Using the ECLIPSE Rename Class refactoring.

1 @@ class Replacement;

2 - public class Replacement {

3 + public class Replace {

4

5 @@ class AbstractCodeMapping

6 private boolean contains(String v) {

7 - for(Replacement r : getReplace()) {

8 + for(Replace r : getReplace()) {

9

10 @@ class TernaryOperatorExpression

11 - public Replacement m(String s) {

12 + public Replace m(String s) {

In Listing 4.10, ECLIPSE applies the Move Method refactoring to the consistency-

Check method. REFACTORINGMINER yields the Inline Method and the Extract and Move

Method refactorings. However, ECLIPSE does not apply the Inline Method instances. We

report the issue #143, and developers fixed it.

Listing 4.10: Using the ECLIPSE Move Method refactoring.

1 @@ class VariableDeclaration

2 + boolean consistencyCheck(...) {

3

4 @@ class VariableReplacementAnalysis

5 - consistencyCheck(v1, v2, set);

6 + v1.consistencyCheck(this, v2, set);

7 ...

8 - private boolean consistencyCheck(...) {

Suppose a developer pushed down a method to N subclasses. REFACTORINGMINER and

REFDIFF yield N instances of the Push Down Method refactoring. For example, Listing 4.11

shows that ECLIPSE applies the Push Down Method refactoring to the normalizedEd-

itDistance method, moving it to 11 subclasses using ECLIPSE. REFACTORINGMINER

4.1 Refactoring Detection Tools and IDE 48

yields 11 instances of the Push Down Method refactoring. REFDIFF also yields the same

output. According to Fowler’s Push Down Method mechanics [9], this should be considered

a single instance of the Push Down Method refactoring.

This example may help developers to discuss more about the correct refactoring me-

chanics for the Push Down Method, the Extract Method and the Inline Method refactoring.

ECLIPSE’s default refactoring parameter is to copy/extract the same code fragments. This

parameter can fix design flaws, such as the Duplicated Code [9]. However, the end user can

change this behavior in the graphical user interface and the refactoring mechanics may be

different when a user selects different parameters. One may argue that the correct refactoring

mechanics is to exclude the extra refactoring instances reported due to the mechanics. We

reported issues #120 and #122 to REFACTORINGMINER’s developers. However, they did

not accept the issues.

Listing 4.11: Multiple instances of the Push Down Method refactoring in REFACTORING-

MINER and REFDIFF.

1 @@ class Replacement

2 - public double normalizedEditDistance() { ... }

3

4 @@ class CompositeReplacement extends Replacement

5 + public double normalizedEditDistance() { ... }

6 // 10 other subclasses changed

Listing 4.12 shows that ECLIPSE applies the Extract Method refactoring, and REFAC-

TORINGMINER yields Extract Method (3) and Rename Variable (2). We submit issue #120

to discuss the additional changes. The developers reject it and explain the extra reported

types reported by REFACTORINGMINER are due to the IDE refactoring mechanics. The Re-

name Variable refactoring is detected in two extracted code fragments, which have a different

variable name: errorResponse renamed to response.

Some of the additional refactoring types reported by REFACTORINGMINER in the Ex-

tract Method refactoring are due to the IDE refactoring mechanics, and REFACTORING-

MINER reports correct changes. For example, the Parameterize Variable refactoring is re-

ported when local variables declared in the original method become parameters of the ex-

tracted method. Likewise, the Rename Parameter refactoring is detected when a parameter

4.1 Refactoring Detection Tools and IDE 49

of the original method is passed with a different name to the extracted method.

Listing 4.12: The Rename Variable and Extract Method refactoring in REFACTORING-

MINER.

1 @@ public class GeoApiContextTest {

2 - MockResponse response = new MockResponse();

3 - response.setStatus(...);

4 + MockResponse response = extracted();

5 ...

6 + private MockResponse extracted() {

7 + MockResponse response = new MockResponse();

8 + response.setStatus(...);

9 + return response;

10 + }

11 ...

12 - MockResponse errorResponse = new MockResponse();

13 - errorResponse.setStatus(...);

14 + MockResponse errorResponse = extracted();

4.1.5 Threats to Validity

In this section, we discuss some threats to validity. We do not evaluate real transformations

applied by developers. However, we apply a number of transformations to four real open-

source projects using ECLIPSE. In addition, we manually analyze the candidates yielded

after Step 3 of our technique. We submit 34 issues to the developers of the refactoring

detection tools. They fixed 16 bugs, 3 were not accepted, and 12 issues are still open. Since

this manual classification is a time consuming and error-prone activity, we may miss some

bugs.

In our study, we are restricted to a project source code hosted in GitHub. However, the

evaluated projects have been actively developed for more than six years. We analyze eight

types of refactoring, such as the Rename refactoring, which is frequently applied by devel-

opers [25]. Figure 4.1 presents the number of issues reported to the Rename Method and

Rename Class refactorings. Moreover, refactoring implementations may introduce behav-

4.1 Refactoring Detection Tools and IDE 50

ioral changes when performing a refactoring [41]. As future work, we intend to improve

our technique by using SAFEREFACTOR [43] after Step 2 to discard transformations that

introduce behavioral changes.

The default parameters used in our study are subject to human errors. However, we ad-

dressed that point by inspecting the source code after refactoring when we intend to submit

the issues. Table 4.2 shows some default parameters that we define in this study. For exam-

ple, we specify the parameter of Rename Method refactoring as the method’s same with a

suffix. In future work, we intend to verify new values for these parameters, which can help

to find more issues scenarios.

We only evaluated the refactorings implementations of one IDE, for a particular program-

ming language (Java). ECLIPSE is a popular IDE and is used by some developers to apply

refactorings, as discussed by Oliveira et al. [27]. Java is a popular programming language.

We also evaluate the best refactoring detection tools available [37, 49].

4.1.6 Answers to Research Questions

Next we answer our research questions.

RQ1 RQ1.1: REFACTORINGMINER 2.1.0 is consistent with the refactoring mechanics of

ECLIPSE in 74.28% of the transformations. REFACTORINGMINER does not detect

refactorings in 4.93% of the cases. REFACTORINGMINER is partially consistent with

ECLIPSE in 20.41% of the analyzed transformations. REFACTORINGMINER yields a

different result in 0.38% of the analyzed transformations.

RQ1.2: REFDIFF 2.0 is consistent with the refactoring mechanics of ECLIPSE in

78.45% of the transformations. REFDIFF does not detect refactorings in 7.16% of

the cases. REFDIFF is partially consistent with ECLIPSE in 14.11% of the analyzed

transformations. REFDIFF yields a different result in 0.27% of them.

RQ2 We report 20 issues to REFACTORINGMINER, developers fixed 15 bugs in the Extract

Method, Inline Method, Move Method, Push Down Method, Rename Method, and

Extract Interface refactorings. Moreover, 3 issues were not accepted, and 2 bug is

duplicated. We report 14 issues to REFDIFF, developers fixed 1 bug in the Move

Method refactoring, 12 bugs reports are still open, and 1 bug is duplicated.

4.2 Composite Refactorings 51

4.2 Composite Refactorings

In the previous study, we apply a single refactoring per input and output pair. In this study,

we use our technique to apply 3 composite refactorings [2] and evaluate 7 refactoring imple-

mentations of ECLIPSE using 2 refactoring detection tools in 2 open-source projects. As the

first study, we run two instances of the technique for each detection tool, first using ECLIPSE

and REFACTORINGMINER, and next using ECLIPSE and REFDIFF.

Section 4.1.1 presents our study definition. Section 4.1.2 describes the experimental

setup. Sections 4.1.3 and 4.1.4 present results and discuss them, respectively. Section 4.1.5

describes some threats to validity, and Section 4.1.6 answers our research questions.

4.2.1 Study Definition

Composite refactoring is a set of two or more interrelated single refactorings [2]. This con-

cept is different of nested refactoring, which is a refactoring transformations that takes place

in code resulting from the application of another refactoring operation [49].

The scenario of nested refactorings is more challenging for refactoring detection tools,

and we do not evaluate it in this study. Nested transformations are successive refactorings

applied to the same code fragment. For example, suppose we extract some statements to a

method A and then select new statements from the body of method A to create a new method

B. In this case, we apply nested Extract Method refactorings.

Our goal is to apply our technique to analyze the impact of composite refactorings. To

apply composite refactorings, we have to adapt Step 2 of Figure 3.1 and manually perform

the steps of our technique. We follow the same guidelines presented in Section 3.2. In Step

2, we return to Step 1 and apply the three composite refactorings. The output program has

subsequent refactorings from different types.

We address the following research questions:

RQ3.1 To what extent composite refactorings applied by ECLIPSE are detected by REFAC-

TORINGMINER?

We count the number of refactorings detected by REFACTORINGMINER that are con-

sistent with ECLIPSE. We also count the number of refactorings that are partially

4.2 Composite Refactorings 52

consistent, different or empty.

RQ3.2 To what extent composite refactorings applied by ECLIPSE are detected by REFDIFF?

We count the number of refactorings detected by REFDIFF that are consistent with

ECLIPSE. We also count the number of refactorings that are partially consistent, dif-

ferent or empty.

We deliberately search for opportunities in locations not modified by another transfor-

mation. The aim is to apply refactorings that do not yield nested refactorings. For example,

when we apply the Rename Class refactoring, we do not select methods of this class to apply

the Rename Method refactoring. Moreover, we manually apply 30 transformations grouped

in 10 pairs of inputs and outputs. For example, Table 4.6 shows subject ID number one

contains the Extract Method, the Inline Method, and the Rename Method refactorings.

4.2.2 Experimental Setup

We ran the experiment with the same settings as the previous study described in Sec-

tion 4.1.2: Core i7 3.1 GHz, 8GB RAM, Fedora 33, and Oracle JDK 1.8. We use two

open-source projects integrated with GRADLE as inputs to our technique: GITLINK and

TESTNG (see Table 4.5). Thus, we use seven refactoring implementations of ECLIPSE JDT

4.16 in Step 2: the Extract Method, the Rename Method, the Inline Method, the Move

Method, the Extract Interface, the Rename Class, and the Push Down Method refactorings.

Table 4.2 details the parameters used for each implementation. In Step 3, we use two refac-

toring detection tools: REFACTORINGMINER 2.1.09 (to answer RQ3.1), and REFDIFF 2.010

(to answer RQ3.2).

Table 4.5: Projects used in our evaluation.

Project Domain KLOC Stars Contributors

GITLINK A plugin for Git 6.3 108 4

TESTNG Java testing framework 130 1.6K 168

9https://github.com/tsantalis/RefactoringMiner/commit/149468e
10https://github.com/aserg-ufmg/RefDiff/commit/889b0bf

4.2 Composite Refactorings 53

4.2.3 Results

In this experiment, we analyze 30 transformations applied by ECLIPSE using seven types of

refactorings implemented by ECLIPSE, which were evaluated using REFACTORINGMINER

and REFDIFF. Table 4.6 summarizes our results.

Table 4.6: Results of the composite refactorings in feasibility study. RM = REFACTORING-

MINER; RD = REFDIFF.

Subject

ID
Project Refactoring RM RD

1 GitLink Extract Method, Inline Method, Rename Method Consistent Consistent

2 GitLink Move Method, Extract Interface, Rename Class Partially Consistent Partially Consistent

3 GitLink Push Down Method, Extract Interface, Rename Method Partially Consistent Partially Consistent

4 GitLink Extract Method, Move Method, Rename Method Partially Consistent Partially Consistent

5 GitLink Push Down Method, Rename Method, Extract Interface Partially Consistent Partially Consistent

6 TestNG Rename Class, Extract Method, Move Method Partially Consistent Partially Consistent

7 TestNG Move Method, Rename Class, Extract Method Partially Consistent Partially Consistent

8 TestNG Extract Method, Rename Class, Inline Method Partially Consistent Partially Consistent

9 TestNG Extract Method, Move Method, Extract Interface Partially Consistent Partially Consistent

10 TestNG Move Method, Push Down Method, Extract Method Consistent Consistent

We apply three transformations in 10 subjects of Table 4.6 total of 30 transformations,

using randomly the Extract Method, the Rename Method, the Inline Method, the Move

Method, the Extract Interface, the Rename Class, and the Push Down Method refactoring

implementations.

REFACTORINGMINER and REFDIFF are consistent in 20% (2) transformations with

ECLIPSE’s refactoring mechanics, respectively. In 80% (8) transformations, REFACTOR-

INGMINER and REFDIFF detect more refactorings. For instance, REFACTORINGMINER

detects the Change Variable Type refactoring when applying the Rename Class refactoring.

Furthermore, REFDIFF detects other types of refactorings. For example, REFDIFF detects

the Change Signature Method refactoring when applying the Rename Class refactoring.

4.2 Composite Refactorings 54

4.2.4 Discussion

This section discusses when the refactoring detection tools yield the applied transformation

and more types of refactorings. In Listing 4.13, ECLIPSE applies the Move Method, the

Extract Interface, and the Rename Class refactorings. REFACTORINGMINER detects the

applied refactorings along to the Change Parameter Type (25), the Change Variable Type

(5), the Change Return Type (2), the Change Attribute Type (1) refactorings.

As discussed in Listing 4.9, REFACTORINGMINER detects derived change type refactor-

ings from the Rename Class refactoring when the renamed class is a type of parameters, vari-

ables, returns, and attributes. Furthermore, REFDIFF yields the Change Signature Method

refactoring when the renamed class is part of the method signature.

Listing 4.13: Using the ECLIPSE Rename Class refactoring.

1 @@ class LineSelection

2 - public class LineSelection

3 + public class SelectionLine

In Listing 4.14, ECLIPSE applies the Extract Interface, the Push Down Method, and the

Rename Method refactorings. REFDIFF yields the Push Down Method (4), the Pull Up

Signature Method (3), the Rename Method (1), the Extract Interface (1) refactorings.

As seen in Listing 4.11, REFACTORINGMINER and REFDIFF yield N instances of the

Push Down Method refactoring for each moved method to other N subclasses. ECLIPSE’s

default refactoring implementation is to extract the same code fragments to preserve behav-

ior. However, the graphical interface can disable this parameter. The multiple instances

reported are not wrong, but some studies that depend on the refactoring detection report

cannot ensure the refactorings are unique.

Listing 4.14: Using the ECLIPSE Extract Interface, Push Down Method, and Rename

Method.

1 @@ IAction / Extract Interface

2 + public interface IAction { ... }

3

4 @@ class AnnotationAction / Push Down Method

5 - public void consume(...) { ... }

4.2 Composite Refactorings 55

6

7 @@ class BrowserCommitAnnotationAction / Push Down Method

8 + public void consume(...) { ... }

9

10 @@ class URLTemplateProcessor / Rename Method

11 - private String processFile(...) { ... }

12 + private String fileProcess(...) { ... }

Finally, we do not identify any issues after this experiment, but we found several derived

refactorings in the Partially Consistent category. However, this behavior follows a similar

discussion to the previous study in Section 4.1.4.

4.2.5 Threats to Validity

This section discusses some threats to validity. We also consider threats to validity presented

previously in Section 4.1.5, such as behavior preservation, real transformations, default pa-

rameters, and the number of open-source projects.

In our study, we do not assess the number of each type of refactoring, but we group three

different types in every 10 pairs of input and output. We set some parameters, as seen in

Table 4.2, but we describe the default parameters of ECLIPSE in Table 4.3. In addition, we

perform our study manually. However, we do not apply refactorings in the same source code

file, thus we avoid nested transformations. Finally, we analyze seven types of refactorings,

such as the rename-based refactorings, which is frequently applied by developers [25].

Chapter 5

Related Works

Silva et al. [37] propose a language-agnostic refactoring detection tool REFDIFF 2.0. It

presents a new refactoring detection algorithm that abstracts the specificity of an program-

ming language by Code Structure Tree. This abstraction allows support some programming

languages, such as Java, C/C++, and JavaScript. Tsantalis et al. [49] propose REFACTOR-

INGMINER 2.0, a refactoring detection tool for Java. It relies on an AST-based statement

matching algorithm that determines refactoring candidates without requiring user-defined

thresholds and covers 40 refactoring types, 25 more refactorings than previous version.

Tsantalis et al. [49] execute REFACTORINGMINER 2.0, GUMTREEDIFF and two ver-

sions of REFDIFF on all 536 commits from 185 open-source GitHub-hosted projects mon-

itored over a period of two months of the dataset proposed before [50] and considered the

union of all true positives as the ground truth. Two authors validated the refactoring in-

stances [49]. It includes 7,226 true positives in total, for 40 different refactoring types de-

tected by one (minimum) up to six (maximum) different tools. REFDIFF initially used the

dataset proposed before [50] to evaluate precision and recall. They also manually included

other instances. In our work, we propose a technique to automatically evaluate refactoring

detection tools. We evaluate eight refactoring types using 9,885 transformations applied by

ECLIPSE to evaluate two refactoring detection tools. Our work can help refactoring detection

tool developers to improve their dataset, and find some transformations that may help them

improving the refactoring detection rules.

Oliveira et al. [28] propose a technique to identify differences in refactoring mechanics

used by tool developers of refactoring implementations. They perform a pairwise compar-

56

57

ison of 10 types of refactorings to 157,339 programs using 27 refactoring implementations

from ECLIPSE, JRRT, and NETBEANS. Oliveira et al. [27] conduct a survey with 107 devel-

opers of popular Java projects to better understand the refactoring mechanics used by them

in practice. They found the most developers expect the refactoring output based on their

experience and there is no consensus in five out of seven questions in their survey. However,

over 50% of the time, the IDEs used by developers yield an output that is different than if

they manually apply the same refactoring. They found some differences. In our work, we

apply eight types of refactorings to four real open-source projects, and compare the differ-

ences between mechanics of two refactoring detection tools and ECLIPSE IDE. We found

some differences. These results motivate the importance of discussing more the refactoring

mechanics by our community.

Prete et al. [32] develop REF-FINDER, which detects refactorings between two programs

versions using a template-based refactoring reconstruction approach. Their tool can identify

63 of 72 refactoring types from Fowler’s catalog [9]. To evaluate their tool, they performed

two study cases: they create code samples from Fowler’s catalog, and they select version

pairs from open-source projects. REF-FINDER achieved an overall precision and recall of

79% and 95%, respectively. Dig et al. [6] present an algorithm that detects refactorings per-

formed during component evolution. Their algorithm was implemented as an ECLIPSE plu-

gin called REFACTORINGCRAWLER. They evaluate their tool in three components ranging

with 17 KLOC up to 352 KLOC, and its accuracy was over 85% for seven types of refac-

torings. In this work, we propose a technique that may be used to evaluate their refactoring

detection tools.

Soares et al. [42] compare three different approaches based on manual analysis, commit

message and dynamic analysis using SAFEREFACTOR [43] to detect refactorings considering

behavioral preservation and found the REF-FINDER presented a low precision and recall.

Mongiovi et al. [22, 23] improve SAFEREFACTOR by including change impact analysis and

skips. We intend to use SAFEREFACTOR after Step 2 to only consider behavior preserving

transformations.

There are several works that find the sets of statements to be extracted. Tsantalis and

Chatzigeorgiou [48] propose an approach to select related statements that can be extracted.

They consider two aspects to identify related statements. First, it selects all statements that

58

computes a given variable. Second, it extracts the statements affecting the state of a given

object. Their approach allows producing meaningful and behavior preserving refactoring

opportunities.

Silva et al. [38] propose a rank function to classify initial candidates according to their

potential to improve program comprehension. Their approach tends to encapsulate well-

defined computation with its own set of dependencies and that is also independent of re-

maining statements of the original method.

Charalampidou et al. [4] suggest resolving the Long Method smell by using the Single

Responsibility Principle to identify opportunities of Extract Method refactoring. The ap-

proach calculates cohesion between pairs of statements to determine code fragments that

collaborate for functionality. Moreover, the approach identifies statements that perform the

same functionality.

Xu et al. [52] propose a machine-learning-based approach to recommend Extract Method

refactorings based on complexity, cohesion and coupling. They use samples, which were ob-

tained from real-world Extract Method refactorings, to train the probabilistic model. Their

tool was evaluated on five open-source repositories and compared against state-of-art ap-

proaches: SEMI [4], JEXTRACT [38] and JDEODORANT [8].

In our work, first we try to extract the second statement. If we cannot apply a refac-

toring, we try to extract the second and third statements. We repeat this process by adding

more statements until we successfully apply a refactoring using the IDE or we reach the last

statement (see Algorithm 1).

Previous studies discuss refactorings as laws of object-oriented programming. Borba

et al. [3] show some laws were formalized and encoded in tools, but not proved sound or

complete. Their contributions present algebraic laws for a language similar to a subset of

sequential Java. Opdyke [29] shows several preconditions to low-level refactorings, such

as checking naming conflicts, the collision of new methods, access control of methods and

delete non-referenced methods. In our technique implementation, we use preconditions im-

plemented in ECLIPSE to apply refactorings and study whether composite refactorings can

affect themselves.

Opdyke and Johnson [29] define a collection of program restructuring operations that

preserves behavior, named refactorings. Later, Roberts [33] automates several of the previ-

59

ous set of refactorings [29], but Tokuda and Batory [46] demonstrate that the preconditions

proposed by Opdyke are not sufficient to guarantee behavior preservation after. Further-

more, the findings of refactoring implementations suggest that it is a challenge to provide

refactorings with respect to the formal semantics of all language constructs [35]. In our eval-

uation, we identify differences in the refactoring mechanics of ECLIPSE and two refactoring

detection tools and intend to use SAFEREFACTOR after Step 2 to only consider behavior

preserving transformations.

Murphy-Hill et al. [24] find the developers do not use refactoring tools to apply refactor-

ings. They argue that the names of refactorings assigned by the refactoring tools are unnec-

essarily hard to identify between environments. For example, Introduce Explaining Variable

from Fowler’s catalog [9] is called Extract Local Variable in ECLIPSE. Besides, refactoring

names differ between refactorings tools. For example, Figure 2.2 shows the refactor menus

of ECLIPSE and INTELLIJ. Generify in INTELLIJ is equivalent to Infer Generic Type Argu-

ments in ECLIPSE. Another example, Introduce Field in INTELLIJ can be used as Convert

Local Variable to Field in ECLIPSE. In our evaluation, we identify differences in the names

of refactoring of each refactoring detection tool, such as Change Parameter Type in REFAC-

TORINGMINER and Change Signature Method in REFDIFF.

The study of Vakilian et al. [51] shows that the major barrier to the adoption of refac-

toring tools are not their bugs, but their usability. An example, automated refactorings, such

as embedded tools in IDE, were not used because a programmer performs refactoring man-

ually. In addition, more than half of the developers sometimes performed the refactoring

manually. Some coarse-grained refactorings are ambiguous, and developers cannot predict

the outcome of the refactoring implementation. The interviewees did not know the goals of

more than eight automated refactorings on average. Moreover, more than half of the inter-

viewees could not describe the transformation automated by some refactoring and did not

use some automated refactorings because of their unpredictability. We evaluate automated

and manual refactorings performed by IDE to real projects.

Tempero et al. [45] surveyed 3,785 developers to investigate the barriers to applying

refactorings. Their findings show that the decision to apply refactorings or not was due

to non-design considerations. They mentioned inadequate tool support as a reason for not

refactoring. Kim et al. [18] conduct a field study of refactoring benefits and challenges at

60

Microsoft. They perform three complementary study methods: a survey, semi-structured

interviews with professional software engineers, and quantitative analysis of version history

data. Their findings show that approximately half of the participants apply refactorings man-

ually, with an exception of the Rename refactoring. Murphy-Hill et al. [25] provide new

insights of analyzing four sets of data about how developers apply refactorings. They find

that refactoring implementations are underused specially when we consider refactorings that

have a method-level granularity or above. We find refactorings applied to real projects using

IDEs may have different refactoring mechanics.

Schäfer et al. [35] present several Java refactoring implementations by translating Java

programs to an enriched language. The language allows to specify and check preconditions

to apply the transformations more easily. They aim to improve the correctness and applica-

bility of the Eclipse refactoring implementations. Steimann and Thies [44] show that main-

streams IDEs, such as ECLIPSE, NETBEANS, and INTELLIJ, are flawed when it comes to

maintaining accessibility. They find scenarios where applying refactoring causes unexpected

changes to program behavior, such as Pull Up Members. In our work, we use ECLIPSE API

to verify preconditions and apply refactorings to open-source programs.

Daniel et al. [5] propose a technique based on ASTGen, a Java program generator, for

automated testing refactoring engines. To evaluate the refactoring correctness, they imple-

mented six oracles that evaluate the output of each transformation. They use the oracles

DT, Inverse Transformations, and Custom Oracles to identify incorrect transformations. For

example, the Inverse oracle checks whether applying a refactoring to a program, its inverse

refactoring to the target program yields the same initial program. If they are syntactically dif-

ferent, the refactoring engine developer has to manually check whether they have the same

behavior. They evaluate the technique by testing 42 refactoring implementations, and found

three transformation issues using Differential Testing and Inverse oracles in 2 refactoring

implementations of ECLIPSE and NETBEANS of the Encapsulate Field refactoring, and only

one bug using the Custom oracle.

Gligoric et al. [13] use real systems to reduce the effort for writing test generators using

the same oracles [14]. They found 141 bugs related to compilation errors in refactoring

implementations for Java and C in 285 hours. Our goal is to evaluate whether refactoring

tools have differences in the refactoring mechanics. We applied our technique to real projects

61

and found differences in refactoring mechanics. Moreover, we use the same approach of

Gligoric et al. [13] to apply refactorings to all possible locations.

A single refactoring rarely suffices to completely remove code smells, such as God

Class [9] and Feature Envy [9, 18, 39, 47]. Bibiano et al. [2] present a quantitative study that

addresses the incompleteness nature of composite refactorings that can affect internal quality

attributes. They define composite refactoring as two or more interrelated single refactorings

applied by the same developer to one or more code elements. Their study consists of com-

puting the frequency of incomplete composites according to the refactoring types constitut-

ing each composite. They analyzed 353 incomplete composite refactorings in five software

projects and targeted 34 popular refactoring types. They evaluate 11 code metrics that are

used to capture four internal quality attributes. Their findings reveal that 71% of incomplete

composite refactorings, with at least one Extract Method refactoring, are applied without

Move Methods on smelly classes. Besides, they found that 58% of incomplete composite

refactorings tended to at least maintain the internal structural quality of smelly classes, thus

not generating more harm. We verify whether the refactoring detection tools can detect the

composite refactorings.

Tsantalis and Chatzigeorgiou [47] propose a methodology for the identification of Move

Method refactoring opportunities by employing the notion of distance between an entity,

such as attribute or method, and a class. In this way, they automated the identification of

many common Feature Envy bad smells. Likewise, their approach measures the effect of

all refactoring suggestions based on a novel Entity Placement metric that quantifies the im-

provement of system classes after the suggestion is performed. Their evaluation consists of

quantitative analysis of the refactoring suggestions using open-source projects, a study about

the evolution of coupling and cohesion metrics when performing the refactoring suggestions,

an assessment by an independent designer about conceptual integrity of suggestions, and an

efficiency based on computation time for extraction of refactoring suggestions using several

open-source projects. They find the approach suggests useful refactoring to assist the de-

signer and to improve design quality, along with is capable of extracting conceptually sound

suggestions. Furthermore, the efficiency of their approach depends on the number of ex-

tracted refactoring suggestions and the size of the system. In this work, we report 8 issues

about Move Method refactoring.

Chapter 6

Conclusions

Section 4.1 proposes and evaluates a technique to test refactoring detection tools, such

as REFACTORINGMINER and REFDIFF. Then in Section 4.2, we investigate the impact

of software evolution concerning composite refactorings detection in refactoring detection

tools, such as REFACTORINGMINER and REFDIFF.

6.1 Refactoring Detection Tools and IDE

We evaluate 9,885 transformations applied to four real open-source projects using eight

refactoring types of ECLIPSE. REFACTORINGMINER and REFDIFF are consistent with the

refactoring mechanics of ECLIPSE in 74.28% and 78.45% of the transformations, respec-

tively. We report 34 issues to REFACTORINGMINER’s and REFDIFF’s developers. They

fixed 16 bugs, 12 bug reports are still open, 3 bugs are duplicated, and 3 issues are not

accepted.

In this study, we aim to see whether there are differences between the refactoring me-

chanics and IDEs and refactoring detection tools. It does not mean that the issue is always

on the refactoring detection tool side. Likewise, when a refactoring detection tool reports

refactorings not triggered by IDE, it does not mean that detection is wrong. In other words,

the refactoring mechanics implemented by the IDEs may add some optional changes that not

always clear to user community, as seen in Listing 4.6, Listing 4.9, and Listing 4.12.

Our results may be useful for developers of refactoring detection tools and refactoring

implementations to discuss about what should be considered in the refactoring mechanics of

62

6.2 Composite Refactorings 63

each refactoring type. This process may help to improve both tools.

Moreover, our technique may be useful to improve the process of creating a better dataset

to be used to evaluate refactoring detection tools, since it can automatically yield several of

transformations. Furthermore, it avoids the bias of the authors of the refactoring detection

tool to manually classify transformations [49]. Our findings may help the developers to

improve refactoring detection tools and refactoring automation tools. Likewise, it alerts the

research community about the risks of not considering related biases in their work.

To minimize the problem of depending on the refactoring mechanics implemented by

IDEs, developers may use advanced refactoring tools, such as REFAZER [34]. The tool is

able to generate a transformation based on few examples of transformations given by the user.

In this way, developers do not need to follow a fixed refactoring mechanics implemented by

each IDE.

6.2 Composite Refactorings

In this experiment, we evaluate 30 transformations grouped in 10 pairs of inputs and outputs

applied to two real open-source projects using seven refactoring types of ECLIPSE. REFAC-

TORINGMINER and REFDIFF are consistent with the refactoring mechanics of ECLIPSE in

20% of the transformations, and tools detect more refactorings in 80% of the transforma-

tions. We do not identify any additional issue after this experiment, and the results has a

similar discussion of the previous study in Section 4.1.4.

These results show evidence that composite refactorings do not impact each other. Con-

sequently, we can skip the additional effort of producing composite refactorings in new ex-

periments and use unique refactorings such as in the first experiment.

6.3 Future Work

As future work, we intend to evaluate more types of refactorings and increase the number

of evaluated projects. We mean at evaluating refactorings implemented by other popular

IDEs, such as INTELLIJ and NETBEANS. Moreover, we aim at performing a similar study

to evaluate refactorings overlapped with other changes instead of evaluating refactorings in

6.3 Future Work 64

isolation.

Furthermore, we intend to improve our technique to focus on applying refactorings only

on realistic opportunities and consider using the previous approaches [4, 38, 48, 52] to find

the sets of statements to be extracted in the Extract Method refactoring. We aim to study

the mechanics implemented by IDEs and see how they can be modified to be consistent with

refactoring detection tools.

Additionally, we intend to evaluate more types of refactorings and increase the number of

evaluated projects. Finally, we aim at evaluating the refactorings mechanics of other popular

IDEs, such as INTELLIJ and NETBEANS, and more programming languages supported by

REFDIFF, such as JavaScript and C/C++.

Bibliography

[1] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,

2000.

[2] Ana Carla Bibiano, Vinicius Soares, Daniel Coutinho, Eduardo Fernandes, João Lucas

Correia, Kleber Santos, Anderson Oliveira, Alessandro Garcia, Rohit Gheyi, Baldoino

Fonseca, Márcio Ribeiro, Caio Barbosa, and Daniel Oliveira. How does incomplete

composite refactoring affect internal quality attributes? In Proceedings of the Interna-

tional Conference on Program Comprehension, ICPC, page 149–159, 2020.

[3] Paulo Borba, Augusto Sampaio, Ana Cavalcanti, and Márcio Cornélio. Algebraic

reasoning for object-oriented programming. Science of Computer Programming,

52(1):53–100, 2004.

[4] Sofia Charalampidou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, Antonios

Gkortzis, and Paris Avgeriou. Identifying extract method refactoring opportuni-

ties based on functional relevance. IEEE Transactions on Software Engineering,

43(10):954–974, 2017.

[5] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated testing of

refactoring engines. In Proceedings of the Foundations of Software Engineering, pages

185–194. ACM, 2007.

[6] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. Automated Detec-

tion of Refactorings in Evolving Components. In Proceedings of the European Confer-

ence on Object-Oriented Programming, ECOOP, pages 404–428, 2006.

[7] Eclipse.org. Eclipse Project. http://www.eclipse.org, 2020.

65

BIBLIOGRAPHY 66

[8] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander Chatzigeorgiou.

JDeodorant: Identification and application of extract class refactorings. In Proceed-

ings of the International Conference on Software Engineering, ICSE, page 1037–1039,

2011.

[9] Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley,

1999.

[10] Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley

Professional, 2018.

[11] Martin Fowler. Catalog of refactorings. https://refactoring.com/

catalog/, 2020.

[12] Git community. Git. https://git-scm.com, 2020.

[13] Milos Gligoric, Farnaz Behrang, Yilong Li, Jeffrey Overbey, Munawar Hafiz, and

Darko Marinov. Systematic testing of refactoring engines on real software projects. In

Proceedings of the European Conference on Object-Oriented Programming, ECOOP,

pages 629–653, 2013.

[14] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kuncak, and

Darko Marinov. Test generation through programming in UDITA. In Proceedings of

the International Conference on Software Engineering, ICSE, pages 225–234. ACM,

2010.

[15] Gradle.org. Gradle Build Tool. https://gradle.org/, 2020.

[16] JetBrains. IntelliJ IDEA. https://www.jetbrains.com/idea/, 2020.

[17] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. A Field Study of

Refactoring Challenges and Benefits. In Proceedings of the Foundations of Software

Engineering, FSE, pages 50:1–50:11, 2012.

[18] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. An empirical study

of refactoring challenges and benefits at microsoft. IEEE TSE, 40(7):633–649, 2014.

BIBLIOGRAPHY 67

[19] Osmar Leandro, Rohit Gheyi, Leopoldo Teixeira, Márcio Ribeiro, and Alessandro Gar-

cia. Comparing the refactoring mechanics of refactoring detection tools and IDEs (ar-

tifacts). https://github.com/osmarleandro/comparing-mechanics,

2021.

[20] Tom Mens and Tom Tourwé. A Survey of Software Refactoring. IEEE Transactions

on Software Engineering, 30(2):126–139, 2004.

[21] Microsoft. Code - OSS (Visual Studio Code). https://github.com/

Microsoft/vscode/, 2020.

[22] Melina Mongiovi, Rohit Gheyi, Gustavo Soares, Leopoldo Teixeira, and Paulo Borba.

Making refactoring safer through impact analysis. Science of Computer Programming,

93:39–64, 2014.

[23] Melina Mongiovi, Gustavo Mendes, Rohit Gheyi, Gustavo Soares, and Márcio Ribeiro.

Scaling testing of refactoring engines. In Proceedings of the International Conference

on Software Maintenance and Evolution, ICSME, pages 371–380, 2014.

[24] Emerson Murphy-Hill, Moin Ayazifar, and Andrew P. Black. Restructuring software

with gestures. In Proceedings of the Symposium on Visual Languages and Human-

Centric Computing, VL/HCC, pages 165–172, 2011.

[25] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. How We Refactor, and

How We Know It. IEEE Transactions on Software Engineering, 38(1):5–18, 2012.

[26] Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. Johnson, and Danny Dig. A

Comparative Study of Manual and Automated Refactorings. In Proceedings of the Eu-

ropean Conference on Object-Oriented Programming, ECOOP, pages 552–576, 2013.

[27] Jonhnanthan Oliveira, Rohit Gheyi, Melina Mongiovi, Gustavo Soares, Márcio Ribeiro,

and Alessandro Garcia. Revisiting the refactoring mechanics. Information and

Software Technology, 110:136–138, 2019.

[28] Jonhnanthan Oliveira, Rohit Gheyi, Felipe Pontes, Melina Mongiovi, Márcio Ribeiro,

and Alessandro Garcia. Revisiting refactoring mechanics from tool developers’ per-

BIBLIOGRAPHY 68

spective. In Proceedings of the Brazilian Symposium on Formal Methods, SBMF, pages

25–42, 2020.

[29] William Opdyke. Refactoring Object-oriented Frameworks. PhD thesis, University of

Illinois at Urbana-Champaign, 1992.

[30] Oracle. Netbeans IDE. http://www.netbeans.org, 2020.

[31] Felipe Pontes, Rohit Gheyi, Sabrina Souto, Alessandro Garcia, and Márcio Ribeiro.

Java reflection API: revealing the dark side of the mirror. In Proceedings of the Foun-

dations of Software Engineering, FSE, pages 636–646, 2019.

[32] Kyle Prete, Napol Rachatasumrit, Nikita Sudan, and Miryung Kim. Template-based

Reconstruction of Complex Refactorings. In Proceedings of the International Confer-

ence on Software Maintenance, ICSM, pages 1–10, 2010.

[33] Donald Bradley Roberts. Practical Analysis for Refactoring. PhD thesis, University of

Illinois at Urbana-Champaign, 1999.

[34] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit Gul-

wani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. Learning syntactic program

transformations from examples. In Proceedings of the International Conference on

Software Engineering, ICSE, pages 404–415, 2017.

[35] Max Schäfer and Oege de Moor. Specifying and implementing refactorings. In Pro-

ceedings of the ACM International Conference on Object Oriented Programming Sys-

tems Languages and Applications, OOPSLA’10, pages 286–301, 2010.

[36] Danilo Silva. Mining Refactorings from version histories: studies, tools, and applica-

tions. PhD thesis, Federal University of Minas Gerais, 2020.

[37] Danilo Silva, Joao Paulo da Silva, Gustavo Santos, Ricardo Terra, and Marco Tulio

Valente. RefDiff 2.0: A multi-language refactoring detection tool. IEEE Transactions

on Software Engineering, 47(12):2786–2802, 2020.

BIBLIOGRAPHY 69

[38] Danilo Silva, Ricardo Terra, and Marco Tulio Valente. Recommending automated ex-

tract method refactorings. In Proceedings of the International Conference on Program

Comprehension, ICPC, page 146–156, 2014.

[39] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. Why We Refactor? Con-

fessions of GitHub Contributors. In Proceedings of the Foundations of Software Engi-

neering, FSE, pages 858–870, 2016.

[40] Danilo Silva and Marco Tulio Valente. Refdiff: Detecting refactorings in version histo-

ries. In International Conference on Mining Software Repositories, MSR, pages 269–

279, 2017.

[41] Gustavo Soares, Rohit Gheyi, and Tiago Massoni. Automated Behavioral Testing of

Refactoring Engines. IEEE Transactions on Software Engineering, 39(2):147–162,

2013.

[42] Gustavo Soares, Rohit Gheyi, Emerson Murphy-Hill, and Brittany Johnson. Comparing

approaches to analyze refactoring activity on software repositories. Journal of Systems

and Software, 86(4):1006–1022, April 2013.

[43] Gustavo Soares, Rohit Gheyi, Dalton Serey, and Tiago Massoni. Making Program

Refactoring Safer. IEEE Software, 27(4):52–57, 2010.

[44] Friedrich Steimann and Andreas Thies. From Public to Private to Absent: Refactor-

ing Java Programs under Constrained Accessibility. In Proceedings of the European

Conference on Object-Oriented Programming, ECOOP, pages 419–443, 2009.

[45] Ewan Tempero, Tony Gorschek, and Lefteris Angelis. Barriers to Refactoring. CACM,

60(10):54–61, 2017.

[46] Lance Tokuda and Don Batory. Evolving object-oriented designs with refactorings.

In Proceedings of the International Conference on Automated Software Engineering,

ASE, pages 174–181, 1999.

[47] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of move method

refactoring opportunities. Transactions on Software Engineering, 35(3):347–367,

2009.

BIBLIOGRAPHY 70

[48] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of extract method

refactoring opportunities for the decomposition of methods. Journal of Systems and

Software, 84(10):1757–1782, 2011.

[49] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. RefactoringMiner 2.0. IEEE Trans-

actions on Software Engineering, 48(3):930–950, 2020.

[50] Nikolaos Tsantalis, Matin Mansouri, Laleh Mousavi Eshkevari, Davood Mazinanian,

and Danny Dig. Accurate and efficient refactoring detection in commit history. In

Proceedings of the International Conference on Software Engineering, ICSE, pages

483–494, 2018.

[51] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar, Brian P.

Bailey, and Ralph E. Johnson. Use, Disuse, and Misuse of Automated Refactorings.

In Proceedings of the International Conference on Software Engineering, ICSE, pages

233–243, 2012.

[52] Sihan Xu, Aishwarya Sivaraman, Siau-Cheng Khoo, and Jing Xu. Gems: An extract

method refactoring recommender. In Proceedings of the International Symposium on

Software Reliability Engineering, ISSRE, pages 24–34, 2017.

[53] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kauf-

mann Publishers, 2nd edition, 2009.

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

	Introduction
	Problem
	Motivating Example
	Solution
	Summary of Contributions
	Organization

	Background
	Code Refactoring
	Refactoring Implementations
	Code Examples
	Automating Refactorings

	Refactoring Detection Tools
	RefactoringMiner
	RefDiff
	Refactoring Names

	Technique to Compare Refactoring Mechanics
	Overview
	Steps
	Tool Support

	Comparing Refactoring Mechanics
	Refactoring Detection Tools and IDE
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity
	Answers to Research Questions

	Composite Refactorings
	Study Definition
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Works
	Conclusions
	Refactoring Detection Tools and IDE
	Composite Refactorings
	Future Work

