
Universidade Federal de Campina Grande
Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Dissertação de Mestrado

Integrating SPIFFE and SCONE to Enable Universal
Identity Support for Confidential Workloads

Matteus Sthefano Leite da Silva

Campina Grande, Paraíba, Brasil

08/2021



Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Integrating SPIFFE and SCONE to Enable Universal

Identity Support for Confidential Workloads

Matteus Sthefano Leite da Silva

Dissertação submetida à Coordenação do Curso de Pós-Graduação em

Ciência da Computação da Universidade Federal de Campina Grande -

Campus I como parte dos requisitos necessários para obtenção do grau

de Mestre em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Sistemas de Computação

Andrey Elísio Monteiro Brito e Francisco Vilar Brasileiro

(Orientador e Coorientador)

Campina Grande, Paraíba, Brasil

©Matteus Sthefano Leite da Silva, 26/08/2021



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

S586i 

 

Silva, Matteus Sthefano Leite da. 

       Integrating SPIFFE and SCONE to enable universal identity support 

for confidential workloads / Matteus Sthefano Leite da Silva. – Campina 

Grande, 2021. 

       76 f. : il. color.      

   

        Dissertação (Mestrado em Ciência da Computação) – Universidade 

Federal de Campina Grande, Centro de Engenharia Elétrica e 

Informática, 2021.  

        “Orientação: Prof. Dr. Andrey Elísio Monteiro Brito, Prof. Dr. 

Francisco Vilar Brasileiro”. 

     Referências. 

   

        1. Computação – Segurança. 2. Provisionamento de Identidades.      

3. Computação Confidencial. 4. Intel SGX. I. Brito, Andrey Elísio 

Monteiro. II. Brasileiro, Francisco Vilar. III. Título. 

                                                                                       

 

                                                                                CDU 004.056(043) 
FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA SEVERINA SUELI DA SILVA OLIVEIRA CRB-15/225 

 
    

 



27/09/21, 09:04 SEI/UFCG - 1724468 - PRPG-Folha de Assinatura para Teses e Dissertações

https://sei.ufcg.edu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=1909567&infra_siste… 1/2

MINISTÉRIO DA EDUCAÇÃO 
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE 
POS-GRADUACAO CIENCIAS DA COMPUTACAO 

Rua Aprigio Veloso, 882, - Bairro Universitario, Campina Grande/PB, CEP 58429-900 
 

  

FOLHA DE ASSINATURA PARA TESES E DISSERTAÇÕES

MATTEUS STHEFANO LEITE DA SILVA

 

 

INTEGRATING SPIFFE AND SCONE TO ENABLE UNIVERSAL IDENTITY SUPPORT FOR CONFIDENTIAL
WORKLOADS

 

Dissertação apresentada ao Programa de Pós-Graduação
em Ciência da Computação como pré-requisito para
obtenção do �tulo de Mestre em Ciência da
Computação.

Aprovada em: 26/08/2021

 

 

 

Prof. Dr. ANDREY ELÍSIO MONTEIRO BRITO - Orientador - UFCG

Prof. Dr. FRANCISCO VILAR BRASILEIRO - Orientador - UFCG

Prof. Dr. REINALDO CÉZAR DE MORAIS GOMES - Examinador Interno - UFCG

Prof. Dr. EDUARDO DE LUCENA FALCÃO,- Examinador Externo - UFRN

Profa. Dra. MICHELLE SILVA WANGHAM - Examinadora Externa - UNIVALI

 

 

Documento assinado eletronicamente por Eduardo de Lucena Falcão, Usuário Externo, em
26/08/2021, às 18:57, conforme horário oficial de Brasília, com fundamento no art. 8º, caput, da
Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por REINALDO CEZAR DE MORAIS GOMES, PROFESSOR(A) DO
MAGISTERIO SUPERIOR, em 26/08/2021, às 20:41, conforme horário oficial de Brasília, com
fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por FRANCISCO VILAR BRASILEIRO, PROFESSOR(A) DO
MAGISTERIO SUPERIOR, em 26/08/2021, às 20:48, conforme horário oficial de Brasília, com



27/09/21, 09:04 SEI/UFCG - 1724468 - PRPG-Folha de Assinatura para Teses e Dissertações

https://sei.ufcg.edu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=1909567&infra_siste… 2/2

fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por ANDREY ELISIO MONTEIRO BRITO, PROFESSOR(A) DO
MAGISTERIO SUPERIOR, em 26/08/2021, às 21:09, conforme horário oficial de Brasília, com
fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

A auten�cidade deste documento pode ser conferida no site h�ps://sei.ufcg.edu.br/auten�cidade,
informando o código verificador 1724468 e o código CRC D99C3A0F.

Referência: Processo nº 23096.050899/2021-28 SEI nº 1724468



Resumo
Softwares modernos não executam mais em conjuntos isolados de máquinas protegidas por

estratégias e ferramentas de segurança de perímetro. À medida que empresas movem suas

cargas de trabalho para a computação em nuvem e na borda, as fronteiras de segurança se

turvam, aumentando a complexidade do uso de estratégias como segurança de perímetro

por conta da heterogeneidade de tais ambientes. Além disso, empresas com cargas de tra-

balho sensíveis ainda têm que se preocupar com confidencialidade de dados em ambientes

não confiáveis. O modelo de computação confidencial surgiu para atacar esse problema,

garantindo confidencialidade em domínios não confiáveis através de execução criptografada

de software.

Esses dois problemas parecem estar bem resolvidos quando considerados separadamente.

No entanto, emitir identidades para cargas de trabalho confidenciais não é uma tarefa trivial,

uma vez que ambientes de execução confiáveis têm processos de atestação muito particu-

lares. Estratégias ditas lift-and-shift para computação confidencial têm seus serviços de ates-

tação e configuração capazes de habilitar autenticação e comunicação segura entre suas car-

gas de trabalho confidenciais. Apesar disso, ainda há uma falta de um suporte de identidade

que funcione para ambas cargas de trabalho confidenciais e não confidenciais, permitindo

interoperabilidade entre esses dois tipos de cargas. Simplesmente utilizar frameworks de

distribuição de identidades como o SPIFFE não é aplicável para computação confidencial,

pois os modelos de ameaças de tais soluções assumem confiança na infraestrutura e na pilha

de software onde as cargas de trabalho executam.

Neste trabalho, nós propomos uma integração entre um framework de distribuição de

identidades nativo da nuvem com uma abordagem lift-and-shift que habilita computação

confidencial. Foram integrados o framework SPIFFE e o SCONE para habilitar o suporte

a identidades para cargas de trabalho confidencias que interromperam com cargas não con-

fidenciais. Para isso, foi projetado um novo componente para o ambiente de execução do

SPIFFE que entrega identidades para cargas de trabalho baseadas em SCONE e considera

o modelo de ameaça de computação confidencial. Para avaliar nossa proposta sob uma per-

spectiva de segurança, foi conduzida uma análise de segurança com especialistas em com-

putação confidencial para avaliar os pontos fortes e fraquezas da proposta diante do modelo
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de ameaça de computação confidencial. Os resultados da análise de segurança indicaram

que os especialistas consideraram a proposta robusta contra ataques vindos da infraestrutura

de um provedor em um ambiente não confiável. Além desses ataques, muitas ameaças de

cargas de trabalho contra outras cargas de trabalho também foram consideradas mitigadas.

Também foram conduzidos experimentos para identificar sobrecargas no processo de emis-

são de identidades. Por outro lado, experimentos para medir o tempo de construção de ima-

gens de contêineres para cargas de trabalho escritas com Python mostraram que a construção

de imagens SCONE é mais rápida. Apesar do escopo deste trabalho estar atrelado à cargas

de trabalho baseadas em SCONE, a integração proposta é extensível para outras abordagens

lift-and-shift através de plugins para o novo componente SPIRE.

Palavras-chave: Provisionamento de identidades; Computação confidencial; Intel

SGX.
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Abstract
Software no longer runs on an isolated set of server machines protected using perimeter se-

curity strategies and tools. As companies move to the cloud and edge computing, the security

boundaries blur, turning strategies such as perimeter security and firewall management diffi-

cult in such heterogeneous environments. Also, companies with highly sensitive workloads

still worry about data confidentiality in untrusted environments. The confidential comput-

ing model emerged to address this last problem, ensuring data confidentiality in untrusted

domains via always encrypted execution.

These two problems seem to be solved when considered separately. However, issuing

identities for confidential workloads is not trivial as trusted execution environments have

strongly opinionated attestation processes. Confidential computing lift-and-shift approaches

have their attestation and configuration services capable of enabling authentication and se-

cure communication between confidential workloads. However, there is a lack of universal

identity support between confidential and regular workloads. Simply using identity distri-

bution frameworks such as SPIFFE to bootstrap identities for confidential workloads is not

applicable because their threat model assumes trust in the infrastructure and software stack

where the workloads run on.

In this work, we propose an integration between a cloud native identity framework and

a lift-and-shift approach to enable confidential computing. We brought together SPIFFE

and SCONE to enable identity support for confidential workloads that interoperates with

non-confidential workloads. We designed a new component for the SPIFFE runtime envi-

ronment that delivers identities for SCONE-based confidential workloads and considers the

confidential computing threat model. To evaluate our proposal from a security perspective,

we conducted a security analysis with confidential computing specialists to assess strengths

and weaknesses under the confidential computing threat model. The security analysis results

indicated that the specialists considered the proposal robust against coming from provider

infrastructure in untrusted environments. Also, most workload-to-workloads attacks were

considered mitigated. We also conducted experiments and identified overheads in the iden-

tity issuing process. On the other hand, experiments to measure container image build times
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for Python workloads showed that the builds with SCONE were faster than builds for non-

confidential workloads. Although the scope of this work is tied to confidential SCONE-based

workloads, the integration is extensible via plugins for the new SPIRE component and can

accommodate other lift-and-shift solutions for confidential computing.

Keywords: Identity provisioning; Confidential computing; Intel SGX.
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Chapter 1

Introduction

Modern software no longer runs on an isolated set of server machines protected using perime-

ter security strategies and tools. As companies move to the cloud and edge computing,

the security boundaries blur, making firewall management or perimeter security difficult in

such heterogeneous environments. The Secure Production Identity Framework for Every-

one (SPIFFE) is a framework that specifies standards to enable bootstrapping and issuing

identities to services in such environments. Despite frameworks such as SPIFFE, compa-

nies with highly sensitive workloads still worry about data confidentiality in public cloud

computing infrastructure. The confidential computing model emerged to address this last

problem, using hardware-based trusted execution environment (TEE) technologies such as

Intel Software Guard eXtensions (SGX) to ensure data confidentiality in untrusted domains

via always encrypted execution, enabling confidential workloads.

1.1 Problem

There is a lack of universal identity support between confidential and regular workloads.

In other words, there is a lack of identity systems that can issue identities for both confi-

dential and regular workloads so that both types of workloads can communicate securely

and establish a certain level of trust. Between confidential workloads using different trusted

execution environment portability approaches the problem persists. There are lift-and-shift

approaches to execute applications inside TEEs. However, each lift-and-shift approach, such

as SCONE [Arnautov et al. 2016], has its attestation and configuration services capable of

1



1.1 Problem 2

enabling confidential workloads to authenticate and communicate securely with other confi-

dential workloads. In this sense, emitting identities for confidential workloads is not trivial

as trusted execution environments have strongly opinionated attestation processes.

SPIFFE facilitates assigning identities in heterogeneous environments. Nonetheless,

simply using SPIFFE [SPIFFE: Secure Production Identity Framework for Everyone.

https://spiffe.io] to bootstrap identities for confidential workloads is not applicable because

the SPIFFE threat model assumes trust in the infrastructure and software stack where the

workloads run on. Thus, the attestation processes provided by the plugins available in the

SPIRE implementation do not fit the trust requirements demanded by confidential workloads.

The incompatibility between the threats models of SPIFFE and confidential computing

occurs mainly because, while SPIFFE assumes trust in components such as cloud providers

and orchestrators for attestation, in confidential computing even the operating system is con-

sidered untrusted. While SPIFFE can rely on information coming from a container orches-

trator, in the confidential computing world the only way is the attestation process defined by

a TEE that has a much smaller attack surface.

Previous work addressed identity provisioning for confidential workloads. Proposed by

Gregor et al. [Gregor et al. 2020], PALÆMON can attest and give identities for a subset of

confidential workload. Due to the specific attestation process only suitable for confidential

workloads, PALÆMON can not handle attestation for regular workloads. In previous work

we proposed SQUAD [da Silva, de Oliveira Silva e Brito 2019], also capable of attesting

a subset of confidential workloads and is not suitable for regular workloads. Knauth et

al. [Knauth et al. 2018] proposed integrating a standard TLS communication channel with

the Intel SGX remote attestation with the RA-TLS. With this integration workloads can

share a common identity document (a certificate) but regular workloads should be modified

to be aware of TEE attestation and RA-TLS does not provide attestation for non-confidential

workloads. In general, the previous work present high adoption barriers and do not offer

attestation for confidential and non-confidential workloads.
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1.2 Intervention

In this work, we propose an integration between SPIFFE and SCONE to enable universal

identity support for confidential workloads. As a well tested, ready-to-marked, lift-and-

shift approach to run applications inside enclaves, SCONE lowers the barrier to adopting

confidential computing and facilitates prototyping and experiments.

We designed a new component for the SPIFFE runtime environment (SPIRE) that enables

SCONE-based confidential workloads and is robust against the threats defined in the confi-

dential computing threat model. We evaluated our proposal in terms of security threats and

performance. We conducted a security analysis with specialists in confidential computing

to assess how which threats are mitigated by our proposal, according to the expertise of the

analysis participants. The security analysis revealed that our proposal have an important im-

pact considering the threat model for confidential computing. Most threats stated as coming

from the infrastructure provider were considered mitigated by the participants. We conducted

performance experiments that indicated overhead in the identity issuing process. Because of

the stronger attestation process and encryption processes involved to protect workloads, is-

suing identities for confidential workloads takes longer than for regular workloads. Lastly,

we also performed experiments to measure the overheads in the container image build times.

In opposite to the on the identity issuing process, the experiments on container image build

times showed that images for regular workloads written in Python take a longer build time

than confidential SCONE images with applications written in the same language.

Although in this work we use SCONE-based workloads, the integration is extensible via

plugins for SGX Helper, with the potential to accommodate other lift-and-shift solutions for

confidential computing. By extending SPIFFE to confidential workloads, our proposal helps

to push confidential computing towards cloud-native confidential computing.

1.3 Document structure

This work is organized as follows. In Chapter 2 we discuss base concepts and technologies

needed to understand the proposal and its context. In Chapter 3 we present the motivations

for this work. In Chapter 4 we present our proposal. In Chapter 5 we present a security
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analysis of our proposal, its results, conclusions, and lessons learned from it. In Chapter 6,

we present the performance evaluation. In Chapter 7 we discuss the related work. Finally, in

Chapter 8, we present the conclusions of this work, recent contributions and future work.



Chapter 2

Background

In this chapter, we provide background information on concepts and technologies to under-

stand our work’s context and contribution. Readers experienced in these topics may want to

skip this chapter. Before going to more complex concepts, we are going to visit the concept

of workload. In this work, we start from the definition of workload published by Feldman

et al. [Feldman et al. 2020]: "A workload is a single piece of software, deployed with a

particular configuration for a single purpose that can consist of multiple running instances,

where all of them perform the same task." In the book, Feldman et al. emphasized that the

term workload may include a wide range of different definitions of a software system. For

our security analysis and experiments, we considered workloads limited to the boundaries of

a container.

2.1 Trusted Execution Environments and Trusted Com-

puting Base

A Trusted Execution Environment is an isolated processing environment that provides

a specific set of guarantees. It provides isolated execution of applications (commonly

called trusted applications), the integrity of the application code executing on the environ-

ment, the confidentiality of the data processed, and integrity of the trusted computing base

(TCB) [Sabt, Achemlal e Bouabdallah 2015]. According to the National Institute of Stan-

dards and Technology (NIST) definition, a TCB is the totality of protection mechanisms

5
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within a computer system, including hardware, firmware, and software, the combination re-

sponsible for enforcing a security policy1. Moreover, a TEE may support remote attestation.

Through the remote attestation process, the TEE can prove its trustworthiness and security

properties to other entities.

Demigha and Larguet [Demigha e Larguet 2021] present a set of properties to consider

for TEEs. They present several criteria in the perspective of cloud computing, from security

criteria to functional and deployability criteria. For confidential workloads, security proper-

ties such as isolation, confidentiality protection, integrity protection, are must-have features.

Moreover, in the context of cloud computing in untrusted environments, functional criteria

such as TCB size and remote attestation support should also be taken into account.

The deployability criteria resume essential features which make it easier to deploy con-

fidential workloads into a cloud-native environment. The use of legacy application code, the

performance impact in TEE usage, virtual machine (VM) migration, and ecosystem size are

essential criteria to look at.

2.2 Intel SGX

Intel Software Guard Extensions is a set of instructions and memory access control changes

added to the Intel x86 architecture. Intel SGX is a hardware-assisted TEE that allows the

creation of encrypted and isolated memory regions in the memory address space of an ap-

plication. These protected memory regions, with access control enforced by hardware, are

named enclaves. An SGX-enabled processor checks the operating system memory mapping,

ensuring that only the right enclave instructions can access protected memory.

Unfortunately, the memory area dedicated to enclaves is still scarce compared to the

main memory available in general-purpose computers nowadays. The memory region’s typ-

ical size dedicated to enclave operations, Processor Reserved Memory (PRM), is 128 MB,

and only a few recent processors have a maximum of 256 MB of PRM, but it should take

a couple of years before they are standard. Once the processor needs to keep some meta-

data, the actual portion of memory useful to allocate enclaves is about 93 MiB, in systems

with 128 MB of PRM. In VMs, these limits could be different. For instance, in Microsoft
1Source: https://csrc.nist.gov/glossary/term/trusted_computing_base. Last access in 23/03/2021
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Azure, the flavors offer from 28 MB to 168 MB of Enclave Page Cache (EPC) [Microsoft

Azure: Confidential Computing Documentation.]. If the data inside an enclave exceed the

available memory amount, the processor evicts the protected memory pages into the main

memory. This process increases the memory access latency in orders of magnitude, so de-

velopers should design enclaves with these limits in mind to avoid the risk of considerable

overhead [Arnautov et al. 2016]. Although the current scarce protected memory amount,

the new third-generation of the Xeon scalable processor (Ice Lake SP) came with SGX and

total memory encryption capabilities. It will enable running workloads without the secure

memory swap overhead.2

SGX applications are composed of one untrusted part and at least one enclave (trusted

part), that is, an SGX application has one untrusted portion but can have several independent

enclaves. As an enclave can not perform system calls due to the TEE isolation properties, the

untrusted part of the application is always responsible for input and output operations and

instantiating enclaves. In any case, enclaves must be designed never to leak sensitive data in

plain text.

The most distinguishing features of Intel SGX are memory protection and remote attesta-

tion. Memory protection guarantees both confidentiality and integrity. Once the application

code is loaded into the so-called SGX enclave, the code cannot be modified or inspected,

even by code with higher privileges, such as the operating system. Furthermore, if this code

receives data through protected channels, such as Transport Layer Security (TLS) connec-

tions, the data cannot be stolen. The implementation is based on new instructions and units

added to the processor itself, which enable higher security levels than what can be provided

by software alone [Costan e Devadas 2016].

The confidentiality and integrity protection of the enclaves are then completed by the

second major feature: remote attestation. The attestation process is a mechanism by which a

challenger can gain confidence that an enclave is running in an SGX-enabled platform [Scar-

lata et al. 2018]. Also, through this process, a challenger can verify the identity associated

with an enclave. The enclave identity, also known as MRENCLAVE, is a SHA-256 digest

of an internal record of all the activities done while the enclave is built [Anati et al. 2013].
2Ice Lake SP technical documentation: https://www.intel.com/content/www/us/en/products/platforms/details/ice-

lake-sp.html.
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Thus, the digest includes all pages of code, data, stack, the heap, relative position of the

pages, and all security flags associated. Intel currently provides two approaches to perform

remote attestation. The first one, using the Intel SGX Attestation Service (IAS), is a client

platform focused approach that uses a privacy-preserving group signature scheme that is

only verifiable by IAS. The second one, the Intel SGX Data Center Attestation Primitives

(Intel SGX DCAP), is based on Elliptic Curve Digital Signature Algorithm (ECDSA) signa-

tures [Scarlata et al. 2018]. These primitives allow the construction of on-premise attestation

services, enabling third parties to build their attestation infrastructure, especially useful for

enterprises that do not want to outsource trust decisions to Intel and for environments where

internet access latencies need to be avoided.

Figure 1 depicts the default remote attestation flow. In step 1, the challenger application

challenges the SGX application to prove that it is running in an SGX-enabled machine.

The challenge also has a nonce, for freshness purposes. As the trusted part of the SGX

application cannot perform system calls, all the communication between the challenger and

the enclaves pass by the untrusted part, but end-to-end encryption ensures confidentiality

and message authentication ensures integrity of messages exchanged during the execution of

the attestation process. In step 2, the untrusted part requests an attestation report from the

enclave, passing the nonce sent by the challenger. The enclave generates the attestation report

and a manifest, and sends it back to the untrusted part (step 3). The untrusted part delivers the

generated report to the Quoting Enclave for signing (steps 4 and 5). The Quoting Enclave is

a special enclave provided by Intel and has access to signing keys that never leave the CPU.

The report signed with this secret key is forwarded back to the challenger (step 6), which can

validate it with an attestation service, IAS or DCAP, as mentioned above (step 7). Once the

quote can be trusted (step 8), the digest identifying the application can be compared against

known reference values (step 9).

2.3 SCONE

SCONE is a runtime environment and set of tools to run workloads inside SGX enclaves.

To achieve this, it provides a lift-and-shift approach. This approach makes SCONE a better

option than the SGX SDK to port existing workloads to SGX enclaves. To run workloads in-
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Figure 2.1: Intel SGX Remote Attestation Flow

side enclaves using the SGX SDK, a developer must rewrite the code using specific libraries

with limited features. Also, the software development kit limits the developer to C and C++

programming languages.

On the other hand, SCONE leverages modified versions of the standard libraries such

as libc and musl-libc, supporting various programming languages (C, C#, C++, Go,

Python, Java, Rust, among others). It offers secure containers on top of an untrusted software

stack, protecting the workloads even against high privileged agents that control any part of

this untrusted software stack [Arnautov et al. 2016]. The SCONE environment provides an

external interface for systems calls protected by shields. These shields ensure the confiden-

tiality and integrity of data passing through file descriptors. Also, SCONE integrates with

Docker and container management platforms compatible with Docker, such as Kubernetes,

Docker Swarm, and Docker Compose.

To develop with the SGX SDK, the developer has to consider security advisories and

common vulnerabilities and exposures (CVE). In the case of using SCONE, the security

issues related to SGX are concerns of the SCONE environment, which allows the developers

to focus on the functionality of their workloads. For instance, the SCONE has available

protection against practical side-channel attacks, with one approach using Varys [Oleksenko

et al. 2018].

SCONE also supports remote attestation. The SCONE environment has a service that

integrates the remote attestation process and secrets provisioning. The Configuration and

Attestation Service (CAS) enables operators to manage secrets to their confidential work-

loads with rollback protection and updates in a secure way. Also, the CAS is attestable and
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allows operators to verify its integrity.

Gregor et al. [Gregor et al. 2020] explain that one of the challenges in the CAS design

process was "how to support secret management for common configuration approaches in

a secure way and without requiring modifications to the source code?" Not changing the

application’s code was a requirement since SCONE proposes a lift-and-shift approach. The

solution proposed by the authors covers then three popular ways of configuration provision-

ing: command-line arguments, environment variables, and files.

Using CAS, an operator can describe the workload, properties, security constraints, and

the configuration for this workload. Then, the operator deploys the workload remotely and,

to receive the configuration, the workload goes through an attestation process that ensures

the properties and security constraints. In this way, the CAS verifies the enclave identity and

the properties of the SGX TCB.

All information that describes a workload is loaded into CAS using security policies

commonly referred to as sessions. In this work, we will use sessions to refer to security

policies. A session is written in a policy language that is a subset of the YAML languange.

The code snippet 2.1 shows an example of a session for a Python workload. The example

illustrates the secrets provisioning in three different ways: via command line arguments (line

7), via environment variables (lines 8 and 9), and via files injected in the workload’s view of

the filesystem (line 22).

Source Code 2.1: Session example for a Python workload.
1 name : python −workload − s e s s i o n
2 v e r s i o n : " 0 . 3 "
3 s e r v i c e s :
4 − name : python − work load
5 image_name : my−image
6 m r e n c l a v e s : [708

bfa35c15da4767700cad3dc49e7002c4914f452f487973d589dc4e000ed03
]

7 command : / u s r / b i n / py thon3 / app / work load . py a rg1 a rg2
8 e n v i r o n m e n t :
9 MY_ENV_VAR: my−env − v a l u e

10
11 s e c r e t s :
12 − name : my− p r i v a t e −key
13 k ind : p r i v a t e −key
14 v a l u e : |
15 −−−−−BEGIN PRIVATE KEY−−−−−
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16 . . .
17 −−−−−END PRIVATE KEY−−−−−
18
19 images :
20 − name : my−image
21 i n j e c t i o n _ f i l e s :
22 − p a t h : / keys / c l i e n t −key . key
23 c o n t e n t : $$SCONE : : my− p r i v a t e −key . key$$
24
25 s e c u r i t y :
26 a t t e s t a t i o n :
27 t o l e r a t e : [ debug −mode , h y p e r t h r e a d i n g , o u t d a t e d − tcb , i n s e c u r e

− igpu ]
28 i g n o r e _ a d v i s o r i e s : "*"

The documentation for the SCONE policy language is available on the SCONE website 3.

In our example, we describe the session python-workload-session as follows:

• The key name holds the session’s name.

• The key version indicates the version of the policy language for the current session.

• The section services describes the workloads, with the following subkeys:

– name indicating the name of the workload;

– image_name to specify which SCONE image (view of a filesystem provided

by the SCONE environment) the workload will see;

– mrenclaves listing the enclave identities allowed to receive the secrets de-

scribed in the current session;

– command specifying which workload will run and with which command-line

arguments;

– And environment defining which environment variables the workload pro-

cess will have access.

• The section secrets defines secrets in general (in this case, a PEM-encoded private

key).

3https://sconedocs.github.io/CAS_session_lang_0_3/
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• The images section describes views of a filesystem available to the workload

after the attestation process. In this case, the workload will be able to read

the file /keys/client-key.key with the content stored in secret named

my-private-key.

• The section security describes constraints about the platform: which features of the

TCB the CAS should tolerate (key tolerate) and which security advisories should

be ignored (key security advisories). Typically this section is used to weaken

some constraints for development and test environments.

The CAS has strong access control policies and a scheme in which sessions can import

secrets of other sessions, enabling various scenarios for operators such as reuse and secret

compartmentalization. In this work, we use this feature to give our proposal components

only the necessary views to work correctly.

Another import SCONE feature is the File System Protection File (FSPF). The FSPF

allows the encryption with authentication of files within the Docker images built for the

applications. With this feature interpreted code and dependencies can be encrypted to ensure

code confidentiality. Moreover, the FSPF has a authenticated-only mode useful for cases

where only integrity is a requirement. This feature can be used to protect files created by the

applications in runtime ensuring that no information will leave enclaves without the proper

security measures.

2.4 Secure Production Identity Framework for Everyone

The following sections present the SPIFFE standard and its reference implementation,

SPIRE.

2.4.1 SPIFFE

The Secure Production Identity Framework For Everyone (also referred as SPIFFE by the

community) is a framework and a set of standards for identifying and securing communi-

cations between application services [SPIFFE: Secure Production Identity Framework for

Everyone. https://spiffe.io]. SPIFFE defines how services identify themselves to each other,
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establishing a standard. It allows workloads to get identities and to trust each other without

the need for a pre-existing secret.

SPIFFE consists of several parts: The SPIFFE ID, the Trust Domain, the Federation, the

Trust Bundle, the SPIFFE Verifiable Identity Document (SVID), and the Workload API.

The SPIFFE ID is the string representation of the identities issued to services or work-

loads. It follows the Uniform Resource Identifier (URI)4 scheme and consists of several

parts: the prefix (as the URI’s scheme), the name of the trust domain (as the host compo-

nent), and the workload’s identity (as the path component). An example of SPIFFE ID could

be spiffe://example.com/myworkload.

Operators use the SPIFFE Trust Domains to manage administrative and security bound-

aries within the organizations. The Trust Domain works like a namespace. Each Trust Do-

main has its issuing authority, which means that one Trust Domain’s compromise does not

necessarily compromise another.

The SPIFFE Federation gives to SPIFFE implementations the ability to validate SPIFFE

IDs across Trust Domains. Use cases like different organizations that need to communicate

with each other or even a single organization that needs various security boundaries can

benefit from this SPIFFE feature. To make this happen, operators can configure foreign

Trust Domains’ Trust Bundles to be available through TLS-protected endpoints.

The SPIFFE Trust Bundle is a document that contains the Trust Domain’s public keys.

Thus, every Trust Domain has a Trust Bundle associated.

The SVID is the cryptographically-verifiable document that wraps the SPIFFE ID. Each

SVID has a single SPIFFE ID. The Trust Domain’s issuing authority signs each SVID, so it is

verifiable using the Trust Bundle. Moreover, at the time of this work, there are two encoded

forms for SVIDs. The X509-SVID wraps a SPIFFE ID into a standard X.509 certificate 5.

The JWT-SVID encodes a SPIFFE ID into a standard JSON Web Token (JWT) 6.

Lastly, the SPIFFE Workload API is a local Application Programming Interface (API)

that workloads use to get their SVIDs and Trust Bundles. The Workload API is a particular

API that uses a UNIX socket (non-networked) to access a gRPC server. The Workload API

is unauthenticated, which means that a workload does not have to know any pre-existing

4URI RFC: https://tools.ietf.org/html/rfc3986. Last access in 23/03/2021
5X.509 RFC is available at https://tools.ietf.org/html/rfc5280
6JWT RFC is available at https://tools.ietf.org/html/rfc7519
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secret. Considering the pre-existing threat model for the SPIFFE implementations, this API

allows the Agent’s workload attestation plugins to identify callers without the need for direct

authentication. Unlike the SGX attestation process, the SPIFFE attestation process identifies

workloads through a set of features collected by attestation plugins using out-of-band mech-

anisms. If the features match with the features in one or more entries registered, the caller

receives the identities for that set of entries. For instance, a possible set of workload features

could include:

• The user ID;

• The Kubernetes Pod label;

• The Kubernetes Service Account;

• The Kubernetes namespace where the workload runs.

The caller processes are identified by their process ID and the attestation plugins imple-

ment the methods to get the processes features. The Kubernetes workload attestor queries

the Kubernetes API to get this information. The UNIX workload attestor looks at the /proc

directory to get process features.

2.4.2 SPIRE

The SPIFFE Runtime Environment (also referred as SPIRE by the community) is the ref-

erence implementation of SPIFFE. It’s an open-source project hosted by the Cloud Native

Computing Foundation. SPIRE consists of two main parts named SPIRE Server and SPIRE

Agent. Figure 2.2 depicts SPIRE architecture.

The SPIRE Server manages a SPIFFE Trust Domain, issuing all identities. To do this, it

holds information about its SPIRE Agents and workloads. The Server attests Agents via a

node attestation API using an extensible set of attestation plugins. In addition to attestation,

the SPIRE Server has other plugins responsible for different tasks. There are also plugins for

configuring upstream signing authorities and for data storage.

On the other hand, the SPIRE Agent has a single concern. It is responsible for exposing

the Workload API to workloads. The SPIRE Agent also is extensible by using plugins. There
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Figure 2.2: SPIRE architecture. Source: https://spiffe.io/docs/latest/

spire-about/spire-concepts/. Last access in 22/03/2021.

are plugins for its attestation process with the SPIRE Server and plugins to attest several

kinds of workloads via the Workload API.

Figures 2.3 and 2.4 illustrate the pluggable feature of the SPIRE implementation, ex-

panding the architecture view.

The SPIRE server supports a variety of plugins that define its functionalities. The Server

can upstream authority plugins to inherit a certificate authority (CA) from another Public

Key Infrastructure (PKI) system. Despite this plugin type, the Server is capable of work as a

CA. The Server uses key manager plugins to store private keys used to sign its SVIDs. The

data store plugins store all other data that the SPIRE Server has to keep to work properly.

The Server uses the node attestor plugins to ensure properties and verify nodes running

SPIRE Agents. As a result of the node attestation process, the Server gets selectors (features

built using the attestation plugins) for the node running the Agent.

On the other hand, the SPIRE Agent has fewer plugin types. It also uses a key man-

ager plugin and must use node attestation plugins that work together with the Server’s node

attestation plugins to identify the Agent.

https://spiffe.io/docs/latest/spire-about/spire-concepts/
https://spiffe.io/docs/latest/spire-about/spire-concepts/
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Figure 2.3: View of SPIRE Server pluggable interfaces. Source: https://spiffe.io/

docs/latest/spire-about/spire-concepts/. Last access in 22/03/2021.

Figure 2.4: View of SPIRE Agent plugglabe interfaces. Source: https://spiffe.io/

docs/latest/spire-about/spire-concepts/. Last access in 22/03/2021.

https://spiffe.io/docs/latest/spire-about/spire-concepts/
https://spiffe.io/docs/latest/spire-about/spire-concepts/
https://spiffe.io/docs/latest/spire-about/spire-concepts/
https://spiffe.io/docs/latest/spire-about/spire-concepts/
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However, the most important plugin type for the SPIRE Agent is the workload attestor.

In the workload attestation process, when a workload demands an identity, the workload

attestation plugins communicate with resources available in the node, e.g., the operating

system kernel or the Docker engine, to determine properties of the calling workload to decide

if it will provide an identity and what identity is this.

2.5 Cloud Native and Cloud Native Workloads

Cloud-native is an approach for the development and deployment of workloads that leverages

the cloud computing model. Gannon et al. [Gannon, Barga e Sundaresan 2017] enforce some

properties of cloud-native applications that help to describe cloud-native applications.

Cloud-native applications can operate globally and can have data and services replicated

in different geographic regions. Cloud-native applications should scale well with many con-

current users and are designed assuming that the infrastructure is prone to failure. Moreover,

developers plan these applications so that the rolling out process and testing occur without

breaking production environments, even if the new version crashes.

Nowadays, the microservices paradigm is one of the most used to design cloud-native

applications. It divides the application into small, independent components, referred to as

microservices. It facilitates various processes from the deployment to the daily operation

of the application. Ideally, each microservice has a single concern, working together with

others to solve a bigger problem.

In general, microservices are packaged in containers. Some tools facilitate the scaling

and management of these workloads and can watch the microservices, restart them when

they fail, and increase or decrease the number of replicas according to the incoming load.

Also known as orchestrators, these application deployment tools are available as fully man-

aged services in most public cloud providers such as Google Cloud, Amazon Web Services,

Microsoft Azure, Digital Ocean, etc. All the public cloud provides cited offer a Kubernetes

service. Finally, cloud customers can themselves deploy and manage a Kubernetes service

to orchestrate their workloads. Having microservices increases the number of independent

components in a distributed system. Thus, scaling and migration make common strategies

difficult. The use of an identity management system such as the SPIFFE framework helps in
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this problem.

Confidential cloud-native workloads present almost the same features as cloud-native

workloads. In general, the downside of using TEEs to protect workloads and data is the

performance loss. However, by having TEE-enabled microservices, one can have encrypted

execution and horizontal scaling, minimizing the performance loss’s impact.



Chapter 3

Motivations to integrate SCONE and

SPIRE

This chapter details the threat model for confidential workloads, the threat model for SPIFFE

and SPIRE, and the motivations to integrate confidential workloads and the SPIFFE reference

implementation.

3.1 Threat Model for Confidential Computing

The threat model for confidential workloads (either developed with Intel SGX SDK or using

a lift-and-shift approach) assumes a powerful attacker with superuser privileges on the in-

frastructure where the applications run. Therefore, an attacker can control the entire software

stack, including operating systems, hypervisors, and cloud computing platform software. An

attacker can use these powers to steal cryptographic keys or data, or even change application

code or binaries.

The motivations for such an aggressive threat model are various. First, an attacker can

steal operator identities during attacks such as spear phishing. Besides that, operators or

providers could be obligated by law to provide data. Even if the provider and operators

were trusted, the software stack has a large and complex codebase. Second, underestimating

the threat model could be expensive. The average cost of a data breach is about US$ 3,86

million, with detection and contention of 280 days, on average [IBM Security. Cost of a Data

Breach Report 2020. https://www.ibm.com/security/data-breach].

19
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Thus, assuming that the infrastructure and the software stack is untrusted, the threat

model reduces the TCB to the SGX-enabled applications, the SGX hardware, and software

running on trusted-by-assumption instances (e.g., the admin’s own machine). The threat

model also assumes that trusted applications are free of bugs and side-channel attacks are out

of scope. This assumption has some impacts that depend on the way that developers design

trusted applications. For code developed with the Intel SGX SDK, the developers have total

control over the application partitioning (the trusted parts and the untrusted part) and must

implement mechanisms to reduce risks. For code developed with a runtime, SCONE in this

proposal, mechanisms implemented by the runtime mitigate risks in the applications. An

example is Varys [Oleksenko et al. 2018] that mitigates side-channel attacks by detecting

abnormal interruptions in the enclave execution and other strategies.

3.2 Threat Model for SPIFFE and SPIRE

The SPIFFE/SPIRE threat model assumes that network communications are hostile and po-

tentially fully compromised. Furthermore, in opposition to the SGX, this threat model as-

sumes that the hardware on which SPIRE components run, as well its operators, are trustwor-

thy. In addition to the trust in hardware, some methods of node and workload attestation may

imply in third-party platforms or software. It means that leveraging AWS or Google Cloud

based node attestation plugins implies trusting the respective computing platforms. Simi-

larly, leveraging Kubernetes for workload attestation implies that the Kubernetes is assumed

to be trustworthy.

Feldman et al. [Feldman et al. 2020] defined the threat model by determining the security

boundaries between SPIRE core components: workload, Agent, and Server. In addition to

the network communications, workloads and Servers in other trust domains are untrusted.

The trust boundary between the Agents and workloads implies that Agents do not trust

any information sent directly from workloads. In this sense, all the attestation mechanisms

consider only out-of-band ways to attest workloads. This implication affects one of the

solutions presented later in chapter 4.

Another trust boundary is defined between Agents and Servers. While Agents are more

trusted than workloads, Agents are less trusted than Severs. There are mechanisms in place
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to limit the impact of a compromised node. The Parent ID is an identity associated with all

workload identities. It allows specifying which identities are under the responsibility of a

certain Agent, imitating the set of identities an Agent is allowed to emit and keep in cache.

The last trust boundary is placed between Server of different trust domains. SPIFFE

allows a Server to mind SVIDs only within its trust domain. If a Server federates with

others it can not mint identities on behalf of other trust domains. This boundary exists only

between different trust domains because SPIRE has not multi-party protection. All Servers

in the same trust domain have access to the same signing keys.

3.3 The Integration

There is a lack of a robust attestation process in SPIFFE capable of ensuring integrity

and trust for applications in an untrusted environment. Even in zero-trust solutions like

SPIFFE, an attacker with superuser privileges, as described in the confidential computing

threat model, can mint attestation evidence. Thus, the attestation processes provided by the

plugins available in the SPIRE implementation do not fit the trust requirements demanded

by confidential workloads.

However, we can leverage SPIFFE/SPIRE to give confidential workloads universal iden-

tity support based on the SPIFFE standard. With SPIFFE identities, confidential workloads

can communicate with other confidential workloads or even non-confidential workloads se-

curely. Workloads then can give each communicant different levels of trust based on which

SPIFFE ID is presented. It allows the abstraction of the attestation process between work-

loads, trusting only in the identities received in these communications.

Nevertheless, to integrate with confidential computing, the SPIRE implementation

should be aware of the more aggressive threat model that comes with confidential work-

loads. It may impose extra security shields or new specialized components in the SPIRE

implementation. In this sense, we need a security evaluation to ensure that using SPIRE

common attestation plugins does not fit the threat model for confidential computing. Be-

sides, a security evaluation can point the pros and cons of a proposal to give universal identity

support for confidential workloads using SPIFFE/SPIRE.

In this work, we propose a novel approach to integrate SPIRE and confidential workloads.



3.3 The Integration 22

We also present a security analysis to enforce the need for this new approach. Finally, we

show the results of experiments on the time needed to get a new identity using our solution,

demonstrating that overheads are not prohibitive.



Chapter 4

Confidential Workloads and SPIFFE:

Integration Proposal

Considering the motivations discussed in Chapter 3, we designed two approaches to give sup-

port for confidential workloads to SPIFFE, leveraging its reference implementation (SPIRE).

The first approach is based on a new workload attestation plugin. Once a workload starts

up, it should get attested to retrieve its initial configuration and a piece of secret information

(challenge), unique for that workload. Then, it can call the Workload API and pass the

challenge to be verified by the SCONE workload attestation plugin. The attestation plugin

checks the secret within CAS and returns the session name and the session hash as selectors

to be used by the Agent core, which will decide what identities will be delivered to the

workload.

The second and final approach, called SGX Helper, is an alternative to the SCONE work-

load attestation plugin because of first approach, regarding the specification of the Workload

API. The Workload API specification mandates that workloads must not send any secret

or pre-authentication artifact to the Workload API. In this sense, the challenge sent by the

SCONE workload, in the first approach, is not compliant with the Workload API specifica-

tion.

The SGX Helper is a new specialized SPIRE component capable of providing identities

for confidential workloads by pushing them to trusted secret stores.

In Section 4.1, we detail the workload attestation plugin approach. In Section 4.2, we

present the approach we have chosen to perform a security analysis and performance exper-
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iments. We illustrated the approaches workflows using the Figures 4.1 and 4.2. To facilitate

the visualization, the Figures show the trust boundaries based on which location we placed

these components. The admin site is a hardened location, trusted-by-assumption: a private

cloud, data center, or on-premise machines. One would place the SPIRE server in the admin

site because of the consequences of compromising this component. The untrusted portion

is an environment (site or machine) controlled by third parties, typically a public cloud. Fi-

nally, in shades of green, the TEE represents the SCONE trust execution environment’s trust

boundaries.

4.1 SCONE Workload Attestation Plugin

This approach consists of using a workload attestation plugin and challenging the confiden-

tial workload to prove that a trusted CAS successfully attested it. Figure 4.1 depicts the

identity issuing process workflow using the SCONE workload attestation plugin.

Figure 4.1 and Figure 4.2 depict the trust boundaries based on which location we placed

these components. The admin site is a hardened location, trusted-by-assumption: a private

cloud, data center, or on-premise machines. One would place the SPIRE server in the admin

site because of the consequences of compromising this component. The untrusted portion

is an environment controlled by third parties, typically a public cloud. Finally, in shades of

green, the TEE represents the SCONE trust execution environment’s trust boundaries.

The detailed workflow is as follows. In step 1, the operator posts the session with the

initial configuration for the workload, including the constraints that must be satisfied in the

SGX attestation process. In step 2, the operator also posts the challenge session. It is a

session with a single secret shared imported by the session in the previous step. In other

words, the workloads will only get the secret if it got the initial session through the attestation

process. In step 3, the operator registers the workload using the first session’s name and hash

digest. The SCONE CLI’s create session command returns an SHA-256 digest that identifies

the session created. After the start-up completes, the SPIRE Agent will cache the registration

entries under its responsibility in step 4. The operator then deploys the workload, and in

steps 5, 6, and 7, the workload gets attested and receives the challenge along with other

initial configurations. The workload then uses the challenge (and its session name) in a call
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Figure 4.1: Identity issuing process workflow using the SCONE workload attestation plugin.
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to the Workload API (step 8), asking for an SVID.

In step 9, the SPIRE Agent enabled with the SCONE workload attestation plugin checks

the challenge session within CAS. If the challenge value passed by the workload matches the

session stored in CAS, the plugin builds the right selectors, and the SPIRE Agent returns an

SVID in step 10. With the SVID, the workload can communicate with other services using

its SPIFFE ID. We illustrate this communication in steps 11 and 12.

Code sample 4.1 shows an example of a session that the operator posts into CAS. The file

format is YAML, and lines 18 to 22 show how the initial session (posted in step 1) imports

the secret from the challenge session. Line 13 shows that the SCONE environment will inject

the secret into the workload process as an environment variable. Line 9 defines the expected

MRENCLAVE for the workload.

Source Code 4.1: Session example
1 # s e s s i o n . yaml
2 name : s e s s i o n −sgx
3 v e r s i o n : " 0 . 3 "
4
5 s e r v i c e s :
6 − name : myapp
7 image_name : sv id −image
8 m r e n c l a v e s : [
9 8144 dc20883a9341bac687715aea6f50373238a4388a1670301d8f5b438190d0

10 ]
11 command : py thon3 / app / example . py
12 pwd : / app
13 e n v i r o n m e n t :
14 SVID_CHALLENGE : $$SCONE : : sv id − c h a l l e n g e $ $
15 RESOURCE_ADDR: " h t t p s : / / 1 9 2 . 1 6 8 . 1 . 1 0 2 : 5 5 5 5 "
16 CAS_SESSION_NAME : " s p i r e − sv id − s e s s i o n −sgx "
17
18 s e c r e t s :
19 − name : sv id − c h a l l e n g e
20 i m p o r t :
21 s e s s i o n : s p i r e − sv id − s e s s i o n −sgx
22 s e c r e t : sv id − c h a l l e n g e
23
24 s e c u r i t y :
25 a t t e s t a t i o n :
26 t o l e r a t e : [ h y p e r t h r e a d i n g ]
27 i g n o r e _ a d v i s o r i e s : [ ]

Code sample 4.2 shows the challenge session (posted in step 2). This session describes



4.1 SCONE Workload Attestation Plugin 27

a secret which the name is svid-challenge, and the value is deadbeef. Besides, lines 8 to

10 define the access rule to that secret. In this case, only the session named session-sgx

can import this secret. Still, if the session’s name matches, but its hash digest does not,

the access is denied. Then, this hash prevents unauthorized or accidental updates in the

importing session constraints. Also, with this two-sessions solution, the workload attestation

plugin has no access to the secrets and configurations for the workloads in CAS.

Source Code 4.2: Session example: challenge session.
1 # c h a l l e n g e . yaml
2 name : s p i r e − sv id − s e s s i o n −sgx
3 v e r s i o n : " 0 . 3 "
4 s e c r e t s :
5 − name : sv id − c h a l l e n g e
6 k ind : a s c i i
7 v a l u e : d e a d b e e f
8 e x p o r t :
9 s e s s i o n : s e s s i o n −sgx

10 s e s s i o n _ h a s h : ${SESSION_SGX_HASH}
11 a c c e s s _ p o l i c y :
12 r e a d :
13 − CREATOR
14 # Workload a t t e s t o r c e r t i f i c a t e
15 − |
16 −−−−−BEGIN CERTIFICATE−−−−−
17 −−−−−END CERTIFICATE−−−−−
18 u p d a t e :
19 − CREATOR

After the initial designing process of each approach, we submitted the design to the

SPIFFE/SPIRE community validation. In the case of the workload attestation plugin, we

identified an incompatibility with the Workload API specification1. It mandates the absence

of direct client authentication. In this way, the Workload API implementation does not pass

through any metadata from its callers to the workload attestation plugins. Moreover, this

implementation is not prone to changes. Thus, the only way to proceed with this approach is

to have a version of the SPIRE Agent non-compliant with the SPIFFE specification, which

is infeasible. With this conclusion, we proceeded to the security analysis and experiments

considering only the second approach, the SGX Helper.

1Workload API standard: https://github.com/spiffe/spiffe/blob/main/standards/SPIFFE_Workload_API.md#41-

identifying-the-caller
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4.2 SGX Helper

The second approach that we considered for this work is implementing a new SPIRE com-

ponent specialized in handling identities for confidential workloads. We named the new

component SGX Helper. We designed the component and developed a proof-of-concept

by forking the SPIRE Agent codebase for simplicity and faster development. Considering

the scope of this work, we implemented only the integration with the SCONE environment.

However, this component can be as extensible as the SPIRE Agent with the help of custom

plugins for different solutions for running SGX workloads.

Considering the threat model for confidential computing and the remote attestation pro-

cess supported by SCONE, an SGX Helper deployment in the same node as the confidential

workload is not needed. In this sense, the SGX Helper can run in the trust zone we call the

admin site. For minimal impact on both SPIRE and SCONE codebase and usage experience,

the SGX Helper can fetch SVIDs under its responsibility, working similar to an Agent with a

parent identity. With the registration entries in hand, the SGX Helper can push the identities

to the SCONE CAS service, responsible for the attestation process and delivery of identities

to the confidential workloads.

Even using the SGX Helper, the operator still needs to provide an initial configuration

to the workload. The workload identity will come from the SPIRE system. However, as in

the first approach, the SGX Helper must not read the workload initial configuration. Conse-

quently, two sessions will be created.

The operator creates the first session, which defines the initial parameters. The SGX

Helper generates the second session containing the SPIFFE Verifiable Identity Document.

The first session has information about remote attestation constraints, such as enclave

MRENCLAVEs and the SGX platform properties. Nevertheless, the session associated with

the SPIFFE IDs needs also to consider the workload configuration, as different configura-

tions could imply different identities or security levels. Therefore, to issue identities for

SCONE-SGX confidential workloads, two special selectors are still available in the second

approach:

• cas_session_name: name of the session posted into SCONE-CAS by the opera-

tor.



4.2 SGX Helper 29

• cas_session_hash: hash of the session posted into SCONE-CAS by the appli-

cation operator. This hash digest enforces not only the MRENCLAVEs that are ac-

ceptable but the integrity of any configuration that is passed through an environment

variable, configuration files, or through the command line itself.

The SGX helper will push the SVIDs into the SGX secret store (CAS), restricting the

access only to applications under the constraints and configurations summarized in the ses-

sion with a name equals to the specified in the session name selector, and a hash digest

equals the digest specified in the session hash selector (cas_session_hash). With these

constraints, only attested workloads (matching the CAS sessions) will get SVIDs.

Figure 4.2 depicts the SVID issuing workflow. In step 1, the operator posts a session

into CAS with the base configurations for the workload. In step 2, the operator registers

the workload using the SPIRE Server registration API. The operator creates the registration

entry using the two selectors described above that unambiguously describe the workload. In

step 3, the SGX Helper fetches the SVIDs under its responsibility and then pushes the SVID

and its updates into the secret store (CAS). At any moment after the registration, the operator

can deploy the workload (step 5).

Figure 4.2: Identity issuing process workflow using the SGX helper.

In the workload startup, the enclave gets attested (steps 6, 7, and 8), transparently receiv-

ing both the initial configuration defined by the operator and the SVID cached in the secret

store. According to how the application administrator configured the application (in step

1), the SCONE environment delivers these pieces of information to the application through

environment variables, files visible only to the application, or even through strings injected

as command line parameters.
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Code snippet 4.3 shows a sample of a session posted by the operator in step 1. Code

snippet 4.4 shows the message pushed by the SGX Helper into the SGX secret store (CAS).

Source Code 4.3: Session with the initial workload configuration posted by the operator.
1 name : s e s s i o n −sgx
2 v e r s i o n : " 0 . 3 "
3 s e r v i c e s :
4 − name : work load
5 image_name : sv id −image
6 m r e n c l a v e s : [ ${WORKLOAD_MRENCLAVE} ]
7 command : py thon3 / app / app . py
8 pwd : / app
9 e n v i r o n m e n t :

10 APOLLOS_MSG: " H e l l o Se c u r e World ! "
11
12 s e c r e t s :
13 − name : s v i d
14 i m p o r t :
15 s e s s i o n : s p i r e − sv id − s e s s i o n −sgx # same s e s s i o n name p r e f i x e d

wi th s p i r e − sv id −
16 s e c r e t : s v i d
17
18 images :
19 − name : sv id −image
20 i n j e c t i o n _ f i l e s :
21 − p a t h : / c e r t s / s v i d . c r t
22 c o n t e n t : $$SCONE : : s v i d . c r t $ $
23 − p a t h : / c e r t s / s v i d . key
24 c o n t e n t : $$SCONE : : s v i d . key$$

Source Code 4.4: Session with SVID as payload. Posted by the SGX Helper.
1 # C e r t i f i c a t e and p r i v a t e key t r u n c a t e d t o improve r e a d a b i l i t y
2 name : s p i r e − sv id − s e s s i o n −sgx
3 v e r s i o n : " 0 . 3 "
4 s e c r e t s :
5 − name : s v i d
6 k ind : x509
7 v a l u e : |
8 −−−−−BEGIN CERTIFICATE−−−−−
9 −−−−−END CERTIFICATE−−−−−

10 e x p o r t :
11 s e s s i o n : s e s s i o n −sgx
12 s e s s i o n _ h a s h : ${SESSION_SGX_SHA256}
13 p r i v a t e _ k e y : s v i d _ k e y
14 − name : s v i d _ k e y
15 k ind : p r i v a t e −key
16 e x p o r t :
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17 s e s s i o n : s e s s i o n −sgx
18 s e s s i o n _ h a s h : ${SESSION_SGX_SHA256}
19 v a l u e : |
20 −−−−−BEGIN PRIVATE KEY−−−−−
21 −−−−−END PRIVATE KEY−−−−−

For simplicity in explaining the new component, we omitted the push of the Trust Bundle

and Federated Trust Bundles. The new component also pushes these CA certificates (when

available) to the secret store (CAS). Moreover, the access control over these bundles is more

flexible since the bundles’ content is not sensitive as the content of SVIDs. Also, workloads

can continuously pull bundles from the CAS secrets API. Also, the session templates are

configurable.



Chapter 5

Security Analysis

The SPIFFE/SPIRE team worked on a security analysis to understand potential security

risks to common SPIFFE deployment scenarios. The goal of this self-assessment was to

strengthen SPIFFE/SPIRE security. The specialists organized the results in a document de-

scribing the project design, intended use, and the security analysis. They organized the

security analysis results in a set of matrices, one for each attack type resultant of the analysis

process, and some general recommendations.

A security analysis gives a notion of the threats to a deployment (within the security

analysis limitations). Moreover, it enables us to rank the threats and prioritize the effort. In

this work, we leveraged the SPIRE’s security analysis to study the trade-offs of our proposal

to integrate SCONE confidential workloads with SPIRE. The security analysis also presented

reliable evidence that the current analyzed SPIRE implementation (our base case) does not

fit the confidential workload’s threat model requirements.

This chapter describes the initial security analysis performed by the SPIRE team and the

security analysis conducted by us. Moreover, it presents the results of the security analysis

and some considerations about these results.

In Section 5.1 we describe the security analysis performed by the SPIRE team. In Sec-

tion 5.2 we present the base case to contrast with the proposed to integrate SPIRE and confi-

dential workloads. Then, in Section 5.3 we describe the our security analysis. In Section 5.4

we present the security analysis output matrices and , in Section 5.5, we present conclu-

sions about these outputs. Finally, In Section 5.6 we present our considerations about the

challenges faced in the security analysis process.
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5.1 Previous SPIRE Security Analysis

This section describes the initial SPIRE security analysis based on the output artifacts and

conversations with the SPIFFE/SPIRE team.

First, to conduct the security analysis over a concrete basis, the specialists targeted ver-

sion v0.6.1. They defined the study’s goals: undercover weaknesses in the core SPIFFE

processes and to produce generic recommendations for the SPIFFE specification and all

SPIFFE implementations. They aimed to document the expected security model for a

SPIFFE implementation, show how SPIRE enforces (or fails to enforce) fundamental se-

curity properties, and identify gaps where further hardening can have a tangible impact.

Also, an essential part of the study was to define important non-goals. So the evaluators

took the following perspective:

1. They assumed a rather generic deployment model that may not match every real-world

deployment;

2. They made no judgment about how many times an attack will occur in a year but

instead considered the relative probability and risk of different attacks (that is, the

expected damage of various attacks);

3. And, they assumed that having a 100% secure system is impractical and focused on

pragmatic changes with a reasonable cost/benefit ratio.

The evaluators enumerated the critical functions of a SPIFFE implementation, and as an

outcome, they got the following critical concerns:

• Generation of workload identities based on workload attributes and system configura-

tion;

• Attestation of workloads to make sure that workloads can access only identities to

which they are entitled;

• Distribution of identities from the location where they are generated to the location

where the workload can consume them;
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• Distribution of trust bundles to workloads so that they can autonomously validate iden-

tities presented by other workloads without the need for an external service.

The participants of the analysis grouped attacks into categories based on supposed at-

tacker goals. Each category is the inverse of a security goal for SPIFFE. All the attack types

can be mounted against all components in SPIRE installation, namely, the server, the agent,

and workloads. The participants considered that, depending on which component is the tar-

get, the attacks could happen with different difficulty levels and impacts on the system’s

security. The four defined attack types are:

• Misrepresentation of identity: type of attack that tricks the system into issuing identi-

ties that exploit weaknesses in the syntax or semantics of the validation of correspond-

ing identity documents, for example, generating certificates with invalid characters or

unverified identity attributes or trust bundles with rogue certificates.

• Identity theft: the purpose of this type of attack is to gain unauthorized access to the

identity or critical material of another component. For example, a malicious workload

may try to impersonate another workload, or a compromised SPIRE agent may try to

impersonate the server.

• Compromise: in this type of attack, the attacker seeks to gain full control of one or

more components. The victim component can be located on the same host or another

host with network access. This attack type is intimately related to remote code execu-

tion (RCE).

• Denial of service (DoS): these attacks disrupt system functionality by overloading or

disabling one or more components, for example: A rogue entity can perform an SYN

flood attack on the server; A compromised SPIRE agent can inundate the server with

bogus certificate signing requests and prevent it from processing legitimate ones.

The security analysis participants also realized that an attacker might need specific capa-

bilities to perform an attack of a particular type. For instance, to gain remote code execution,

an attacker might require network access to a component with a buffer overflow vulnerabil-

ity. In the security analysis report, it is clear that the listed capabilities do not correspond to
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known vulnerabilities but are based on the participants’ knowledge of the SPIRE code and

possible attack surface. The attacker capabilities identified are the following.

• None: a set of capabilities that are available by design. These are inherent in the design

and deployment of SPIFFE or SPIRE.

• Hammer: the capability of asymmetrically generate a massive load on the victim

component.

• Escape: the capability of escaping workload isolation boundaries within a node. One

can use a kernel privilege escalation or other container escape vulnerability to escape

these boundaries.

• MitM: the capability of intercept, eavesdrop, and possibly tamper with network com-

munications between components.

• PreAuthProto: gain remote code execution or cause a crash by exploiting weak-

nesses in the pre-authenticated portion of the communication layer (e.g., TLS, Pro-

tobuf, gRPC).

• X509Vuln: gain remote code execution or cause a crash using a vulnerability in X.509

certificate parsing code.

• CSRVuln: gain remote code execution using a vulnerability in X.509 certificate sign-

ing request (CSR) parsing code.

• CSROddity: break the X.509 certificate signing request (CSR) parser to cause a crash,

produce a malformed result, or trigger excessive resource consumption on the pro-

cessing side (for example, by sending an arbitrarily large CSR or a large number of

extensions).

• MitigationBypass: bypass a mitigating security control in some system component.

This capability allowed the participants to estimate the risk of mitigated vulnerabilities

if there is some chance that the mitigation is flawed.

With the attack types and capabilities to perform these attacks in hand, the security anal-

ysis proceeded to the next step. The participants assumed that attackers follow some logical
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steps to mount an attack. First, the attacker selects the type of attack he wants to mount based

on the final goal. The second step is to select the victim component, i.e., the system’s part

that will be the attack target (server, agent, or workload). The third step is to select the at-

tack origination point, which is one of the following: server, agent, workload, or an external

entity. Finally, the attacker gains the capabilities required to mount the attack and initiate it.

The security analysis participants enumerated all the possible scenarios for attacks. For

each scenario, they listed the type of attacks that can be mounted, the capabilities that these

attacks require, and the security controls that are in place to mitigate them. They organized

the results in a set of matrices, one for each attack type. The rows and columns identify

the victims and origination points, respectively. The content of the cell describes the threats

that are applicable in that particular scenario. These matrices were helpful to rank threats to

a SPIRE deployment. The participants then estimate an attacker’s likelihood of possessing

each capability and assessing each attack’s relative severity. Joining these two estimates,

they produced a heuristically ranked list of potential risks to the system. This list gave a

better understanding of the system’s overall security properties and helped identify practical

mitigations that could meaningfully improve its security. The security analysis can be found

in the SPIRE’s public repository1.

5.2 Considered Approaches for the Security Analysis

To verify how the current SPIRE components behave under a more aggressive threat model,

we established our base case to use regular attestation plugins for Kubernetes. The idea of

this base case is to give us a notion of the security implications got by running the default plu-

gins logic under such an aggressive threat model as the one typically assumed in confidential

computing applications. In this sense, the two approaches analyzed were the following:

• Use of regular attestation plugins for Kubernetes (base case): this approach uses reg-

ular workload attestation plugins that work with the Kubernetes orchestrator to issue

identities for confidential workloads. This approach is our base case. The base case

help us understand the impact of the confidential workload’s threat model in the SPIRE

1SPIRE code repository: https://github.com/spiffe/spire.
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Agent’s security analysis without modifications to issue identities for such sensitive

workloads.

• SGX Helper: our proposed solution, described in 4.2.

As in the Figure 4.2, the Figure 5.1 depicts the trust levels of each component. The admin

site is a hardened location, trusted-by-assumption. The untrusted portion is an environment

controlled by third parties. The TEE represents the SCONE trust execution environment’s

trust boundaries.

This approach consists of the components and steps depicted in Figure 5.1. This figure

shows the components involved in the SVID issuing process and a component named "other

services," representing various components that the workload may want to communicate

with after getting its identity.

The workflow to get an identity is as follows. In step 1, the operator posts the session

with the initial configuration for the workload. In step 2, the operator registers the workload

using the Workload API. To register the workload, the operator can use selectors that work

with the k8s-related plugins types2. After creating the registration entry, the SPIRE Server

provides the SPIRE Agent with the entry (assuming that the Agent has the parent ID defined

in the registration entry) in step 3. In steps 4 and 5, the workload proves its identity to the

SCONE Configuration and Attestation Service. Then, when the attestation process succeeds,

the workload receives the initial configuration. In step 6, with the initial configuration in

hand, the workload calls the Workload API to retrieve its identity. The SPIRE Agent handles

the request and gets information from Kubernetes to build the set of selectors for the new

request (step 7). In case of a successful SPIFFE attestation process, the Agent returns the

SVID in step 8. The workload can then present the SVID in future message exchanges with

other services (steps 9 and 10).

5.3 Security Analysis on the Base Case and Proposal

This section describes how we conducted the security analysis covering the base case and

the proposed solution. The security analysis replications had two main objectives:

2https://github.com/spiffe/spire/blob/master/doc/plugin_agent_workloadattestor_k8s.md
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Figure 5.1: Identity issuing process workflow using the Kubernetes workload attestation

plugin.
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1. Understand how the base case behaves when it is subject to the confidential computing

threat model;

2. Understand the strengths and weaknesses of both base case and our proposal, the SGX

Helper.

Due to the social distancing needed because of the COVID-19 pandemics, we performed

the security analysis activities either through virtual meetings or asynchronous work. We

divided the replications into the following main phases:

1. Introduction to SPIFFE/SPIRE, its threat models, and attestation process (virtual meet-

ing);

2. Introduction to the security analysis process and its output artifacts (virtual meeting);

3. Creation of new attack starting points and new capabilities derived from the confiden-

tial computing threat model (virtual meeting);

4. Analysis of each attack type filling the attack matrices (asynchronous tasks);

5. Estimation of impact scores (asynchronous tasks);

6. Summarization of the matrices and review (asynchronous tasks);

5.3.1 Phases 1 and 2

We invited five engineers with different levels of expertise on Intel SGX (and SCONE),

software security, and confidential computing to perform our security analysis. Although

they have different expertise levels, all the engineers researched and developed solutions for

distributed systems’ confidential computing.

The security assessment began with a presentation and discussions around the SPIFFE

standard and the SPIRE tools3. The group of engineers had already been exposed to SPIF-

FE/SPIRE through other contacts, for example, participation in the SPIFFE’s community

Production Identity Day4 and through other usages in the context of the larger research

3Set of slides available in https://bit.ly/3cemCsn.
4https://events.linuxfoundation.org/production-identity-day/. Last access in 2020-03-06.

https://bit.ly/3cemCsn
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project in which the current work was inserted. Once the group was sufficiently familiarized

with the concepts, we explained the security assessment itself, explaining the SPIRE imple-

mentation’s evaluation process. The presentations also covered the differences between the

attestation process for both SPIRE and SGX.

5.3.2 Phase 3: Creation of New Attack Starting points and New Capa-

bilities Derived from the Confidential Computing Threat Model

With the participants introduced to SPIRE, its attestation process, and its threat model, we

started discussing what new capabilities an attacker would have considering the threat model

for confidential computing. After the discussion, we added new items into the capabilities

set presented in Section 5.1:

• WMemory: An attacker can write to any the memory region of arbitrary processes

running in nodes of an untrusted infrastructure.

• RMemory: An attacker can read any memory region of arbitrary processes running in

nodes of an untrusted infrastructure.

• WDisk: An attacker can write any location of the disks of arbitrary nodes of an un-

trusted infrastructure.

• RDisk: An attacker can read from any disks of arbitrary nodes of an untrusted infras-

tructure.

• LimitResources: An attacker, with the infrastructure provider perspective, can shut-

down services, machines, or limit their execution.

Also, the group realized that there was a new starting point for attacks that would hold the

new capabilities. The group then added a new starting point called Provider Infrastructure,

representing the untrusted infrastructure of public clouds.

5.3.3 Phases 4, 5, and 6

With the updated capabilities set and the new attack starting point in hand, the group filled

out the matrices asynchronously. Figure 5.2 shows an example of an attack matrix partially
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filled.

Figure 5.2: Attack matrix sample: Misrepresentation.

We organized the results in tables, one for each pair “attack type” and “level”. We named

our base case Level 0 (depicted in Figure 5.1). The scenario with the proposed solution is

Level 1 (depicted in Figure 4.2). Although Level 1 has the SGX Helper instead of an Agent,

the SGX Helper and SPIRE Agent play the same role. For simplicity and to maintain the

tables uniform, all tables have entries called Agent and Victim Agent. Thus, for all effects, in

the Level 1 tables, the entries labeled “Agent” and “Victim Agent” refer to the SGX Helper.

We summarized the matrices given by each participant into a matrix for each attack type

joining the contents. We also summarized the scores. We colored the table cells according

to the following conditions:

• Green represents a mitigated attack or otherwise not possible.

• Grey represents an attack that is not applicable.

• Red indicates that an attack is possible.

• Orange means that an attack may be possible under certain conditions.
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5.4 Output Matrices

In this section, we present the output of our security analysis. We will discuss each attack

type, compare the results for Level 0 and Level 1 tables, and highlight significant trade-offs.

5.4.1 Attack Matrix: Identity Theft

Figure 5.3 on the following page depicts the output table for identity theft in Level 0. When

we assume that the attack starting point is the SPIRE Server, all the other components are

defenseless. It occurs because the Server manages the identities for both workloads and

Agents, which gives the Server power to impersonate any component in our analysis.

For the SPIRE Agent, the impact is less severe. The Agent can not fake its identity

to the Server because of built-in validations. Moreover, the SVIDs go from the Server to

the Agents. Similarly, such guarantees provided by the Server and SVID path from Server

to Agents only prevent Agent-to-Agent attacks. In the case of Agent-to-Agent attacks, the

evaluators identified that if a remote Agent belongs to the same group as the attacker’s start-

ing point (i. e., it has the same set of selectors), it will receive the same identities. However,

when it comes to workload victims, the Agent may have the same potential as the Server. If

the victim is a workload running in the compromised node or on a different node of the same

group, an attack would be successful.

The participants evaluated the starting point as a workload running in a container in the

same node (Agent as the reference point), the scenario is as severe as the Agent as the starting

point. If the attacker got a container escape, it could steal SPIFFE artifacts from the Agent’s

memory. Furthermore, the issue with workloads in the same group persists. On the other

hand, a workload running in a container in a different node can only use the same group

artifice to steal identities.

The Provider Infrastructure starting point had a worrying evaluation. Considering the ca-

pabilities enumerated in the security analysis process, an attacker in this position has access

to Agents’ identities and the respective workloads under these agents’ domains.

Figure 5.4 on page 44 shows the output table for Identity theft in Level 1. The colored

visualization gives a good notion of our proposed solution. In the cases of Server and Agent

as attacker starting points, the Level 0 threats remain. In Level 1, the workloads, even with
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Attacker
Server Agent Container (same node) Container (diff node) Provider Infrastructure

Victim 
Server

N/A: There is only one 
server

Mitigated: Information 
only flows from Server to 
Agent (Unidirectional 
communication). Server 
has built-in validation for 
Agent. It would be 
necessary to compromise 
the system. Server is in 
admin site as well.

MitigationBypass would be 
needed.

Mitigated: By design the 
Server's Id can't be 
registered. Server is in 
admin site as well.

MitigationBypass would be 
needed.

Mitigated: By design the 
Server's Id can't be 
registered. Server is in 
admin site as well.

MitigationBypass would 
be needed.

Mitigated: By design the 
Server's Id can't be 
registered. Server is in 
admin site as well.

Victim 
Agent

None: Full access. By 
design the Server already 
manages identities and 
has access to them. 

Mitigated: Agents are in 
different nodes that are 
connected via Server. It 
becomes necessary to 
steal the identity of the 
server. Information only 
flows from Server to Agent 
(Unidirectional 
communication). Server 
has built-in validation for 
Agent. It would be 
necessary to compromise 
the system.

OBS: it is None if it is from 
the same group, it would 
naturally receive all 
identities.

Escape: Read Agent's 
identity from memory

Mitigated: There is 
validation to prevent an 
operator from 
erroneously registering 
the agent's SPIFFE ID.

Rdisk: read Agent's 
identity (in case of using 
a disk key manager 
plugin).

RMemory: read Agent's 
identity (in case of using 
a memory key manager 
plugin).

Victim 
Container 
(same 
node)

None: Full access. By 
design the Server already 
manages identities and 
has access to them. 

None: The agent can leak 
everything. By design the 
Agent already manages 
the identity of the 
containers in its Node. 

Escape: Read Agent's 
identity from memory and 
then steal another 
container's identity

Mitigated: Container in 
Different Node receives 
Identity from a different 
Agent. We would need to 
steal the identity from the 
different Agent, Agents 
are in different nodes 
that are connected via 
Server. It becomes 
necessary to steal the 
identity of the server. 
Information only flows 
from Server to Agent 
(Unidirectional 
communication). Server 
has built-in validation for 
Agent. It would be 
necessary to 
compromise the system.

Escape: Only if is a 
container that will run on 
another node from the 
same group.

RMemory: read 
certificates from SPIRE 
Agent's cache.

Victim 
Container 
(diff node)

None: Full access. By 
design the Server already 
manages identities and 
has access to them. 

Mitigated: Container in 
Different Node receives 
Identity from a different 
Agent. We would need to 
steal the identity from the 
different Agent, Agents are 
in different nodes that are 
connected via Server. It 
becomes necessary to 
steal the identity of the 
server. Information only 
flows from Server to Agent 
(Unidirectional 
communication). Server 
has built-in validation for 
Agent. It would be 
necessary to compromise 
the system.

None: Only if is a 
container that will run on 
another node from the 
same group.

Mitigated: Container in 
Different Node receives 
Identity from a different 
Agent. We would need to 
steal the identity from the 
different Agent, Agents are 
in different nodes that are 
connected via Server. It 
becomes necessary to 
steal the identity of the 
server. Information only 
flows from Server to Agent 
(Unidirectional 
communication). Server 
has built-in validation for 
Agent. It would be 
necessary to compromise 
the system.

Escape: Only if is a 
container that will run on 
another node from the 
same group.

Escape: Escape, 
escalate privileges and 
read Agent's identity 
from memory and then 
steal another container's 
identity

OBS: Only if is a 
container that will run on 
another node from the 
same group.

RMemory: read 
certificates from SPIRE 
Agent's cache.

Figure 5.3: Attack matrix: Identity theft attack - Level 0.
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escaping capabilities, can not read the memory of neighboring containers. Furthermore, the

Agent is not in the same node as the containers, shielding the Agent’s cache. The Agent

placement and the protection provided by SGX mitigate the threats seen in Level 0 for the

Provider Infrastructure starting point. The lack of direct communication of the Agent with

untrusted parties significantly reduces the attack surface.
Attacker

Server Agent Container (same node) Container (diff node) Provider Infrastructure

Victim 
Server

N/A: There is only one 
server.

Escape: the server is on 
the same machine and 
could leak information

Mitigated: By design the 
Server's Id can't be 
registered. Server is in 
admin site as well.

Mitigated: By design the 
Server's Id can't be 
registered. Server is in 
admin site as well.

Mitigated: By design the 
Server's Id can't be 
registered. Server is in 
admin site as well.

Victim 
Agent

None: By design the 
Server already manages 
identities and has access 
to them. 

N/A: There is only one 
agent.

Mitigated: By design 
there's no direct 
communication, it is 
mediated via a trusted 
component (CAS). Agent 
is in admin site as well.

Mitigated: By design 
there's no direct 
communication, it is 
mediated via a trusted 
component (CAS). Agent 
is in admin site as well.

Mitigated: By design the 
Server's Id can't be 
registered. Also, there's 
no direct communication 
between Agent and 
infrastructure's stack. It is 
mediated via a trusted 
component (CAS). Agent 
and Server are in the 
admin site as well.

Victim 
Container 
(same 
node)

None: By design the 
Server already manages 
identities and has access 
to them. 

None: The Agent can 
push arbitrary IDs to the 
secret store.

Mitigated: SCONE/SGX 
mitigates it. Also, SGX 
helper is in admin site 
preventing an attacker 
from read its cache by 
escaping the container.

Mitigated: It would be 
necessary to 
compromise the Agent 
or the CAS because 
there's no direct 
communication between 
workloads and Agent, it 
is mediated via CAS. 
Also, the workload's 
memory is protected by 
SCONE.

Mitigated: SCONE/SGX 
mitigates it. Also, SGX 
helper is in admin site 
preventing an attacker 
from read its cache.

Victim 
Container 
(diff node)

None: By design the 
Server already manages 
identities and has access 
to them. 

None: The Agent can 
push arbitrary ids to the 
secret store (only one 
Agent)

Mitigated: It would be 
necessary to compromise 
the Agent or the CAS 
because there's no direct 
communication between 
workloads and Agent, it is 
mediated via CAS. Also, 
the workload's memory is 
protected by SCONE.

Mitigated: It would be 
necessary to 
compromise the Agent 
or the CAS because 
there's no direct 
communication between 
workloads and Agent, it 
is mediated via CAS. 
Also, the workload's 
memory is protected by 
SCONE.

Mitigated: SCONE/SGX 
mitigates it. Also, SGX 
helper is in admin site 
preventing an attacker 
from read its cache.

Figure 5.4: Attack matrix: Identity theft attack - Level 1.

5.4.2 Attack Matrix: Misrepresentation

Figure 5.5 on page 46 shows the output table for misrepresentation attack in Level 0. From

the perspective of the SPIRE Server as the starting point, we obtained a severe threat scenario

again. Since the Server controls the SVID signing keys, it is in a position to mint arbitrary

identities.

With the Agent as the starting point, attacks against Server and other Agent victims are

mitigated. In these cases, the Server is sending identities, so the Agent can not trick the

system by exploiting weaknesses in the document validations. However, when the workload
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in the same node is the victim, a malicious Agent has more power and can induce the work-

load to trust in unauthorized SVIDs. In addition, there is a risk of asking the Server to sign

CSRs with odd properties crafted to exploit victims. This last possibility applies especially

to workload containers running in other nodes if the attacker could gain the MitM capability.

The mitigation for attacks against Server and Agent is still in place for the origin points

on workload containers running in the same node and other nodes. In general, for workloads-

to-workloads attacks, the containers have no control over the identity they receive and thus

cannot manipulate them in a way that would lead to misrepresentation. There is only one

exception for attackers running in the same node: after an escape, an attacker could pull the

local clock back, tricking neighboring containers into accepting expired identities.

A starting point at the provider infrastructure could trick the Agent and the workload

containers for the misrepresentation attack. An attack against the Server is mitigated because

of its placement.

Moving to Level 1, Figure 5.4 on the previous page, shows that our proposed solution

does not impact the analysis of the Server as the attack origin point. However, analyzing the

Agent as the starting point, the result was more severe than in Level 0 because, in Level 1,

the Agent does not need any particular condition to attack victim workloads in any node.

In the case of workload to workload attacks in the same node, the analysis remains the

same, considering that the current implementation of SCONE has no support of a trusted

clock. It is also an open issue of other approaches to run applications inside SGX.

In opposition to Level 0, in Level 1, the TEE mitigates the attacks against the workloads

because of the memory protection associated with the attestation process performed by CAS

before delivering identities. Also, attacks against the Server and the Agent are mitigated

because these components are in the Admin Site. The evaluation revealed that the Agent’s

placement is critical since it can be used as a foothold to perform attacks against workloads,

even if they run inside SGX. In other words, the Agent has sensitive SPIFFE artifacts in plain

text as its data-in-use.

5.4.3 Attack matrix: Compromise

Figure 5.7 on page 48 shows the output table for the compromise attack in Level 0. In this

type of attack, we mostly considered a set of capabilities that lead to remote code execution,
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Attacker
Server Agent Container (same node) Container (diff node) Provider Infrastructure

Victim 
Server

N/A: There is only one 
server

Mitigated: Server 
validates SPIFFE ID of 
client certificate 
connecting to it. Server 
sends identities to 
agents, not the other 
way around.

Mitigated: Server 
validates SPIFFE ID of 
client certificate 
connecting to it.

Mitigated: Server 
validates SPIFFE ID of 
client certificate 
connecting to it.

Mitigated: By design the 
Server's Id can't be 
registered. Server is in 
admin site as well.

Victim 
Agent

None: The server 
controls the signing keys, 
and is in a position to 
mint arbitrary identites.

Mitigated: No Agent to 
Agent communication.

Mitigated: Agent only 
communicates to Server. 
Server validates SPIFFE 
ID of client certificate 
connecting to it.

Mitigated: Agent only 
communicates to Server. 
Server validates SPIFFE 
ID of client certificate 
connecting to it.

WMemory: Modify 
unprotected identities.

Wdisk: may inject CAs, 
may rollback clock

Victim 
Container 
(same 
node)

None: The server 
controls the signing keys, 
and is in a position to 
mint arbitrary identites.

None: Agents control the 
identities that are passed 
to containers. Agents 
may give bundles that 
induce the victim to trust 
unauthorized certs.

Mitigated: containers do 
not manage identities.

Escape: Considering 
containers may pull the 
local clock back, tricking 
neighboring containers 
into accepting identities 
that are expired.

N/A: Containers have no 
control over the identity 
they received, and thus 
are unable to manipulate 
them in a way that would 
lead to 
misrepresentation.

WMemory, WDisk: 
Modify unprotected 
identities.

WDisk: may inject CAs, 
may rollback clock

Victim 
Container 
(diff node)

None: The server 
controls the signing keys, 
and is in a position to 
mint arbitrary identites.

MitM: Agents may ask 
the server to sign CSRs 
which include SAN 
extensions like DNS and 
IP, or which include a 
custom subject. If a 
container does not 
perform SPIFFE 
validation, or if its 
validation 
implementation is 
flawed, it is possible for 
this identity to be 
accepted when it 
shouldn't be. With MITM 
capability, the agent can 
present this extra spicy 
identity to the container 
when it attempts to 
contact a third party.

N/A: Containers have no 
control over the identity 
they received, and thus 
are unable to manipulate 
them in a way that would 
lead to misrepresentation.

N/A: Containers have no 
control over the identity 
they received, and thus 
are unable to manipulate 
them in a way that would 
lead to 
misrepresentation.

WMemory, WDisk: 
Modify unprotected 
identities.

WDisk: may inject CAs, 
may rollback clock

Figure 5.5: Attack matrix: Misrepresentation attack - Level 0.
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Attacker
Server Agent Container (same node) Container (diff node) Provider Infrastructure

Victim 
Server

N/A: There is only one 
server

Mitigated: Server 
validates SPIFFE ID of 
client certificate 
connecting to it.

Mitigated: Server 
validates SPIFFE ID of 
client certificate 
connecting to it.

Mitigated: Server 
validates SPIFFE ID of 
client certificate 
connecting to it.

Mitigated: By design the 
Server's Id can't be 
registered. Server is in 
admin site as well.

Victim 
Agent

None: The server controls 
the signing keys, and is in 
a position to mint arbitrary 
identites.

Mitigated: No Agent to 
Agent communication.

Mitigated: Agent only 
communicates to Server. 
Server validates SPIFFE 
ID of client certificate 
connecting to it. There are 
no workloads in agents 
(helper) node.

Mitigated: Agent only 
communicates to Server. 
Server validates SPIFFE 
ID of client certificate 
connecting to it. The 
container cannot force a 
remote agent to accept 
something it should not.

Mitigated: SGX helper is 
in admin site.

Victim 
Container 
(same 
node)

None: The server controls 
the signing keys, and is in 
a position to mint arbitrary 
identites.

None: One Agent (SGX 
helper) can force remote 
workloads to accept 
something they should 
not by submitting 
something evil artifacts to 
the CAS.

Mitigated: containers do 
not manage identities.

Escape: Considering 
containers may pull the 
local clock back, tricking 
neighboring containers 
into accepting identities 
that are expired.

OBS: this scenario 
considers the current 
implementation of the 
SCONE environment, 
which has no support for 
a reliable source of time.

N/A: Containers have no 
control over the identity 
they received, and thus 
are unable to manipulate 
them in a way that would 
lead to 
misrepresentation.

Mitigated by SGX. Also, 
SGX helper is in admin 
site.

MitigationBypass (bypass 
SGX barrier + attestation) 
and WMemory/WDisk

Victim 
Container 
(diff node)

None: The server controls 
the signing keys, and is in 
a position to mint arbitrary 
identites.

None: One Agent (SGX 
helper) can force remote 
workloads to accept 
something they should 
not by submitting 
something evil artifacts to 
the CAS.

N/A: Containers have no 
control over the identity 
they received, and thus 
are unable to manipulate 
them in a way that would 
lead to misrepresentation.

N/A: Containers have no 
control over the identity 
they received, and thus 
are unable to manipulate 
them in a way that would 
lead to 
misrepresentation.

Mitigated by SGX. Also, 
SGX helper is in admin 
site.

MitigationBypass (bypass 
SGX barrier + attestation) 
and WMemory/WDisk

Figure 5.6: Attack matrix: Misrepresentation attack - Level 1.

enabling an attacker to get full control over the victim components as defined in the attack

definition. To do so, we consider that even SGX-enabled workloads are vulnerable to binary

exploitation. From the basics such as simple buffer overflows overwriting stack pointers

to more complex return-oriented programming attacks such as the presented by Schwarz et

al [Schwarz, Weiser e Gruss 2019]. Nonetheless, we considered that due to specificities of

the SCONE platform implementation, the changes in the behavior of exploits when switching

from Level 0 to Level 1 could be subject of a deeper analysis. However, it is out of the scope

of this work.

Using the SPIRE Server as the starting point, an attacker could take advantage of ca-

pabilities to exploit both vulnerabilities in the X.509 implementation and vulnerabilities in

the protocol buffers implementation (X509Vuln and PreAuthProto capabilities). The anal-

ysis output also considered that under certain conditions, the Server could compromise the

workload containers. The Server could exploit the workload containers via indirect commu-

nication injecting the exploit payload in the SVIDs, using the X509Vuln capability.

Analyzing the Agent as the attack starting point, the same capabilities used by a Server
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Attacker
Server Agent Container (same node) Container (diff node) Provider Infrastructure

Victim 
Server N/A: there is one

CSRVuln: A buffer 
overflow in Golang CSR 
parsing code could lead to 
remote code execution.

X509Vuln: A buffer 
overflow in Golang X.509 
parsing code could lead to 
remote code execution, 
since mTLS client 
certificates must be parsed 
for authentication.

PreAuthProto: A buffer 
overflow in Golang 
ProtoBuf or TLS 
implementations could 
lead to remote code 
execution.

CSRVuln: A buffer 
overflow in Golang CSR 
parsing code could lead to 
remote code execution.

X509Vuln: A buffer 
overflow in Golang X.509 
parsing code could lead to 
remote code execution, 
since mTLS client 
certificates must be 
parsed for authentication.

PreAuthProto: A buffer 
overflow in Golang 
ProtoBuf or TLS 
implementations could 
lead to remote code 
execution.

In normal conditions, 
there is no direct 
communication between 
the workload containers 
and the SPIRE Server. A 
possible scenario is to 
exploit the local Agent as 
a foot hold to reach the 
Server

CSRVuln: A buffer 
overflow in Golang CSR 
parsing code could lead to 
remote code execution.

X509Vuln: A buffer 
overflow in Golang X.509 
parsing code could lead to 
remote code execution, 
since mTLS client 
certificates must be 
parsed for authentication.

PreAuthProto: A buffer 
overflow in Golang 
ProtoBuf or TLS 
implementations could 
lead to remote code 
execution.

In normal conditions, 
there is no direct 
communication between 
the workload containers 
and the SPIRE Server. A 
possible scenario is to 
exploit the local Agent as 
a foot hold to reach the 
Server

RMemory, WMemory, 
RDisk, WDisk: Provider 
can use these capabilities 
as foot holds to 
compromise the Agent, 
then compromise the 
Server by using a 
second-step capability.

Victim 
Agent

X509Vuln: A buffer 
overflow in Golang X.509 
implementation could lead 
to remote code execution.

PreAuthProto: A buffer 
overflow in Golang 
ProtoBuf or TLS 
implementations could 
lead to remote code 
execution.

N/A: Agents don't 
communicate with each 
other, and don't expose 
any network services.

PreAuthProto: 
vulnerabilities in the 
interaction.

N/A: Agents don't expose 
any network services, so 
containers on a different 
node have no way to get 
data in to or out of a 
remote agent.

RMemory, WMemory, 
RDisk, WDisk: Provider 
can use these capabilities 
as foot holds to 
compromise the Agent.

Victim 
Container 
(same 
node)

X509Vuln: A buffer 
overflow in Golang X.509 
implementation could lead 
to remote code execution.

OBS: Even without direct 
communication, a 
malicious payload can 
lead to an RCE via reverse 
shell.

X509Vuln: A buffer 
overflow in Golang X.509 
implementation could lead 
to remote code execution.

PreAuthProto: A buffer 
overflow in Golang 
ProtoBuf or TLS 
implementations could 
lead to remote code 
execution.

N/A: The only 
SPIFFE/SPIRE 
component inside a 
container is the Workload 
API client. Any container-
to-container 
communication that 
occurs is wholly handled 
by the user's softare.

N/A: The only 
SPIFFE/SPIRE 
component inside a 
container is the Workload 
API client. Any container-
to-container 
communication that 
occurs is wholly handled 
by the user's softare.

RMemory, WMemory, 
RDisk, WDisk: Provider 
can use these capabilities 
as foot holds to 
compromise the Agent, 
then compromise the 
workload containers by 
using a second-step 
capability.

Victim 
Container 
(diff node)

X509Vuln: A buffer 
overflow in Golang X.509 
implementation could lead 
to remote code execution.

OBS: Even without direct 
communication, a 
malicious payload can 
lead to an RCE via reverse 
shell.

X509Vuln: A buffer 
overflow in (unknown) X.
509 implementation could 
lead to remote code 
execution in a remote 
container when the local 
identity is presented to it.

PreAuthProto: A buffer 
overflow in (unknown) 
ProtoBuf implementation 
could lead to remote code 
execution in a remote 
container when the local 
identity is presented to it.

OBS: Even without direct 
communication, a 
malicious payload can 
lead to an RCE via reverse 
shell.

N/A: The only 
SPIFFE/SPIRE 
component inside a 
container is the Workload 
API client. Any container-
to-container 
communication that 
occurs is wholly handled 
by the user's software.

N/A: The only 
SPIFFE/SPIRE 
component inside a 
container is the Workload 
API client. Any container-
to-container 
communication that 
occurs is wholly handled 
by the user's softare.

RMemory, WMemory, 
RDisk, WDisk: Provider 
can use these capabilities 
as foot holds to 
compromise the Agent, 
then compromise the 
workload containers by 
using a second-step 
capability.

Figure 5.7: Attack Matrix: Compromise - Level 0.
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origin point are helpful to an attacker. Additionally, as the Agent sends CSRs so the Server

can sign the SVIDs for that Agent, CSRVuln also is used to compromise the Server. How-

ever, the analysis did not consider Agent to Agent attacks because there is no lateral com-

munication between Agents in a regular SPIRE deployment. In this sense, it is essential to

note that specific deployments could have a (unknown) combination of plugins that leads to

lateral communication. The workloads containers in the same node are exploitable via the

X509Vuln capability and PreAuthProto because the Agent exposes the Workload API to the

workloads.

For the workload containers as attack origin points, as the Agent is in the same node, the

analysis output pointed the Agent as a foothold to get to the Server one more time. Similar

to the Agent to workload attack, the Workload API exposed by the Agent is an attack vector

to exploit with the PreAuthProto capability.

Still, the analysis for the Provider Infrastructure as the attack origin point showed that

the Agent is, again, a potential foothold to compromise the Server, this time considering the

particular capabilities in the Provider Infrastructure hands. For all the other victim types,

the Provider Infrastructure capabilities are sufficient to exploit the victims. In the case of

workload containers, despite the SGX shielding, the Agent can be used as a foothold to

compromise them using a second-step capability.

Figure 5.8 on the next page shows the analysis for Level 1. For Server and Agent as

starting points for attacks, the analysis is similar to Level 0. Nevertheless, the results for

other starting points are promising. In general, the placement of Server and Agent in Level

1 extinguishes the attack vectors.

For workload containers as attack origin points, there is no local Agent to use as a

foothold to exploit the Server. In addition, there is no Workload API to abuse. The same

happens with the Provider Infrastructure as the origin point. The Agent does not provide

any exploitable API and, with no foothold, the attacks against the SPIRE Server are miti-

gated likewise. Finally, the SCONE-SGX security properties protect the workload contain-

ers against the capabilities of the Provider Infrastructure (WMemory, RMemory, WDisk,

RDisk).
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Attacker
Server Agent Container (same node) Container (diff node) Provider Infrastructure

Victim 
Server N/A: there is one

CSRVuln: A buffer overflow 
in Golang CSR parsing 
code could lead to remote 
code execution.

X509Vuln: A buffer 
overflow in Golang X.509 
parsing code could lead to 
remote code execution, 
since mTLS client 
certificates must be parsed 
for authentication.

PreAuthProto: A buffer 
overflow in Golang 
ProtoBuf or TLS 
implementations could lead 
to remote code execution.

Mitigated: The Server 
does not expose any 
network services to 
workloads. Moreover, the 
workloads receive the 
SVIDs from CAS after a 
successful attestation 
process. Since CAS is 
strongly hardened and has 
its enclave identity also 
verified, it is a trusted 
component.

Mitigated: The Server 
does not expose any 
network services to 
workloads. Moreover, the 
workloads receive the 
SVIDs from CAS after a 
successful attestation 
process. Since CAS is 
strongly hardened and 
has its enclave identity 
also verified, it is a 
trusted component.

Mitigated: Server is in 
admin site.

OBS: in this scenario, the 
container workloads can 
not be used as foot holds 
because of the extra 
shield added by the 
SCONE environment. 
This analysis considers 
the read and write 
capabilities for this 
origination point.

Victim 
Agent

X509Vuln: A buffer 
overflow in Golang X.509 
implementation could lead 
to remote code execution.

PreAuthProto: A buffer 
overflow in Golang 
ProtoBuf or TLS 
implementations could lead 
to remote code execution.

N/A: Agents don't 
communicate with each 
other, and don't expose any 
network services.

Mitigated: The Agent 
(SGX Helper) does not 
expose any network 
services to workloads. 
Moreover, the workloads 
receive the SVIDs from 
CAS after a successful 
attestation process. Since 
CAS is strongly hardened 
and has its enclave identity 
also verified, it is a trusted 
component.

N/A: Agents don't expose 
any network services, so 
containers on a different 
node have no way to get 
data in to or out of a 
remote agent.

Mitigated: SGX Helper 
(Agent) is in admin site.

OBS: in this scenario, the 
container workloads can 
not be used as foot holds 
because of the extra 
shield added by the 
SCONE environment. 
This analysis considers 
the read and write 
capabilities for this 
origination point.

Victim 
Container 
(same 
node)

X509Vuln: A buffer 
overflow in Golang X.509 
implementation could lead 
to remote code execution.

OBS: Even without direct 
communication, a 
malicious payload can lead 
to an RCE (e.g. via reverse 
shell).

X509Vuln: A buffer 
overflow in Golang X.509 
implementation could lead 
to remote code execution.

OBS: Even without direct 
communication, a malicious 
payload can lead to an 
RCE (e.g. via reverse 
shell).

OBS a PreAuthProto 
capability is prevented 
because of CAS.

N/A: The only 
SPIFFE/SPIRE component 
inside a container is the 
Workload API client. Any 
container-to-container 
communication that occurs 
is wholly handled by the 
user's softare.

N/A: The only 
SPIFFE/SPIRE 
component inside a 
container is the Workload 
API client. Any container-
to-container 
communication that 
occurs is wholly handled 
by the user's softare.

Mitigated: SGX extra 
shield prevents the 
attacker to use the 
capabilities related to the 
Infrastructure provider. 
This analysis considers 
the read and write 
capabilities for this 
origination point.

Victim 
Container 
(diff node)

X509Vuln: A buffer 
overflow in Golang X.509 
implementation could lead 
to remote code execution.

OBS: Even without direct 
communication, a 
malicious payload can lead 
to an RCE (e.g. via reverse 
shell).

X509Vuln: A buffer 
overflow in Golang X.509 
implementation could lead 
to remote code execution.

OBS: Even without direct 
communication, a malicious 
payload can lead to an 
RCE (e.g. via reverse 
shell).

OBS a PreAuthProto 
capability is prevented 
because of CAS.

N/A: The only 
SPIFFE/SPIRE component 
inside a container is the 
Workload API client. Any 
container-to-container 
communication that occurs 
is wholly handled by the 
user's software.

N/A: The only 
SPIFFE/SPIRE 
component inside a 
container is the Workload 
API client. Any container-
to-container 
communication that 
occurs is wholly handled 
by the user's softare.

Mitigated: SGX extra 
shield prevents the 
attacker to use the 
capabilities related to the 
Infrastructure provider. 
This analysis considers 
the read and write 
capabilities for this 
origination point.

Figure 5.8: Attack matrix: Compromise - Level 1.
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5.4.4 Attack Matrix: DoS

Figure 5.9 on the following page shows the output table for denial of service attack in Level

0. Since the Server has full power over the identities, it can deny them to the Agents and

workloads or overload these victims.

If the SPIRE Agent is the origin point for a DoS attack, it can overload the Server with

numerous CSRs or attempt a more complex attack. Typical binary vulnerabilities like over-

flows may crash the Server, preventing it from serving other Agents. Also, an attacker can

use the CSRoddity capability to issue CSRs that could lead the Server to consume all its

resources.

The analysis for workload containers as the attacker starting point showed that a Server

victim is vulnerable using the Agent as a foothold. Once the Agent is compromised, the

attacker uses it with the same capabilities in the cell showing the Agent as the starting point.

Workload containers also can spoil the Agent’s service. However, workloads from different

nodes can only affect Agents using the MitM capability.

If the starting point for the attacker is the Provider Infrastructure, the attacker can use the

Agent as a foothold (similar to the last scenario). Besides, in this scenario, the attacker has

the powerful capability to limit resources for the applications. In this sense, a DoS coming

from the Provider Infrastructure attacker is trivial.

In comparison with Level 0, Level 1 has clear advantages. Although the workload situa-

tion is the same, an attack starting from the Provider Infrastructure has no importance against

both the Server and Agent since the Agent and Server are in a different location and do not

expose network services. Furthermore, as the Agent in Level 1 does not expose the workload

API to workloads, the attacks against the Agent are mitigated.

Level 1, which has the analysis depicted in Figure 5.10 on page 53, also mitigates DoS

attacks coming from the workloads against the Server. The Server does not expose network

services to components other than Agents. The workloads receive the SVIDs posted into

CAS after a successful attestation process. In SCONE workloads, this process is triggered

only at start-up time.
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Attacker
Server Agent Container (same node) Container (diff node) Provider Infrastructure

Victim 
Server N/A: There is one

CSRVuln: A buffer 
overflow in Golang CSR 
parsing code could crash 
the server.

CSRoddity: 
Exceptionally large, 
never-ending, or other 
odd CSR qualities could 
lead the server to 
consume all its 
resources.

X509Vuln: A buffer 
overflow in Golang X.509 
parsing code could crash 
the server, since mTLS 
client certificates must be 
parsed for authentication.

PreAuthProto: A buffer 
overflow in Golang 
ProtoBuf or TLS 
implementations could 
crash the server.

Hammer: An agent could 
send a large number of 
CSRs to the server, 
forcing it to consume 
computational resources.

X509Vuln: A buffer 
overflow in Golang X.509 
Agent's parsing code 
could allow the 
workloads to use the 
Agents as foot holds 
exploit the Server.

PreAuthProto: A buffer 
overflow in Golang 
ProtoBuf or TLS 
implementations used by 
the Agent could allow the 
workloads to use the 
Agents as foot holds 
exploit the Server.

In normal conditions, 
there is no direct 
communication between 
the workload containers 
and the SPIRE Server. A 
possible scenario is to 
exploit the local Agent as 
a foot hold to reach the 
Server.

X509Vuln: A buffer 
overflow in Golang X.
509 Agent's parsing 
code could allow the 
workloads to use the 
Agents as foot holds 
exploit the Server.

PreAuthProto: A buffer 
overflow in Golang 
ProtoBuf or TLS 
implementations used by 
the Agent could allow 
the workloads to use the 
Agents as foot holds 
exploit the Server.

In normal conditions, 
there is no direct 
communication between 
the workload containers 
and the SPIRE Server. A 
possible scenario is to 
exploit the local Agent as 
a foot hold to reach the 
Server.

RMemory, WMemory, 
RDisk, WDisk: Provider 
can use these capabilities 
as foot holds to poison 
Agent data, leading to a 
second-step capability to 
exploit the Server.

Victim 
Agent

None: Can deny 
identities or overload the 
agent.

MitM: Layer 2 attacks like 
ARP poisoning make it 
possible to block agent-
to-server communication. 
Access to the network 
enables interference with 
other agent-to-server 
communication (ARP, 
flood)

Escape: By getting 
access to the network 
could interfere with other 
agent-to-server 
communication

PreAuthProto: A buffer 
overflow in Golang 
ProtoBuf or TLS 
implementations could 
crash the server.

Hammer: An agent could 
send a large number of 
CSRs to the server, 
forcing it to consume 
computational 
resources.

MitM: Layer 2 attacks 
like flooding make it 
possile to block agent-
to-server communication

LimitResouces: Provider 
can shutdown the 
services/machines or limit 
their execution.

Victim 
Container 
(same 
node)

None: Can deny 
identities or overload the 
agents and workloads.

None: The agent issues 
identity to local 
containers, and is in a 
position to omit or deny 
the issuance of identities.

N/A: The only 
SPIFFE/SPIRE 
component inside a 
container is the Workload 
API client. Any container-
to-container 
communication that 
occurs is wholly handled 
by the user's software.

N/A: The only 
SPIFFE/SPIRE 
component inside a 
container is the 
Workload API client. Any 
container-to-container 
communication that 
occurs is wholly handled 
by the user's software.

LimitResouces: Provider 
can shutdown the 
services/machines or limit 
their execution.

Victim 
Container 
(diff node)

None: Can deny 
identities or overload the 
agents and workloads.

N/A: Agents don't provide 
services to containers on 
other nodes, and are 
therefor not in a position 
to tamper with 
SPIFFE/SPIRE 
functioning of remote 
containers. Furthermore, 
they don't have the ability 
to write data to the 
server, preventing them 
from modifying 
registration data or 
otherwise affecting 
identity issuance to 
remote containers.

N/A: The only 
SPIFFE/SPIRE 
component inside a 
container is the Workload 
API client. Any container-
to-container 
communication that 
occurs is wholly handled 
by the user's software.

N/A: The only 
SPIFFE/SPIRE 
component inside a 
container is the 
Workload API client. Any 
container-to-container 
communication that 
occurs is wholly handled 
by the user's software.

LimitResouces: Provider 
can shutdown the 
services/machines or limit 
their execution.

Figure 5.9: Attack matrix: DoS attack - Level 0.
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Attacker
Server Agent Container (same node) Container (diff node) Provider Infrastructure

Victim 
Server N/A: There is one

CSRVuln: A buffer 
overflow in Golang CSR 
parsing code could crash 
the server.

CSRoddity: 
Exceptionally large, 
never-ending, or other 
odd CSR qualities could 
lead the server to 
consume all its 
resources.

X509Vuln: A buffer 
overflow in Golang X.509 
parsing code could crash 
the server, since mTLS 
client certificates must be 
parsed for authentication.

PreAuthProto: A buffer 
overflow in Golang 
ProtoBuf or TLS 
implementations could 
crash the server.

Hammer: An agent could 
send a large number of 
CSRs to the server, 
forcing it to consume 
computational resources.

Mitigated: The Server 
does not expose any 
network services to 
workloads. Moreover, the 
workloads receive the 
SVIDs from CAS after a 
successful attestation 
process. In this sense, 
the SCONE-enabled 
workloads only trigger the 
attestation process in the 
start-up.

Mitigated: The Server 
does not expose any 
network services to 
workloads. Moreover, 
the workloads receive 
the SVIDs from CAS 
after a successful 
attestation process. In 
this sense, the SCONE-
enabled workloads only 
trigger the attestation 
process in the start-up.

N/A: The Server does not 
expose any network 
services to the 
infrastructure where the 
workloads are deployed 
on.

Victim 
Agent

None: Can deny 
identities or overload the 
agent.

MitM: Layer 2 attacks like 
ARP poisoning make it 
possible to block agent-
to-server communication. 
Access to the network 
enables interference with 
other agent-to-server 
communication (ARP, 
flood)

Mitigated: By design 
there's no direct 
communication, it is 
mediated via a trusted 
component (CAS). Agent 
is in admin site as well.

Mitigated: By design 
there's no direct 
communication, it is 
mediated via a trusted 
component (CAS). Agent 
is in admin site as well.

N/A: The Agent does not 
expose any network 
services to the 
infrastructure where the 
workloads are deployed 
on.

Victim 
Container 
(same 
node)

None: Can deny 
identities or overload the 
agents and workloads.

None: The agent issues 
identity to the container 
workloads, and is in a 
position to omit or deny 
the issuance of identities.

N/A: The only 
SPIFFE/SPIRE 
component inside a 
container is the Workload 
API client. Any container-
to-container 
communication that 
occurs is wholly handled 
by the user's software.

N/A: The only 
SPIFFE/SPIRE 
component inside a 
container is the 
Workload API client. Any 
container-to-container 
communication that 
occurs is wholly handled 
by the user's software.

LimitResouces: Provider 
can shutdown the 
services/machines or limit 
their execution.

Victim 
Container 
(diff node)

None: Can deny 
identities or overload the 
agents and workloads.

N/A: Agents don't provide 
services to containers on 
other nodes, and are 
therefor not in a position 
to tamper with 
SPIFFE/SPIRE 
functioning of remote 
containers. Furthermore, 
they don't have the ability 
to write data to the 
server, preventing them 
from modifying 
registration data or 
otherwise affecting 
identity issuance to 
remote containers.

N/A: The only 
SPIFFE/SPIRE 
component inside a 
container is the Workload 
API client. Any container-
to-container 
communication that 
occurs is wholly handled 
by the user's software.

N/A: The only 
SPIFFE/SPIRE 
component inside a 
container is the 
Workload API client. Any 
container-to-container 
communication that 
occurs is wholly handled 
by the user's software.

LimitResouces: Provider 
can shutdown the 
services/machines or limit 
their execution.

Figure 5.10: Attack matrix: DoS attack - Level 1.
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5.5 Conclusions

In the context of the security analysis, the solution proposed in this work using the SGX

Helper was considered effective against attacks from the Infrastructure Provider starting

point, except for DoS attacks, according to the participants. The solution presented better

results against the Identity Theft attack type, mitigating all attacks from workload containers.

The security analysis showed that the components’ placement was crucial to mitigate

various attack combinations, mainly by decoupling the communication between Agents and

workloads via a hardened and trusted component, the CAS.

However, putting the Agent in the same machine as the Server is risky. It relaxes the

boundary between the Agent and the Server, and a compromised Agent can leak Server’s

sensitive information. Putting the Agent and the Server inside fully isolated enclaves may

enforce the Agent-Server trust boundary.

5.6 Challenges in the Security Analysis Process

We faced challenges throughout the security analysis process. The security analysis was

a long-running process, and because of that, participants eventually became unavailable.

Consequently, sometimes only four of five participants contributed to the final result in some

tables. Also, it affected discussions to have a common understanding, once one participant

did not respond to further conversations after filling all tables.

With our process, we learned that the longer the interval between security analysis dis-

cussions, the more difficult it is for participants to resume the analysis and remember the

reasons for certain decisions. To avoid problems with participants’ availability and produc-

tivity, we recommend those interested in running further security analysis to try to shorten

the intervals between the time slices dedicated to filling attack tables.

Another challenge involved in the security analysis is the identification of misunderstand-

ings about mitigated attacks. Let us describe an example to illustrate this challenge.

In the analysis for Identity Theft in Level 0, one participant initially established

workload-to-workload attacks as mitigated because of SCONE-SGX. The premise was that

if the victim workload runs inside SCONE, the memory protection prevents the attack from



5.6 Challenges in the Security Analysis Process 55

coming from another workload that escaped its container. Although the condition is true, the

participant ignored the SPIRE Agent running in the same node. The analysis can not ignore

the Agent because, in Level 0, the Agent is a weak component in the system. It caches the

SPIRE registration entries in memory, exposing this information to potential attackers. With

the escape capability and privilege escalation, the entries are no longer secrets.

Similarly, the analysis must consider attacks using remote code execution to compromise

workload containers, even whether the workloads run inside enclaves. An attack using mod-

ern binary exploitation techniques may be more complex, with more variables for an attacker

to control, but still feasible. Schwarz et al. [Schwarz, Weiser e Gruss 2019] demonstrated it

by applying the return-oriented programming technique in SGX enclaves to execute actions

outside the enclave.

We verified that differences in understanding could lead to different results. Some anal-

ysis results may be imprecise, similar to the described previously. These cases must be

identified and moderated. However, most of the differences found in the security analysis

were essential to the bigger picture. In this sense, the diverse ways of thinking about the

system help to cover more possibilities. Merging the individual results is a challenging task,

but the benefits of diversity worth it to the final results.
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Performance Experiments

In this chapter, we present an evaluation of the proposed solution when it comes to the SVID

delivery time for confidential workloads and container image build times.

6.1 Issuing Identities for Confidential Workloads

For each security layer added to a computing system, there is an additional cost of usability

or performance. In the case of the integration between confidential workloads and SPIRE,

we considered that the critical parts of the workload’s workflow are the startup time and

the time needed for a workload to get an SVID. The aspects of the usability of the SPIRE

part of our solution remain unchanged. Also, on the SCONE side, the usage experiment is

similar to any other confidential workload operation. In other words, assuming an operator

familiar with both SCONE and SPIRE environments, there are no workflow changes with

the operation of workloads using the integration between SPIRE and confidential workloads.

Then we designed an experiment to check if there is a significant difference with respect to

performance aspects (and how big this difference is) between the two scenarios: confidential

workloads and regular workloads, both orchestrated by Kubernetes.

The following research questions guided the experiments:

• RQ1: Is the difference between the startup times of confidential workloads and regular

workloads significant?

• RQ2: Is the difference between the SVID delivery time for confidential workloads and

56
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Node RAM Size Number of vCPUs

K8s master 2 GB 2

K8s worker 8 GB 4

Table 6.1: VM specifications for experiment execution.

regular workloads significant?

We chose a complete factorial design, and we considered the workload configuration,

associated with the use or not of SGX, as a factor. This factor is named scenario and has

three levels:

• Regular Workload: a regular workload written in Python3 uses the SPIRE Agent’s

workload API to get an SVID.

• Confidential Workload: a confidential workload written in Python3 uses the SGX

Helper to get an SVID.

• Confidential Workload with FSPF: a workload written in Python3 uses the SGX Helper

to get an SVID. We used the SCONE FSPF feature to deploy this scenario, which

means that, in this scenario, the application code is confidential, and the key to decrypt

the code is delivered by CAS after a successful attestation process.

We decided to distinguish the second and the third levels because even confidential work-

loads may have different security requirements. For workloads that do not need to check on

interpreted code or dependencies (like in case of static-compiled binaries), the second level

may fit well. For workloads that need more guarantees on dependencies, interpreted code,

or specific files in the container images, the third level is the best option.

6.1.1 Environment and Tools

To run this experiment, we set up a Kubernetes cluster with two VMs. One VM for the

Kubernetes master node and the other VM for the Kubernetes worker. Table 6.1.1 shows

each VM’s specification.

We placed the experiment script in the worker machine and used the kubectl

command-line application to deploy the workloads. We measured the time in three different
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phases of the workload execution. The first one (T1) captured the time of workload creation

on Kubernetes (using the kubectl tool). The time T2 refers to the time of the container

entry point execution. All the container entry points used in this experiment have a single

concern: record the time when the container becomes ready. After T2, we captured the time

T3 when the workload got an SVID either from the Workload API or from the CAS. We

used Python3 time libraries and the GNU core utilities to measure T1, T2, and T3.

6.1.2 Methodology

To answer the research questions RQ1 and RQ2, presented in section 6.1, we executed 5000

replicas of each treatment. Before each replica the environment was reset, ensuring no inter-

ference between the replicas. After the experiment execution, we parsed our data into two

metrics. The first one is equal to T2 − T1, called start-up time (time needed for the con-

tainer to be ready). The second one is set to T3− T2, the time spent to get an SVID (SVID

delivery time) after the container entry point is executed. With these data in hand, we ana-

lyzed the difference between the times collected for each scenario. To do this, we generated

bootstrap estimates for the difference of the medians of each scenario using bias-corrected

and accelerated (BCa) bootstrap intervals to compare the scenarios. We chose BCa because

it corrects for bias and skewness in the distribution of bootstrap estimates. According to

Greenwood [Greenwood 2014], if the interval on the difference between two arbitrary A and

B does not contain zero, then we can say that zero probably is not in the true values at the

selected confidence interval. Thus, we should reject the claim that A and B are equal.

6.1.3 Discussion and Conclusions

In Figure 6.1, we can see the distribution of the time needed to execute the container entry

point (Container readiness).

The distribution of the time spent to get an SVID after the container is ready is illustrated

in Figure 6.2. There are some outliers. The distribution is not symmetric. The scenario

with confidential workloads with FSPF seems to be more predictable. Moreover, we can

not confirm that there is a relevant difference between the container’s start-up time across

scenarios. To gain more confidence on relevance and significance, we needed to use the
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Figure 6.1: Time needed to execute the container entry point (Container readiness).

confidence intervals on the difference between the medians.

The confidence intervals on the difference between the median start-up times are shown

in Figure 6.3. Where:

• CW means confidential workload;

• CWwF means Confidential Workload with FSPF;

• RW means Regular Workload.

We can see that the confidence interval on the difference between the median of the

start-up times includes the zero for all scenarios. Since the interval contains the zero (no dif-

ference), we do not have sufficient evidence to conclude that there is a statistically significant

difference.

As illustrated in Figure 6.4, for the confidence intervals on the difference between median

SVID delivery times, the confidence intervals do not include the zero for all scenarios. Then,

we can say that there is a significant difference between all scenarios. In the median of the

SVID delivery time, all the differences considered are relevant. It occurs because, when it

comes to confidential workloads, the attestation process is more robust and takes more time.
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Figure 6.2: Time spent to get an SVID after the container is ready.

Figure 6.3: Confidence Interval on the difference between the median start-up times.
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Figure 6.4: Confidence Interval on the difference between the median SVID delivery times.

Also, when using FSPF there is the overhead of the encryption and authentication processes.

Still, considering the security constraints ensured by the SCONE attestation, the differences

of about 2.7 (CW − RW ) and 4.3 (CWwF − RW ) do not make it infeasible for typical

container workloads.

In Figure 6.5, we show the total time spent from the execution of the kubectl command

execution until the workloads gain the SVIDs. This figure clearly shows the impact of the

SGX attestation process in the total time. After the workloads receive their SVIDs, the

overheads are the same as those studied in previous research, such as the work presented by

Krahn et al. [Krahn et al. 2020].

Given the presented results, developers that want to use the approach should be aware

that the time needed to attest a confidential workload and give it a new identity is substantial.

It can potentially influence the mean time to repair systems with these kinds of workloads as

subcomponents. One can apply strategies to enhance fault-tolerance aspects to address this

issue and others related to time overhead added by the attestation process. However, this is

not the focus of this work.
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Figure 6.5: Total time spent from the kubectl apply command to the time when the

workload is with the SVID.

6.2 Image Build Times

Developers have to change the Dockerfiles to use the SCONE approach for turning regular

workloads into confidential workloads. In the best case, changing the base image is enough to

do the work. In a longer path, the developer must recompile some dependencies with one of

the SCONE compilers. Moreover, if the workloads have code confidentiality requirements,

the developer may want to use the SCONE’s FSPF feature.

Investigating the build time is essential since the enterprise-level CI/CD platforms bills

the services per usage minutes. For instance, the CircleCI performance plan starts at 25.000

credits for $15, and it consumes ten credits per minute. Then, we designed an experiment to

compare the proposed solution’s build times against regular use of SPIRE using Python3 as

a reference programming language.

The following research question guided the experiment:

• RQ3: Do confidential workload images have a longer build time than regular work-

loads?
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6.2.1 Methodology, Environment, and Tools

To answer the research questions described in the last section, we designed an experiment

to compare the proposed solution’s build times against SPIRE’s regular use using Python3

as a reference programming language. We considered as a factor for this experiment the

workload scenario, which will impact directly in the Dockerfiles, and, consequently, in the

build time. This factor has three levels:

• Confidential: a Dockerfile for a workload that uses the SGX Helper to get an SVID.

This Dockerfile uses the SCONE FSPF feature in the build, which means that, in

this scenario, it encrypts the application code and authenticates dependencies at the

directories /lib and /usr/lib.

• NoFSPF: a Dockerfile for a confidential workload written in Python3 uses the SGX

Helper to get an SVID. The workload shipped in the Docker image protects only the

data, and there are no guarantees about code confidentiality.

• Regular: a Dockerfile for a regular workload written in Python3 uses the SPIRE

Agent’s workload API to get an SVID.

We executed 30 replicas in a VM with 4 GB of RAM and 2 vCPUs.

6.2.2 Discussion

To enable both a comparison and a good understanding of the times involved, in Figure 6.6,

we show the distributions for each scenario’s image build times (side by side and isolated).

We can see that the times for regular workload builds are much larger than for other scenarios.

The BCa confidence intervals for the image time builds are shown in Figure 6.7. In

Figure 6.8, we focus only in the scenarios with confidential workloads either with FSPF or

not.

The difference between the build times is significant across all scenarios. Moreover, the

regular scenario is significantly larger than the others. The proposed integration between

SPIRE and confidential workloads leverages the SCONE CAS to attest confidential work-

loads giving them SVIDs transparently. It means that the workload call to the Workload API
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Figure 6.6: Image build time distribution (all scenarios).

Figure 6.7: Confidence interval on Docker image build time.
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Figure 6.8: Confidence interval on Docker image build time for confidential workloads.

(RPC) is not necessary. The gRPC library and its dependencies have a time-consuming build

process, impacting the total build time. It explains the more prominent times in the regular

scenario.

Also, in the confidential scenario, the SCONE FSPF encrypts the application code and

authenticates the dependencies cryptographically. Because of this, the confidential scenario’s

build time is slightly longer than the scenario without FSPF. The build time for confidential

workloads written in Python3, in this experiment, was less than a half of the build time for

regular workloads written in the same programming language, despite the additional security

layers added by SCONE.



Chapter 7

Related Work

Previous work also addressed the challenge of provisioning identities to confidential work-

loads in a way that enables interoperation with regular workloads. This chapter briefly de-

scribes these related works and presents a comparison table that summarizes four features of

interest: mutual authentication, interoperability, low adoption barrier, and multi-platform at-

testation. All the approaches described in this chapter consider confidential computing threat

model.

7.1 PALÆMON (CAS)

Gregor et al. [Gregor et al. 2020] proposed PALÆMON (another name for CAS) as a trust

management service designed to enable trusted workload execution in face of Byzantine

stakeholders. PALÆMON can attest workloads deliver secrets (which could be identities)

after a successful attestation process. Also, CAS can generate and manage certificates and

keys natively.

Besides the capability of attesting workloads, PALÆMON also can convince challengers

(operators, users, client applications) that it is running without unintended modifications in

an updated SGX environment. However, unlike the SPIFFE framework, the attestation ser-

vice has an opinionated attestation process that only works with SCONE-enabled workloads,

making it unsuitable for regular workloads in cases where software attestation is needed for

regular workloads.
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7.2 SQUAD

The Secure Simple Storage Service for SGX-based Microservices (SQUAD) enables opera-

tors to deliver any secrets to SGX based workloads [da Silva, de Oliveira Silva e Brito 2019].

It is a proof-of-concept that supports only confidential workloads developed with the Intel

SGX SDK. It has a pluggable authorization mechanism that can leverage any measurements

from the attestation process, such as the MRENCLAVE. Similarly, as with CAS, one can

use SQUAD as part of a solution to provide identities for confidential workloads. However,

SQUAD does not consider the filesystem and the only way to pass secrets to workloads is via

a network connection wrapped by a secure channel established with the attestation process.

7.3 RA-TLS

Combining interoperable certificates and attestation, Knauth et al. proposed integrating a

standard TLS communication channel with the Intel SGX remote attestation process [Knauth

et al. 2018]. According to Knauth et al., Stumpf et al. [Stumpf et al. 2006] showed that one

must integrate the remote attestation and secure communication channel establishment to

prevent man-in-the-middle attacks. The SIGMA Protocol [Krawczyk 2003] involved in the

attestation process, as described by Anati et al. [Anati et al. 2013], ensures a shared secret

is reached at the end of the attestation process. With this shared secret, one can bootstrap a

secure channel. However, Knauth claims that it is inefficient since it duplicates work. Then,

using the standard TLS secure channels is an alternative.

RA-TLS (Remote Attestation Transport Layer Security) used SGX as a hardware root of

trust, including attestation evidence in the existing X.509 certificates. RA-TLS links the TLS

key used to bootstrap the channel into the SGX report as user data. In this way, the authors

bind the RA-TLS to the attester enclave. The attester put the attestation evidence into the

certificate extensions, which requires no changes in existing TLS libraries, but requires the

implementation of custom hooks to verify these extensions.

When using RA-TLS, the TLS protocol ensures the freshness of the exchanged mes-

sages. Since the enclave builds the attestation evidence and the self-signed certificate in the

application startup, a challenger must use additional mechanisms to assess the attestation
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evidence’s freshness. For instance, in the EPID-based (Enhanced Privacy ID) attestation, the

attestation verification report has a timestamp that a challenger may use to determine a piece

of evidence, signed by the IAS, as too old.

Still considering the freshness of the attestation evidence, in case of a mutual authen-

tication where both entities run inside enclaves, it may not be easy to assess the freshness

without a trusted time source. Also, in the RA-TLS approach, the workloads must be aware

of the enclave measurements of other workloads it needs to communicate with.

The authors identified some limitations of the proposed solution. Because of non-

standard X.509 extensions, clients may abort the connections after finding an unknown crit-

ical extension. Extensions should not be marked as critical to avoid this problem and allow

backwards compatibility, but legacy clients may still complain about a self-signed certificate.

A solution for the self-certificate problem could be having a trusted CA signing the extended

certificate (using protocols such as Automated Certificate Management). Also, when using

RA-TLS, the certificate size increases significantly (at least six times larger).

7.4 Comparison Table

Table 7.1 summarizes four significant features of the approaches discussed previously. A

filled circle denotes a fully supported feature built in the proposed solution. An empty circle

indicates that the feature is not supported. A half-filled circle indicates that the feature can

be supported with some effort. We consider the following features essential to distinguish

the related work:

• Mutual authentication: the approach enables two arbitrary workloads to authenticate

mutually using some identity artifact, e.g., an X.509 certificate.

• Low adoption barrier: this feature considers how easy it is to adopt the approach for

its original purpose in terms of workload modification.

• Multi-platform attestation process: the approach has an attestation process suitable

for both confidential and regular workloads. While the mutual authentication feature

concerns using the identity artifact for authentication, this feature concerns the attes-

tation process performed to give such artifact to a workload.
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• Interoperability: the approach enables mutual authentication between confidential

workloads and regular workloads.

Approach \ Features Mutual Authn. Interop. Low Adop. Bar. Multi. Attest.

CAS

SQUAD

RA-TLS

SPIFFE + SGX

Table 7.1: Related work comparison table.

All the approaches enable operators to set up mutual authentication for workloads

through X.509 certificates. However, there are some limitations related to this feature.

To support mutual authentication using CAS between a confidential workload and a non-

confidential workload, the operator has at least two options: The first is to use an external

certificate authority and a strategy to mirror CA certificates into CAS. The second one is to

use the CAS as a CA and configure workloads manually or provision the artifacts for mutual

authentication through the CAS’s sessions API (for instance, the CAs exposed in public ses-

sions). In the case of SQUAD, it cannot manage a PKI itself, even for SGX workloads. An

operator using SQUAD must also rely on an external certificate authority. Also, there should

be a component to store artifacts for mutual authentication into SQUAD. The RA-TLS re-

lies on non-standard X.509 extensions, which can make non-confidential workloads abort

the connections. To avoid the aborted connections, the extensions could be marked as not

critical ones. The SPIFFE-SGX integration leverages the SPIRE implementation to provide

all the artifacts needed to enable mutual authentication. Moreover, a mutual authentication

process between a confidential and a non-confidential workload occurs seamlessly on both

sides using SPIFEE-SGX.

The interoperability feature is closely linked to the mutual attestation one. Offering built-

in support for confidential workloads to identify non-confidential workloads and vice versa

is a challenging problem. Using CAS, one can configure non-confidential workloads with

certificates to trust CAS as a certificate authority. Following this path, there is no attesta-

tion process for non-confidential workloads. When it comes to using SQUAD, one can not
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use it as a CA with built-in capabilities. However, it is possible to implement such func-

tionalities throughout the SQUAD plugins workflow. Likewise, because of the limitations

discussed previously, the RA-TLS approach can not offer interoperability by itself. It needs

some additional efforts to circumvent limitations, mainly to handle the extensions and in-

clude the certificate generated by the enclaves into a certificate chain. In contrast with the

related works, the SPIFFE-SGX integration enables confidential workloads to identify non-

confidential and vice versa. Furthermore, our proposal inherits the attestation process of

the SPIFFE implementation. This process does not ensure the same trust level as the SGX

attestation process, but it is still a desirable security layer.

Regarding the adoption barrier, adopting CAS is straightforward. Once the operator

puts a workload into an enclave, using the SCONE lift-and-shift approach, the workload

does not need to be changed. The SCONE environment passes the secrets to applications

via environment variables, command-line arguments, and files, which are the most popular

ways to configure an application as verified by Gregor et al. [Gregor et al. 2020]. On the

other hand, the adoption barrier for SQUAD is high. To use the SQUAD to deliver secrets for

SGX-SDK applications, one has to implement a custom secrets delivery function that uses

the secure communication channel resultant from the attestation process (or at least a library

to link against the enclave that extends the attestation process library). For a lift-and-shift

approach of running workloads inside enclaves, one would have to implement additional

attestation procedures and plugins. Similarly, to adopt the RA-TLS approach, one must

extend the TLS libraries used by the workloads to recognize the new extensions and verify

the attestation evidence within these extensions.

To analyze the adoption barrier for our proposed approach, we have to split the adoption

barrier into two fronts: SPIFFE’s adoption barrier and CAS’s adoption barrier.

Suppose an operator wants to adopt SPIRE, the SPIFFE implementation. In that case,

some work is needed to make the applications call the Workload API, so these applications

get attested and receive an SVID. An approach to avoid these problems and keep the work-

loads unaware of SPIFFE is to use sidecar proxies such as Envoy 1. In this way, the workload

does not concern TLS connections, authorization, and authentication. In general, sidecars are

next to the workloads within an orchestrator’s basic deployable objects (Pods, in the case of

1https://www.envoyproxy.io/
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Kubernetes).

Gregor et al. [Gregor et al. 2020] explain that, because of the CAS design goals, the CAS

(and the SCONE environment) gives all sorts of secrets via existing common ways to provide

configurations to workloads. So, in the lucky path, the operator needs to change only deploy-

ment files, and container image build files. In the more challenging course, the operator may

need to find alternatives to dependencies not supported by the TEE environment.

With the integration between SPIFFE and SGX, supported by the SCONE lift-and-shift

approach, we reduce SPIRE’s adoption barrier by leveraging CAS to deliver the identities

to workloads. In other words, it is possible to receive SVIDs via protected filesystem file

injection. CAS will condition the SVID injection in the workload’s view of the filesystem to

the robust SGX attestation process.

Finally, the SPIFFE-SGX integration is the only approach that supports multi-platform

attestation thanks to the pluggable architecture of the SPIFFE implementation (SPIRE). The

other approaches have attestation processes and do not support attestation of non-confidential

workloads. In other words, these other approaches do not support attesting workloads with

a lower level of trust.



Chapter 8

Conclusion

In this chapter, we present, in Section 8.1, a summary of our work. Besides, Section 8.2

introduces future work.

8.1 Summary

In this work, we proposed an approach to integrate the SCONE environment and the SPIFFE

framework. To do so, we added a new component to SPIRE, the so-called SGX Helper,

enabling universal identity support for confidential workloads.

We conducted a security analysis to understand the effects of the threat model for confi-

dential computing workloads on the current SPIRE implementation. The analysis revealed

that the current implementation does not fit this more aggressive threat model. It also re-

vealed that our proposal mitigates most of the attacks coming from untrusted infrastructure

providers and identity theft attacks coming from workloads.

The experiments performed showed an overhead to deliver identities to workloads, which

is the price to pay for the robust SGX attestation process. On the other hand, the image

build time for the Python reference workloads used in the experiments is shorter for the

confidential workloads. It occurred because of the time-consuming gRPC builds in regular

workloads needed to consume the Workload API. Among the confidential workload builds,

the builds with SCONE FSPF, required for protecting code, pre-loaded data and libraries,

presented significant time overhead.
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We discussed the proposal with the community1, ensuring its applicability in real-world

scenarios and its compatibility with the SPIFFE standards. In this sense, the contributions

of this work were essential to the current in-progress effort to give SPIRE the support for

confidential workloads, impacting future releases of both SPIRE and SCONE.

8.2 Future Work

During the security analysis, it became evident that the Agent in the same node, along with

the Server, weakens the Agent-Server security boundary. In recent work, we put the Agent

and the Server inside SGX enclaves. As enclaves are isolated from others, the security

boundary is hardened by the TEE. With the Agent and Server running inside SGX enclaves,

it is necessary to perform a new security analysis to assert the benefits and understand the big

picture. Moreover, the SGX security benefits, in general, come with a performance overhead.

Thus, we should conduct new performance experiments.

The difficulty to access the Workload API for some types of workloads is not specific to

the SCONE workloads. In fact, for serverless workloads (and also envisaging other similar

cases), the community has adopted a similar approach. The community designed a new type

of plugin, called SVIDStore, to handle SVIDs and push them into trusted third-party com-

ponents. Then, the third-party storages will act as intermediates, storing the SVIDs received

from the agent and handling them to the special workloads using case-specific protocols or

approaches. The first plugin implementations will cover Azure, AWS, and Google Cloud.

The new SVIDStore plugin type can accommodate the SGX Helper logic, with a smaller

codebase and less implementation effort. Currently, we have a work in progress to enable

identity issuing for confidential workloads, implementing the results of this dissertation using

an SVIDStore plugin.

1Example of an issue discussed with the community: https://github.com/spiffe/spire/issues/1924.
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