

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA
UNIDADE ACADÊMICA DE SISTEMAS E COMPUTAÇÃO

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

GABRIEL FERNANDES DA SILVA

CONSUMERHUB:

A PRODUCT’S REVIEW PLATFORM

CAMPINA GRANDE ­ PB

2020

GABRIEL FERNANDES DA SILVA

CONSUMERHUB:

A PRODUCT’S REVIEW PLATFORM

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

Orientadora: Professora Dra. Eliane Cristina de Araújo.

CAMPINA GRANDE ­ PB

2020

Elaboração da Ficha Catalográfica:

Johnny Rodrigues Barbosa

Bibliotecário-Documentalista

CRB-15/626

 S586c Silva, Gabriel Fernandes da.
 Consumerhub: a product’s review platform. / Gabriel

Fernandes da Silva. – 2020.

 13 f.

 Orientadora: Profa. Dra. Eliane Cristina de Araújo.

 Trabalho de Conclusão de Curso - Artigo (Curso de

Bacharelado em Ciência da Computação) - Universidade

Federal de Campina Grande; Centro de Engenharia Elétrica

e Informática.

 1. Consumerhub – web aplication. 2. Product’s review

platform. 3. E-commerce. 4. Plataforma colaborativa. 5.

Avaliação de produtos. I. Araújo, Eliane Cristina de. II.

Título.

 CDU:004(045)

GABRIEL FERNANDES DA SILVA

CONSUMERHUB:

A PRODUCT’S REVIEW PLATFORM

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

BANCA EXAMINADORA:

Professora Dra. Eliane Cristina de Araújo

Orientador – UASC/CEEI/UFCG

Professor Dr. Marcelo Alves de Barros
Examinador – UASC/CEEI/UFCG

Professor Dr. Tiago Lima Massoni
Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 2020.

CAMPINA GRANDE ­ PB

Consumerhub: A products' review platform

Gabriel Fernandes da Silva
Federal University of Campina Grande

gabriel.fernandes.silva@ccc.ufcg.edu.br

Eliane Araújo (mentor)
Federal University of Campina Grande

eliane@computacao.ufcg.edu.br

ABSTRACT

When looking for a new product to buy, consumers are many
times faced with different options available, but how to choose the
best? Review sections on e-commerce websites can help by
providing product reviews and ratings from consumers, and new
consumers can use them to base their buying decisions. In that
approach, reviews are made only by the website’s clients and only
referring to the products they sell. This work proposes a solution
that widens that approach. It is a community-driven platform
where users collaborate to build a database of products' reviews
and ratings to help consumers make a better buying decision. 1

Repository

https://github.com/gabrielfern/consumerhub

1. INTRODUCTION
Today, the competition between products is high. Take, for
example, this comparison [1] of the cost-benefit smartphone by a
specialized comparison website. It is a comparison of 6 models of
smartphones, and it could have been a much bigger list. As with
smartphones, most of the products have options from competitors,
and the consumer sometimes might get lost on what product to
buy.

Many e-commerce websites provide a section for product
reviews to help consumers. This product page [2] from Amazon is
an example. A buyer might consider those reviews when deciding
which product to buy between similar options available. The
product with best reviews has a good chance of being one of the
best.

For convenience goods that are sold typically only in
supermarkets or grocery stores, consumers do not have a place

1 The authors retain the rights, under a Creative Commons
Attribution CC BY license, to all content in this article (including
any elements they may contain, such as pictures, drawings,
tables), as well as all materials produced by authors that are
related to the reported work and are referenced in the article (such
as source code and databases). This license allows others to
distribute, adapt and evolve their work, even commercially, as
long as the authors are credited for the original creation.

like review sections of e-commerce websites to know what is the
public opinion on a certain product. Because of this they usually
ask people they know about the quality of the products they want
to buy.

People are also relying on different kinds of platforms to
get information about products, like the Youtube video platform
[3]. These platforms are also useful to discover new products. One
kind of videos found on Youtube that helps consumers is videos
of reviews, where the youtuber tests and gives their opinion on a
certain product. Another type of video about products is
unboxings​, where the product is shown being removed from its
original package. Both of these kinds of videos can greatly help
consumers, as the consumer can see the opinion of another person
in the product they are interested in and see how the product looks
when it is first opened.

The problem of gathering information of a product from
other consumers is what we are trying to solve. And for that we
propose an innovative platform where users can find opinions of
other consumers about products they are considering to buy. This
platform will leverage the creation of a community around
product reviews.

This work introduces a platform named Consumerhub. It
is a web application, open for all users to collaborate with new
products and reviews. It has review sections on products, similar
to those of e-commerce websites, but differently from those
websites, this platform is open for any user, and products that do
not exist in the platform can be added by any user. This way,
products that are only found in grocery stores can also be added
and receive reviews.

2. SOLUTION
2.1 Overview
Consumerhub is a web platform that is a hub for consumers. By
hub we mean a place where consumers go, in this case navigate
to, when they want to know about a product they want to buy.
This platform is not a place they go to buy products, but rather a
place they go to acquire information about products.

It is a collaborative platform, open, similar to what
Wikipedia is. The catalog of products can be increased by any
user, as users can create new pages on Wikipedia. Users can make

https://github.com/gabrielfern/consumerhub

additions, or edit, products, as users in Wikipedia can. In a similar
way that Wikipedia keeps its content from being vandalized,
Consumerhub has a hierarchy of users: users, moderators and
administrators. Each one of them with more powers regarding the
platform.

Each product can be reviewed by users. A review is an
optional commentary, and a rating, the rating goes from 1 to 5.
Those reviews are the source of knowledge that visitors can use to
get more information on products. Aside from reviews, products
have more information, they are:

● Title
● Description
● Images (up to 5)
● Links (up to 3)

Images are a good way to visualize a product, especially if

the user has not seen it already. Links are a way of providing
further information about a product to the users. A link can be a
url to the product page on the manufacturer’s website,

e-commerce websites selling the product, or any other website
that talks about the product.

Any visitor can navigate and search for all the products,
and on each product page see all the reviews the product has. If
the visitor wants to leave a review on a particular product, submit
a new product or edit a current product, the visitor needs to create
an account on the platform. That can be done with a name, email
and password (a profile picture is optional) or if the person
prefers, with a click of a button using a Google account.

Products are grouped into categories. Each product can
belong to more than one category. A category is a type or class of
products, for example, the category Smartphones would consist of
several products that are smartphones. A smartphone could belong
to the category of Smartphones and also belong to the category
Technology, and so forth. These categories can be used to filter
products in the product list, so only products of a certain category
would show up in the search. ​Image 1 shows the product list page
and how categories are used to filter products.

Image 1: Shows the product list page, demonstrating how product categories can be used to filter products. From the perspective of a visitor, without being
logged in. Pictures used here are Public Domain images, source [4]. Products used in this image are not real products, to avoid problems with intellectual

property.

Users can interact with other users' reviews. A user can
upvote or downvote a review. Reviews can later be sorted by

reviews with the most upvotes, by date and so forth, as shown in
Image 2​.

Another way users can interact with other reviews is by
reporting them. A report can be used to notify moderators of
content that should not be on the platform (e.g. inappropriate
images). Each report has a message left by the user that made the
report (i.e. the reason). Users can also report products and other
users. Those reports can be listed by moderators, and if they think
the report is reasonable they can take an action, like removing the
review for example.

Users have a profile page. On a user’s profile page, their
reviews are listed. Also on a user’s profile page, other users can
send friendship requests or report the user. Only users that are
friends, on the platform, can see each other's email. Users can use
email for further communication, for example, to share more
information about a review.

When new users create their account, they are assigned
the user type “user”. Users of this type can create new products
and edit current ones, but their contribution needs to be accepted
by one moderator to become part of the product catalog.
Moderators can do everything a user can do, with the following
additions:

● Accept product submissions from other users, including

themselves.
● See all the reports made by users.
● Remove products, reviews or users from the platform.

(A moderator can only remove users of the type “user”,
i.e. they cannot remove another moderator.)

● See the email of any user. (Normal users can only see
the email of friends.)

● Edit product categories.

Administrators can (in addition to what moderators can do):

● Change the user type of any user.
● See a list of all the users currently registered on the

platform.
● Remove any user. (Including other administrators.)
● Send email to individuals or all users at the same time,

using the email configured in the server.

Image 2: Produtct's review section

2.2 Architecture
There are 3 main components in our system: client, server and
database. The client module is our frontend code, or application,
that runs on the user's browser. A different client can also be used
to access our http api. The client communicates with the server,
that is an application that runs on a single machine, and is
responsible for responding to requests made by clients. The server
is responsible for the business logic of the system, and connects to
a database to store data. The database can be a process running on
the same machine of the server, or it can be a service running
elsewhere. A relational database was chosen for this project.

The codebase, which is found on Github (link in the
repository section), is divided into two main directories, api and
app. The api directory is our server, or backend. The app directory
is our client, or frontend. In the next 2 subsections we will discuss
the structure of these directories.

2.2.1 Backend structure

Image 3: Backend file structure

Image 3 shows the file structure of the backend. Each file goes in
a subdirectory depending on its purpose. The database
configuration goes into the config folder. The migrations folder
has the source files to create all necessary tables in the database.
The models are the mapping of database entities to the language
objects. Routes, which can be seen as controllers, are responsible
for handling http requests. Seeders are used to populate the
database, in our case we create the first administrator in a seed
file. Services provide additional functionality, for example
notifications. Utils are for auxiliary functions. The ​server.js file is
our entry point code.

2.2.2 Frontend structure
Image 4 shows the frontend file structure. At the top level, there
are two main directories, the ​public directory that contains static
files and the ​src directory that contains the source code. Inside
src​, the assets folder serves the same purpose of the public folder.
It contains mainly images. Components and Pages have React
components, with the difference between them being that Page
components represent a webpage, having their own url. Services
directory contains the api service that abstracts http requests out of
the components. Styles are for CSS files, and utils have helper
functions.

Image 4: Frontend file structure

2.2.3 Database entities
Consumerhub data model is composed of several different
entities, that are translated to tables in the database along with
their constraints. In the application server, the database tables are
abstracted as model objects. ​Image 5 shows the
Entity–relationship diagram of the system:

Image 5: Entity-relationship diagram of Consumerhub.

As a study case, the entity ​ReviewVote​, that represents the
vote a user gave to a review has associations with the entity ​User
and the entity ​Review​. One instance of ​ReviewVote has one ​User​,
the user who voted, and the instance also has one ​Review​, the
review that the vote was given to. One ​User can have zero or
more ​ReviewVotes​, and one ​Review can also have zero or more
ReviewVotes​.

2.3 Technologies
It was decided to use the Javascript programming language for
both backend and frontend. The reason behind this decision is that
it makes the development easier, as there is little overhead in
switching from backend to frontend development.

We chose Nodejs [5] to run on the server-side. It is a
Javascript runtime built on Chrome's V8 JavaScript engine. For
the frontend, Javascript already runs natively on today’s browsers.

In the next subtopics, we will explain details of
technologies used in the backend and in the frontend.

2.3.1 Backend
As we were building a web server, the first decision made was
what web framework to use. The most used web framework for

Nodejs is Express [6]. It has a great amount of online resources
and integrations, allied with previous experience of the author
with it; it was a natural choice. Express makes development of
http apis easier, providing a layer of fundamental web application
features on top of Nodejs.

We used a Nodejs Object–relational mapping [8] (ORM)
called Sequelize [9] to integrate with Postgresql [7] database. An
ORM is an abstraction on top of the database, that translates
database relations (or tables) to objects in the used language.
Sequelize, among many different SQL [10] based databases,
supports Postgresql, making the development of a Nodejs
application that uses Postgresql very straightforward.

For the generation of authentication tokens, the library
jsonwebtoken [11] was used.

Still in the topic of security, bcrypt [12] was used to hash
user passwords. For the feature of emailing, nodemailer [13]. And
to support login using Google accounts the google-auth-library
[14].

2.3.2 Frontend
Javascript library React [15] was chosen to build the user
interface. It is a very well known frontend library, and as it was
the case with Express, the author had prior knowledge and
experience with it. React makes it easier to create reusable code

and interactive UIs. All of which were requirements for the
frontend code, making it a perfect fit.

When it comes to styling, we used the Bootstrap [16]
library together with React Bootstrap [17]. The Bootstrap library
exports CSS, and for some of their interactive components (e.g.
modals), it requires the inclusion of their Javascript library; React
Bootstrap then replaces the Javascript part of Bootstrap, making
React Components available for a seamless integration with
React.

Our web application is a single page application [18]
(SPA); SPAs increase responsiveness by avoiding page loadings
and that translates into a better user experience. SPAs usually use
client-side routing to give the impression of different pages to the
user, and for that React Router [19] was used. React Router is a
library for client-side routing, and as with React Bootstrap, it
works very well with React.

3. USER EVALUATION
Consumerhub was deployed in Heroku [20], which is a ​platform
as a service (PAAS). In Heroku, each deployed application gets a
public URL. The URL for Consumerhub,
https://consumerhub.herokuapp.com​, was shared with a group of
people for them to use and test the platform. After one week, an
evaluation questionnaire was sent by email to the users registered
on the platform at that moment.

The questionnaire had 12 questions. The first question had
the objective of assessing the usefulness of a platform like
Consumerhub. The next 10 questions were the System Usability
Scale [21] questionnaire. The last question was the only optional.
It asked the users for suggestions for the improvement of
Consumerhub.

The questionnaire did not ask for the respondent’s email.
This was done to make the responses anonymous, as a way to
avoid biases of the respondents when knowing they would be
identifiable. The questionnaire was made through a Google Form,
and it was configured to only allow respondents that were logged
in; this was a measure against the same person responding to the
form more than once.

The users invited to use the platform were of a wide range
of ages, with all of them being adults. They had different
backgrounds, some of them having great experience and technical
knowledge in computing, while others having no technical
knowledge, but all of them being consumers of products to some
extent.

The questionnaire was made in Portuguese, the native
language of the users. For presenting the results in this work, the
Portuguese content was translated to English.

3.1 Results
A total of 8 users participated in the questionnaire. The responses,
and the original questions in Portguese, can be found at
https://gist.github.com/gabrielfern/63b10dfe4981e1c681c31af841
970bec​.

The first question asked about the usefulness of a platform
like Consumerhub. The objective of this question was to answer
the main point of this work, that is if an approach of an open and
collaborative platform for user reviews of products would help
consumers.

This question gave the users 4 options, and they had to
choose one. The options were:

1. It would be very helpful
2. It could be helpful
3. It doesn't look like it would be helpful
4. I don't think it would be helpful

The results can be seen in the following pie chart:

6 out of the 8 responses said that a website like

Consumerhub would be very helpful. The next 2 options each one
got 1 response. The last, and most negative, option did not get any
answer.

3.1.1 System usability scale
The System Usability Scale (SUS) is a reliable, low-cost usability
scale that can be used for global assessments of systems usability
[22]. It yields a single value representing the overall usability of
the system.

SUS is a Likert scale [23] with 10 questions. Respondents
choose a value from 1 to 5 for each question. The questions are
sentences, and 1 is chosen if the person strongly disagrees with
the sentence, and 5 if the person strongly agrees. There are 5
positive sentences and 5 negative sentences.

https://consumerhub.herokuapp.com/
https://gist.github.com/gabrielfern/63b10dfe4981e1c681c31af841970bec
https://gist.github.com/gabrielfern/63b10dfe4981e1c681c31af841970bec

To calculate the SUS score, each response value from 1 to
5 is converted into a value that goes from 0 to 4, which is the
question’s contribution to the score. In this new scale, a value of 4
in a negative question means the user disagreed the most, and a
value of 4 in a positive question means the user agreed the most.

The following chart shows the 10 SUS questions used in
the questionnaire, along with the averages of all responses for
each question. These are the averages of the converted values.

The sum of all of these averages is a number between 0

and 40. For our results the sum is 33.125. To get the SUS score
the sum is multiplied by 2.5, which yields a value between 0 and
100, the closer the value is to 100 the better usability the system
has. The average SUS score for Consumerhub then is 82.812, with
a 95% confidence interval ranging from 70.33 to 95.28. This score
is above the average found by Bangor et al. [24], which is 70.1 in
2324 SUS questionnaires, and by Sauro and Lewis [25], which is
62.1 in 324 SUS questionnaires.

3.1.2 Improvement suggestions
The last question was an input field for the users to write
suggestions of improvements for the platform. This was an
optional field. Out of the 8 users that answered the questionnaire,
6 left any text in this field.

Most suggestions were related to UI/UX, 3 out of 6. UI
meaning user interface and UX meaning user experience. One of
the suggestions was “Make the UX better”. The other 2 suggested
to make some UI elements more noticeable or more intuitive.

4. EXPERIENCE AND LESSONS
LEARNED
4.1 Development Process
At first, a document of requirements was made, containing the
core functionality expected and desirable ones. This requirements
analysis together with raw diagrams, including an initial
entity–relationship and a homepage wireframe, were the resources
used in the system design phase.

Finished the system design phase, the development began.
The approach used for the development, or rather the development
process, resembles the incremental build model [26], where the

product is designed, implemented and tested incrementally; and
the product is defined as finished when it satisfies all of its
requirements.

Every new module of the system had its backend part
completed first, then its frontend counterpart. Modules here can
be seen as a distinctive feature, for example user friends. The final
stage of development was to revamp the webapp appearance, as
the UI at that moment was mainly concerned with tests and the
frontend logic, instead of a good looking and final user experience
and user interface.

Tasks in the development phase were created as Github
issues in the repository of the source code. A Github Project was 2

created to keep track of the issues, with the name of Consumerhub
MVP , also available in the repository. Issues could be in 3 3

different states: To do, In progress and Done; as the tasks were
being completed the respective issue was moved to Done. Issues
could be a new functionality, a problem/bug, or some other
improvement.

4.2 Main challenges and their solutions
4.2.1 User’s product submissions
One of the requirements of the platform was to permit all users to
submit new products. Product submissions would not go live for
all the platform’s visitors to see, but would go to a list of
submissions that moderators would have to accept for it to go live.
More than just new products, users would also be able to edit
current products, and product edits would have to be accepted by
a moderator the same way a new product is.

There would have to be products in two different states,
accepted and waiting acceptance ones. The solution for this
problem was to have a new database table, or a new model, to
represent products awaiting acceptance. The name given to this
model was “StagingProduct”. For the accepted products, the
model name was “Product”.

This ideia was roughly based on git. When changes are
made to a git repository, one can git add them, moving the
changes to an area called staging area. Changes in the staging area
can then be committed. With products, submissions of new or
edited products are like changes to a git repository, they can be
seen as being in the staging area, when accepted, in our analogy
committed, they become products.

Products are always created from staging products, when
that happens, the staging product is deleted, and a product is
created with the staging product values. When a user clicks to edit
a product, that product is cloned into a new staging product,
which can be edited, and when a moderator later accepts the

2 ​Issues for Consumerhub
3 ​Consumerhub MVP tasks

changes, the original product is updated to the values of the
staging product, and then the staging product gets deleted.

4.2.2 Images
Images were challenging in two ways for this project; first was
how to store them; secondly was how to deal with browser
caching.

It is usually recommended to not store images in relational
databases. As images take up more space, and creates overhead in
the database or network. One other way of storing images is file
storage services. To avoid the complexity of managing another
service for images, Postgresql was also used to store the images,
as blob data. Through tests in the infrastructure used to deploy the
application, the latency to access the images was not a problem,
and Postgresql supports up to 1 GB in a blob data type field, much
more than the maximum of 5 MB per image that this application
was configured to use.

In modern web browsers, images are cached after the first
time they are downloaded. The first solution to store images in the
database stored images as fields in the models they belonged to,
for example, a User had a field “image” that was of the type blob
and was the actual image data. With the first solution, the URL to
get a user’s image was always the same, even after the user
changed its image, the same URL was seen by the browser as
having the same data, so the browser did not show the updated
user image because of the image URL always being the same (e.g.
/api/user/image).

The problem of browsers caching the images also affected
product images. A solution for this problem was later
implemented. The solution was to have all images in a different
table, called Images, where they have random ids, and for each
update of an image a new instance of Image is added to Images,
and this new instance gets a new id. The Image id then is used in
the path to get the image, for example
“/api/images/otisWtcMbpta”. Having different URLs when
images are updated makes the browser always download the
image, without using the cache, everytime the URL of the image
changes. For images that did not change, they keep the same
URL, and browser caching works as expected.

4.2.3 Email
One of the desirable features was for Consumerhub to be able to
send emails to users. The First use case for this functionality was
to let users reset their passwords, through email, and to require
users to confirm their email addresses when they create their
account. The second use case was to have a way for
administrators to send email to all users, or to one user, using the
official email address of Consumerhub.

For an application to be able to send emails, the
application needs to create an email server or to use an email

https://github.com/gabrielfern/consumerhub/issues?q=is%3Aissue+is%3Aclosed
https://github.com/gabrielfern/consumerhub/projects/3

service. The second option was used, for its simplicity. The
solution implemented uses a Gmail account and a library that
connects to Gmail and sends email automatically. This solution
has many problems though, as a Gmail account is not a proper
email service, for sending emails via an api. Gmail provides an
option for enabling access to other applications, but this access is
not reliable, as Gmail sometimes blocks access to the account
based on their heuristics. These problems were described in the
work [27]. Because sending emails this way was not reliable
enough, the only feature implemented was the support for
administrators to send email to users.

4.3 Limitations
One of the platform’s limitations is that actions that users take are
not recorded, aside from logs from proxy servers that can keep a
history of all the requests made to the server. Some of the actions
that could be of great importance to record are:

● Moderator’s removal of a user
● Moderator’s removal of a product
● Moderator’s removal of a review
● History of product modifications, linking to the user that

made the modification.
● Moderator that accepted a product

Without knowing the moderator that removed reviews, it

can be very difficult for administrators to demote or remove a bad
intentioned moderator. Another difficulty would be to know
which user made a certain modification to a product.

A second limitation is that if a user’s submission of a
product is rejected, all of the work the user put on that product is
lost; if the user sees the rejection message from the moderator that
rejected the product, and the user wanted to fix what the
moderator said was wrong, the user has to make all of the changes
again, or create a new product if the submission was for a new
product.

Another shortcoming of the product system is that
multiple users editing the same product can lead to a user’s work
being overwritten. Suppose two different users started editing the
same product, they don’t see each other’s work, as submissions
are private to the user. When a user starts editing a product, a
clone of the product is created at that time. The two users would
make their modifications, the first could change the product’s title
and the second could have added a new link to the product. When
the first user’s submission is accepted, the product title of the
original product is changed, but if the submission of the second
user is accepted, that submission has the product in the state it was
before the first user’s addition, leading to the link being added,
and the title of the product going back to what it was before.

The user evaluation made in this work had the
participation of only 8 users, which is a fairly small number for
drawing conclusions. Although more than 10 users had signed up
on the platform, the process of reaching out to the users for them
to respond to the questionnaire might have been inefficient. For
more conclusive results of the effectiveness of this system, a
bigger evaluation can be made in the future.

4.4 Future work
The application produced in this work was a minimum valuable
product (MVP). The core features thought to be needed were all
completed. But there is a lot of room for improvement and
evolution in this application. Some of the possible improvements
are:

● User activity history
● Limiting moderator’s power
● Bidirectional communication between moderator and

user that submitted a new product or product changes
● Let users edit products together (i.e. shared editing).
● Email confirmation and resetting of password by email

5. REFERENCES
[1] Qual é o melhor celular custo benefício? [Guia 2019].
https://escolhasegura.com.br/qual-melhor-celular-custo-beneficio/
[2] Lessons Learned in Software Testing: A Context-Driven
Approach.
https://www.amazon.com/Lessons-Learned-Software-Testing-Con
text-Driven/dp/0471081124
[3] More people than ever are turning to YouTube for product
reviews.
https://medium.com/sponsokit/more-people-than-ever-are-turning
-to-youtube-for-product-reviews-4956d3647e34
[4] Public Domain Pictures.
https://unsplash.com/images/stock/public-domain
[5] Node.js. ​https://nodejs.org/
[6] Express - Node.js web application framework.
https://expressjs.com/
[7] PostgreSQL: The world's most advanced open source
database. ​https://www.postgresql.org/
[8] Object–relational mapping.
https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapp
ing
[9] Sequelize ORM. ​https://sequelize.org/
[10] SQL. ​https://en.wikipedia.org/wiki/SQL
[11] JsonWebToken. ​https://github.com/auth0/node-jsonwebtoken
[12] Node bcrypt. ​https://github.com/kelektiv/node.bcrypt.js
[13] Nodemailer. ​https://nodemailer.com/

https://escolhasegura.com.br/qual-melhor-celular-custo-beneficio/
https://www.amazon.com/Lessons-Learned-Software-Testing-Context-Driven/dp/0471081124
https://www.amazon.com/Lessons-Learned-Software-Testing-Context-Driven/dp/0471081124
https://medium.com/sponsokit/more-people-than-ever-are-turning-to-youtube-for-product-reviews-4956d3647e34
https://medium.com/sponsokit/more-people-than-ever-are-turning-to-youtube-for-product-reviews-4956d3647e34
https://unsplash.com/images/stock/public-domain
https://nodejs.org/
https://expressjs.com/
https://www.postgresql.org/
https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping
https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping
https://sequelize.org/
https://en.wikipedia.org/wiki/SQL
https://github.com/auth0/node-jsonwebtoken
https://github.com/kelektiv/node.bcrypt.js
https://nodemailer.com/

[14] Google Auth Library for Node.js.
https://github.com/googleapis/google-auth-library-nodejs
[15] React – A JavaScript library for building user interfaces.
https://reactjs.org/
[16] Bootstrap · The most popular HTML, CSS, and JS library in
the world. ​https://getbootstrap.com/
[17] React Bootstrap. ​https://react-bootstrap.github.io/
[18] Single-page application.
https://en.wikipedia.org/wiki/Single-page_application
[19] React Router: Declarative Routing for React.js.
https://reactrouter.com/
[20] Heroku: Cloud Application Platform.
https://www.heroku.com/
[21] System usability scale.
https://en.wikipedia.org/wiki/System_usability_scale

[22] Brooke, J.: SUS: A “quick and dirty” usability scale. ​SUS - A
quick and dirty usability scale
[23] Likert scale. ​https://en.wikipedia.org/wiki/Likert_scale
[24] Bangor, A., Kortum, P. T., Miller, J. T.: An Empirical
Evaluation of the System Usability Scale. International Journal of
Human-Computer Interaction. 24, 574--594 (2008)
[25] Lewis, James R., Sauro, Jeff: The Factor Structure of the
System Usability Scale
https://measuringu.com/wp-content/uploads/2017/07/Lewis_Saur
o_HCII2009.pdf
[26] Incremental build model.
https://en.wikipedia.org/wiki/Incremental_build_model
[27] Oliveira da Silva, Eri Jonhson: Um sistema para automatizar
os processos gerenciais da Olimpíada Paraibana de Informática.
https://drive.google.com/file/d/1oSiBBxZkFgPVKgRcqZ8rqaHC6
O_Nu9jm/view

https://github.com/googleapis/google-auth-library-nodejs
https://reactjs.org/
https://getbootstrap.com/
https://react-bootstrap.github.io/
https://en.wikipedia.org/wiki/Single-page_application
https://reactrouter.com/
https://www.heroku.com/
https://en.wikipedia.org/wiki/System_usability_scale
https://hell.meiert.org/core/pdf/sus.pdf
https://hell.meiert.org/core/pdf/sus.pdf
https://en.wikipedia.org/wiki/Likert_scale
https://measuringu.com/wp-content/uploads/2017/07/Lewis_Sauro_HCII2009.pdf
https://measuringu.com/wp-content/uploads/2017/07/Lewis_Sauro_HCII2009.pdf
https://en.wikipedia.org/wiki/Incremental_build_model
https://drive.google.com/file/d/1oSiBBxZkFgPVKgRcqZ8rqaHC6O_Nu9jm/view
https://drive.google.com/file/d/1oSiBBxZkFgPVKgRcqZ8rqaHC6O_Nu9jm/view

	377839ce62b93363db5faa357d5b8685b7d94ac036bdd1c0192763471d7d39ef.pdf
	b2dd35ab6473e7edaa6b48b25bd2af82ee160c64488be12b6a7e2bb45ea63d13.pdf

