
Federal University of Campina Grande

Electrical Engineering and Informatics Center

Graduate Program in Computer Science

Fostering Design By Contract by Exploiting the

Relationship between Code Commentary and

Contracts

Alysson Filgueira Milanez

Thesis submitted to Coordination of Graduate Program in Computer Sci-

ence of the Federal University of Campina Grande - Campus I in partial

fulfillment of the requirements for the degree of Ph.D. in Computer Sci-

ence.

Research Area: Computer Science

Research Line: Computing’s Methodology and Techniques

Tiago Massoni and Rohit Gheyi

(Advisors)

Campina Grande, Paraíba, Brasil

c©Alysson Filgueira Milanez, 25/05/2018

 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA CENTRAL DA UFCG

M637f

Milanez, Alysson Filgueira.

 Fostering design by contract by exploiting the relationship between

code commentary and contracts / Alysson Filgueira Milanez. – Campina

Grande, 2018.

 129 f.: il. color.

 Tese (Doutorado em Ciência da Computação) – Universidade Federal

de Campina Grande, Centro de Engenharia Elétrica e Informática, 2018.

 "Orientação: Prof. Dr. Tiago Lima Massoni, Prof. Dr. Rohit Gheyi".

 Referências.

 1. Programação por Contratos. 2. Documentação - Programação Java.

3. Verificação em Tempo de Execução. 4. Javadoc. I. Massoni, Tiago

Lima. II. Gheyi, Rohit. III. Título.

 CDU 004.42(043)

"FOSTERING DESIGN BY CONTRACT BY EXPLOITING THE RELATIONSHIP
BETWEEN CODE COMMENTARY AND CONTRACTS"

ALYSSON FILGUEIRA MILANEZ

TESE APROVADA EM 25/05/2018

TIAGO LIMA MASSONI, Dr., UFCG
Orientador(a)

ROHIT GHEYI, Dr., UFCG
Orientador(a)

WILKERSON DE LUCENA ANDRADE, Dr., UFCG
Examinador(a)

ADALBERTO CAJUEIRO DE FARIAS, Dr., UFCG
Examinador(a)

ADENILSO DA SILVA SIMÃO, Dr., USP
Examinador(a)

RICARDO MASSA FERREIRA LIMA, Dr., UFPE
Examinador(a)

CAMPINA GRANDE - PB

Resumo

Embora contratos no estilo de programação por contratos (DBC) tragam precisão para ex-

pressar o comportamento do código, desenvolvedores são resistentes ao seu uso. Há várias

razões para isto, tais como a dificuldade na produção de contratos ou o trabalho de man-

ter os contratos consistentes com o código em evolução. Por outro lado, Javadoc é uma

abordagem comumente usada para documentar programas Java. Mesmo assim, comen-

tários Javadoc não servem para a checagem automática de conformidade devido à ambigu-

idade inerente à linguagem natural. Neste trabalho, procuramos minimizar a distância entre

contratos e Javadoc, estimulando a adoção de DBC a partir de duas contribuições princi-

pais; primeiro, propomos uma extensão ao sistema de tags do Javadoc (CONTRACTJDOC)

para possibilitar a integração de contratos na notação de comentários; então, propomos

uma abordagem para geração de contratos a partir de comentários em linguagem natural

(CONTRACTSUGGESTOR). Nós realizamos três avaliações: primeiro, avaliamos a aplica-

bilidade e a compreensibilidade de CONTRACTJDOC. Como resultados, detectamos incon-

sistências entre a documentação Javadoc e o código fonte. A maioria dos contratos que es-

crevemos foram checagens de valores limítrofes para parâmetros e repetições de expressões

de retorno de métodos. Além disso, a legibilidade dos comentários percebida pelos desen-

volvedores não diferiu significativamente entre as abordagens, o que é promissor, dado que

contratos são usualmente classificados como difíceis de ler. Segundo, avaliamos a qualidade

dos contratos gerados por CONTRACTSUGGESTOR verificando a taxa de falsos positivos

gerados. Como resultado, são gerados mais contratos corretos para non-null do que para

relational, devido a quantidade de instâncias de comentários para cada propriedade. Por

fim, realizamos estudos de caso com JMLOK2 e CONTRACTOK – CONTRACTOK é uma

extensão da abordagem de JMLOK2 para o contexto C#/Code Contracts. Primeiro, usamos

JMLOK2 para verificar os contratos gerados automaticamente por CONTRACTSUGGESTOR;

depois usamos as ferramentas para verificar 24 sistemas de código aberto (12 para cada

ferramenta). As ferramentas detectaram 188 não-conformidades, sendo 72 problemas de

pós-condição e 61 de invariante; as causas prováveis mais comuns foram Pré-condição fraca

(91) e Erro de código (56). Com isso, objetivamos motivar a adoção de DBC como forma de

aprimorar o projeto dos programas, e por consequência, sua qualidade geral.

ii

Palavras-chave: programação por contratos, documentação, verificação em tempo de

execução, Javadoc.

iii

Abstract

Contracts in Design by Contract style bring about preciseness for expressing the code be-

havior; however, developers are resistant to their use. There are several likely reasons for

this, such as the trouble to conceive good, useful contracts, or the burden of maintaining

contracts consistent with the evolving code. On the other hand, Javadoc is a common way

of documenting Java programs. Nevertheless, Javadoc comments do not serve to an auto-

mated conformance checking due to ambiguity issues inherent to the natural languages. In

this work, we try to minimize the distance between contracts and Javadoc, fostering DBC

adoption by means of two main contributions; first, we propose an extension to the Javadoc

tagging system (CONTRACTJDOC) for allowing the integration of contracts into the com-

ments notation; then, we propose an approach for automatically generating contracts based

on natural language code commentary (CONTRACTSUGGESTOR). We perform three evalua-

tions: first, we evaluate the applicability and comprehensibility of CONTRACTJDOC. As re-

sults, we detected inconsistencies between the documentation available by means of Javadoc

comments and the source code. The majority of the contracts we could write from the com-

ments remains between common-case and repetitive with the code. Moreover, developers’

impression about the readability of comments did not differ significantly, which is promis-

ing, as contracts are usually regarded as hard to read – one reason for its non-adoption. Then,

we evaluate the quality of contracts generated by CONTRACTSUGGESTOR by analyzing the

false positives rate. As result, the approach generates more correct contracts for non-null

than for relational, due to the number of comment instances for each property. Finally, we

perform case studies with JMLOK2 and CONTRACTOK – CONTRACTOK is an extension of

JMLOK2 for C#/Code Contracts context. First, we used JMLOK2 for conformance checking

the contracts automatically generated; then, we run the tools over 24 open-source systems

(12 with each tool). The tools detected 188 nonconformances. From those, 72 are postcondi-

tion and 61 are invariant problems; with respect to likely causes manually established, Weak

precondition (91) and Code error (56) are the most commons. With this, we aim to promote

DBC adoption as a way for improving the design of the projects, and consequently, their

quality in general.

Keywords: design-by-contract, documentation, runtime checking, Javadoc.

iv

v

Acknowledgments

I would like to express here my sincere gratitude to each one that helped me throughout this

Ph.D. research.

To God, that is always with me in all moments, either good or bad. Without His support

I would never be able to overcome some daily challenges or achieve my goals.

To my family for their love and support. My parents, Severino do Ramo and Rozane

that are my life mentors. Since childhood they have taught me the importance of education

and, with life lessons, have showed me how to be a decent human being and good citizen.

My sisters Maxwellia and Laryssa, my nieces Emilly and Evellyn, and my brother-in-law

Guilherme, for their support and care.

To all my friends, for showing that life cannot be complete without people to share mo-

ments.

To professors Tiago Massoni and Rohit Gheyi, that provided me the foundation for an

academic career. Their guidance, trust, supervision and directions have greatly helped me

in all the time of research and writing of this thesis. Their patience and hard work have

inspired me to be a better researcher. I could not have imagined having better mentors for

my doctorate.

To my colleagues Catharine, Indy, Kláudio, Matheus, Melquisedec, Mirna, Thaciana,

Saulo, members (current and past) of the Software Practice Laboratory (SPLab), for their

support, collaboration and good company during this research. To Dênnis, Igor, Clenimar,

Bianca, and José Manoel by the technical support during the development of the current

work.

To the funding agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Supe-

rior (CAPES) and Instituto Nacional de Ciência e Tecnologia para Engenharia de Software

(INES) for their financial support throughout this work.

To professors Adalberto Cajueiro, Adenilso Simão, Ricardo Massa, and Wilkerson An-

drade, for their acceptance for reviewing the present work, for their useful suggestions and

contributions for this thesis.

Last but not least, I thank the Graduate Program in Computer Science from the Federal

University of Campina Grande and its staff for the administrative support.

vi

vii

Contents

1 Introduction 1

1.1 Problem . 2

1.1.1 Motivating Example . 3

1.1.2 Relevance . 6

1.2 Solution . 6

1.3 Evaluation . 7

1.3.1 Evaluating CONTRACTJDOC . 8

1.3.2 Evaluating Contracts . 9

1.4 Summary of Contributions . 10

1.5 Thesis Outline . 11

2 Mixing Contracts with Commentary in CONTRACTJDOC 12

2.1 Design by Contract . 13

2.1.1 JML . 13

2.1.2 Conformance Notion . 15

2.2 Software Testing . 16

2.2.1 Test Cases . 17

2.2.2 Test Oracles in DBC Context . 18

2.2.3 Tests Generation . 19

2.2.4 Conformance Testing . 20

2.3 CONTRACTJDOC . 21

2.3.1 CONTRACTJDOC Design . 22

2.3.2 Documenting Preconditions . 23

2.3.3 Documenting Postconditions . 25

viii

CONTENTS ix

2.3.4 Documenting Invariants . 26

2.3.5 Quantifiers . 26

2.3.6 Other tags . 27

2.3.7 CONTRACTJDOC’s Supporting Infrastructure 28

3 Evaluating CONTRACTJDOC 29

3.1 Case Study . 29

3.1.1 Definition . 29

3.1.2 Systems . 30

3.1.3 Experimental Procedure and Research Method 31

3.1.4 Results . 32

3.1.5 Discussion . 34

3.1.6 Threats to validity . 35

3.1.7 Answer to the Research Question 35

3.2 Empirical Study . 35

3.2.1 Definition . 36

3.2.2 Participants . 36

3.2.3 Study Design . 37

3.2.4 Experimental Procedure . 37

3.2.5 Instrumentation . 38

3.2.6 Results . 38

3.2.7 Discussion . 40

3.2.8 Threats to validity . 41

3.2.9 Answers to the Research Questions 41

3.3 Comprehensibility Survey . 42

3.3.1 Survey Design . 42

3.3.2 Participants . 43

3.3.3 Results . 43

3.3.4 Discussion . 45

3.3.5 Threats to validity . 46

3.3.6 Answer to the research question 46

CONTENTS x

4 CONTRACTSUGGESTOR 47

4.1 Machine Learning . 47

4.1.1 Supervised Learning . 48

4.1.2 Type of classification . 50

4.2 CONTRACTSUGGESTOR: an Approach for Suggesting Contracts 52

4.2.1 Extracting Tagged-comments . 54

4.2.2 Constructing a Dataset . 55

4.2.3 Training Machine Learning algorithms 58

4.2.4 Generating Contracts . 60

4.3 Evaluating Contract Generation . 62

4.4 Limitations . 64

5 Evaluating Contracts 66

5.1 Checking Contracts by CONTRACTSUGGESTOR 66

5.1.1 Definition . 67

5.1.2 Planning . 67

5.1.3 Results . 69

5.1.4 Discussion . 69

5.1.5 Threats to validity . 70

5.2 Verifying Nonconformances in General 70

5.2.1 Code Contracts . 71

5.2.2 CONTRACTOK . 72

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 74

5.3.1 Definition . 74

5.3.2 Planning . 75

5.3.3 Results . 81

5.3.4 Discussion . 84

5.3.5 Threats to validity . 88

5.3.6 Answers to the Research Questions 90

6 Related Work 92

6.1 Source Code Documentation . 92

CONTENTS xi

6.2 Javadoc comment processing . 94

6.3 Conformance Checking . 95

6.4 Nonconformance Classification . 99

6.5 Automatic Test Generation . 101

7 Concluding Remarks 103

7.1 CONTRACTJDOC . 104

7.2 CONTRACTSUGGESTOR . 105

7.3 Review of the Contributions . 106

7.4 Future Work . 107

A Evaluating the supervised machine learning algorithms 123

List of Symbols

DBC - Design by Contract

JML - Java Modeling Language

D - Depth

B - Breadth

LOC - Lines of code

#CC - Number of contract clauses

#Pre - Number of precondition clauses

#Post - Number of postcondition clauses

#Inv - Number of invariant clauses

#Const - Number of constraint clauses

CCo - Contract complexity

ARTOO - Adaptive Random Testing for Object-oriented Software

FPR - False Positive Rate

xii

List of Figures

2.1 The Randoop test generation process. The process starts when are given the

following inputs: a list of classes under test and a time limit. Then sequences

of method calls are generated, executed and examined; the feedback from the

execution feeds back the process until the time limit be reached. In the end,

a test suite is returned. 20

2.2 ContractJDoc Compilation. First, a source code with CONTRACTJDOC con-

tracts passes through a tag processor and type checker. Then, the assertions

generated are runtime checked and AspectJ compiler produces a bytecode

with assertions. 28

3.1 Results of our empirical study with Java developers, on an implementation

task based on a documented-interface, aiming to evaluate the readability and

understandability of three approaches for documenting Java code. 39

3.2 Subjects’ answers to the individual evaluation of comprehensibility for each

documentation approach. And answers grouped by experience for each ap-

proach. 44

4.1 AdaBoost for text classification. The first model correctly classifies the doc-

ument as non-null, but incorrectly classify the others document. Then, new

models are created until reach a correct classification for all documents. . . 49

xiii

LIST OF FIGURES xiv

4.2 ContractSuggestor infrastructure. First, the project received as parameter

pass through the tagged-comments extractor. Then, the trained machine

learning algorithm is applied for classifying each comment instance (after

the training process with the dataset manually produced). Finally, a contract

generator will generate contracts for the property desired (in order to not

modify the sources of the projects, we are using AspectJ aspects as contracts). 53

4.3 Extract comments process. After receiving a project as input, the extractor

will create a file for each tagged comment. 54

4.4 Dataset construction. After applying the comments extractor, we manually

read the content of each file and decide the folder that the file belongs to. . . 55

5.1 Steps performed in this study. First, we use our approach for suggesting con-

tracts based on natural language comments. Then, we perform the manual

validation of each contract. Finally, we run JMLOK2 over each system in

order to detect potential nonconformances. 68

5.2 CONTRACTOK approach for detecting nonconformances in C#/Code Con-

tracts systems. The tool inputs are a C# project solution and a time limit for

test generation. 72

5.3 Steps performed in this study. First, we use the tools for detecting noncon-

formances in each system. Then, we perform the manual classification of

likely causes for each detected nonconformance. First, each researcher tries

to establish a likely cause (Steps 2.A and 2.B) by inspecting the source code

and contracts; then, each researcher reviews the classification performed by

the others (2.C); finally, in a discussion session (2.D) the most suitable likely

cause is established. 79

List of Tables

2.1 Grammar for CONTRACTJDOC language. 24

2.2 BNF for preconditions in CONTRACTJDOC language. 24

3.1 Case study Systems. LOC shows the code lines (LOC), total contract clauses

(#CC), as split into preconditions (#Pre), postconditions (#Post), and invari-

ants (#Inv)). 31

3.2 Case study Results. 33

4.1 Experimental units’ summary. Column Source presents a reference to the

source code location for each system. Column Description shows a brief

description of each system. And column LOC shows the code size of each

experimental unit. 56

4.2 Experimental units’ summary. Column Source presents a reference to the

source code location for each system. Column Description shows a brief

description of each system. Column LOC shows the code size of each ex-

perimental unit. 57

4.3 Machine Learning Algorithms. For each algorithm and property classified,

we present precision, recall, F1-score, and Accuracy. 59

4.4 Machine Learning Algorithms. For each algorithm and property classified,

we present precision, recall, F1-score, and Accuracy. 60

4.5 Evaluating contracts generated by CONTRACTSUGGESTOR. For each sys-

tem, we present, grouped by dataset, the number of contracts generated, the

number of correct contracts, the number of false positives, and the false pos-

itive rate (as defined by Equation 4.2). 63

xv

LIST OF TABLES xvi

5.1 Experimental units’ summary. Column LOC shows the code size of each

experimental unit. Column #CC presents the total of contracts generated for

each experimental unit. Column Property lists the property that is checked

with the contracts. 68

5.2 For each system, we present the class and method in which the problem has

occurred. Column Type shows the nonconformance types. 69

5.3 Experimental units’ summary. Column LOC shows the code size of each

experimental unit. Column #CC presents the total of contract clauses of each

experimental unit. And columns #Pre to #Const display the clauses grouped

by their types. 78

5.4 For each system, #NC, grouped by type and likely cause. The columns repre-

sent nonconformance types, from left to right: precondition, postcondition,

invariant, constraint, and evaluation. Also, likely causes: weak precondi-

tion, strong precondition, weak postcondition, strong postcondition, strong

invariant, strong constraint, and code error. 82

5.5 For each system, #NC, grouped by type and likely cause. Columns repre-

sent nonconformance types, from left to right: precondition, postcondition

and invariant. Also, likely causes: weak precondition, strong precondition,

strong postcondition, strong invariant, and code error. 83

5.6 Likely causes for each nonconformance type. 83

5.7 For each system, we present the results of average breadth (B), depth (D),

the ratio between each contract type and contract clauses, the value of CCo,

the number of nonconformances detected (#NCs), the nonconformance ratio

(#NCs/CC), the most common contract and nonconformance type. 85

6.1 Related Work on documentation of source code. 94

6.2 Related Work on Javadoc-comments processing. 96

6.3 Related Work on conformance checking. 99

6.4 Related Work on nonconformance classification. 101

6.5 Related Work on automatic test generation. 102

List of Source Codes

1.1 Counter class with Javadoc comments. 4

1.2 Counter class with JML contracts. 4

1.3 A test case for Counter class generated by JMLOK2. 5

2.1 Example of DBC in JML. 14

2.2 Code that presents a nonconformance in the supplier side — Case 1. 16

2.3 Code that presents a nonconformance in the client side — Case 2. 16

2.4 Oracle generated to div method. 19

2.5 Application of CONTRACTJDOC in a class from Dishevelled project per-

formed during our Case Study (Section 3.1). 23

2.6 Preconditions for the method push from AccountStack interface — see

Section 3.2. 25

2.7 Excerpt illustrating the use of postconditions in CONTRACTJDOC approach. 25

2.8 Excerpt illustrating the use of invariants in CONTRACTJDOC approach. . . 26

2.9 Excerpt illustrating the use of universal quantifiers in CONTRACTJDOC ap-

proach. 26

4.1 Example of tagged-comments extraction. 54

4.2 Aspect representing a precondition generated to the Source Code 4.1. . . . 61

4.3 Example for generating a postcondition. 62

4.4 Example of postcondition generated. 62

5.1 Example of DBC in Code Contracts. 71

7.1 A code commentary for an invariant. 108

xvii

Chapter 1

Introduction

Design by Contract [73] (DBC) is a programming methodology inspired by formal methods

research [48] that aims the construction of quality software. DBC is a direct descendant

from Hoare’s triples [54] – P {Q} R which means there is a required connection between a

precondition (P), a program (Q) and a description of its execution result (R). According to

Hoare [54], “If the assertion P is true before initiation of a program Q, then the assertion R

will be true on its completion.”

DBC is based on the establishment of contracts between software modules: clients (those

modules using or depending on functionality) and suppliers (those providing some func-

tionality) [73; 74]. In this context, clients must satisfy preconditions before calling a sup-

plier; suppliers in their turn, have to provide some guarantees over their results (postcondi-

tions) [74]. Both clients and suppliers may have contracts with respect to their fields – e.g.

establishing the range of valid values – (invariants) [74].

With DBC, design errors may be detected during the software development phase, since

the design decisions are written in the form of contracts – pre-, postconditions, and invari-

ants – into the source code, thus tools can be used for checking whether the design decisions

are being fulfilled. In addition, inconsistencies related to the misunderstanding of the re-

quirements can be detected earlier than in scenarios without the use of contracts since the

contracts representing those requirements can be checked at runtime.

The most popular languages and supporting tools for DBC are: Eiffel [75] and the Au-

toTest [77] tool, Java Modeling Language (JML) [67; 68] for Java with its respective set of

tools [12], and Code Contracts [35] for .NET languages with the static checker Clousot [36]

1

1.1 Problem 2

and with the dynamic approach IntelliTest.1 Meyer [75] created Eiffel as an object-oriented

programming language with a focus on quality software development. Meyer used the lan-

guage for illustrating the concepts of Design by Contract methodology [74], such as precon-

ditions, postconditions, and invariants. JML [67] enables behavioral specification for Java

by means of qualified comments (comments delimited by @). Code Contracts [35] enables

DBC by performing calls to static methods from a .NET library, allowing the use of DBC

for languages such as C#.

With DBC the contracts become assertions that can be checked at runtime, fostering

reliability for developers. In addition, those contracts enable the checking for semantic issues

in a straightforward way since the requirements are closer to the developer in a language

more accurate than natural language; so, violations to the requirements can be discovered at

runtime. Furthermore, internal problems of a system module are simple to find out due to

the use of preconditions and invariants for representing the expected behavior of each part of

the module. In this way, unexpected behaviors are caught at runtime.

Design by contract is also a way of providing rich documentation that can be useful

for maintaining the systems by enabling developers to understand the systems’ behavior by

reading the contracts. The contracts are also useful for testing the systems under development

by providing an oracle for distinguishing passing from failing tests [83].

The remainder of this chapter has the following structure: first, we present the problem

that motivates this work with its relevance (Section 1.1); then, we discuss the proposed

solution (Section 1.2); next, we show the evaluation performed (Section 1.3); after that,

Section 1.4 summarizes the main contributions of this work; and finally, Section 1.5 outlines

the structure of this thesis.

1.1 Problem

In this thesis, we handle the problem of minimizing the programmers’ resistance to using De-

sign by Contract methodology. Contracts (such as those in JML [68] notation) bring about

preciseness for expressing the code behavior; however, developers are resistant to their use.

There are several likely reasons for this, such as the trouble to conceive good, useful con-

1IntelliTest is the evolution of Pex [122].

1.1 Problem 3

tracts, or the burden of maintaining contracts consistent with the evolving code [109]. Ac-

cording to Schiller et al. [109], there is a large gap between the contracts developers write and

those they could write. The authors provide evidence that annotation burden, tooling, and

training are primary factors affecting the extent to which developers use contracts as specifi-

cations as opposed to argument validation/assertions. On the other hand, Javadoc [65] (and

code comments in general) is a common way of documenting Java programs. Even though

the approach is quite simple since the developer can use natural language for describing

the code behavior; this approach is imprecise, mainly due to ambiguity issues inherent to

natural languages. Furthermore, commentary, in general, cannot be automatically checked.

Approaches such as @TCOMMENT [118] enable the testing of Javadoc comments, specifi-

cally method properties about null values and related exceptions, but this approach is limited

to those properties.

1.1.1 Motivating Example

In this section, we provide an example for illustrating the task of translating imprecise com-

ments in natural language (written in Javadoc) to contracts in a contract-based language

(JML), and the problem of conformance checking contract-based programs.

In Source Code 1.1, Counter represents a simple counter — visibility issues are omitted,

for simplicity. This class has a constructor and two methods: one for updating values and

one for resetting values. Comments in natural language (by means of Javadoc notation)

guide the developer on the expected behavior of each method. For example, the method

updateCount has a comment declaring that the parameter b must be true in order to

enable an increase in the counter (lines 11 and 12).

Aiming the benefits provided by the use of contracts, such as the preciseness for ex-

pressing the code behavior and the possibility of runtime checking the methods’ behavior

(by using the contracts as oracles); one can manually translate the comments to JML syntax

(Source Code 1.2). For each method comment, there is a contract for precisely expressing

the behavior described. For example, for the updateCount method, one may translate the

comment “b equals true implies an increase into count.” into the JML contract ensures

(b == true) ==> (count == \old(count+1)), in order to express the condi-

tion for increasing the value of count when the parameter b is true. JML contracts are

1.1 Problem 4

declared with keywords requires and ensures, specifying pre- and postconditions, re-

spectively. The invariant clause must hold after constructor execution, and before and

after every method call; the invariant in Counter defines the range of valid values for

count field: [0, MAX] (lines 5 – 6). The \old clause used in the postcondition refers to the

pre-state value of count (line 14).

Source Code 1.1: Counter class with

Javadoc comments.

1 c l a s s Coun te r {

2 f i n a l i n t MAX = 3 ;

3 /∗ count must be

4 ∗ in range [0 , MAX] . ∗ /

5 i n t c o u n t ;

6

7

8 /∗ i n i t i a l i z e s the counter to one . ∗ /

9 Coun te r () {

10 c o u n t = 1 ;

11 }

12

13 /∗ b e q u a l s t r u e i m p l i e s

14 ∗ an i n c r e a s e i n t o count . ∗ /

15 void upda t e Coun t (boolean b) {

16 i f (b) {

17 c o u n t ++;

18 }

19 }

20

21 /∗ count w i l l be r e s e t . ∗ /

22 void r e s e t C o u n t () {

23 c o u n t = 0 ;

24 }

25 }

Source Code 1.2: Counter class with JML

contracts.

1 c l a s s Coun te r {

2 f i n a l i n t MAX = 3 ;

3 i n t c o u n t ;

4

5 /∗@ i n v a r i a n t 0 <= count

6 && count <= MAX; @∗ /

7

8 / /@ ensures count == 1;

9 Coun te r () {

10 c o u n t = 1 ;

11 }

12

13 /∗@ ensures (b == tr ue)

14 @ ==> (count == \ o ld (count + 1)) ; @∗ /

15 void upda t e Coun t (boolean b) {

16 i f (b) {

17 c o u n t ++;

18 }

19 }

20

21 / /@ ensures count == 0;

22 void r e s e t C o u n t () {

23 c o u n t = 0 ;

24 }

25 }

Contracts in JML syntax are precise, however, the developer needs to understand a new

language for achieving the benefits from contracts use. In this context, an approach closer to

conventional Javadoc-notation could be wider used still providing precision for describing

methods behavior by reducing annotation burden [109].

In addition, even though the contracts in this example are for expressing a simple

counter, the program presents a nonconformance with its contracts; in the third consecutive

call to updateCount, as illustrated by the test case in Source Code 1.3, the assertion-

1.1 Problem 5

instrumented class raises an exception. This is a small example, but finding nonconfor-

mances in large systems, by manual analysis (having to deal with inheritance and polymor-

phism, for example) is certainly harder. In addition, traditional testing is unlikely to uncover

this kind of nonconformance due to the generality of the oracles that may miss some con-

tracts. Previously, Milanez et al. [84] proposed an approach implemented by the JMLOK2

tool, which generates test cases with sequences of method calls – like those seen in Source

Code 1.3, in order to detect nonconformances. Besides detecting the nonconformance, one

must identify the defect causing the failure — a contract, the program itself, or both [94].

Source Code 1.3: A test case for Counter class generated by JMLOK2.

1 void t e s t C o u n t e r () {

2 Coun te r c = new Coun te r () ;

3 c . upda t eCoun t (t ru e) ;

4 c . upda t eCoun t (t ru e) ;

5 c . upda t eCoun t (t ru e) ;

6 }

However, the developer is left with the task of analyzing the program for fixing the non-

conformance. One could consider a few scenarios: the invariant may be too strong, defining

an undesirable threshold for count; similarly, a precondition for updateCount could

be added, prohibiting updates when the counter is about to exceed the defined limit. On

the other hand, updateCount’s body could have enforced the condition, establishing an

additional condition to avoid increments that make count exceed the limit.

The proper fix is dependent on a number of factors, and it may be related to the code,

contract, or both. Fixing the invariant implies there was a defect in defining a limit. Creating

a precondition relies on how DBC is applied — whether defensive programming [131] is the

ruling guideline for system development. The choice gets down to determining where the ad-

ditional check is placed, either in the contract or in the method body. Since updateCount

does not have an explicit precondition, it is reasonable to determine the cause as Weak Pre-

condition. This problem may be solved by adding a precondition to updateCount, relating

the method parameter with the current value of count.

From now on, we define as nonconformance type the contract on which the failure was

produced; in the example, the nonconformance is classified as invariant. Similarly, regarding

likely causes (defect) of nonconformances, we establish the following terminology: weak or

1.2 Solution 6

strong precondition, weak or strong postcondition, strong invariant, strong constraint, and

code error.

1.1.2 Relevance

Contracts bring about preciseness for expressing routine’s behavior, however, programmers

are resistant to their use. There are several likely reasons for this, such as the trouble to

conceive good, useful contracts, or the burden of maintaining contracts consistent with the

evolving code. Therefore, an approach for allowing the integration of contracts into the com-

ments notation by offering a few language shortcuts for specifying usual routine behaviors,

such as pre- and postconditions and invariants, may help to foster the contracts adoption.

In addition, the possibility of having contracts automatically generated by analyzing nat-

ural language comments is also likely to foster Design by Contract because this approach

does not require the developer to understand a new language or a new notation; so, the use

of DBC becomes transparent.

1.2 Solution

For fostering the use of contracts in systems development, we exploit the relationship be-

tween code commentary and contracts. In this context, we propose and implement an ex-

tension to the Javadoc tagging system for allowing the integration of contracts into the com-

ments notation: CONTRACTJDOC (Chapter 2). In addition, we propose and implement an

approach for automatically suggesting contracts by analyzing tagged-comments written in

natural language (Chapter 4).

Between having Java developers specifying JML or writing non-analyzable commentary,

there is a potential compromise solution: a tag-based extension to Javadoc. The extension

needs to provide a few language shortcuts for specifying usual routine behaviors, such as

pre- and postconditions and invariants. And a compiler could translate the notation to as-

sertions that, at runtime, check the conformance of the program behavior to the contracts.

In consequence, contracts can be employed in a more natural way, following commonplace

standards for code documentation, while adding precision to interface declaration and flags

for additional verification support.

1.3 Evaluation 7

Another way of dealing with this problem is to automatically suggesting contracts based

on natural language tagged-comments, reducing the annotation burden. For this purpose, ma-

chine learning techniques [111] can be applied for classifying the tagged-comments. After

classification, the contracts are then generated. After generation, the contracts are checked at

runtime in order to discover mismatches (nonconformances [15]) between source code and

documentation. As a consequence, the benefits from contracts will be achieved by developers

that do not need to learn a contract-based language.

We propose and implement a Javadoc-like language extension (with its respective com-

piler) called CONTRACTJDOC. CONTRACTJDOC provides a new way for documenting

source code in which a developer can specify contracts by adding boolean expressions into

brackets and using specific tags into the Javadoc. The approach tries to fulfill the gap between

informal documentation (such as JAVADOC) and formal specification (such as JML [68])

by enabling the developer to write contracts by using default tags from JAVADOC (such as

@param) and some new tags (such as @inv) in a controlled way. CONTRACTJDOC sup-

ports preconditions, postconditions, and invariants. For creating a contract in CONTRAC-

TJDOC, a developer needs to write a boolean-valued expression into brackets attached to

specific tags (such as @param). The expression can be composed of method calls and can

have quantified expressions.

We propose and implement a machine learning-based approach for automatically genera-

ting contracts (pre- and postconditions) by analyzing tagged-code commentary, that we call

CONTRACTSUGGESTOR. For enabling the use of machine learning, we needed to create a

manually labeled dataset for each property we desired to generate contracts for. Then, we ap-

ply CONTRACTSUGGESTOR for generating contracts for two properties of Java programs:

non-null and relational (greater than, greater than or equal, less than, less than or equal).

Moreover, we use JMLOK2 for conformance checking the generated contracts.

1.3 Evaluation

We evaluate our approaches in several empirical studies [129]. First, we present the studies

for evaluating CONTRACTJDOC (Section 1.3.1); then, we show the studies for evaluating

CONTRACTSUGGESTOR (Section 1.3.2).

1.3 Evaluation 8

1.3.1 Evaluating CONTRACTJDOC

We evaluate our proposed language - CONTRACTJDOC - by means of three studies: (a)

a case study aiming to serve as a proof of concept (Section 3.1); (b) an empirical study

with Java developers (Section 3.2); (c) we investigate the comprehensibility on three alterna-

tives for specifying behavior in a Java interface — Javadoc, JML, and CONTRACTJDOC, by

means of a survey with developers (Section 3.3). With the case study, we are able to write

contracts to six open source Java projects previously annotated with Javadoc comments in

natural language. The systems totalize 190,655 lines of code (LOC, henceforth) and we

write a total of 3,994 contract clauses (#CC, henceforth). This study also allowed us to

detect inconsistencies between Javadoc comments and source code, highlighting the impor-

tance of being able to runtime checking comments: without checking, those inconsistencies

will remain undiscovered.

Twenty-four Java developers,2 being 10 professionals (working in industry) and 14 stu-

dents (only with academic experience) participated in the empirical study. There are 12 trials

for the study — each trial is composed by a triple: (task, interface, documenting approach)

—. So, there are two developers performing each trial. As results, 83% of the develop-

ers were able to perform the required task without perceiving difficulties. When grouping

the results by documenting approach, they considered Javadoc as the less complicated for

performing the trial, followed by CONTRACTJDOC.

The comprehensibility survey confirmed the results from the empirical study: developers

tend to find Javadoc comments more understandable than JML or CONTRACTJDOC. One

hundred forty-two developers answered the survey; from those, 36% are professionals and

64% are students (see Section 3.2.2 for details). Thirty-eight percent of the survey respon-

dents chose Javadoc as the most understandable approach regarding interface’s behavior,

others 32% chose ContractJDoc and 18% chose the same understanding level for all docu-

menting approaches. When asked about the simplest approach to be understood in a general

context, 51% answered Javadoc and 29% CONTRACTJDOC; for 13% the understanding is

the same for all of them.

2We needed to discard three participants due to balancing issues.

1.3 Evaluation 9

1.3.2 Evaluating Contracts

We evaluated the quality of the contracts generated by CONTRACTSUGGESTOR by means of

the rate of generated false positives. As results, the approach for non-null property produces

more correct contracts than the approach for relational properties. This is explained by the

differences between the sizes of the sets for training the machine learning algorithms and by

the kind of classification being performed: binary for non-null and multiclass for relational

(see Section 4.3 for details).

Finally, we performed a case study concerning nonconformance detection. We checked

four systems for which CONTRACTSUGGESTOR automatically generated contracts by us-

ing JMLOK2 and detected six nonconformances. Concerning types, all six are precondition

problems: five related to non-null property and one related to greater than or equal (rela-

tional) property (see Section 5.1).

To increase confidence on the results by JMLOK2 in checking the generated contracts, we

performed another case study with JMLOK2 over 12 Java/JML systems (an extended sam-

ple of the programs used by Milanez et al. [84]). JMLOK2 detects 119 nonconformances.

From those, 51 are invariant errors and 47 are postcondition; with respect to likely causes

manually established, Weak precondition (51) and Code error (38) are the most commons.

We also collected metrics as a proxy for characterizing the difficult for detecting nonconfor-

mances. The results indicated the necessity of at least two changes in average for detecting

a nonconformance and the inspection of at least two methods for establishing a likely cause

(see Section 5.3).

As an additional contribution, we leverage the RGT-based (randomly-generated tests)

approach of JMLOK2 [84] for the C#/Code Contracts context by means of CONTRACTOK.

CONTRACTOK is available online,3 for Windows platforms under the GNU (GNU General

Public License) GPL v3. We present also, in this thesis, additional studies on conformance

checking of C#/Code Contracts systems. We applied CONTRACTOK over 12 systems. The

tool detected 63 nonconformances, being 28 precondition errors and 25 postcondition errors.

With respect to likely causes, as for the JML nonconformances, Weak precondition and

Code error are the most commons: 40 and 18, respectively. For Code Contracts, the metrics

indicated the necessity of at least six changes in average for detecting a nonconformance

3https://github.com/alyssonfm/contractok

1.4 Summary of Contributions 10

and the inspection of at least four methods for establishing a likely cause. According to

these metrics, is harder detecting a nonconformance in Code Contracts systems than in JML

systems; in addition, establishing a likely cause is also harder in Code Contracts systems.

1.4 Summary of Contributions

In summary, the main contributions of this thesis are:

• We propose and evaluate a new approach for writing contracts (CONTRACTJDOC);

– We performed a case study in which we applied CONTRACTJDOC to six open-

source Java projects and generated 3,994 contract clauses;

– We carried out an experimental study and a survey with Java developers for eval-

uating the readability of CONTRACTJDOC. As results, CONTRACTJDOC was

considered intermediate between plain Javadoc and JML;

• We propose and evaluate a contract generation approach (CONTRACTSUGGESTOR);

– We manually labeled 134,246 comment instances. Then, we created two datasets:

one with respect to the non-null property containing all instances, and one with

respect to the relational properties containing 1,808 instances;

– We evaluated the generated contracts with JMLOK2: we applied the tool for

conformance checking four Java systems with contracts automatically generated,

and it detected six nonconformances;

• We leverage JMLOK2 for C#/Code Contracts context by means of CONTRACTOK [82]

and we performed a case study with both tools over 24 systems (12 for each language)

in which the tools detected 182 nonconformances. We also manually established likely

causes for those nonconformances [80; 81].

• By means of CONTRACTJDOC, CONTRACTSUGGESTOR, JMLOK2, and CONTRAC-

TOK we are able to perform conformance checking and detect inconsistencies in three

levels of formality: informal (by generating contracts from Javadoc comments), semi-

formal (CONTRACTJDOC), and formal by analyzing JML and Code Contracts.

1.5 Thesis Outline 11

1.5 Thesis Outline

The remaining parts of this thesis are structured as follows:

Chapter 2: Mixing Contracts with commentary in CONTRACTJDOC. This chapter

presents in details CONTRACTJDOC — our new documenting approach.

Chapter 3: Evaluating CONTRACTJDOC. In this chapter, we present the studies per-

formed with the new documenting approach proposed.

Chapter 4: CONTRACTSUGGESTOR. This chapter presents in details our approach for

automatically generating contracts based on Javadoc-tagged comments.

Chapter 5: Evaluating Contracts. In this chapter, we present the evaluation of the con-

tracts generated by CONTRACTSUGGESTOR in terms of nonconformance detection. Further-

more, we present the studies performed to increase the confidence on the results by JMLOK2

in checking the generated contracts.

Chapter 6: Related Work. In this chapter, we discuss the main works related to the

present thesis. We group the discussion by research area related to our context.

Chapter 7: Concluding Remarks. This final chapter presents conclusions and prospects

for future work.

Chapter 2

Mixing Contracts with Commentary in

CONTRACTJDOC

Code commentary count as best practice in programming, especially when they enhance

public interfaces designed as reusable components for client programs. Adoption is helped

by standardized comment notation, such as Javadoc [47] for Java programs, which offers

predefined tags (@param or @return, for instance) that mix nicely with natural language.

Despite its value, such a notation does not compel the programmer to provide a precise or

complete account of a routine’s behavior. Moreover, as pointed by Subramanian et al. [116],

the understanding of how to use third-party libraries can be difficult when using only com-

ments in natural language as the source of documentation.

On the other hand, contracts [73] bring about preciseness for expressing the code behav-

ior, however, programmers are resistant to their use. There are several likely reasons for this,

such as the trouble to conceive good, useful contracts, or the burden of maintaining contracts

consistent with the evolving code [109]. According to Schiller et al. [109], there is a large

gap between the contracts developers write and the contracts they could write. They provide

evidence that annotation burden, tooling, and training are primary factors affecting the extent

to which developers use contracts as specifications as opposed to argument validation/asser-

tions.

In this chapter, we present CONTRACTJDOC, our extension to the Javadoc tagging sys-

tem for allowing the integration of contracts into the Javadoc notation. CONTRACTJDOC

offers a few language shortcuts for specifying usual routine behaviors, such as pre- and

12

2.1 Design by Contract 13

postconditions and invariants. The AJMLC-CONTRACTJDOC compiler [101] translates the

notation to aspect-oriented assertions that, at runtime, check the conformance of the pro-

gram behavior to the contracts. In consequence, contracts can be employed in a more natural

way, following commonplace standards for code documentation, while adding precision to

interface declaration and flags for additional support verification.

We now describe CONTRACTJDOC and explore its features. First, we provide the theo-

retical background needed for understanding this chapter (Section 2.1). Then, we show the

language and describe its infrastructure (Section 2.3).

2.1 Design by Contract

In this section, we present some details on Design by Contract methodology and discuss this

methodology for Java. Furthermore, we present the conformance notion considered in this

thesis.

Contract-based programs [51] incorporate a language-based solution integrating con-

tracts and code into a single artifact. In this scenario, the Design by Contract [73] (DBC) is a

methodology inspired by Formal methods research [48] that aims the construction of quality

software. In addition, the methodology is a direct descendant from Hoare’s triples [54].

DBC is based on the establishment of contracts between software modules: clients (those

modules using or depending on some functionality) and suppliers (those providing some

functionality) [73; 74]. Clients need to satisfy some requirements (preconditions) before

calling a supplier, and suppliers have to provide some guarantees over their results (postcon-

ditions) [74]. Both clients and suppliers may have contracts with respect to their internal

properties (invariants) [74]. By applying DBC, contracts become abstractions for methods

behavior and runtime checkable; so, they can be used for conformance checking: detecting

whether the contract violation occurred in client or supplier side.

2.1.1 JML

In the context of Java development, the Java Modeling Language (JML) [68] is a DBC-

enabling notation (and corresponding toolset), with contracts as comments within Java code.

JML has a syntax very similar to Java, furthermore, extends some Java expressions (e.g. the

2.1 Design by Contract 14

use of quantifiers) to specify behaviors and has some restrictions about Java constructions

like: side-effects, generic types, and Java annotations. JML mixes DBC approach from

Eiffel [75] with the specification model-based approach from Larch family of programming

languages [52], and some elements from the calculus of refinement.

JML method contracts are declared with keywords requires and ensures, specify-

ing pre- and postconditions, respectively. A class invariant clause must hold after constructor

execution, and before and after every method call. A history constraint — constraint clause

is similar to invariants, but constraints define relationships that must hold for the combina-

tion of each visible state and the next in the program’s execution. An \old clause refers to

pre-state of some value. In addition, the keyword pure declares that a method is side-effect

free.

In Source Code 2.1 we present a Java/JML program for specifying the method

headElement (lines 4 – 11) from class AccountQueueImpl, a simple implementation

for a queue of accounts. In JML the postcondition is represented with the clause ensures

(line 4); the \result (line 4) refers to the return of headElementmethod. JML has many

other elements in addition to preconditions, postconditions, invariants, and constraints; the

complete list of JML elements is available at JML Reference Manual [69].

Source Code 2.1: Example of DBC in JML.

1 p u b l i c c l a s s AccountQueueImpl {

2 Queue <Account > accQueue = new L i n k e d L i s t <Account > () ;

3

4 / /@ ensures (! isEmpty ()) ==> (\ r e s u l t i n s t a n c e o f Account) ;

5 p u b l i c /∗@ pure @∗ / Account headElement () {

6 i f (i sEmpty ()) {

7 re turn n u l l ;

8 } e l s e {

9 re turn accQueue . e l e m e n t () ;

10 }

11 }

12

13 p u b l i c /∗@ pure @∗ / boolean i sEmpty () {

14 re turn accQueue . i sEmpty () ;

15 }

16 }

Concerning tool support for JML, there are three kinds of tools: (i) runtime asser-

2.1 Design by Contract 15

tion checkers (RAC) or JML compilers — like jmlc [16], jml4c [108], OpenJML [22], or

ajmlc [101]; (ii) dynamic and (iii) static conformance checking tools — like JMLUnit [17],

JMLUnitNG [133], JET [15], JmlOk [127], and JMLOK2 [84], for dynamic checking; and

ESC/Java [37], ESC/Java2 [23], LOOP [9], and JACK [6] for static checking. With respect

to JML compilers, jmlc1 is like a Java compiler but aware of JML contracts, adding them

into bytecode. jml4c2 is a JML compiler built by extending the Eclipse Java compiler; this

compiler supports Java 5 features such as generics. OpenJML3 is a new compiler for JML,

yet in development and intends to support new features from Java 8. And ajmlc4 is a seam-

less aspect-oriented extension to the JML language, compatible with AspectJ. ajmlc cleans

modularization/specification of crosscutting contracts, such as preconditions and postcondi-

tions, while preserving documentation and modular reasoning. AJMLC-CONTRACTJDOC is

backed by the ajmlc compiler.

2.1.2 Conformance Notion

Contracts help developers during implementation by providing a specification of the ex-

pected behavior of the code. Thus, it is important to check the conformance [15;

17] between the source code and the specification. Although other notions of conformance

are possible [125], for this thesis we are considering the following: conformance is when

the code fulfills the requirements from its contract clauses, in other words, the code sat-

isfies its contracts. When the conformance is broken there is a nonconformance [15; 83;

84]. Since DBC contracts — invariants, pre- and postconditions — can be verified by a

compiler, any contract violation between the system modules can be detected immediately,

allowing the construction of more reliable systems.

A nonconformance can occur in two cases:

Case 1 When the client satisfies the precondition(s) and the supplier does not satisfy its post-

condition(s) — a nonconformance in supplier side;

Case 2 When the client does not satisfy the supplier’s precondition — a nonconformance in

1http://www.dc.fi.udc.es/ai/tp/practica/jml/JML/docs/man/jmlc.html
2http://www.cs.utep.edu/cheon/download/jml4c/index.php
3http://www.openjml.org/
4http://www.cin.ufpe.br/~hemr/aspectjml/

2.2 Software Testing 16

client side.

For example, the code presented in Source Code 2.2 is not in conformance with its con-

tract (Case 1 of nonconformance — the supplier does not return the expected result to its

client). As an example of nonconformance from Case 2, consider the Source Code 2.3. In

this Source Code, we present a class that provides a function to divide two numbers (lines 2

to 7) in the supplier side and an instantiation and a method call in the client side (lines 10 and

11). Line 11 shows a nonconformance in the client side, the precondition of div method is

broken.

Source Code 2.2: Code that presents a nonconformance in the supplier side — Case 1.

1 / / @requires t ru e ;

2 / / @ensures \ r e s u l t >= 0;

3 p u b l i c i n t g e t Q u e u e S i z e () {

4 re turn −1; / / Contract v i o l a t i o n here .

5 }

Source Code 2.3: Code that presents a nonconformance in the client side — Case 2.

1 / / s u p p l i e r s i d e

2 p u b l i c c l a s s M a t h O p e r a t i o n s {

3 / /@ r e q u i r e s y > 0 . 0 ;

4 p u b l i c double d i v (double x , double y) {

5 re turn x / y ;

6 }

7 }

8

9 / / c l i e n t s i d e

10 M a t h O p e r a t i o n s mo = new M a t h O p e r a t i o n s () ;

11 mo . d i v (3 . 5 , 0 . 0) ; / / Contract v i o l a t i o n here .

In this work, we are considering only nonconformances from Case 1. Problems related

to Case 2 are treated as meaningless [15] due to limitations related to the testing approach

considered in this work.

2.2 Software Testing

As stated by Dijkstra [26], software testing just enables us to reveal system defects; however,

the tests can be used to increase the confidence in the system behavior. In general, the testing

process has two main goals: to demonstrate that the software meets its requirements; and

2.2 Software Testing 17

to discover undesirable or incorrect situations, or does not conform to its specification. The

first goal leads to validation testing: checks the expected behavior from the system; the

second, leads to verification testing: checks if the software meets its stated functional and

non-functional requirements. In this work, we use tests concerning both goals depending on

the contracts available for conformance checking.

The testing process is an incremental process that starts when a requirement becomes

available and continues through all steps of the software development. In this context, the

concepts of error, failure, and fault are widely used. According to Binder [10] and IEEE [98],

an error is a human action that results in a software fault; a failure is a manifested inability

of a system to perform a function; and a fault is defined as the absence of code or the pres-

ence of incorrect code in a system software that causes the failure. In this work, we treat a

nonconformance as an anomaly [13; 113]: code or contract that causes a failure in a system.

Testing can occur at three levels of granularity [114]:

1. Unit testing, where individual program units or object classes are tested. Unit testing

should focus on testing the functionality of objects or methods;

2. Component testing, where several individual units are integrated to create composite

components. Component testing should focus on testing component interfaces;

3. System testing, where some or all of the components in a system are integrated and

the system is tested as a whole. System testing should focus on testing component

interactions.

Depending on the contracts available, an approach for conformance checking can be

used in any level of granularity: unit, component, or system testing. The remainder of

this section presents some concepts on software testing that are needed to understand this

thesis, like test case (Section 2.2.1), the oracle in DBC context (Section 2.2.2), test generation

(Section 2.2.3), and conformance testing (Section 2.2.4).

2.2.1 Test Cases

A test case is composed of inputs, execution conditions, and expected results to test the

behavior of a system under test (SUT) [10]. Each test case has the following information:

2.2 Software Testing 18

inputs – conditions that must be satisfied before test execution (preconditions), the data to

test the system; the sequence of method calls to be performed; and outputs – postconditions

and the output produced by the SUT.

In this work, a test case is a set of method calls in an object under test. The expected

results are provided by the contracts. Source Code 2.3 presents an example of a test case, in

line 10 there is an object instantiation and line 11 presents a method call.

2.2.2 Test Oracles in DBC Context

A test oracle determines whether the result of a program p1 using a test case tc1 is cor-

rect [115]. We can use several methods for creating an oracle, including manually specifying

expected outputs for each test, monitoring user-defined assertions during test execution, and

verifying if the outputs match those produced by some reference implementation.

Contracts specify the expected behavior of the software. Since they are executable, they

can be monitored at runtime in order to detect any contract violation in the program. How-

ever, the quality of the oracle depends on the quality and coverage of the contracts; so, if the

program has few contracts, its oracle can assert few properties of the system.

For us, an oracle is achieved by means of the contracts available in the system. Those

contracts are used for conformance checking between source code and specification. For

example, to divmethod (Source Code 2.3) we show in Source Code 2.4 the oracle generated

for this method (using a JML compiler – jmlc in this case) – we omitted some details to

simplify understanding.

The assertions were transformed in try-catch structures – assertion checkers in runtime.

First there is a check for invariant violations (line 2 – due to the fact that an invariant must be

held before and after every method call), then there is a precondition checking (line 3), if the

precondition is respected, the method is executed (line 5) and after method execution there

is a postcondition checking (line 6); if there are some contract violation, lines 10 to 12 try to

catch, if no contract violation occurs, the invariant is checked again (line 13). Based on the

oracle, if no contract violation occurs, we consider that the method (or system) under test is

in conformance with its contracts. Otherwise, if the violation occurs at line 3 – checking for

precondition violations, we may have a nonconformance if the problem occurs internally in

a method call or a meaningless if the violation was produced by a direct call from a test case

2.2 Software Testing 19

Source Code 2.4: Oracle generated to div method.

1 p u b l i c double d i v (double arg0 , double a rg1) {

2 t r y { / / checks i n v a r i a n t b e f or e method e x e c u t i o n

3 t r y { / / checks p r e c o n d i t i o n

4 t r y {

5 i n t e r n a l $ d i v (double , double) ;

6 / / checks normal p o s t c o n d i t i o n

7 }

8 }

9 }

10 catch (JMLError) { / / c a t c h e s JML e r r o r s }

11 t r y { / / checks e x c e p t i o n a l p o s t c o n d i t i o n }

12 catch (JMLError) { . . . }

13 f i n a l l y { / / checks i n v a r i a n t }

14 }

(Case 2); any violation of invariant (lines 2 and 13) or postcondition (line 6 and 11) represent

a nonconformance.

2.2.3 Tests Generation

With respect to test generation, two main approaches are available: white box and black box

testing [61]. White box testing (such as Control Flow Testing, Branch Testing, and Loop

Testing [63]) is a kind of test where the implementation details of the system under test is

considered. On the other hand, black box testing (such as Equivalence Class Partitioning,

Decision Tables, State Transition Diagrams, and Use Case Testing [8]) is a kind of test per-

formed to verify whether, for a given input, the system produces the correct output; correct

based on the specification of the system (an oracle). There is also a hybrid approach that

mixes features from black and white box approaches; the Gray-box testing [1]. In this, work

we consider a black box approach.

Furthermore, the test generation can be performed in two ways: manually – when the

tests are written by a tester or developer; or automatically – when generated by a tool. In

this work, we are considering tests generated automatically, in a Randomly-Generated Tests

(RGT) approach by means of Randoop [91; 90]. Randoop generates tests using feedback-

directed random testing, a technique inspired by random testing that uses execution feedback

gathered from executing test inputs as they are created, to avoid generating redundant and

2.2 Software Testing 20

illegal inputs [91]. The tests generated are limited to public methods (or constructors) and

classes. The tool uses a time limit for stopping the feedback process. The Java version

generates tests in JUnit5 format. Figure 2.1 illustrates the process that Randoop uses for

generating tests: (1) sequence of calls for public methods and constructors are created; (2) the

sequences are executed; (3) the execution is examined; (4) the feedback from the execution

feeds back the process until the time limit be reached; (5) when the time limit is reached the

test suite is returned.

Figure 2.1: The Randoop test generation process. The process starts when are given the

following inputs: a list of classes under test and a time limit. Then sequences of method

calls are generated, executed and examined; the feedback from the execution feeds back the

process until the time limit be reached. In the end, a test suite is returned.

2.2.4 Conformance Testing

Conformance testing is used for verifying whether the implementation of a system conforms

to its specification (its contracts), in other words, whether the code satisfies its specification.

This kind of test uses the specifications in the source code as oracle and determines the con-

formance by the adequacy of the test results with those contracts. There are two ways for

automatically checking conformance: dynamically and statically. Static conformance check-

ing is done, for example, by means of symbolic execution and abstract interpretation [36].

Dynamic conformance checking is done by running the code and testing for violations of

assertions from the contracts, this is the way we use in the present work.

5JUnit is a programmer-oriented testing framework for Java, available online http://junit.org/.

2.3 CONTRACTJDOC 21

Conformance testing relates a specification and an implementation under test (IUT) by

the relation conforms–to ⊆ IMPS x SPECS, where IMPS represents the implementations

and SPECS represents specifications. Therefore, IUT conforms–to s if and only if IUT

is a correct implementation for s [126]. Following the conformance notion described in

Section 2.1.2, a code satisfies its contracts if the code results are expected by its contracts (the

test oracles). Therefore, the results of code execution are compared with oracles generated

from the contracts.

2.3 CONTRACTJDOC

CONTRACTJDOC provides a way for documenting source code in which a developer can

turn Javadoc comments into runtime checkable contracts by using a few new tags and fol-

lowing a specific pattern for writing comments (putting a boolean-valued expression into

brackets). With the CONTRACTJDOC approach, we try to fulfill the gap between informal

documentation (such as Javadoc) and formal specification (such as JML [68]) by enabling

the developer to write contracts by means of default tags from Javadoc (such as @param)

and some new tags (such as @inv) in a controlled way. CONTRACTJDOC supports precon-

ditions, postconditions, and invariants.

For creating a contract in CONTRACTJDOC, the developer needs to write a boolean-

valued expression into brackets attached to specific tags (such as @param). The expression

can be composed by method calls (since the methods used have the tag @pure, indicating

that those methods are side-effect free) and can have quantified expressions (either universal

or existential expressions).

CONTRACTJDOC mixes natural language with contracts syntax combining features from

Javadoc and JML. For this purpose, we increase the set of tags from Javadoc and establish

a pattern for writing boolean-valued expressions into brackets. The tag being used will de-

termine to which kind of contract — preconditions, postconditions, or invariants — the ex-

pression into brackets will be translated. The design of the CONTRACTJDOC language and

its supporting compiler are discussed in Section 2.3.1. Next, Sections 2.3.2 to 2.3.6 present

in details every kind of contract that CONTRACTJDOC supports.

2.3 CONTRACTJDOC 22

2.3.1 CONTRACTJDOC Design

We define CONTRACTJDOC constructs as traditional Javadoc tags which are embedded

within block comments. The main idea is to allow a mix between the traditional Javadoc

syntax and JML.

Embedding contracts mean expressing specifications (e.g., preconditions) in the exist-

ing Javadoc comments and making them machine discoverable through the use of marker

brackets within those comments. Advantages of embedding a contract language are that pro-

grammers do not need to learn a new specification language. This is especially true because

the overwhelming majority of contracts that programmers write in practice are short and

simple [34; 109]. For instance, 75% of Code Contracts [35] projects, the written contracts

are basic checks for the presence of data (e.g., non-null checks) [109]. For scenarios like

these, there is no additional effort in embedding such contracts in Javadoc comments using

our CONTRACTJDOC language.

We divided our language into two levels: (1) one closer to Java (level 0) for programmers

that are oblivious to JML language specification features, and (2) level 1, which is closer to

JML specifications for those programmers have some experience/familiarity with JML-like

features, such as pre- and postconditions, and invariants.

Level zero is composed of the conventional Javadoc tags, such as @param and

@return, that are useful for specifying pre- and postconditions, respectively. The devel-

oper can also use @throws or @exception for defining the exceptional behavior (an

exceptional postcondition) of a method. While using such tags, a programmer treats them

like using plain Javadoc comments with no need to use any other tag to write just simple pre-

and postconditions [34; 109].

For those already familiar with JML-like features, level one provides some additional

tags in relation to the usual Javadoc ones. For instance, tags @pre or @requires can be

used to embed preconditions. Similarly, tags @post or @ensures can be used to embed

(normal) postconditions within Javadoc comments. Exceptional behavior is modeled by ex-

ceptional postconditions, which can be embedded with tags @throws or @exception.

Object invariants can also be expressed with CONTRACTJDOC. Tag @inv is used to docu-

ment properties that must hold in all visible states [68].

The grammar for CONTRACTJDOC language is presented in Table 2.1. For purposes

2.3 CONTRACTJDOC 23

of clarification, some constructions are simplified in the grammar. In the next sections,

we present examples extracted from the units we used during the case study (Section 3.1)

and from the empirical study with Java developers (see Section 3.2) for illustrating all tags

supported by our compiler.

2.3.2 Documenting Preconditions

CONTRACTJDOC provides three ways for writing contracts for preconditions that mix tra-

ditional Javadoc and JML syntax. The closest to Javadoc is to write the contract clause in

a @param tag along with a description in natural language; as developers traditionally do

into the comments. Table 2.2 shows the grammar for constructing preconditions into our

approach. The syntax for postconditions and invariants follow the same pattern (the only

change is the kind of tag used POST_TAG for postconditions and INV_TAG for invariants).

We present in Source Code 2.5 a contract for name parameter. In this excerpt, we estab-

lish that the name received as the parameter by the constructor of Authority — a class

from the Dishevelled project (see Section 3.1) — cannot be null.

Source Code 2.5: Application of CONTRACTJDOC in a class from Dishevelled project per-

formed during our Case Study (Section 3.1).

1 /∗ ∗

2 ∗ Create a new a u t h o r i t y with the s p e c i f i e d name .

3 ∗ @param name a u t h o r i t y name [name != n u l l]

4 ∗ /

5 p u b l i c A u t h o r i t y (f i n a l S t r i n g name) {

6 / / . . .

7 }

In addition, the tags @pre and @requires enable the developer to write preconditions

for methods without parameters, establishing conditions over fields or other methods. Source

Code 2.6 illustrates the tag @requires — the syntax for @pre is the same. This example,

extracted from AccountStack interface from the empirical study with Java developers

(see Section 3.2), presents the contracts for push method. The tag @requires is used

for establishing conditions over the pure method numberElements, which must return a

value less than the constant SIZE; otherwise, it will not be possible to push an element into

the stack. This excerpt also illustrates the use of contracts into @param tags: the account to

2.3 CONTRACTJDOC 24

Table 2.1: Grammar for CONTRACTJDOC language.

Tokens

COMMENT_START: /**

COMMENT_END: */

WORD: [A-Za-z0-9_]

PRE_TAG: @param | @requires | @pre

POST_TAG: @return | @ensures | @post

INV_TAG: @inv

DOC_TAG: @doc_open | @doc_public

EXCEPTIONAL_TAG: @throws | @exception | @nothrows

PURE_TAG: @pure

ALSO_TAG: also

NOT: !

BOOLEAN_OP: && | || | ==> | <==>

RELATIONAL_OP: == | != | < | <= | > | >=

QUANTIFIER: @forall | @exists

Production rules

CONTRACTJDOC ::=

COMMENT_START

(DESCRIPTION)*

(TAG)+

COMMENT_END

DESCRIPTION ::= * (WORD)*

TAG ::= * (CONTRACT_TAG (WORD)* [(EXP | QUANTIFIED_EXP)*]) | TOKEN

CONTRACT_TAG ::= PRE_TAG | POST_TAG | INV_TAG

TOKEN ::= DOC_TAG | EXCEPTIONAL_TAG | PURE_TAG | ALSO_TAG

EXP ::= BOOLEAN_EXP | METHOD_CALL

BOOLEAN_EXP ::= TERM OP TERM | NOT TERM | @result OP TERM

TERM ::= (WORD)+ | OLD

OLD: (@old((WORD)+)

OP ::= BOOLEAN_OP | RELATIONAL_OP

QUANTIFIED_EXP ::= (QUANTIFIER TERM: EXP)

Table 2.2: BNF for preconditions in CONTRACTJDOC language.

PRECONDITION ::=

/**

* (DESCRIPTION)*

* PRE_TAG (WORD)* [(EXP | QUANTIFIED_EXP)]

*/

2.3 CONTRACTJDOC 25

be added to the stack acc must not be null.

Source Code 2.6: Preconditions for the method push from AccountStack interface —

see Section 3.2.

1

2 /∗ ∗

3 ∗ Pushes an item i n t o the top of t h i s s t a c k i f the number of e l ements in the

4 ∗ s t a c k i s l e s s than SIZE .

5 ∗ @param acc − the account to be added in a s t a c k . [acc != n u l l]

6 ∗ @requires [numberElements () < SIZE]

7 ∗ @return the account being added to the s t a c k . [@return i n s t a n c e o f Account]

8 ∗ /

9 p u b l i c Account push (Account acc) ;

2.3.3 Documenting Postconditions

As for preconditions, CONTRACTJDOC also provides three tags for expressing postcondi-

tions. The traditional @return from Javadoc comments, and two closer to JML syntax:

@post and @ensures. A postcondition allows us to express the obligations of a supplier

(and respectively the rights of a client). By means of a postcondition, we can discover what

is expected as result of a method’s execution.

Source Code 2.7 exemplifies the use of postconditions in the Polygon interface (an

interface from the Aufgabe3 project — see Section 3.1) — we manually turn an expression

in natural language into a contract for the method edges. The comment in natural language

declares the method’s return as being always greater than or equal to three, so we turn this

statement into a runtime checkable expression by using the @return tag.

Source Code 2.7: Excerpt illustrating the use of postconditions in CONTRACTJDOC ap-

proach.

1 /∗ ∗

2 ∗ Returns the number of edges o f a polygon as i n t e g e r .

3 ∗ @return I n t e g e r the number of edges . I s always >= 3 [@return >= 3]

4 ∗ /

5 i n t edges () ;

2.3 CONTRACTJDOC 26

2.3.4 Documenting Invariants

In addition to the support of pre- and postconditions, CONTRACTJDOC enables the use of

invariants by means of a new tag: @inv. The format of writing is the same as those for pre-

and postconditions. The difference is related to the semantics: while pre- and postconditions

apply to a specific method, an invariant must be held for all methods from a class. Being

checked after the constructor and before and after every method [69].

In Source Code 2.8, we present an invariant for the field name from class Product (a

class from the SimpleShop project — see Section 3.1). In this case, the name must be not

null after the constructor and before and after every method call to this class.

Source Code 2.8: Excerpt illustrating the use of invariants in CONTRACTJDOC approach.

1 p u b l i c c l a s s P r o d u c t {

2 /∗ ∗

3 ∗ @inv [name != n u l l]

4 ∗ /

5 /∗ ∗

6 ∗ @doc_open

7 ∗ /

8 p r i v a t e S t r i n g name ;

9 / / . . .

10 }

2.3.5 Quantifiers

CONTRACTJDOC supports the use of existential and universal quantifiers, by means

of @exists and @forall tags, respectively. In Source Code 2.9 (extracted from

vocabulary a project from the Dishevelled unit) the comments in natural language

state the conditions for a universal quantifier over the accessions from the field concepts:

the accession specified as the parameter must be unique within the domain. In the @forall

clause, we declare that the accessions for each concept must be equals to the accession re-

ceived as the parameter. With this clause, we ensure that the only way of calling this method

(createConcept) is by passing an accession that is unique to the current domain.

Source Code 2.9: Excerpt illustrating the use of universal quantifiers in CONTRACTJDOC

approach.

1 /∗ ∗

2.3 CONTRACTJDOC 27

2 ∗ Create and return a new concept in t h i s domain with the s p e c i f i e d name ,

3 ∗ a c c e s s i o n , and d e f i n i t i o n . The s p e c i f i e d a c c e s s i o n must be unique w i t h i n

4 ∗ t h i s domain and may not be n u l l .

5 ∗

6 ∗ @param name concept name

7 ∗ @param a c c e s s i o n concept a c c e s s i o n , must be unique w i t h i n t h i s domain

8 ∗ and may not be n u l l

9 ∗

10 ∗ [a c c e s s i o n == n u l l | | (a c c e s s i o n != n u l l &&

11 ∗ (@fora l l i n t i ; i >= 0 && i < c o n c e p t s . s i z e () ;

12 ∗ ! ((Concept) c o n c e p t s . toArray () [i]) . g e t A c c e s s i o n () . e q u a l s (a c c e s s i o n)))]

13 ∗

14 ∗ @param d e f i n i t i o n concept d e f i n i t i o n

15 ∗ @return a new concept in t h i s domain with the s p e c i f i e d name , a c c e s s i o n ,

16 ∗ and d e f i n i t i o n .

17 ∗ /

18 p u b l i c Concept c r e a t e C o n c e p t (f i n a l S t r i n g name , f i n a l S t r i n g a c c e s s i o n ,

19 f i n a l S t r i n g d e f i n i t i o n) {

20 / / . . .

21 }

2.3.6 Other tags

As in JML, in CONTRACTJDOC is also possible to make references for the return value

of a method and for the pre-state of the value received as the parameter. The tag for the

return value is @return, this tag can be used to denote a postcondition clause and for

referring to the value being returned by a method. In other words, a developer can use

the traditional @return as in Javadoc and put this tag into brackets in order to establish

a boolean expression that will be evaluated as a postcondition (see Source Code 2.7). For

referring to the pre-state value the tag is @old. Similar to JML definitions [68], the tag

@old cannot be used inside a precondition or an invariant clause.

The tags @doc_open and @doc_public are used for changing the visibility of a

method/field in the context of a contract — as spec_public from JML language [68] (see

Source Code 2.8, lines 5 - 7 for an example). Changing the visibility of a method/field may be

useful for internal contracts of a given system. Furthermore, @pure declares that a method

is side-effect free — a pure feature is one that has no side effects when executed [69]. This

tag enables the use of a method into a CONTRACTJDOC contract. For example, for fields

with accessor methods can be preferable to use those methods into the contracts instead of

2.3 CONTRACTJDOC 28

directly using the field.

2.3.7 CONTRACTJDOC’s Supporting Infrastructure

We implemented the CONTRACTJDOC compiler in the top of the open source AspectJML/a-

jmlc compiler [100; 101; 102]. Unlike the original JML compiler (jmlc), ajmlc presents code

optimizations and improved error reporting [101]. Differently from jmlc, AspectJML also

enables the modularization of crosscutting contracts that can arise in standard JML specifi-

cations [100].

We adapted the front-end of the AspectJML/ajmlc compiler to convert/preprocess the

CONTRACTJDOC tags into the corresponding JML features, like pre- and postconditions.

After conversion, the compilation occurs as usual and generates aspects to check the con-

tracts during runtime. See Figure 2.2 for an overview of the compilation strategy. First,

a source code with CONTRACTJDOC contracts passes through a tag processor and type

checker. Then, the assertions generated are runtime checked and AspectJ compiler produces

a bytecode with assertions.

Figure 2.2: ContractJDoc Compilation. First, a source code with CONTRACTJDOC contracts

passes through a tag processor and type checker. Then, the assertions generated are runtime

checked and AspectJ compiler produces a bytecode with assertions.

Chapter 3

Evaluating CONTRACTJDOC

In this chapter, we evaluate CONTRACTJDOC approach by performing three studies [129].

First, we apply CONTRACTJDOC to six Javadoc-annotated open source systems (see Sec-

tion 3.1) aiming at a proof of concept of the compiler implementation and the language ap-

plicability. Then, we observed 24 developers programming for Java interfaces with behavior

documented by the conventional Javadoc, conventional JML, and CONTRACTJDOC, within

a controlled environment (see Section 3.2). Finally, we investigate the comprehensibility on

the three documenting approaches considered in this thesis for specifying the behavior of

a Java interface — Javadoc, JML, and CONTRACTJDOC, by means of a survey with Java

developers (see Section 3.3).

3.1 Case Study

In this case study, we apply CONTRACTJDOC to six Javadoc-annotated open source systems

to evaluate compilation and generation infrastructure, assessing CONTRACTJDOC’s applica-

bility and effectiveness.

3.1.1 Definition

This study aims at assessing CONTRACTJDOC applicability, with respect to automation ben-

efits, from the point of view of Java developers. We observe the results from applying

CONTRACTJDOC to six Javadoc-rich open source systems; all their method-level Javadoc

29

3.1 Case Study 30

annotations are manually translated to CONTRACTJDOC, before running tests looking for

mismatches between specifications and actual method behavior. In particular, our case study

addresses the following research question:

Q1. Is the preciseness of CONTRACTJDOC, when compared to Javadoc, useful for contract

verification?

We collected a few open source systems based on their use of Javadoc, applied CONTRAC-

TJDOC to each system and evaluated results in terms of detected conformance errors.

3.1.2 Systems

The case study was performed on a convenience sample: six Javadoc-rich open source sys-

tems available at GitHub1 repository. They were selected based on the presence of method-

level Javadoc annotations. Projects are searched by the following set of key phrases: “must

be”, “must not be”, “should be”, “should not be”, “greater than”, “not be null”, “less than”

into Javadoc comments. After some visual filtering, we collected the five most important

classes in each system, based on overall dependence, and check whether those classes con-

tained method-level Javadoc comments for most of their methods. If so, the system is se-

lected. Finally, we checked whether the system presented a suite of unit test, which are run

during the case study to detect inconsistencies. We were able to find four systems meeting

these criteria, although we performed the manual translation to six systems.

While ABC-Music-Player plays music from an ABC file (part of a project assign-

ment from MIT class 6.005), Dishevelled hosts free and Open Source libraries for

several user interface components and supporting code, with emphasis on views and ed-

itors for complex data structures, like collections, sets, lists, maps, graphs, and matrices;

Jenerics is a general-purpose set of Java tools and templates library. On the other hand,

OOP Aufgabe3 aims to manipulate polygons. SimpleShop is an electronic shopping

system. In addition, Webprotégé is a collaborative ontology development environment

for the Web. Those systems amount to more than 190 KLOC. See Table 3.1 for details

in terms of code lines (LOC) – only real source code lines, blank lines, closing brackets

and comments are not considered, total contract clauses (#CC) – following [34] approach,

in which the number of contract clauses is a proxy for contract complexity – as split into

1https://github.com/

3.1 Case Study 31

preconditions (#Pre), postconditions (#Post), and invariants (#Inv).2

Table 3.1: Case study Systems. LOC shows the code lines (LOC), total contract clauses

(#CC), as split into preconditions (#Pre), postconditions (#Post), and invariants (#Inv)).

System LOC #CC #Pre #Post #Inv

ABC-Music-Player 1,973 115 41 74 0

Dishevelled 110,577 2,655 1,405 1,250 0

Jenerics 2,538 190 105 85 0

OOP Aufgabe3 353 54 28 26 0

SimpleShop 472 50 16 15 19

Webprotégé 74,742 930 351 579 0

Total 190,655 3,994 1,952 2,029 19

The manual translation abides by the following criteria: method-level comments were

considered preconditions if the comments establish some restriction over the method param-

eters. For instance, “@param notes - Should not be null and should be

of length >= 2” was replaced by the following CONTRACTJDOC-based expression

[notes != null && notes.size() >= 2], and postconditions that establish de-

tails on the return value of the methods, e.g. “@return Integer the number of

edges. Is always >= 3” was replaced by [@return >= 3]. Class-level com-

ments make up for invariants when they describe properties over fields that must be main-

tained for all methods of the class.

3.1.3 Experimental Procedure and Research Method

Three researchers applied CONTRACTJDOC in six existing open-source systems available at

GitHub. They followed a bottom-up approach for writing the CONTRACTJDOC contracts:

the researchers started applying CONTRACTJDOC in the simplest methods and classes (or

interfaces), following up to the most complex. Contracts followed the Javadoc comments

available in natural language (in English) and some of them were inferred from the experi-

mental unit’s context or from the methods’ source code. As result, they wrote 3,994 contract

clauses: 1,952 preconditions, 2,029 postconditions, and 19 invariants (see Table 3.1). The

process of applying CONTRACTJDOC is composed of four steps: 1) generation of the con-

tracts based on the natural language comments available (as shown in Section 3.1.2); 2)

2The clauses correspond to the contracts we applied in each system.

3.1 Case Study 32

contracts are compiled by means of AJMLC-CONTRACTJDOC compiler, in order to generate

the bytecode enriched with assertions; 3) the test suite available in each system is run over the

contract-aware bytecode; 4) results of the test suite execution are analyzed and conformance

errors are investigated.

Concerning the kind of written contracts, we group the contracts according to the ap-

proach of Schiller et al. [109]: application-specific contracts (AppSpec.) – the kind of con-

tracts that enforce richer semantic properties: valid argument values, how a state is modified,

and the relation between expressions; common-case contracts (Com.Case) – the kind of con-

tracts that enforce expected (common) program properties: that data is present, strings are

not blank, collections are not empty; code-repetitive (Repet.) – the kind of contracts that

repeat exact statements from the code.

All systems with the contracts added in this study are available in a replication package.3

Concerning the verification performed after applying CONTRACTJDOC contracts into the

systems, we used the test suites available for the purpose of identifying problems (four out

of six projects have a test suite available). Every test case that failed was investigated in

order to find out if it was a conformance error in the system.

As a secondary goal, the study allowed us to check the expressiveness of CONTRAC-

TJDOC and to evaluate the effort related to adding contracts to existing systems. In addi-

tion, we enhanced the compiler and added features in order to make the process of applying

CONTRACTJDOC in an existing project simpler. With respect to the overhead of contracts,

it is dependent on the number of contracts we add to each system. For example, in the

case of Webprotégé, javac compiles the whole project in 19 seconds whereas AJMLC-

CONTRACTJDOC takes around 700 seconds for it.

3.1.4 Results

Table 3.2 presents the results of applying CONTRACTJDOC to each system. Column

#Clauses displays the number of clauses manually added in each system. Column #Anoma-

lies presents the number of anomalies detected by the systems test suite after compiling the

source code enhanced with contracts in CONTRACTJDOC approach. Column Time reveals

the time (in seconds) needed for compiling the whole project with its dependencies before

3https://goo.gl/yO8or2

3.1 Case Study 33

applying CONTRACTJDOC contracts. Column Time’ reveals the time (in seconds) needed

for compiling the whole project with its dependencies after applying CONTRACTJDOC con-

tracts. Columns #Com.Case to #Repet. show the contract clauses added in each system

grouped by type (following the definitions from Schiller et al. [109]).

Table 3.2: Case study Results.

System #Clauses #Anomalies Time (s) Time’ (s) #Tests #Com.Case #AppSpec. #Repet.

ABC Music Player 115 2 1 9 30 42 11 62

Dishevelled 2,655 381 59 434 2,643 1,536 151 968

Jenerics 190 7 1 20 44 156 0 34

OOP Aufgabe3 54 1 1 4 11 16 30 8

SimpleShop 50 0 1 5 0 30 11 9

Webprotégé 930 0 19 713 0 717 79 133

Total 3,994 391 82 1,185 2,728 2,497 282 1,214

Concerning the kind of contracts, the only unit in which we wrote more application-

specific contracts was OOP Aufgabe3 system (55% of the written contracts are

application-specific). On the other hand, in ABC-Music-Player, more than 90% of the

contracts remain between common-case and repetitive code: verifications that strings are not

blank, collections are not empty, or that a method returns a field. For Dishevelled, the

majority of the written contracts is classified as common-case (57.51%), other 36.92% are

repetitive with code and only 5.57% are application-specific. In addition, all contracts writ-

ten for Jenerics are related to verification of nullity from parameters or the return value,

thus all contracts remain between common-case and repetitive code. In SimpleShop, the

written contracts are distributed in the following manner: common-case 60%, repetitive code

19%, and application-specific 21%; again the number of common-case and repetitive code

outperforms application-specific contracts. Finally, in WebProtégé, the distribution is:

common-case 77.51%, repetitive code 14.38%, and application-specific 8.11%.

When applying CONTRACTJDOC to ABC-Music-Player, we found inconsisten-

cies between Javadoc comments and the source code. The problems occurred in the class

Utilities (package sound) because there are comments concerning a parameter declar-

ing that the value of this parameter must not be greater than or equal to zero; however in the

body of the methods there is an if-clause that throws exceptions when the value received by

the parameter is negative.

3.1 Case Study 34

3.1.5 Discussion

For all systems (see Table 3.1), we wrote more pre- and postconditions than invariants. This

result has the following explanation: as expected the amount of Javadoc comments over the

classes’ fields in the evaluated systems is low in comparison with the amount of Javadoc

comments over method’s parameters and return.

Concerning pre- and postconditions, for ABC-Music-Player and WebProtégé

projects, we wrote almost twice as many postconditions as preconditions. In

ABC-Music-Player this is related to the number of accessor methods available and for

WebProtégé, the difference is related to the available comments.

We were able to detect potential inconsistencies in ABC-Music-Player; the excep-

tion will be always thrown, differently from what is expected from the commentary. We

also found a problem with the WebProtégé project, in the class OWLLiteralParser

there was one exception in the Javadoc tag @throws that was not declared in the throws

of the method’s signature. Those inconsistencies may be related to the lack of synchroniza-

tion between source code and code commentary updates. Therefore, an approach such as

CONTRACTJDOC may be useful for detecting those problems.

In addition, sometimes the tests available along with the systems do not respect the def-

initions from the Javadoc comments. For instance, when the comments in natural language

from ABC-Music-Player system are turned into CONTRACTJDOC contracts, some tests

from MainTest, ParserTest, and SequencePlayerTest violate the methods’ pre-

conditions from class Utilities, they try to call Utilities’ methods by passing the

value zero as the second parameter, even though the comment declares the second parameter

must be greater than zero. This scenario also occurred in Dishevelled unit, the comments

turned in CONTRACTJDOC contracts also enable us to detect some tests that do not respect

the restrictions available in the Javadoc comments. These results open place to researches

concerning the relationship between tests and code commentary.

As a proof of concept, CONTRACTJDOC and its compiler (AJMLC-CONTRACTJDOC)

enabled us to write runtime checkable code for third-party systems based on the comments

in natural language. As expected, the quality and variety of the contracts depended strongly

on the available comments, however, we were able to detect and correct inconsistencies and

missing expressions between source code and comments.

3.2 Empirical Study 35

3.1.6 Threats to validity

Due to its size, results from this study cannot be generalized; its purpose is evaluating the

applicability and relative usefulness. The sample is not representative since there is no avail-

able estimate of the Javadoc-rich project population in GitHub, then probability sample is

impossible. Our approach is as systematic as feasible in selecting the evaluated project –

manual translation does not scale, then the sample contains only six projects. Therefore,

those systems may not be representative of the real use of Javadoc in real systems; how-

ever, we were able to detect inconsistencies between Javadoc comments and source code,

as occurred in Utilities class (ABC-Music-Player experimental unit) in which the

comment for a parameter of the methods is the right opposite of the expected behavior in the

source code.

Dishevelled and WebProtégé sizes set them apart from the other systems. For

instance, Dishevelled is more than 56 times more LOC than ABC-Music-Player,

43 times more LOC than Jenerics, 313 times more LOC than OOP Aufgabe3, and 234

times more LOC than SimpleShop. In order to reduce the threat on the manually-defined

contracts, all systems were annotated and reviewed by three researchers, separately.

3.1.7 Answer to the Research Question

Q1. Is the preciseness of CONTRACTJDOC, when compared to Javadoc, useful for contract

verification?

By adding comments in CONTRACTJDOC style, we were able to detect inconsistencies

between source code and comments that would remain unnoticed until a client write a code

based on the documentation of the class and not be able to get the expected value. Further-

more, we detected that the test suite made available along with the systems do not respect

the definitions into the Javadoc comments.

3.2 Empirical Study

In this empirical study, we ask some Java developers to perform an implementation task

based on a documented-interface, aiming to evaluate the readability and understandability of

3.2 Empirical Study 36

three approaches for documenting Java code.

3.2.1 Definition

The goal of this empirical study is to investigate CONTRACTJDOC, for the purpose of evalu-

ation with respect to readability and understandability, from the point of view of developers

in the context of Java programming language. We group our research questions concerning

the factors evaluated. The study presents two factors: the task performed by the developer

(task), and the documenting approach (approach). Those factors have the following treat-

ments: client and supplier4 – for the task; and Javadoc, CONTRACTJDOC, and JML – for the

approach.

In particular, the empirical study addresses the following research questions:

Q2. With respect to the task performed by each developer, how difficult is the required

task?

We ask the developers to perform a task based on a given documented interface. Then,

we ask them to evaluate the difficulty by means of a Likert-type scale and perform statistical

tests for checking differences according to the task performed.

Q3. Regarding the documenting approach used by the developer, how difficult it is for a

developer to perform the required task by using the available documented interface?

By using a Likert-type scale, we measure the difficulty for each approach considered in

this experiment and performed statistical tests for comparing the approaches.

Q4. Are there faults in the produced source code?

We check the source code produced by each developer by using some manually produced

test cases in order to investigate the occurrence of faults with respect to the rules available in

the comments.

3.2.2 Participants

The participants of our experiment (called Participants henceforth) are grouped in profes-

sionals and students. Professionals those who work or already have worked with program-

4By client, we mean a class calling the methods provided by an interface, and by supplier, we mean a class

implementing the interface.

3.2 Empirical Study 37

ming to the industry. Students those who have only academic experience. All participants

have experience on programming in Java for at least one year. The majority works with Java

for more than three years.

3.2.3 Study Design

In this study, we addressed two factors: approach for commenting source code, task to be per-

formed; with the following treatments: Javadoc, CONTRACTJDOC, and JML – for approach,

and client and supplier – for the task. Moreover, we use two Java equivalent interfaces in this

experiment: Stack and Queue. We randomly assigned subjects to each combination of the

treatments [129]. For the purpose of this experiment, each triple <approach, task, interface>

is called a trial (a combination of treatments). Since there are three documenting approaches,

two tasks, and two Java interfaces, the experiment counts with 12 trials. The assignment Par-

ticipant — trial is performed by using a completely randomized design in order to not bias

the results. The experiment uses a balanced design, which means there is the same number

of people in each trial [129] – two in this experiment.

3.2.4 Experimental Procedure

The experiment was executed offline, i.e., participants received the experimental material

via an online Survey platform5 that we use to collect the results. Each participant received

an experiment package, consisting of (i) a statement of consent, (ii) a pretest questionnaire,

(iii) instructions and materials to perform the experiment, and (iv) a post-test questionnaire.

Before the study, we carried out a 20-minute presentation showing features from each docu-

mentation approach and explaining, in detail, the task we asked the developer to perform.

Before starting the experiment, we asked each participant to fulfill a pre-study ques-

tionnaire reporting their programming experience (with respect to Java and contract-based

programming experience). After filling in the questionnaire, we randomly selected a task for

each of them.

The first part of the experiment consists of the following activities: (i) apply a question-

5An instance of the platform used is available online: https://www.formpl.us/form/

5671648952844288

3.2 Empirical Study 38

naire pre-experiment – in order to collect information on developers experience; (ii) give

some kind of training on the documenting approach, such as JML and CONTRACTJDOC;

(iii) ask them to execute the tasks – for each developer will be given one task for one ap-

proach with one Java interface; (iv) apply a post-experiment questionnaire – in order to

collect qualitative information about the developers’ view of each task. The post-experiment

questionnaire presents a Likert-scale question with five levels: varying from very difficult 1

to very easy 5; and one opened question for the developer to provide details of the answer.

3.2.5 Instrumentation

In this empirical study, we performed a pilot with three Java developers in order to fit the

structure of the questions, the way in which we make the data available for the developers.

As a result, we changed the manner of making the working dataset available to the partici-

pants. Initially, we were making the documented interface available in a link and the working

dataset in another. The answers to the pilot highlighted this fact and we decided to create a

single package containing all Java classes (all classes needed to the compilation of the code)

related to the experiment in a single URL.

We manually created a set of tests for checking each property documented in the docu-

menting interfaces and used those tests for checking the code produced by the participants

of this study. The tests we created are available on our companion website [85].

3.2.6 Results

27 Java developers participated in our experiment. From those, we randomly discarded three

in order to maintain a balanced number of participants in each trial. Thus, we maintained 24

developers, from those, 10 are working in the industry (41.6%) and 14 are students (58.4%).

Concerning the task performed by the developers, we present in Figure 3.1a answers on

difficulty grouped by the task performed. The implementation of the documented interface

(Supplier task) seemed to be easier than the task of creating a Client class, however, this

difference is not statistically significant as presented by a Wilcoxon rank sum test [62] (p-

value = 0.07, with a confidence level of 95%).

When grouped by documenting approach (see Figure 3.1b), the Kruskal-Wallis rank sum

3.2 Empirical Study 39

(a) (b)

(c)

Figure 3.1: Results of our empirical study with Java developers, on an implementation task

based on a documented-interface, aiming to evaluate the readability and understandability of

three approaches for documenting Java code.

3.2 Empirical Study 40

test showed no difference between the approaches (p-value = 0.15).

When grouped by experience (Figure 3.1c), the Wilcoxon rank sum test (p-value = 0.45)

also does not show differences statistically significant between professionals and students.

Javadoc and CONTRACTJDOC were the only documenting approaches in which all par-

ticipants were able to produce a code satisfying the oracle (respecting the restrictions avail-

able in the comments). On the other hand, there was one case developed by following the

JML documenting approach in which the contract is not satisfied by the implementation.

3.2.7 Discussion

We proceed with the discussion of the research questions.

Q2. We ask each developer to perform one task: either implement a given interface or

implement a client code for using the methods provided by an interface – such the use of an

API (Client). Although developers have assigned more Very Easy and Easy for the supplier

task than to the client (see Figure 3.1(a)), the statistical test did not provide evidence for a

significant difference between the difficulty perceived by developers when performing the

required task.

Q3. Although not supported by statistical tests since Kruskal-Wallis rank sum test

showed no difference between the approaches (p-value = 0.15), Javadoc and CONTRACTJ-

DOC were perceived as being more understandable than JML (see Figure 3.1b). This visual

result – available as a boxplot – indicates CONTRACTJDOC as an approach in an interme-

diate level between Javadoc and JML, with both providing runtime conformance checking.

Therefore, the proposed approach is promising: CONTRACTJDOC is easy to understand (cre-

ate a code based on the comments) – 75% of the developers’ answers for difficulty remains

between Easy and Very easy – and enables the runtime checking of the comments by means

of AJMLC-CONTRACTJDOC compiler.

Q4. Concerning code correctness, all Participants using interfaces documented with

Javadoc and CONTRACTJDOC produced code in accordance with the contracts available

in the interfaces. Only one developer using an interface with JML contracts was not able to

satisfy all the contracts: in one method the source code produced is not in conformance with

the contracts.

Even though the developers have perceived the supplier task as less difficult than the

3.2 Empirical Study 41

client task (according to the visual information from the boxplot), they produced code re-

specting the restrictions available on the comments more times to the client task. All de-

velopers were able to write a client code in accordance with the restrictions. Maybe the

difficulty reported by the developers is related with the attention required for using methods

provided by an interface: one needs to read the documentation available in order to know

how to use the methods; whereas implementing the interface is more simple; mainly for the

interfaces used in this experiment: they are traditional and well-known data structures. The

results of this experiment suggest that when writing a client code, developers tend to pay

more attention to the documentation available than when they are writing a supplier code

(implementing a given interface).

3.2.8 Threats to validity

Concerning internal validity, all material for the empirical study is available only in English,

therefore, the experience of the participants with English may have affected their perfor-

mance. In addition, the interfaces were documented by the researchers and this may have

affected the results. With respect to construct validity, the answers from developers may not

be representative of their real opinion on difficulty perception; to overcome this threat we

made a space for comments available along with the Likert-scale questions, which are taken

into account when collecting the answers.

Regarding external validity, only 24 developers participated in this study and this sample

is not representative of the real population of Java developers. In addition, we used only

two similar data structure interfaces (queue and stack). In other domains with more complex

structures, the results may vary.

3.2.9 Answers to the Research Questions

• Q2. With respect to the task performed by each developer, how difficult is the required

task?

Analyzing the answers grouped by task (see Figure 3.1b), developers did not find dif-

ficulty in performing the required task. They provided all answers between neutral (3)

and very easy (5).

3.3 Comprehensibility Survey 42

• Q3. Regarding the documenting approach used by the developer, how difficult it is for

a developer to perform the required task by using the available documented interface?

Although not supported by statistical tests, Javadoc and CONTRACTJDOC were per-

ceived as being more understandable than JML (see Figure 3.1b). This result indicates

CONTRACTJDOC as an approach in an intermediate level between Javadoc and JML.

• Q4. Are there faults in the produced source code?

Concerning code correctness, all Participants using interfaces documented with

Javadoc and CONTRACTJDOC produced code in accordance with the contracts avail-

able in the interfaces. Only one developer using an interface with JML contracts was

not able to satisfy all the contracts: in one method the source code produced is not in

conformance with the contracts.

3.3 Comprehensibility Survey

We conducted an exploratory study that involved data collection through a survey with Java

development practitioners. The goal of this survey is to compare three documentation ap-

proaches (Javadoc, CONTRACTJDOC, and JML) with respect to comprehensibility, from

the point of view of developers. In particular, the survey addresses the following research

question:

Q5. In the developer’s opinion, which approach, among Javadoc, CONTRACTJDOC, and

JML, is the most effective in communicating a routine’s behavior?

3.3.1 Survey Design

For this study, we followed a quantitative method based on a web-based survey instrument,

suited to measure opinions and behaviors in response to specific questions [30], in a non

threatening way.

The survey instrument6 begins with a purpose of clarification along with a consent term.

Then, a characterization of the respondent is conducted by some questions related to Java

experience and experience with contract-based programming. Next, the survey is presented:

6https://goo.gl/forms/8W9jUMGCavkkzDj12

3.3 Comprehensibility Survey 43

links for three Java interfaces with each one documented in a different approach is showed,

then some questions related to the understanding of the behavior of a class implementing the

interfaces based on the comments available is asked.

We used Likert-scale questions. In two questions we ask the developers to choose the

most simple/understandable documentation approach: one question related to the provided

interface; and one question concerning the use of the approach in a general context. The

questions have five levels: varying from very difficult 1 to very easy 5, with 3 as the neutral

answer. The levels are: very difficult – 1, difficult – 2, neutral – 3, easy – 4, and very easy –

5.

3.3.2 Participants

The survey participants are extracted by means of a non-probability sampling technique –

convenience sampling [129]: the nearest and most convenient persons are selected as sub-

jects. We send the survey link to academic and professional mailing lists. In addition, our

contacts made a snowball approach, sending the survey to their respective contact lists, in-

creasing the sample and the number of participants in our study. The survey was open for

three weeks (from June to July 2016) and received 142 answers (from an estimated total of

700 who received the link, 20% response rate).

3.3.3 Results

142 Java developers answered the survey. From those, 51 are professionals (36%) and 91

are students (64%). The survey participants did not participate in the experimental study

(Section 3.2). All participants of the survey have experience on programming in Java for at

least one year. The majority works with Java for more than two years.

With respect to the survey answers, 50.7% (72) of the Subjects chose Javadoc as the

simplest approach to understand when using it in a general context. In addition, for 38%

(54) of the subjects, Javadoc is also the most understandable approach with regard to the

provided interface.

The survey results provided us statistical difference when comparing the comprehensibil-

ity of the documentation approaches evaluated (see Figure 3.2a). By performing a Oneway

3.3 Comprehensibility Survey 44

(a) All approaches (b) Javadoc

(c) CONTRACTJDOC (d) JML

Figure 3.2: Subjects’ answers to the individual evaluation of comprehensibility for each

documentation approach. And answers grouped by experience for each approach.

3.3 Comprehensibility Survey 45

ANOVA test [62] and a corresponding post hoc analysis we were able to distinguish the three

approaches (p-value < 0.05). The Tukey HSD [62] and pairwise comparisons using t-tests

with Bonferroni correction [62] produced the following p-values: Javadoc-ContractJDoc =

0.012, JML-ContractJDoc = 0.000, and JML-Javadoc = 0.000. These results indicate that

the comprehension perceived for the three approaches are different, however, when grouped

in pairs, the comprehension for Javadoc and for CONTRACTJDOC are closer (p-value closer

to 0.05) than for the other comparisons. This result is also supported by the diff value re-

turned by Tukey HSD test: Javadoc-ContractJDoc = 0.296, JML-ContractJDoc = -0.458, and

JML-Javadoc = -0.754.

When analyzing data grouped by experience (Figures 3.2b to 3.2d) by means of Wilcoxon

rank sum test with continuity correction tests, only for JML we found no statistical difference

between Professionals and Students (p-value = 0.17). For both Javadoc and CONTRACTJ-

DOC, Professionals had perceived the approaches as being more comprehensible than Stu-

dents (p-value = 0.012 and p-value = 0.004, respectively).

3.3.4 Discussion

According to the statistical tests performed, Javadoc is the most understandable documenta-

tion approach, and CONTRACTJDOC is intermediate between JML and Javadoc, being closer

to Javadoc. This can also be seen in Figure 3.2a.

An interesting result came from the analysis of the difficulty grouped by experience (Fig-

ures 3.2b to 3.2d): students and professionals have perceived the same level of difficulty for

JML, which is promising as contract-based languages are usually considered harder to be

understood by people with less experience (students, in our survey). This result suggests that

JML can have its use fostered when people get in touch with the language syntax, maybe by

means of classes for presenting JML in undergraduate courses.

Overall, this survey corroborates with the results of our experiment: CONTRACTJDOC

is intermediate between Javadoc and JML, being closer to Javadoc with respect to compre-

hensibility. Furthermore, the results highlight Javadoc as the most understandable approach

concerning the behavior of a documented interface.

3.3 Comprehensibility Survey 46

3.3.5 Threats to validity

Concerning internal validity, all material for the survey study is available only in English,

therefore, the experience of the Subject with English can have affected their comprehensi-

bility of the behavior of the provided interface.

The order in which we display the documented interfaces on the survey form, the ques-

tions used for evaluating comprehensibility, the kind of questions used, and the absence of

opened questions can threat the construct validity. For dealing with these threats we perform

a pilot before applying the survey and used the results from the pilot to improve the survey

structure.

Regarding external validity, even receiving a satisfactory number of answers – 142 –

to our survey, the results are not representative of the community of Java developers. In

addition, we used only one data structure interface: Stack, for asking about the compre-

hensibility of the interface behavior. In other domains with more complex structures, the

results can vary considerably.

3.3.6 Answer to the research question

From our results, we made the following observations:

• Q5. In the developer’s opinion, which approach, among Javadoc, CONTRACTJDOC,

and JML, is the most effective in communicating a routine’s behavior?

According to the statistical tests performed, Javadoc is the most understandable docu-

mentation approach, and CONTRACTJDOC is intermediate between JML and Javadoc,

being closer to Javadoc.

Chapter 4

CONTRACTSUGGESTOR

Javadoc comments are semi-structured natural-language text blocks that specify a code ele-

ment (a Java method, field, class, or package) [49]. Javadoc comments use tags to structure

the documentation. For instance, the @param tag marks the specification of a formal param-

eter and @return marks the specification of the value returned by a method. However, those

comments are not runtime checkable as DBC contracts are.

In this context, we present CONTRACTSUGGESTOR, our approach for automatically

suggesting contracts from natural language tagged comments. Currently, CONTRACTSUG-

GESTOR suggests pre- and postconditions for methods (methods is a short for methods and

constructors) by applying machine learning techniques [111] for classifying those comments.

We now describe CONTRACTSUGGESTOR and explore its features. First, we provide the

theoretical background needed for understanding this chapter (Section 4.1). Then, we show

the approach and describe its infrastructure (Section 4.2). Next, Section 4.3 provides an

evaluation of the machine learning algorithms we used and some tips for guiding extensions

to the present work. Finally, we highlight the main limitations of our contract suggestor

(Section 4.4).

4.1 Machine Learning

The term machine learning refers to the automated detection of meaningful patterns in data.

In the past couple of decades, it has become a common tool in almost any task that requires

information extraction from large data sets [111]. Learning is a very wide domain. Con-

47

4.1 Machine Learning 48

sequently, the field of machine learning has branched into several subfields dealing with

different types of learning tasks [111; 88]. The term “learning” is closely related to general-

ization. The goal of statistical learning is to find patterns in data that will generalize well to

new, unobserved data [88].

In addition, when performing a learning task, we can have a binary or multiclass classi-

fication (see Section 4.1.2).

4.1.1 Supervised Learning

For this work, we consider Supervised Learning [88] because text categorization is a su-

pervised learning problem where the task is to assign a given text document one or more

predefined categories [107].

Supervised machine learning algorithms may apply what has been learned in the past to

new data using labeled examples to predict future events [111]. Starting from the analysis

of a known training dataset, the learning algorithm produces an inferred function to make

predictions about the output values. The system is able to provide targets for any new input

after sufficient training. The learning algorithm can also compare its output with the correct,

intended output and find errors in order to modify the model accordingly.

With respect to algorithms for supervised learning, we explain three from those available

at Scikit-learn Python [93]: AdaBoost, Multi-layer Perceptron, and Passive-Aggressive.

4.1.1.1 AdaBoost

Boosting is an ensemble technique that attempts to create a strong classifier from a number of

weak classifiers [88]. This is done by building a model from the training data, then creating

a second model that attempts to correct the errors from the first model. Models are added

until the training set is predicted perfectly or a maximum number of models are added.

AdaBoost is a shorthand for Adaptive Boosting. AdaBoost [88; 111] is used with short

decision trees. After the first tree is created, the performance of the tree on each training in-

stance is used to weight how much attention the next tree that is created should pay attention

to each training instance. Training data that is hard to predict is given more weight, whereas

easy to predict instances are given less weight. Models are created sequentially one after the

4.1 Machine Learning 49

other, each updating the weights on the training instances that affect the learning performed

by the next tree in the sequence. After all the trees are built, predictions are made for new

data, and the performance of each tree is weighted by how accurate it was on training data. In

Figure 4.1 we illustrate how AdaBoost works for classifying two-labeled comments. A first

model is created and a prediction occurs, then, new models are created in order to correct the

errors from the first model. In the end, all weak classifiers are combined in a single model.

Figure 4.1: AdaBoost for text classification. The first model correctly classifies the document

as non-null, but incorrectly classify the others document. Then, new models are created until

reach a correct classification for all documents.

4.1.1.2 Multi-layer Perceptron

Instead of using weak learners that are improved in each run of the learning algorithm, an ar-

tificial neural network is a model of computation inspired by the structure of neural networks

in the brain. Artificial neural networks are formal computation constructs that are modeled

after this computation paradigm [111].

The idea behind neural networks is that many neurons can be joined together by com-

munication links to carry out complex computations. It is common to describe the structure

of a neural network as a graph whose nodes are the neurons and each (directed) edge in the

graph links the output of some neuron to the input of another neuron. We will restrict our

attention to feedforward network structures in which the underlying graph does not contain

cycles [111].

A multilayer perceptron (MLP) is a class of feedforward artificial neural network. An

4.1 Machine Learning 50

MLP consists of at least three layers of nodes. Except for the input nodes, each node is a neu-

ron that uses a nonlinear activation function. MLP utilizes a supervised learning technique

called backpropagation for training. It can distinguish data that is not linearly separable [93].

A MLP typically consists of an input layer (i.e., spectral data or principal components),

one or more hidden layers, where the real processing is performed via a system of weighted

’connections’, and an output layer (prediction), where the answer is output [87]. They func-

tion by linking the input neurons to output neurons, through the connections (weights). For

the purpose of text classification, the output layer presents the predicted category for each

text document.

4.1.1.3 Passive-Aggressive

Online learning takes place in a sequence of consecutive rounds. On each online round, the

learner first receives an instance. Then, the learner is required to predict a label. At the end

of the round, the learner obtains the correct label. Finally, the learner uses this information

to improve his future predictions [111]. The Passive-Aggressive procedure for training is

similar to AdaBoost (Section 4.1.1.1): the algorithm is passive when a correct classification

occurs and aggressive when it needs to update the rule used for classification.

The passive-aggressive algorithms are a family of algorithms for large-scale learn-

ing [93],[25]. Crammer et al. [25] presented the online Passive-Aggressive (PA) algorithm,

which is as fast as but more accurate than Perceptron [111]. It updates the model to have a

low loss on the new sample, as well as to ensure that the new model is close to the current

one.

4.1.2 Type of classification

Concerning types of classification, there is binary and multiclass classification [111].

Binary or binomial classification is the task of classifying the elements of a given set

into two groups (predicting which group each one belongs to) on the basis of a classification

rule [111]. For example, we may want to distinguish nullable comments from non-nullable.

Multiclass categorization is the problem of classifying instances into one of several pos-

sible target classes [111]. For instance, whether we consider more than one property of

4.1 Machine Learning 51

interest for classifying the comments, we will need to use a multiclass algorithm for that.

Text Classification (TC) is a supervised learning problem where the task is to assign a

given text document to one or more predefined categories [107]. In this context, feature se-

lection is the task of reducing the dimensionality of feature space by identifying informative

features and its primary goals are improving classification effectiveness, computational effi-

ciency, or both [107]. This is needed because the performance of a classifier is affected by

the employed feature selection mechanism. One of the mechanisms commonly used nowa-

days for features selection during text classification is TF-IDF approach (stands for Term

Frequency-Inverse Document Frequency) [93].

TF-IDF is a numerical statistic that is intended to reflect how important a word is to a

document in a collection [99]. It is often used as a weighting factor in searches of information

retrieval, text mining, and user modeling. For an example, consider we have a document base

composed of two files:

File 1: @param bag the bag to decorate, must not be null.

File 2: @throws IllegalArgumentException if bag is null.

The TF-IDF for the word not is calculated as follows:

TF − IDF (′not′) =

= TF (′not′) ∗ IDF (′not′, Base)

= 1/10 ∗ log(2/1)

= 0.1 ∗ 0.301

TF − IDF (′not′) = 0.0301

(4.1)

Moreover, lemmatization [70] refers to do things properly with the use of a vocabulary

and morphological analysis of words, normally aiming to remove inflectional endings only

and to return the base or dictionary form of a word, which is known as the lemma. For

instance, the words: [work, working, worked, workers] represent a single lemma: work.

4.2 CONTRACTSUGGESTOR: an Approach for Suggesting Contracts 52

4.2 CONTRACTSUGGESTOR: an Approach for Suggesting

Contracts

Motivated by the case study performed with CONTRACTJDOC (see Section 3.1) and works

such as @tComment [118], we developed an approach for processing texts in natural lan-

guage and for suggesting contracts for code properties based on those texts. CONTRACT-

SUGGESTOR provides an approach for automatically suggesting contracts by analyzing nat-

ural language tagged-comments.

This effort tries to reduce the annotation burden [34] – one of the points developers

highlight as being a blocking for using the DBC approach – by enabling developers to use

contracts without asking them to learn a new syntax or even to use an approach such as

CONTRACTJDOC.

When performing the CONTRACTJDOC case study, we noticed that some comments are

commonly used for describing properties in each evaluated system. Therefore, we decided

to create an approach for automatically suggesting contracts for those properties by applying

a supervised machine learning algorithm. In the systems evaluated in CONTRACTJDOC’s

case study (Section 3.1), comments such as “noteBase - represents the basic note letter, must

not be null”, “noteLength - must not be null”, or “@return A non-null value” are used for

declaring some parameter or return value as non-null; and comments such as “timeLimit time

limit for this time limit exit strategy, must be >= 1” declares relational (greater than/equal,

less than/equal) properties; these kinds of comments are common on the evaluated systems.

Furthermore, as highlighted by Meyer, Kogtenkov, and Stapf [78], we want to apply

operations to objects through the associated non-void references and in a language that does

not guarantee void safety – void safety is the avoidance of void calls –, the run-time effect

of a void call is either to crash the program or, if the language supports exception handling,

to trigger an exception. So, to provide some way of avoiding a void reference in a language

such as Java (that does not guarantee void safety) may improve software quality and reduce

program crashes. Thus, CONTRACTSUGGESTOR is an approach for generating contracts for

code properties, currently applied to void safety and relational properties.

Since we chose a supervised approach, we needed to create a dataset for training the

machine learning algorithms for classification. After training, the algorithms are able to

4.2 CONTRACTSUGGESTOR: an Approach for Suggesting Contracts 53

classify new comments based on their knowledge base and we can evaluate each algorithm

based on machine learning metrics [111]: precision, recall, and F1-score.

With the best algorithm in hands, CONTRACTSUGGESTOR generates contracts for each

property (currently non-null and relational properties) we consider and those contracts can

be automatically checked by a tool such as JMLOK2 [84]. Figure 4.2 presents an overview

of our strategy. First, the project received as parameter pass through the tagged-comments

extractor. Then, the trained machine learning algorithm is applied for classifying each com-

ment instance (after the training process with the dataset manually produced). Finally, a

contract generator will generate contracts for the property desired (in order to not modify the

sources of the projects, we are using AspectJ [64] aspects as contracts).

Figure 4.2: ContractSuggestor infrastructure. First, the project received as parameter pass

through the tagged-comments extractor. Then, the trained machine learning algorithm is

applied for classifying each comment instance (after the training process with the dataset

manually produced). Finally, a contract generator will generate contracts for the property

desired (in order to not modify the sources of the projects, we are using AspectJ aspects as

contracts).

In the next sections, we detail each part of CONTRACTSUGGESTOR approach. First, we

describe the process of extracting tagged-comments (Section 4.2.1). Then, we detail the con-

struction of the dataset for each property considered in our approach (Section 4.2.2). Next,

Section 4.2.3 explains the process of training the machine learning algorithms considered.

After that, we discuss the contracts generated by CONTRACTSUGGESTOR (Sections 4.2.4).

Finally, Sections 4.3 and 4.4 present how we evaluated each machine learning algorithm and

the main limitations of the current approaches, respectively.

4.2 CONTRACTSUGGESTOR: an Approach for Suggesting Contracts 54

4.2.1 Extracting Tagged-comments

As the first step in our approach, we need to extract all tagged-comments from a given

project. For this purpose, we created a Python [31] script – extract_comments – for read-

ing the project files, collecting tagged comments and generating one file for each tagged-

comment. We provide all scripts and data from this work in our companion website [85].

For illustrating how the script works, consider the following source code:

Source Code 4.1: Example of tagged-comments extraction.

1 /∗ ∗

2 ∗ Constructor t h a t wraps (not c o p i e s) .

3 ∗

4 ∗ @param bag the bag to decorate , must not be n u l l

5 ∗ @throws I l l ega lArgumentExcept ion i f bag i s n u l l

6 ∗ /

7 p r o t e c t e d A b s t r a c t B a g D e c o r a t o r (Bag bag) {

8 super (bag) ;

9 }

Supposing this is the only file with tagged-comments in our Java project, ex-

tract_comments will create two files: one file for the tagged-comment – “@param bag the

bag to decorate, must not be null” and one for the comment related to the “@throws” tag.

Figure 4.3 shows the result of applying the script to Source Code 4.1.

Figure 4.3: Extract comments process. After receiving a project as input, the extractor will

create a file for each tagged comment.

The result of running extract_comments can be used as an input for a machine learning

algorithm (as occurs in the final version of CONTRACTSUGGESTOR) or as an input to a

manual analysis of each tagged-comment for creating a dataset for classification purposes

(Section 4.2.2).

4.2 CONTRACTSUGGESTOR: an Approach for Suggesting Contracts 55

4.2.2 Constructing a Dataset

As we are using supervised machine learning in our contract suggestor, we needed to create

a dataset for each property considered. The process for creating the dataset is the follow-

ing: first, we apply the extractor of comments in order to collect all tagged-comments from

a given project; then, we manually open and read the content of each file and decide in

which folder the file must be put: in a binary classification - with property (for those tagged-

comments that presents the desired property) or without property (for those comments not

related to the desired property). Figure 4.4 illustrates this process. The result of this process

is a dataset of tagged instances that serves as input to the training and testing processes of a

machine learning algorithm being considered (see Section 3.1).

Figure 4.4: Dataset construction. After applying the comments extractor, we manually read

the content of each file and decide the folder that the file belongs to.

For the Source Code 4.1, two files are created: file 1 for the @param content and file

2 for the @throws content. By manually analyzing each file, the following classification is

performed: file 1 goes to the non-null folder (the folder for those comments related to the

desired property) and file 2 goes to the others folder (the folder for comments not related to

the desired property).

As we applied our approach for two properties: non-null and relational, we proceed

by presenting the features of each dataset created. First, we present the non-null datasets

(Section 4.2.2.1); then, we present the relational dataset (Section 4.2.2.2). In each section

we list information about the systems we used for creating the dataset and the final size of

4.2 CONTRACTSUGGESTOR: an Approach for Suggesting Contracts 56

the dataset.

4.2.2.1 Non-null dataset

As null dereferencing is considered a critical problem, the inventor of null reference calls it a

billion-dollar mistake [55], the first property we tried to automatically identify and generate

contracts for is non-null – an approach for avoiding null references based on natural language

comments.

For non-null, the Non-null dataset is composed of 21 open-source Java projects. This

dataset contains all comment instances from the systems used in CONTRACTJDOC case

study (Section 3.1), from the systems considered into @tComment approach [118], and the

comments from eight new open-source Java systems not considered in those studies. Ta-

ble 4.1 summarizes information about these projects.

Table 4.1: Experimental units’ summary. Column Source presents a reference to the source

code location for each system. Column Description shows a brief description of each system.

And column LOC shows the code size of each experimental unit.

Experimental Unit Source Description LOC

ABC-Music-Player [86] A music player and parser 1,973

Apache Collections [39] Collection library and utilities 26,323

Dishvelled [53] Libraries for user interface components and supporting code 110,577

GlazedLists [56] List transformations in Java 5,134

Jenerics [104] Library templates and tools for Java 2,538

JFreeChart [29] Chart creator 72,490

JodaTime [60] Date and time library 25,916

Log4J [41] Logging service 20,987

Lucene [42] Text search engine 48,201

OOP Aufgabe3 [97] Polygons manipulation 353

SimpleShop [92] A simple shop 472

Webprotégé [71] Ontology development environment 74,742

Xalan [43] XML transformations 178,549

Betwixt [58] Mechanism for mapping beans to XML 23,754

Cobertura [119] Java code coverage tool 10,854

IText [57] PDF generation and manipulation for Java and .NET 137,507

JodaMoney [121] Java library to represent monetary amounts 8,467

Maths [40] Library of mathematics and statistics 209,653

OpenJML [28] Program verification tool for Java 782,657

SmartHome [120] Framework to design a Smart Home solution 118,005

SWT [38] Widget toolkit for Java 122,074

4.2 CONTRACTSUGGESTOR: an Approach for Suggesting Contracts 57

The manual classification of all tagged-comments from those 21 projects (See Table 4.1)

results in a dataset of 134,246 comment instances. From those, 7,241 are instances related

to the non-null property (folder non-null) and 127,005 are not related to the property (folder

others).

After creating the Non-null dataset, we use it for training and testing all machine learning

algorithms for supervised learning from Scikit-learn [93] (details in Section 4.2.3.1). With

the machine learning algorithms trained and tested, we applied the top-three (in terms of

precision, recall, and F1-score) to new open-source Java projects available in GitHub in

order to check their performance to new data (details in Section 4.2.3.1).

The dataset is available online in our companion website [85] as well as Python scripts

for downloading all considered systems for purposes of replication of the current datasets.

4.2.2.2 Relational dataset

For relational properties (greater than, greater than or equal, less than, and less than or equal),

we selected a subset of the systems considered into the Non-null dataset (Section 4.2.2.1)

composed of six systems (see Table 4.2). After manually classifying all comments available,

the sizes for the dataset of relational properties are: greater than (20), greater than or equal

(31), less than (10), less than or equal (13), and others (1,734) – others represent those

comments that are not related to any relational property neither non-null property.

Table 4.2: Experimental units’ summary. Column Source presents a reference to the source

code location for each system. Column Description shows a brief description of each system.

Column LOC shows the code size of each experimental unit.

Experimental Unit Source Description LOC

ABC-Music-Player [86] A music player and parser 1,973

Cobertura [119] Java code coverage tool 10,854

JodaMoney [121] Java library to represent monetary amounts 8,467

OOP Aufgabe3 [97] Polygons manipulation 353

SimpleShop [92] A simple shop 472

Webprotégé [71] Ontology development environment 74,742

The dataset and Python scripts for downloading all considered systems are also available

online in our companion website [85] for purposes of replication of the current dataset.

4.2 CONTRACTSUGGESTOR: an Approach for Suggesting Contracts 58

4.2.3 Training Machine Learning algorithms

The next step in CONTRACTSUGGESTOR approach is to set up the best supervised machine

learning algorithm for the purpose of classifying natural language tagged-comments either

in a binary or multiclass fashion.

The input to a learning algorithm is training data, representing experience, and the out-

put is some expertise, which usually takes the form of another computer program that can

perform some task [111]. In addition, we need a test set for verifying how much the machine

learning algorithm is able to generalize based on the training process. Thus, we need to split

our dataset into at least two sets: training and testing.

There are some rules of thumbs for this splitting [103]. One of them, suggests the 80/20

split, 80% for training and 20% for testing purposes. We started splitting our dataset with

these proportions and evaluated the machine learning metrics (precision, recall, and F1-

score) in order to establish the best proportional size for each set.

After performing variations on the sizes for the sets, we found 3/4 and 1/4, respectively

for training and testing, as being the suitable sizes for the sets for the problem of text classifi-

cation – we achieve these sizes by analyzing the machine learning metrics (precision, recall,

and F1-score) of the algorithms. Therefore, for all datasets considered in this work, we split

the data as follows: 75% for training and 25% for testing.

Every classification problem needs to deal with features for performing the desired classi-

fication. We are performing a classification that involves text. We use TF-IDF for extracting

features from our dataset in order to enable the text classification.

In addition, for grammatical and personal reasons, natural language comments use dif-

ferent forms of a word, such as organize, organizes, and organizing. Additionally, there are

families of derivationally related words with similar meanings. In many situations, it seems

as if it would be useful for a search for one of these words to return comments that con-

tain another word in the set [70]. For dealing with these problems, our script for processing

the document context applies lemmatization to the extracted comments before running the

machine learning algorithms for classification.

After defining the sizes for training and testing sets and the approach for extracting fea-

tures and dealing with natural language variations for writing words with the same semantic,

we need to explain how we choose the machine learning algorithms for classifying the com-

4.2 CONTRACTSUGGESTOR: an Approach for Suggesting Contracts 59

ments. In the next sections, we explain how to choose the algorithm we used for classifying

comments for each property.

4.2.3.1 Non-null property

We performed a comparison of the algorithms available for supervised learning in Scikit-

learn package [93] (see Appendix A for details) and chose the top-three algorithms in

terms of accuracy, precision, recall, and F1-score with respect to the Non-null dataset (Sec-

tion 4.2.2.1). These algorithms represent the following classes of supervised learning al-

gorithms: while AdaBoost is an Ensemble Method, Multi-layer Perceptron is an artificial

Neural network, Passive-Aggressive is a generalized linear model.

In order to compare the algorithms’ results, we investigated the relationship between

the parameters of each algorithm. All of them have a parameter that allows us to control

the number of iterations over the training data: n_estimators for AdaBoost; and max_iter

for Multi-layer Perceptron and Passive-Aggressive. After performing Grid Search parame-

ter tuning [111], we identified the following best values: n_estimators = 100 (AdaBoost),

max_iter = 200 (Multi-layer Perceptron), and max_iter = 1,000 (Passive Aggressive). We

summarize in Table 4.3 the machine learning metrics achieved for the algorithms after pa-

rameter tuning [111].

Table 4.3: Machine Learning Algorithms. For each algorithm and property classified, we

present precision, recall, F1-score, and Accuracy.

ML Algorithm Property precision recall F1-score Accuracy

AdaBoost
non-null 1.00 0.99 1.00

0.9995
others 1.00 1.00 1.00

Multi-layer Perceptron
non-null 1.00 1.00 1.00

0.9994
others 1.00 1.00 1.00

Passive-Aggressive
non-null 0.99 1.00 1.00

0.9992
others 1.00 1.00 1.00

Considering precision, recall, F1-score and accuracy, AdaBoost is the best algorithm for

classifying natural language comments between non-null and others (see Table 4.3). Accord-

ing to this result, AdaBoost is more likely to correct classify a comment with respect to void

safety property (distinguish a comment between non-null and not related to non-null) – the

approach is likely to produce more true positives. Based on this, we reach our first guideline:

4.2 CONTRACTSUGGESTOR: an Approach for Suggesting Contracts 60

we may use AdaBoost classifier for binary text classification problems whenever you have a

properly created dataset – manually validated.

4.2.3.2 Relational property

For relational properties, Table 4.4 summarizes the metrics for evaluating each one of

the chosen algorithms. Different of what happened to the binary classification, Ad-

aBoost is not the best algorithm; Passive-Aggressive is the best one for all considered

metrics. Despite using the multiclass classification version for each algorithm [111;

134], AdaBoost was outperformed by the Passive-Aggressive classifier. Thus, we achieve

our second guideline: When performing multiclass classification (for the context of text

classification), the strategy from Passive-Aggressive can outperform boosting: be passive

for a right classification and aggressive with the errors.

Table 4.4: Machine Learning Algorithms. For each algorithm and property classified, we

present precision, recall, F1-score, and Accuracy.

ML Algorithm Property precision recall F1-score Accuracy

AdaBoost

greater than 1.00 0.44 0.62

0.9801

greater than or equal 0.71 0.62 0.67

less than 0.50 1.00 0.67

less than equal 1.00 1.00 1.00

others 0.99 0.99 0.99

Multi-layer Perceptron

greater than 1.00 0.33 0.50

0.9801

greater than or equal 0.50 1.00 0.70

less than 0.50 1.00 0.67

less than equal 0.67 1.00 0.80

others 1.00 0.99 1.00

Passive-Aggressive

greater than 1.00 0.56 0.71

0.9889

greater than or equal 0.78 0.88 0.82

less than 0.50 1.00 0.67

less than equal 1.00 1.00 1.00

others 1.00 1.00 1.00

4.2.4 Generating Contracts

The last step from CONTRACTSUGGESTOR is the contract generation. For generating con-

tracts – pre- and postconditions for each property considered – we use AspectJ [64]. The

4.2 CONTRACTSUGGESTOR: an Approach for Suggesting Contracts 61

decision for AspectJ occurred after the lack of success in using some JML-related approach.

Then, we decided to use AspectJ for the following reasons: first, we do not want to modify

the source code of the projects being evaluated (and in some cases, the source code may

not be available); second, we need an updated compiler for supporting new Java constructs

(JML default compilers are not updated with Java features); finally, the advice mechanism

from AspectJ seems suitable for generating pre- and postconditions in a way similar to JML

contracts [100].

AspectJ supports three kinds of contract-like constructs. AspectJ divides its constructs

into that which runs before a specific point – similar to a precondition; that which runs after

a specific point – similar to a postcondition; and that which runs in place of (or “around”) a

point. For our current purposes, only two kinds are useful: the construct which runs before a

specific point (construct before) – for generating preconditions, and the construct which runs

after a point – for postconditions (construct after).

For illustrating the contract generation step, we use the example in Source Code 4.1. Af-

ter passing through the comments extraction and machine learning application, the @param

comment is classified as having the non-null property. Then, starts the contract generation

phase: first, the script identifies the kind of contract that needs to be generated (pre- or

postcondition) – for this example, a precondition (before advice); next, the script identifies

the method for which to apply the aspect; finally, the aspect is created to check the desired

property. Source Code 4.2 shows the aspect generated for the Source Code 4.1.

Source Code 4.2: Aspect representing a precondition generated to the Source Code 4.1.

1 p u b l i c a s p e c t A b s t r a c t B a g D e c o r a t o r A J {

2 b e f or e (Bag bag) :

3 e x e c u t i o n (∗ A b s t r a c t B a g D e c o r a t o r . A b s t r a c t B a g D e c o r a t o r (. .)) && args (bag) {

4 a s s e r t bag != n u l l ;

5 }

6 }

This aspect, as well as a precondition, will be checked before the execution of

AbstractBagDecorator’s constructor for checking whether the bag parameter is dif-

ferent of null; the assert into the aspect will pass when the bag is not null and will fail

otherwise.

For a postcondition, consider the Source Code 4.3. This code excerpt has a tagged-

4.3 Evaluating Contract Generation 62

comment declaring the return will be always greater than or equal to three. By applying

CONTRACTSUGGESTOR approach, one file is generated for the @return tagged-comment.

Then, the machine learning algorithm identifies this as being a greater than or equal case.

Finally, the aspect presented in Source Code 4.4 is generated.

Source Code 4.3: Example for generating a postcondition.

1 p u b l i c i n t e r f a c e Polygon {

2 /∗ ∗

3 ∗ Returns the number of edges o f a polygon as i n t e g e r .

4 ∗

5 ∗ @return I n t e g e r the number of edges . I s always >= 3

6 ∗ /

7 / / edges >= 3

8 i n t edges () ;

9 }

Source Code 4.4: Example of postcondition generated.

1 p u b l i c a s p e c t PolygonAJ {

2 a f t e r () r e t u r n i n g (i n t o) : c a l l (∗ Polygon . edge ()) {

3 a s s e r t o >= 3 ;

4 }

5 }

The after returning aspect will check if the value returned by edge method is greater

than or equal to three. As a postcondition, the check is performed after the execution of a

given method.

4.3 Evaluating Contract Generation

In this section, we evaluate the contracts generated by CONTRACTSUGGESTOR approach.

The aim of our evaluation is to determine the number of true positives (a comment that is

manually classified as non-null and for which the machine learning algorithm also classify it

as non-null) generated by the approach when facing systems not available in the datasets.

Although machine learning metrics such as precision, recall, and f1-score are largely

used for evaluating the algorithms for classification, in our context, we also need to eval-

uate the contracts generated (aspects for representing pre- and postconditions) since CON-

TRACTSUGGESTOR aims to automatically suggest contracts for Java programs with tagged-

4.3 Evaluating Contract Generation 63

comments related to the properties discussed in previous sections (Section 4.2.4).

In the context of contract-based programming, a contract wrongly generated (called False

positive in machine learning literature [111]) is critical: a client that should be able to get the

needed information from a supplier does not receive that information, or a supplier should be

working properly (returning the expected value) but having a wrong contract could be con-

sidered as not working, not returning the expected value. So, we are interested in checking

all generated contracts for avoiding this problem. For each system, we used for evaluating

CONTRACTSUGGESTOR, we present in Table 4.5 the total amount of contracts generated,

and from those, the number of correct (true positives – manually classified as non-null and

classified as non-null by the machine learning algorithm), the number of false positives, and

the false positive rate – as a measure of quality for the approach in a given system.

FPR =
#FalsePositives

#Contracts
(4.2)

Table 4.5: Evaluating contracts generated by CONTRACTSUGGESTOR. For each system, we

present, grouped by dataset, the number of contracts generated, the number of correct con-

tracts, the number of false positives, and the false positive rate (as defined by Equation 4.2).

Non-null dataset

System #Contracts #Correct #False Positive FPR

Apache Commons-lang 558 545 13 0.023

Apache Dubbo 9 9 0 0.000

Apache PDFBox 25 25 0 0.000

Curity 1 0 1 1.000

Cyclops Group 1 1 0 0.000

Databus 5 5 0 0.000

Design Patters in Java 3 3 0 0.000

Java lang 5 4 1 0.200

Java util 20 15 5 0.250

Mozilla Zest 1 1 0 0.000

Riak 1 1 0 0.000

Relational dataset

System #Contracts #Correct #False Positive FPR

Apache Collections 24 4 20 0.833

Betwixt 7 0 7 1.000

PdfBox 15 0 15 1.000

4.4 Limitations 64

Regarding Non-null dataset for only one system – Curity – the FPR is high 1.0; for

all other systems the FPR is less than 0.3, indicating the majority of the generated contracts

are correct and can be maintained in the systems. Those results for the non-null property

are explained by the amount of non-null instances in the dataset (more than 7K instances)

that represent several ways of declaring (in natural language constructs) that a parameter or

a method return value must be non-null.

On the other hand, the FPR for the dataset Relational is high for all systems (greater

than 0.8). This can be explained the size of each class (relational property being consid-

ered – greater than, greater than or equal, less than, and less than or equal): the class with

more comment instances – greater than or equal – has only 31 instances. As natural lan-

guage provides several ways of declaring the same property, we need to increase the sets for

achieving a low FPR. Explaining what happened in each system, for Apache Collections,

CONTRACTSUGGESTOR approach generates 24 contracts, from those, four are correct, and

two are misclassified – the contract should be a greater than but it was classified as greater

than or equal. With respect to Betwixt, all generated contracts are incorrect. For PdfBox,

the approach generates 15 contracts; from those, 14 are incorrect and one was misclassified

– the contract should be a greater than but it was classified as greater than or equal.

4.4 Limitations

The current approach only considers tagged-comments, this limits our contracts to be pre-

and postconditions. In addition, we miss all untagged information provided in method com-

ments. A way of reducing this limitation is to improve extract_comments for collecting all

comments in the Java source code that are delimited by the /** ... */ delimiters and update

the datasets for considering those comments. Then, the approach for generating contracts

will need to use the information from comments for generating contract invariants.

Although the datasets, mainly the dataset for the non-null property, are relatively large,

they do not represent all possible ways of writing about the considered properties; there-

fore, even the best algorithm we used produces both false positives and false negatives. For

contract generation context, a false positive is critical: correct clients can have some func-

tionality negated because an incorrect contract that is automatically generated. On the other

4.4 Limitations 65

hand, a high number of false negatives may turn CONTRACTSUGGESTOR approach useless.

Chapter 5

Evaluating Contracts

In this chapter, we first present our evaluation of CONTRACTSUGGESTOR (Section 5.1); then

we present our leverage of JMLOK2 [84] for the C#/Code Contracts context (Section 5.2.2);

finally, we present the case study we perform with both tools – CONTRACTOK and JMLOK2

– concerning automatic detection and manual classification of nonconformances in contract-

based programs (Section 5.3).

5.1 Checking Contracts by CONTRACTSUGGESTOR

We run JMLOK2 [84] over the contracts automatically generated in order to check if the sys-

tems are in conformance with the contracts inferred from natural language tagged-comments.

First, we present the study definition (Section 5.1.1) and planning (Section 5.1.2). Then,

Sections 5.1.3 and 5.1.4 present and discuss the results, respectively. Finally, Section 5.1.5

describes the threats to validity. The evaluation follow three main steps: (1) we run the con-

tract generator over each experimental unit, (2) manually check each generated contract, and

(3) we run JMLOK2 over the system in order to detect inconsistencies between source code

and contracts – potential nonconformances, because the inconsistencies may not be real bugs

but outdated code commentary.

66

5.1 Checking Contracts by CONTRACTSUGGESTOR 67

5.1.1 Definition

The goal of this case study is to analyze the contracts generated by CONTRACTSUGGESTOR

for the purpose of evaluation with respect to detection of nonconformances from the point of

view of developers in the context of programming. In particular, we address the following

research question:

Q1. How many nonconformances is JMLOK2 able to detect in systems with contracts for

non-null and in systems with contracts for relational generated by CONTRACTSUGGESTOR

approach?

We measure the number of detected nonconformances (#NCs, henceforth) in each system

within a given test generation time limit.

5.1.2 Planning

In this section, we present the design of this case study. First, we show the units used. Then,

we present the experimental procedure.

Experimental Units

The case study is performed on systems not used for validating the machine learning

algorithms for non-null and relational properties: Apache Collections,1 Apache

Commons-lang,2 Apache PDFBox,3 and JodaMoney.4 These projects sum up to 240

KLOC and 978 contracts. These projects were the only projects that could be checked by

JMLOK2.

The companion website [85] groups complete descriptions of all considered systems,

which are listed in Table 5.1, all metrics considered in this study, and a replication package

of this study.

Study procedure

The study consists of three main steps (see Figure 5.1): (1) run the tools over each

contract-based program in a given time limit (the time limit is the time used for tests gen-

1https://archive.apache.org/dist/commons/collections/source/

commons-collections-3.2.1-src.tar.gz
2https://github.com/apache/commons-lang
3https://pdfbox.apache.org/
4https://github.com/JodaOrg/joda-money

5.1 Checking Contracts by CONTRACTSUGGESTOR 68

Table 5.1: Experimental units’ summary. Column LOC shows the code size of each exper-

imental unit. Column #CC presents the total of contracts generated for each experimental

unit. Column Property lists the property that is checked with the contracts.

Experimental Unit LOC #CC Property

Apache Collections 26,321 6 Relational

Apache Commons-lang 76,860 545 Non-null

Apache PDFBox 128,399 25 Non-null

JodaMoney 8,467 402 Non-null

Total 240,047 978

eration [91]), and (2) manually classify each detected nonconformance in terms of its likely

cause.

Figure 5.1: Steps performed in this study. First, we use our approach for suggesting con-

tracts based on natural language comments. Then, we perform the manual validation of each

contract. Finally, we run JMLOK2 over each system in order to detect potential nonconfor-

mances.

We performed the case study on a 3.6 GHz core i7 with 16 GB RAM running Win-

dows 8.1 Enterprise, backed by Java 1.8 update 162, AspectJ compiler 1.9.0.RC4. Since

Randoop [91] requires a time limit for test generation – the time after which the generation

process stops –, we used 600s, running the tool 10 times.

5.1 Checking Contracts by CONTRACTSUGGESTOR 69

5.1.3 Results

JMLOK2 detects 6 nonconformances in the evaluated projects (see Table 5.1): Apache

Collections (1), Apache Commons-lang (3), and JodaMoney (2). In Apache

PDFBox, JMLOK2 was not able to detect nonconformances with the configuration used

(Section 5.3.2). Concerning nonconformance types, all nonconformances detected are pre-

condition problems (see Table 5.2).

Table 5.2: For each system, we present the class and method in which the problem has

occurred. Column Type shows the nonconformance types.

System Class Method Type Total

Apache Collections BoundedBuffer decorate precondition 1

Apache Commons-lang
FieldUtils

getDeclaredField precondition

3getField precondition

JavaVersion atLeast precondition

JodaMoney
BigMoney checkCurrencyEqual precondition

2
Money checkNotNull precondition

Total 6

5.1.4 Discussion

We proceed with the discussion of our research question. JMLOK2 detected a total of 6 non-

conformances: 5 related to non-null and one related to the relational property. The only type

of nonconformance detected was the precondition. These numbers indicate that most viola-

tions occur at the entry of operations; internally the code of the systems do not consider the

restrictions that are into the comments. We submitted all nonconformances for the systems’

developers but they did not answer our contact.

In Apache Commons-lang, even though the called methods have the natural lan-

guage comments such as: “the {@link Class} to reflect, must not be {@code null}”, the

callers do not respect this and call them by passing a null value as a parameter.

With respect to the nonconformance detected into Apache Collections, method

decorate from BoundedBuffer is called with 0 for the parameter maximumSize by

the method boundedBuffer from BufferUtils. Method decorate has the follow-

ing contract: maximumSize >= 1; generated from the natural language tagged-comment:

5.2 Verifying Nonconformances in General 70

“the maximum size, must be size one or greater”.

For JodaMoney unit, however, we believe the contracts automatically generated for

classes BigMoney and Money are not sufficient for satisfying the requirement declared in

the Javadoc comment: “the monetary values to total, not empty, no null elements, not null”.

Our approach is only able to generate a partial contract for this comment; this is a limitation

of our approach. A way of solving the problem would be to improve the contract by adding

the following statements:

1 f o r (BigMoneyProvider b : monies) {

2 a s s e r t b != n u l l ;

3 }

Then, the excerpt “no null elements, not null” would be checked and the test cases gener-

ated into JMLOK2 would be classified as meaningless test cases because they would violate

the preconditions of the method directly.

5.1.5 Threats to validity

This study has some limitations; next, we describe some threats to the validity of our evalu-

ation.

Internal validity

The randomness promoted by the use of an automatic test generator (Randoop [91]) by

JMLOK2 is an internal threat to the validity of our study; so, we ran each system 10 times for

confidence. In each execution, tests are generated independently of the previous run, which

may show different contexts revealing the same nonconformances.

External validity

A Randoop-based approach lacks repeatability, in terms of machine setting or operating

system. Also, even though we diversified our choice of systems, varying in code size and

contracts, generalizing the obtained results is almost impossible.

5.2 Verifying Nonconformances in General

In this section, we discuss nonconformances in a general perspective. We first provide the

theoretical foundation for understanding Code Contracts; then, we present our approach for

5.2 Verifying Nonconformances in General 71

conformance checking of C#/Code Contracts systems. Finally, Section 5.3 presents our case

study with JMLOK2 and CONTRACTOK over 24 open-source systems.

5.2.1 Code Contracts

Code Contracts [35] provides a language-agnostic way to express coding assumptions

in .NET programs. Contracts are calls to static methods from the Contract class

Requires and Ensures, specifying pre- and postconditions, respectively. In addition,

we can specify class invariants. Invariants are placed in methods identified by the attribute

[ContractInvariantMethod]. Those methods are composed only by a sequence of

calls to the static method Invariant from Contract class.

In Source Code 5.1 we present the implementation of headElement with contracts

written in Code Contracts. The postcondition – the static call to Ensures method declares

that the return value Result will be not null when the queue is not empty – when the queue

has at least one element.

Source Code 5.1: Example of DBC in Code Contracts.

1 p u b l i c c l a s s AccountQueueImpl {

2 p u b l i c Queue <Account > accQueue = new Queue <Account > () ;

3

4 p u b l i c Account headElement () {

5 Contract . Ensures (isEmpty () | | Contract . Resul t <Account > () != n u l l) ;

6 i f (i sEmpty ()) {

7 re turn n u l l ;

8 } e l s e {

9 re turn accQueue . F i r s t () ;

10 }

11 }

12

13 p u b l i c boo l isEmpty () {

14 re turn accQueue . Count () == 0 ;

15 }

16 }

Concerning tool support, Clousot [36] is the static verifier for Code Contracts, and

Pex [122] is the dynamic conformance checking tool; the tools are integrated into the Mi-

crosoft Visual Studio development environment for the .NET platform.

5.2 Verifying Nonconformances in General 72

5.2.2 CONTRACTOK

As an additional contribution of this thesis, we leverage the RGT-based (randomly-generated

tests) approach [84] to detect nonconformances in the C#/Code Contracts context by means

of CONTRACTOK (Figure 5.2). CONTRACTOK is available online,5 for Windows platforms

under the GNU (GNU General Public License) GPL v3. We first discuss the process for de-

tecting nonconformances, then, we discuss the manual classification performed after running

the tool.

Detection

The following steps make up the approach: In Step 1, the system classes are compiled

with Code Contracts activated (the binary re-writer). Then, in Step 2, tests are automatically

generated and executed; randomly generated tests are composed of sequences of calls to

methods and constructors under test in a given time limit [90]. Next, test results are compared

against oracles established from the contracts (Step 3). In Step 4, two filters are applied: first,

meaningless test cases are discarded [84] – tests violating a precondition in the first call to

a method under test. The remaining failures consist of relevant contract violations, which

are candidate nonconformances. The second filter categorizes failures into distinct faults

– those faults make up the nonconformances subject to manual classification process (the

establishment of likely causes).

Figure 5.2: CONTRACTOK approach for detecting nonconformances in C#/Code Contracts

systems. The tool inputs are a C# project solution and a time limit for test generation.

Classification

Regarding nonconformance classification, we follow the heuristics from Milanez [79]

for suggesting likely causes for nonconformances. For three types, namely precondition,

5https://github.com/alyssonfm/contractok

5.2 Verifying Nonconformances in General 73

postcondition, and invariant, we updated the proposed model (the heuristics for constraint

and evaluation types remain unchanged).

The study is developed in a heuristic-based approach so that the researcher may follow

the analysis flow until identifying a likely cause for a nonconformance. The heuristics rep-

resent a way to establish a pattern for the analysis. For each type of nonconformance the

first analysis is made in the source code: if the method’s body in which the nonconformance

was detected (or some intermediate method) modifies a value breaking the precondition, the

postcondition or the class invariant, the likely cause for the nonconformance can be pointed

as Code error.

Specifically for precondition, if there is no check for the value received as a parameter

(or sent to the method in which the nonconformance occurred), the likely cause suggested is

Weak precondition; otherwise, Weak postcondition can be suggested when an intermediate

called method does not restrict the values passed as parameters to the method where the

nonconformance occurred. Furthermore, the Strong precondition may also be suggested

when a method has too many clauses in the precondition that makes it difficult to be satisfied.

Concerning postcondition, if the precondition is too permissive the likely cause suggested

is the Weak precondition. It is also possible to suggest Weak postcondition as a likely cause,

it happens if a postcondition of a called method allows the returns of a value that breaks the

postcondition of the caller method. The last likely cause that can be assigned to postcondition

is Strong postcondition, occurring if the method has many postcondition clauses making it

difficult to satisfy all of them.

For invariant, the non-existence of a precondition in the method where the nonconfor-

mance occurred or in some intermediate called method is expressed by the likely cause Weak

precondition. Otherwise, if a postcondition allows a value that breaks the class invariant after

the method’s execution the likely cause suggested will be Weak postcondition. Similarly to

the Strong pre- and postcondition likely causes, an invariant nonconformance can be caused

by a Strong invariant, when there are many invariant clauses that cannot be satisfied by the

present or some called method.

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 74

5.3 A Study on Java/JML and C#/Code Contracts Open

Source Systems

We evaluate each tool – JMLOK2 and CONTRACTOK – in 12 real projects available on

the literature with respect to automatic detection and manual classification of nonconfor-

mances. Moreover, we investigate how DBC practitioners write contracts by analyzing all

systems evaluated with the tools. First, we present the study definition (Section 5.3.1) and

planning (Section 5.3.2). Then, Sections 5.3.3 and 5.3.4 present and discuss the results, re-

spectively. Section 5.3.5 describes the threats to validity. Finally, Section 5.3.6 summarizes

the main findings. The evaluation follows two main steps: (1) we run each tool in 12 real

contract-based systems to detect nonconformances, and (2) we manually classify all detected

nonconformances in order to establish likely causes.

5.3.1 Definition

The goal of this case study is to analyze one approach (implemented for both tools) for

the purpose of evaluation with respect to automatic detection and manual classification of

nonconformances from the point of view of researchers in the context of contract-based

programming. In particular, we address the following research questions:

• Q1. How many nonconformances is the approach able to detect in real contract-based

programs for a given time limit, and which are the most common types and likely

causes of those nonconformances?

We measure the number of detected nonconformances (#NCs, henceforth) in each

system within a given test generation time limit, and analyze the frequency of noncon-

formances by types and likely causes.

• Q2. What is the testing cost for detecting a nonconformance?

We measure and summarize metrics that define the complexity of the first failing test

case and the complexity for identifying a likely cause for the nonconformance, in terms

of metrics B and D (see Section 5.3.2), respectively.

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 75

In order to discover how practitioners write contracts in JML and Code Contracts, some

additional questions are defined:

• Q3. Which are the most common contract types written by developers?

We measure the frequency of contract clauses (#CC) for each type of contract in each

experimental unit and discuss if there are significant differences between the use of

each contract type.

• Q4. Is there any relationship between contracts complexity and the number of detected

nonconformances? And what is the relationship between contract type and nonconfor-

mance type?

We measure contract complexity (CCo) and relate this metric with #NC for each sys-

tem, by using a correlation test. We also relate the most common contract type with

the most common nonconformance type.

• Q5. Which are the most common nonconformance types for the units with the most

complex contracts?

We rank the top five systems for CCo and group the detected nonconformances in the

respective unit according to the nonconformance type.

• Q6. What is the relationship between contract type and the number of nonconfor-

mances per contract clause (nonconformance ratio)?

We discuss the relationship between contract type and the number of nonconfor-

mances.

5.3.2 Planning

In this section, we present the design of this case study. First, we show the units used, then,

the experimental procedure. Next, we describe the tools and detail the manual classification

procedure.

Experimental Units

The case study is performed on 24 open source projects, summing up to 148 KLOC

and 12.2 K Contract Clauses [34] (KCC, henceforth). From those, the 12 JML sum up to

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 76

26 KLOC and more than 4.2 KCC and the 12 Code Contracts sum up to 122 KLOC and

8 KCC. These projects were the only open-source projects from GitHub,6 CodePlex,7 and

BitBucket,8 that could be compiled by our tools.

Regarding JML projects, they include sample programs available in the JML web site9,

composed by 11 example programs for training purposes, written by specialists in the JML

language.10 Also, the study includes programs collected from 11 open-source JML projects.

While Bank, PayCard, and TheSchorrWaiteAlgorithm are presented in the KeY

approach book [7], Bomber [101] is a mobile game, and Dnivra-Jive is the set of pro-

grams used by the Jive JML Dynamic Program Verifier11; HealthCard [105] is an ap-

plication that manages medical appointments into smart cards. JAccounting is a case

study from the ajml compiler project [101], implementing an accounting system. Likewise,

Javacard is a technology used to program smart cards and it comprises a subset of the

desktop Java; a subset of the programming language itself and a cut down version of the API

(The current API implementation has been developed for the KeY interactive verification

system12). Mondex [110] is a system whose translation from original Z specification was

developed in the Verified Software Repository13 context. In its turn, PokerTop is a poker

system.14 Finally, TransactedMemory [96] is a specific feature of the Javacard API.

With respect to Code Contracts, while AutoDiff [112] is a library for au-

tomatic differentiation of mathematical functions and Boogie [4] is an Interme-

diate Verification Language (IVL) for proof obligations solved by reasoning en-

gines, Contractor builds contract specifications with type-state information, and

DotNetComponentOrientedProgramming exemplifies component-oriented pro-

gramming in .NET. In addition, DotNetExtensions contains some numerical exten-

6https://github.com/
7https://www.codeplex.com/
8https://bitbucket.org/
9http://www.eecs.ucf.edu/~leavens/JML/examples.shtml

10dbc, digraph, dirobserver, jmlkluwer, jmltutorial, list, misc, reader, sets,

stacks, table, and an adaptation of the subpackage stacks – stacks2. Two other programs

(prelimdesign and jmlrefman) could not be compiled.
11https://bitbucket.org/dnivra/jive-jml-dynamic-program-verifier
12http://www.key-project.org/case_studies/
13http://vsr.sourceforge.net/mondex.htm
14https://github.com/topless/PokerTop

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 77

sions for .NET, DRail parses routes and tracks, and EuroManager is a football man-

ager online with graphical simulation. Frost is a hardware accelerated drawing and com-

position library written in C#. Finally, MonoMobileFacebook is a Facebook C# SDK

for MonoMobile, the NeuroFlow Overhaul is a Machine Learning Algorithm Library;

ProgrammingWithCC is a set of exercises using C# and Code Contracts, and Yandex is

a .NET interface to the JSON-based Yandex.Direct API.

The companion website [85] groups complete descriptions of all considered systems,

which are listed in Table 5.3, all metrics considered in this study, and a replication package

of this study.

Study procedure

The study consists of two main steps (see Figure 5.3): (1) run the tools over each contract-

based program in a given time limit (the time limit is the time used for tests generation [91]),

and (2) manually classify each detected nonconformance in terms of its likely cause.

JMLOK2 and CONTRACTOK

JMLOK2 and CONTRACTOK detect nonconformances by automatically generating and

executing tests in a given time limit (by using Randoop [91]), comparing the test results

with oracles (generated from the contracts) (Steps 1.A to 1.C). After test execution, two

filters are applied (Step 1.D): first, meaningless test cases are discarded [84] – tests violating

a precondition in the first call to a method under test, which would be false positives, as

they convey test data inadequacy (side effect from test generation). The remaining failures

consist of relevant contract violations, which are candidate nonconformances. The second

filter categorizes failures into distinct faults – those faults make up the nonconformances

subject to the manual classification process.

We performed the case study on a 3.6 GHz core i7 with 16 GB RAM running Win-

dows 8.1 Enterprise, backed by Java 1.7 update 80, JML compiler 5.6_rc4, Visual Stu-

dio Community 2015, and Code Contracts 1.9.10714.2. Since Randoop [91] requires

a time limit for test generation – the time after which the generation process stops –

and we want to extend the evaluation of JMLOK2 performed in previous works [83;

84], we varied time limits from the 60s to 600s, each interval executed 10 times; aiming

to stabilize the number of detected nonconformances through time, we ran JMLOK2 with

the time limit varying until 1,100s for the unit Samples and CONTRACTOK for the unit

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 78

Table 5.3: Experimental units’ summary. Column LOC shows the code size of each exper-

imental unit. Column #CC presents the total of contract clauses of each experimental unit.

And columns #Pre to #Const display the clauses grouped by their types.

Contract clauses

Experimental Unit LOC #CC #Pre #Post #Inv #Const

Bank 792 126 66 43 17 0

Bomber 6,258 121 43 78 0 0

Dnivra-Jive 232 143 30 108 5 0

HealthCard 2,156 1,019 646 235 104 34

JAccounting 6,648 194 98 94 2 0

Javacard API 3,294 33 14 4 15 0

Mondex 655 174 28 104 39 3

PayCard 110 78 21 40 17 0

PokerTop 309 190 80 95 15 0

Samples 3,855 1,834 683 912 237 2

TheSchorrWaiteAlgorithm 110 23 11 9 3 0

TransactedMemory 1,779 295 149 52 93 1

JML 26,198 4,230 1,869 1,774 547 40

Experimental Unit LOC #CC #Pre #Post #Inv #Const

AutoDiff 1,291 157 101 56 0 -

Boogie 66,971 5,214 3,071 1,554 589 -

Contractor 10,420 507 292 150 65 -

DotNetComponentOrientedProgramming 7,180 147 71 73 3 -

DotNetExtensionsImproved 1,384 39 38 1 0 -

DRail 628 60 31 29 0 -

EuroManager 4,853 190 190 0 0 -

Frost 12,014 1,156 892 231 33 -

MonoMobileFacebook 5,332 192 160 32 0 -

NeuroFlow Framework Overhaul 10,626 377 326 39 12 -

ProgrammingWithCodeContracts 119 14 5 7 2 -

Yandex 1,972 18 18 0 0 -

Code Contracts 122,790 8,071 5,195 2,172 704 -

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 79

Figure 5.3: Steps performed in this study. First, we use the tools for detecting nonconfor-

mances in each system. Then, we perform the manual classification of likely causes for

each detected nonconformance. First, each researcher tries to establish a likely cause (Steps

2.A and 2.B) by inspecting the source code and contracts; then, each researcher reviews the

classification performed by the others (2.C); finally, in a discussion session (2.D) the most

suitable likely cause is established.

Boogie. These limits were chosen based on the fact we test the systems as a whole, not

only a class by time as similar works do [77]. Furthermore, based on the tool results for

each experimental unit, we can suggest the best cost-benefit for choosing a time limit. As a

basis, we suggest starting with a low time limit, such as 60s and increases this value based

on the budget for the test generation step. All systems source code, generated test cases, and

JMLOK2 binaries are available as a replication package on the companion website [85].

Manual classification

Each detected nonconformance results in the following manual steps: first, the researcher

examines the source code and its respective contracts. Then, he examines the test case that

shows the nonconformance, so he will be able aware of the state changes performed until

the program fails. After that, the error category can be established: code, contract, or both.

Finally, the fault must be diagnosed, before it can be fixed (Steps 2.A and 2.B).

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 80

After the first classification, each researcher reviews the classification performed by the

others (in this study, three researchers individually classified all nonconformances - Step

2.C). Then, in a discussion session, they establish the most suitable likely cause for each

nonconformance (Step 2.D). We tried to contact the developers of all systems used in this

study, but we did not receive answers from all of them until the writing of the present the-

sis; however, those who answered our contact (developers of four of the evaluated systems)

confirmed the nonconformances and agreed to our classification.

We perform a kappa test [21] in order to investigate the agreement between the re-

searchers’ classification and we get an unweighted kappa of 0.74 indicating a substantial

strength of agreement [66] between the classification performed by the researchers with a

confidence level of 95% for the nonconformances into Java systems; and we get an un-

weighted kappa of 0.21 indicating a fair strength of agreement [66] between the classifica-

tion performed by the researchers with a confidence level of 95% for the nonconformances

in Code Contracts projects.

Researchers considered as causes: weak or strong precondition, strong postcondition,

strong invariant, and code error – weak invariant and weak postcondition are ruled out as

researchers cannot judge lack of general system restrictions without deep knowledge about

the requirements.

For each nonconformance (nc) we manually collect breadth (B) and depth (D) metrics.

The first measures the number of top calls within the test method until the failure occurs.

This metric is defined in Equation 5.1; the calls(tm) returns the sequence of method calls

into the test method (tm). The second is the call depth (Equation 5.2) needed to find a given

nonconformance – the internal calls performed until the contract is violated. For the method

call that corresponds to the position on which the nonconformance was revealed, if the latter

is in the body of this method, D receives 1, otherwise, its value is recursively increased until

the method that reveals the nonconformance is called.

B(nc, tm) = position(nc, calls(tm)) (5.1)

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 81

D(nc, tm) =

let p = position(nc, calls(tm))

let m = method(calls(tm)[p])

if (nc ∈ body(m)) then result = 1

else result = 1 +D(nc,m)

(5.2)

For quantifying contract clauses, we follow Estler et al. [34] approach, in which the

number of contract clauses is a proxy for contract complexity. The CCo metric (Equation 5.3)

is the ratio between #CC and LOC. The implementation for counting contract clauses and

lines of code is available online.15

CCo(x) =
#CC(x)

LOC(x)
(5.3)

For the system presented in our motivating example (Chapter 1.1.1), B is equal to 4 be-

cause the test case (Source Code 1.3) has the creation of one Counter object and three

calls to updateCount method; and D is equal to 1 because we just need to look into

updateCount’s method in order to figure out the problem. Regarding CCo metric (Equa-

tion 5.3), the following values are computed: LOC = 10; #CC = 5; #Pre = 0; #Post = 3; #Inv

= 2. Therefore, CCo = 4/10, CCo is equal to 0.4.

5.3.3 Results

JMLOK2 detects 119 nonconformances in the evaluated projects (see Table 5.4); from

those, 24 nonconformances are new in experimental units that have been used in previous

works with JMLOK2 [83],[84]: Bank (3), Bomber (5), Dnivra-Jive (6), HealthCard

(41), JAccounting (26), Javacard (7), Mondex (2), PokerTop (1), Samples (18),

TheSchorrWaiteAlgorithm (2), and TransactedMemory (8). In PayCard, JM-

LOK2 was not able to detect nonconformances with the configuration used (Section 5.3.2).

Concerning the types, those nonconformances were distributed in the following manner: 51

invariant, 47 postcondition, 8 constraint, 7 evaluation, and 6 precondition.

15https://github.com/igornatanael/util/tree/master/ContractCounter

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 82

Most of the 119 detected nonconformances manually received Weak precondition (51) as

likely cause, followed by Code error (38). Four units (HealthCard, JAccounting,

Samples, and TransactedMemory) presented Weak precondition as the most frequent

likely cause (see Table 5.4).

Table 5.4: For each system, #NC, grouped by type and likely cause. The columns represent

nonconformance types, from left to right: precondition, postcondition, invariant, constraint,

and evaluation. Also, likely causes: weak precondition, strong precondition, weak postcon-

dition, strong postcondition, strong invariant, strong constraint, and code error.

Types Likely causes

System Pre Pos Inv Con Eva WPre SPre WPos SPos SInv SCon Code Total

Bank 0 1 1 0 1 0 0 0 2 1 0 0 3

Bomber 1 2 2 0 0 1 1 0 0 0 0 3 5

Dnivra-

Jive

0 4 0 0 2 2 0 0 4 0 0 0 6

Health-

Card

2 15 16 8 0 23 0 2 11 0 1 4 41

JAccoun-

ting

0 11 12 0 3 9 0 0 1 0 0 16 26

Javacard 0 0 7 0 0 0 0 0 0 0 0 7 7

Mondex 0 0 2 0 0 0 0 0 0 0 0 2 2

PayCard 0 0 0 0 0 0 0 0 0 0 0 0 0

PokerTop 0 0 1 0 0 0 0 0 0 0 0 1 1

Samples 2 13 2 0 1 10 0 2 4 0 0 2 18

TheSchorr-

WaiteAlg.

0 1 1 0 0 0 0 0 1 0 0 1 2

Transacted-

Memory

1 0 7 0 0 6 0 0 0 0 0 2 8

JML 6 47 51 8 7 51 1 4 23 1 1 38 119

CONTRACTOK detects 63 nonconformances in the 12 Code Con-

tracts projects: AutoDiff (1), Boogie (17), Contractor (3),

DotNetComponentOrientedProgramming (14), DotNetExtensions (1),

DRail (2), EuroManager (3), Frost (15), MonoMobileFacebook (1),

NeuroFlowOverhaul (3), ProgrammingWithCC (2), and Yandex (1). From

those, 28 were precondition, 25 postcondition, and 10 invariant errors. From the manual

classification, most nonconformances were assigned weak precondition as likely cause

(40), followed by code error (18). Table 5.5 presents all nonconformances, grouped by

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 83

type and likely cause. In addition, we determine which likely causes are assigned to each

nonconformance type, as presented in Table 5.6.

Table 5.5: For each system, #NC, grouped by type and likely cause. Columns represent

nonconformance types, from left to right: precondition, postcondition and invariant. Also,

likely causes: weak precondition, strong precondition, strong postcondition, strong invariant,

and code error.

Types Likely Causes

System Pre Post Inv WPre SPre SPost SInv Code Total

AutoDiff 1 0 0 0 1 0 0 0 1

Boogie 8 1 8 8 0 0 0 9 17

Contractor 1 0 2 1 0 0 0 2 3

DotNetCOP 0 14 0 12 0 0 0 2 14

DotNetExtensions 1 0 0 1 0 0 0 0 1

DRail 2 0 0 0 0 0 0 2 2

EuroManager 3 0 0 3 0 0 0 0 3

Frost 7 8 0 13 0 1 0 1 15

MonoMobileFacebook 1 0 0 0 0 0 0 1 1

NeuroFlowOverhaul 3 0 0 2 1 0 0 0 3

ProgrammingWithCC 0 2 0 0 0 2 0 0 2

Yandex 1 0 0 0 0 0 0 1 1

Total 28 25 10 40 2 3 0 18 63

Table 5.6: Likely causes for each nonconformance type.

Likely Cause

Type WPre SPre WPost SPost SInv SConst Code

precondition 21 3 4 0 0 0 6

postcondition 41 0 0 23 0 0 8

invariant 20 0 0 0 1 0 40

constraint 7 0 0 0 0 1 0

evaluation 2 0 0 3 0 0 2

For JML, average breadth ranges from 1.00 (in PokerTop experimental unit) to 4.17

(in Dnivra-Jive); average depth varies from 1.00 (in TheSchorrWaiteAlgorithm)

to 4.22 (in Samples) – see Table 5.7. Concerning how JML developers write contracts, we

found a small difference between the use of preconditions (0.442) and postconditions (0.419)

over the evaluated projects – see Table 5.7; on the other hand, the use of history constraint

is limited to few projects (4 out of 12), correspondingly the number of contract clauses of

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 84

this type is also small: just 40 from 4,230 contract clauses. For Code Contracts, average

breadth ranges from 2.00 (DRail) to 14.00 (AutoDiff); average depth varies from 1.50

(ProgrammingWithCC) to 11.00 (MonoMobileFacebook) – see Table 5.7. Moreover,

for 10 out of 12 systems, precondition clauses are the most common contract clause. On the

other hand, invariant clauses are less common, they are present in only six systems (also see

Table 5.7).

For JML, in three of the top-five units with respect to CCo metric, Invariant is the most

common type of nonconformance. The contract type most common for the projects with

the highest number of nonconformances detected is Precondition (three out of five) – see

Table 5.7. Regarding the relationship between contract type and nonconformance type, con-

tract clauses of precondition are more related to nonconformances of invariant type; whereas

contract clauses of postcondition are equally related to postcondition and invariant types –

see Table 5.7. Regarding contract complexity CCo for Code Contracts, the values vary from

0.01 (Yandex) to 0.12 (AutoDiff and ProgrammingWithCC). Regarding nonconfor-

mance type, precondition occurred more frequently in 7 out of 12 systems (see Table 5.7).

Furthermore, Precondition clauses are the most common contract type in three out of the top

five systems in terms of nonconformance ratio (see Table 5.7).

5.3.4 Discussion

We proceed with the discussion of the research questions. Regarding Q1, JMLOK2 detected

a total of 119 nonconformances. The approach detected nonconformances to the set of exam-

ple programs, written by JML specialists. Despite their best efforts, subtle nonconformances

remained in the contract and/or programs; some of those were indeed hard to catch only with

visual analysis or simple tests. For instance, we detected four nonconformances in methods

that invoke, in their contract, JMLDouble.approximatelyEqualTo; JMLDouble is

imported from the standard JML API, only being visible on the contract level; its method

approximatelyEqualTo performs a precise comparison between two values. The tol-

erance value (constant related to error rate) can be inappropriately small (only 0.005); or, this

postcondition is too strong; or, the implementation of type JMLDouble is too restrictive.

All these possible reasons show how hard it is to detect those kinds of nonconformances.

From the 119 nonconformances detected, the most frequent type was the invariant – 51,

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 85

Table 5.7: For each system, we present the results of average breadth (B), depth (D), the

ratio between each contract type and contract clauses, the value of CCo, the number of

nonconformances detected (#NCs), the nonconformance ratio (#NCs/CC), the most common

contract and nonconformance type.

System B D
Pre

CC

Post

CC

Inv

CC

Cons

CC
CCo #NCs

#NCs

CC

Contract

type
NC type

Bank 2.00 1.33 0.524 0.341 0.135 0.000 0.16 3 0.024 Pre Post and Inv

Bomber 1.40 2.00 0.355 0.645 0.000 0.000 0.02 5 0.041 Post Post and Inv

Dnivra-Jive 4.17 3.67 0.210 0.755 0.035 0.000 0.62 6 0.042 Post Post

HealthCard 3.46 2.61 0.634 0.231 0.102 0.033 0.47 41 0.040 Pre Inv

JAccounting 1.69 1.38 0.505 0.485 0.010 0.000 0.03 26 0.134 Pre Inv

Javacard 1.29 2.43 0.424 0.121 0.455 0.000 0.01 7 0.212 Inv Inv

Mondex 1.50 1.50 0.161 0.598 0.224 0.017 0.27 2 0.011 Post Inv

PayCard – – 0.269 0.513 0.218 0.000 0.71 0 0.000 Post –

PokerTop 1.00 2.00 0.421 0.500 0.079 0.000 0.61 1 0.005 Post Inv

Samples 3.67 4.22 0.372 0.497 0.129 0.001 0.48 18 0.010 Post Post

TheSchorrWaite-

Algorithm
1.50 1.00 0.478 0.391 0.130 0.000 0.21 2 0.087 Pre Post and Inv

TransactedMemory 1.63 1.50 0.505 0.176 0.315 0.003 0.17 8 0.027 Pre Inv

JML 2.68 2.45 0.442 0.419 0.129 0.009 0.31 9.92 0.05 – –

AutoDiff 14.00 3.00 0.643 0.357 0.000 – 0.12 1 0.006 Pre Pre

Boogie 6.71 2.12 0.589 0.298 0.113 – 0.08 17 0.003 Pre Pre and Inv

Contractor 5.33 3.00 0.576 0.296 0.128 – 0.05 3 0.006 Pre Inv

DotNetCOP 6.71 5.14 0.483 0.497 0.020 – 0.02 14 0.095 Post Post

DotNetExtensions 3.00 2.00 0.974 0.026 0.000 – 0.03 1 0.026 Pre Pre

DRail 2.00 2.00 0.517 0.483 0.000 – 0.10 2 0.033 Pre Pre

EuroManager 4.67 3.33 1.000 0.000 0.000 – 0.04 3 0.016 Pre Pre

Frost 6.93 5.87 0.772 0.200 0.029 – 0.10 15 0.013 Pre Post

MonoMobile-

Facebook
10.00 11.00 0.833 0.167 0.000 – 0.04 1 0.005 Pre Pre

NeuroFlowOH 5.33 4.67 0.865 0.103 0.032 – 0.04 3 0.008 Pre Pre

Programming-

WithCC
4.00 1.50 0.357 0.500 0.143 – 0.12 2 0.143 Post Post

Yandex 5.00 5.00 1.000 0.000 0.000 – 0.01 1 0.056 Pre Pre

Code Contracts 6.14 4.05 0.644 0.269 0.087 – 0.07 5.25 0.008 – –

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 86

followed by postcondition violations – 47. These numbers indicate that most violations oc-

cur at the exit of operations, even if the cause is not in the operation itself. There are several

possible explanations: specifiers expect certain behavior to which the code fails to comply,

or a chain of previous calls fails to avoid certain undesirable states. More severe contract

errors were not significantly frequent (only seven were evaluation errors). A few noncon-

formances were related to history constraints (eight) in the only program that actually uses

those constraints (HealthCard). This result could indicate that using those constraints is

not trivial, with questionable usefulness – they often can be replaced by an invariant.

Regarding likely causes, the manual classification established Weak precondition as the

main cause (with 51 instances – as presented in Table 5.4). In this case, a method allows

values that should be denied for the correct method’s execution – as we could infer from the

information available in the program. For instance, the default precondition (requires true)

is often used in the experimental unit JAccounting – from all 98 precondition clauses, 44

are the default precondition. Maybe Weak precondition has been the most common case of

likely cause due to the complexity involved in the establishment of preconditions; since the

specifier does not previously know the system clients, an overly strong precondition deny

access to several clients; on the other hand, if the precondition is too weak, many clients

will not be able to get the expected result. Therefore, this represents an important trade-off

for contract-based programs. However, Code error is also very recurrent, with 38 instances.

This problem is probably related to different levels of abstraction between programming and

contract languages, in which the developer may not understand a contract written by someone

else, or even the contract may be too complex to be implemented, or even a synchronization

issue between code and contract evolution. For instance, in HealthCard we observed that

a change in the code concerning dates made a class invariant obsolete, which resulted in a

nonconformance.

CONTRACTOK detects 63 nonconformances in the systems evaluated; at least one con-

formance was detected in every system. Still, for Q1, most nonconformances are caused by

weak preconditions, as suggested by our manual classification. Within a diversity of sys-

tems, with varying complexity and features, evidence shows preconditions are critical to the

correctness of C# contract-based programs. Assigning inputs to program operations in the

permitted range is indeed one of the most impactful design tasks, either for method callers

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 87

or implementers. There is an important trade-off in every contract-based program when de-

signing preconditions: if the developer of a method does not know its clients beforehand, he

may construct an overly strong precondition, rejecting many clients; on the other hand, given

the developer does not establish a precondition for a method, it may not be able to satisfy its

contracts with the allowed client inputs.

Q2. breadth and depth are, on average, higher than 1, for all systems, which suggests

that a typical nonconformance-revealing test presents sequences of at least two calls (hori-

zontal complexity) and more than one indirect call to a problematic method (vertical com-

plexity). By manually analyzing test cases revealing nonconformances, and observing the

minimal test case able to detect them, the highest average values are for AutoDiff (14.00)

and MonoMobileFacebook (11.00) for breadth and depth, respectively. Conversely,

the smallest mean for breadth (1.00) was obtained in PokerTop and for depth (1.00) in

TheSchorrWaiteAlgorithm. These results suggest that finding nonconformances is

challenging without the support of well-designed test cases.

Q3. Developers apparently prefer to write pre- and postcondition clauses in comparison

with invariants (see Table 5.7). For further evidence, we performed a paired t-test [62] with

the null hypothesis that the average of preconditions and postconditions is the same for the

evaluated systems. The test resulted in a p-value of 0.021, allowing us to reject the null hy-

pothesis samples do not differ, on average, with a confidence level of 95%. As a conclusion,

the use of precondition clauses in the studied systems outperform the use of postcondition

clauses, which corroborates with Estler et al. [34]: there is no preference for certain contract

type, however, preconditions, tend to have more clauses than postconditions.

The number of nonconformances is relatively proportional to system size;

DotNetComponentOrientedProgramming is exceptional, with a high occurrence

of nonconformances in a low number of contract clauses (14 over 147) – still, the system

presents high LOC, which surely indicate nonconformances are due to wrong method behav-

ior, not only contracts themselves. Since this system was developed for educative purposes,

perhaps developers did not enforce conformance as should be done in more critical systems.

Boogie, if compared to the rest of the sample, is much larger (approximately five times as

large as the second, both in LOC and #CC), but shows only a few more nonconformances

than other large systems (for instance, Frost), which may be an indication of quality, which

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 88

is certainly required for a rather complex verification system such as Boogie. In addition,

we found evidence that when contract complexity grows, the number of nonconformances

detected also grows (see Table 5.7). This result corroborates with Polikarpova et al. [95]:

more contract clauses allow the detection of more nonconformances.

Regarding the relationship between contract and nonconformance type (Table 5.7), sys-

tems with mostly postconditions tend to present, more often, postcondition and invariant

nonconformances – indicating the postconditions may be harder to satisfy, however, they

are often insufficient to avoid invariant errors. Considering systems in which preconditions

predominate, more preconditions imply more precondition nonconformances – showing that

those preconditions might be too strong to be satisfied by method callers. This result may be

related to the trade-off in establishing preconditions: if the precondition is permissive, the

clients may be not able to get the expected value; however, a restrictive precondition can rule

out valid clients. Moreover, since precondition nonconformances occur when a method inter-

nally calls other methods, the involved preconditions might be best placed in other methods

within the call trace, or the body of other methods in the chain should deal with the values

received as parameters in order to maintain the preconditions of methods further called.

Q5. Precondition nonconformances are preponderant in three of the top five complex-

contract systems (Table 5.7). This result is expected because the precondition clauses are the

most common and in accordance with the results of Polikarpova et al. [95], more contract

clauses allow detecting more nonconformances. Moreover, as the preconditions act as filters

to input values, they are able to avoid calls to methods in situations in which a postcondition

or an invariant clause could be violated.

Q6. Postcondition clauses are the most common in the systems with highest nonconfor-

mance ratios (ProgrammingWithCC and DotNetCOP). This is expected, since precon-

ditions avoid method executions with forbidden values, reducing the nonconformance ratio.

This result suggests more postcondition clauses imply more nonconformances per contract

clause.

5.3.5 Threats to validity

This study has some limitations; next, we describe some threats to the validity of our evalu-

ation.

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 89

Internal validity

The randomness promoted by the use of an automatic test generator (Randoop [91],[90])

by the tools is an internal threat to the validity of our study; so, we ran each system 10 times

for each time limit (varying from 60 to 600 seconds) for confidence. In each execution,

tests are generated independently of the previous run, which may show different contexts

revealing the same nonconformances.

In addition, Randoop is not the only randomness to consider; we observe that the

Boogie system behaves randomly during the detection phase, showing instability on the

number of nonconformances detected and on the number of test cases generated. Consid-

ering the 10 executions carried out for the time of 60 seconds and the respective number of

nonconformances for the top three systems in size (LOC and #CC) and number of noncon-

formances detected (#NC), systems DotNetComponentOrientedProgramming and

Frost present a small variation on the number of nonconformances, with an average num-

ber of 11.8 (between 10 and 12) with 12 for the median and 8.6 (between 7 and 9) with 9

the for median, respectively. These numbers are explained by the randomness promoted by

Randoop.NET and by the machine environment itself. On the other hand, Boogie presents

an average number of 8.1 nonconformances (between a minimum of 2 nonconformances

and maximum of 12) with 8.5 for the median, being possible to see a considerable number

of standard deviation, 3.41. In our study, for the Boogie system, we ran 10 times each time

limit for test generation, and report the highest number of detected nonconformances, thus

minimizing (but not eliminating) chances of false negatives.

Conclusion validity

Randoop is based on randomization for generating distinct tests; to mitigate this threat,

we ran each tool 10 times for each system and time limit. Another conclusion threat is related

to CCo, based on the ratio between the number of contract clauses and LOC, which may not

be representative of contract complexity. We followed this approach for its simplicity, as it

has been used by related research [34].

Construct validity

Perhaps metrics B and D are not representative of the real trouble in detecting noncon-

formances. We defined these metrics as a surrogate for the complexity of test cases detecting

the nonconformance. They are imperfect in measuring the complexity to visually find a non-

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 90

conformance, for instance. Also, to reduce the threat on the manually-defined likely cause,

all nonconformances were classified and reviewed by three researchers, separately. Finally,

the detection approach is incomplete, since it is test based. Some nonconformances may be

as well due to updates in the language’s compiler and runtime.

External validity

A Randoop-based approach lacks repeatability, in terms of machine setting or operating

system. Also, even though we diversified our choice of contract-based systems, varying in

code size and contract clause count, generalizing the obtained results is almost impossible.

5.3.6 Answers to the Research Questions

From our results, we made the following observations:

• Q1. How many nonconformances is the approach able to detect in real contract-based

programs for a given time limit, and which are the most common types and likely

causes of those nonconformances?

The tools detect 182 nonconformances in all 24 systems evaluated (JMLOK2 detects

119 nonconformances and CONTRACTOK detects 63 nonconformances). Most non-

conformances are caused by weak preconditions, as suggested by our manual classifi-

cation. Within a diversity of systems, with varying complexity and features, evidence

shows preconditions are critical to the correctness of contract-based programs. As-

signing inputs to program operations in the permitted range is indeed one of the most

impactful design tasks, either for method callers or implementers.

• Q2. What is the testing cost for detecting a nonconformance?

Breadth and depth are, on average, higher than 1, for all systems, which suggests that

a typical nonconformance-revealing test presents sequences of at least two calls (hor-

izontal complexity) and more than one indirect call to a problematic method (vertical

complexity).

• Q3. Which are the most common contract types written by developers?

Developers apparently prefer to write pre- and postcondition clauses in comparison

with invariants; however, there is no preference for certain contract type, however,

5.3 A Study on Java/JML and C#/Code Contracts Open Source Systems 91

preconditions, tend to have more clauses than postconditions.

• Q4. Is there any relationship between contracts complexity and the number of detected

nonconformances? And what is the relationship between contract type and nonconfor-

mance type?

The number of nonconformances is relatively proportional to system size;

DotNetComponentOrientedProgramming is exceptional, with a high occur-

rence of nonconformances in a low number of contract clauses (14 over 147) – still, the

system presents high LOC, which surely indicate nonconformances are due to wrong

method behavior, not only contracts themselves. Regarding the relationship between

contract and nonconformance type (Table 5.7), systems with mostly postconditions

tend to present, more often, postcondition and invariant nonconformances – indicat-

ing the postconditions may be harder to satisfy, however, they are often insufficient to

avoid invariant errors.

• Q5. Which are the most common nonconformance types for the units with the most

complex contracts?

Precondition nonconformances are preponderant in three of the top five complex-

contract systems. This result is expected since the precondition clauses are the most

common; and, in accordance to the results of Polikarpova et al. [95], more contract

clauses allows the detection of more nonconformances. Furthermore, as preconditions

act as filters to input values, they are able to avoid method calls in situations in which

a postcondition or an invariant clause could be violated.

• Q6. What is the relationship between contract type and the number of nonconfor-

mances per contract clause (nonconformance ratio)?

Postcondition clauses are the most common in the systems with highest nonconfor-

mance ratios (ProgrammingWithCC and DotNetCOP). This is expected, since

preconditions avoid method executions with forbidden values, reducing the noncon-

formance ratio. This result suggests more postcondition clauses imply more noncon-

formances per contract clause.

Chapter 6

Related Work

Our work is related to the following research areas: source code documentation; process-

ing of Javadoc-tagged comments; conformance checking in Design by Contract; nonconfor-

mance classification; and automatic test generation.

Section 6.1 presents the main approaches for documenting source code we identify as

related to our work. Then, Section 6.3 summarizes research on conformance checking of

contract-based programs. Next, Section 6.4 describes approaches for classifying contract

violations as a way of helping the developer when correcting those violations. Finally, Sec-

tion 6.5 shows automatic test generation approaches.

6.1 Source Code Documentation

According to Meyer [76], the use of Design by Contract is essential in the production of

reusable software elements and, more generally, in organizing the module interfaces in large

software systems. He claims that preconditions, postconditions, and class invariants pro-

vide potential clients of a module with basic information about the services offered by the

module, expressed in a concise and precise form. Therefore, proposals such as JML [68],

Spec# [5], Code Contracts [35], and Eiffel [75] are related to CONTRACTJDOC. Whereas

those approaches propose new notation, CONTRACTJDOC extends the tagging system from

Javadoc and has mechanisms for turning the tags into runtime checkable contracts. CON-

TRACTJDOC approach fulfills the gap between informal documentation (as with Javadoc)

and formal specification (such as JML [68] or Code Contracts [35]). Being closer to the way

92

6.1 Source Code Documentation 93

developers already write comments in Javadoc notation, it is likely that CONTRACTJDOC is

easier to use than JML (see Section 3.3).

On the other hand, Torchiano [124] describes a structured approach to document pattern

use in Java, instead of using a DBC language such as Meyer [76] work. His solution is based

on the standard Javadoc tool and generates HTML documentation. He proposes four tags for

documenting the use of patterns in Java programs: @pat.name - for the name of a pattern;

@pat.role - for the pattern role; @pat.task - for the pattern task; and @pat.use

- for the pattern use. The first three pattern specific tags can be used to describe whole

classes, methods, and fields. The last one is typically used to describe methods that use

pattern instances. Whereas tags in Torchiano’s approach are used for structural/syntactical

reasoning, in CONTRACTJDOC we use tags for semantic purposes: improve documentation

and enable conformance checking of Java programs. The approaches could be integrated in

order to perform conformance checking of design patterns.

Still, on applying knowledge from Javadoc, Zhai et al. [132] present a technique that

builds models for Java API functions by analyzing the documentation. Their models are

simpler implementations in Java compared to the original ones and hence easier to analyze.

More importantly, they provide the same functionalities as the original functions. They argue

that API documentation, like Javadoc and .NET documentation, usually contains wealthy

information about the library functions, such as the behavior and exceptions they may throw.

Thus it is feasible to generate models for library functions from such API documentation.

In this context, the comments in CONTRACTJDOC approach can be used as input for the

technique in order to improve model generation.

Some approaches establish the generation of contracts. In this context, Daikon [32;

33] is an implementation of dynamic detection of likely invariants. An invariant is a property

that holds at a certain point or points in a program. Program invariants can help program-

mers by identifying program properties that must be preserved when modifying the code.

Thus, invariants are useful for asserting statements, documentation, and formal specifica-

tions. Daikon can detect invariants in C, C++, Java, and Perl programs, and in record-

structured data sources, making the process of writing contracts easier. CONTRACTSUG-

GESTOR does not support automatic generation of invariants yet, but we also improve the

contracts use by providing an approach for automatically generating contracts for pre- and

6.2 Javadoc comment processing 94

postconditions.

Table 6.1 summarizes those approaches with respect to the scope of the documentation

supported.

Table 6.1: Related Work on documentation of source code.

Approach scope

JML [68] It extends Java language for supporting Design by Contract.

Spec# [5] It extends C# language for supporting Design by Contract.

Eiffel [75] It is a complete language for supporting Design by Contract.

Torchiano [124] It provides constructs for documenting design patterns.

Zhai et al. [132] It generates models for Java API functions.

Daikon [32; 33] It detects invariants for C, C++, Java, and Perl.

CONTRACTJDOC It provides tags for documenting the behavior of Java methods and classes.

CONTRACTSUGGESTOR It suggests contracts based on tagged-comments in natural language.

6.2 Javadoc comment processing

Code commentary embeds natural language annotations in source code [24]. Comments

should be significant for developers and maintainers: developers should use commentary

to make software properly documented and to improve source code comprehensibility and

maintainability [2]. However, the flexibility provided by natural language may result in

useless information for those developers who did not originally authored source code. In

this context, some techniques have been proposed to automatically process Javadoc-tagged

comments [118; 49; 117] in order to extract useful information from those natural language

texts.

Tan et al. [118] present @TCOMMENT approach. @TCOMMENT is an approach for

testing Javadoc comments, specifically method properties about null values and related ex-

ceptions. The approach is composed of two components. The first component takes as input

source files for a Java project and automatically analyzes the English text in Javadoc com-

ments to infer a set of likely properties for a method in the files. The second generates

random tests for these methods, checks the inferred properties, and reports inconsistencies.

@TCOMMENT analyzes comments written in a natural language to detect comment-code

inconsistencies and to improve automated testing. This approach is closely related to CON-

6.3 Conformance Checking 95

TRACTSUGGESTOR, however, in CONTRACTSUGGESTOR we generate contracts (pre- and

postconditions) for non-null and relational values (both parameters and return values).

Instead of checking for null values and exceptional, Goffi et al. [49], propose a technique

that automatically creates test oracles for exceptional behaviors from Javadoc comments.

The technique uses a combination of natural language processing and runtime instrumenta-

tion. Their implementation, Toradocu, can be combined with a test input generation tool.

The experimental evaluation shows that Toradocu improves the fault-finding effectiveness of

EvoSuite and Randoop test suites by 8% and 16% respectively, and reduces EvoSuite’s false

positives by 33%. Toradocu is concerned with exceptional behavior whereas CONTRACT-

SUGGESTOR concerns contracts for program properties (both parameters and return values).

Mixing both approaches could produce good results.

On the other hand, Tan et al. [117] propose converting programmers’ intentions inferred

from the comments and code they write into formal annotations and use these annotations to

detect interrupt related OS concurrency bugs. Since the significant amount of effort involved

in annotating programs can greatly limit the impact of annotation languages. They propose

aComment tool. aComment automatically propagates annotations starting from a few IRQ

annotations, i.e., annotations for functions that directly disable, enable or restore interrupts.

For the Linux kernel, they manually identified 4 interrupt disabling functions, 2 interrupt

enabling functions, and 2 interrupt restoring functions. aComment takes the 8 IRQ anno-

tations as input, and automatically propagates them to all other functions, a total of 96,821

annotations. CONTRACTSUGGESTOR analyses only Javadoc-tagged method comments and

automatically suggest pre- and postconditions for some properties: non-null and relational.

Table 6.2 summarizes those approaches with respect to (1) the technique used for pro-

cessing the Javadoc comment; (2) the aim of the processing.

6.3 Conformance Checking

In the recent years, several efforts on verified software [12; 27; 77] have been carried out in

the context of source code specification with contract-based languages [75; 68; 5; 35], and

the Design by Contract (DBC) methodology [76]. Dynamic checking of contracts, despite

its essential incompleteness, provides immediate feedback for developers, even when they

6.3 Conformance Checking 96

Table 6.2: Related Work on Javadoc-comments processing.

Technique Aim

@tComment [118]
Simple heuristics to analyze the free-form

text

Infer method properties for null values and

related exceptions in Java libraries/frame-

works.

Toradocu [49]
Natural Language Processing and Run-time

instrumentation
Create test oracles for exceptional behaviors.

aComment [117]
Simple program analysis with effective

heuristics

Generate annotations to detect interrupt re-

lated OS concurrency bugs.

CONTRACTSUGGESTOR Machine Learning Supervised Learning
Generate contracts (pre- and postconditions)

for program properties.

write only partial contracts. The detection of nonconformances is, in this case, dependent on

the quality of the test cases that exercise the runtime assertions produced by the contracts.

For DBC, a related approach proposes auto tests [77], where contracts are used as oracles,

and the test generation is performed automatically. The AutoTest tool is an implementation

of conformance checking to the Eiffel language [75]. This tool is similar to JMLOK2 and

CONTRACTOK: both tools aim at conformance checking, and use randomly-guided tests

generation (ARTOO [20] for AutoTest and Randoop [91; 90] for JMLOK2 and CONTRAC-

TOK). However, AutoTest supports mixing manual and automated test, while CONTRAC-

TOK supports only tests automatically generated. In scenarios where tests automatically

generated are not able to explore system’s behavior, it is interesting to support manual test-

ing since the developer will be able to improve the suite generated by adding manual tests.

JMLOK2 is directed to JML, which is relatively simple to apply to existent Java programs;

in addition, the tool is concerned with automatic nonconformance classification. And CON-

TRACTOK is tailored for C#/Code Contracts context.

Concerning Spec# language, Boogie [4] is the Spec# static program verifier. This tool

generates logical verification conditions for a Spec# program, which are analyzed by an

automatic theorem prover in order to find errors in the program. Boogie provides feed-

back about syntax, typing, and semantic errors. The tool has a separation between proof

obligation generation and verification phases. In addition, the tool performs loop-invariant

inference using abstract interpretation and generates verification conditions to be passed to

an automatic theorem prover. As CONTRACTOK, Boogie also performs conformance check-

ing; the difference is that Boogie concerns static checking whereas CONTRACTOK concerns

dynamic checking. Those approaches could be integrated in order to dynamically verify the

6.3 Conformance Checking 97

conditions that Boogie is able to generate during program verification.

For the Code Contracts context, there are two main approaches for conformance check-

ing: statically, by means of Clousot [36]; and dynamically, by means of Pex [122].1 Clousot,

like Boogie, is an abstract interpretation-based static checker. The tool analyzes every

method in isolation, using the usual assume/guarantee reasoning. The precondition of the

method is turned into an assumption and the postcondition into an assertion. For public

methods, the object invariant is assumed at the method entry and asserted at the exit point.

The approach has heuristics for sorting the warning messages, trying to report the more

relevant first. In addition, the tool analyzes annotated programs to infer facts (including

loop invariants), and uses this information to discharge proof obligations, helping to reduce

the annotation burden by inferring some postconditions. However, Clousot can report false

warnings in two main cases: (i) it does not know some external fact (for instance some third-

party library methods return a non-null value); (ii) it is incomplete (as all the static analyses).

Even though CONTRACTOK be incomplete (as all dynamic approaches), the tool has a filter

for not reporting false positives when detecting nonconformances.

Pex [122] is a systematic approach based on a test-generation technique, called Dynamic

Symbolic Execution (DSE). DSE is a technique that explores a method under test (MUT)

and generates test inputs that can achieve high structural coverage of the MUT. The tool

explores a MUT with default inputs. During exploration, Pex collects constraints on inputs

from the predicates in branch statements. The tool negates collected constraints and uses a

constraint solver to generate new inputs that guide future program explorations along differ-

ent paths. To generate method sequences, Pex uses a simple heuristic-based approach that

generates fixed sequences based on static information of constructors and other methods (of

classes under test) that set values to member fields, helping to produce desired object states.

CONTRACTOK, in its turn, uses a feedback random-based test generation for dynamic con-

formance checking.

There are some tools that apply dynamic checking for JML programs. JMLUnit [17] is

a semi-automatic tool to check conformance, generating test case skeletons by combining

calls to the methods under test, lacking test. In order to overcome some JMLUnit limita-

tions, JMLUnitNG [133] automatically generates test data for non-primitive types; however,

1Pex is currently named as IntelliTest.

6.3 Conformance Checking 98

it does not exempt users from manually providing test data in some situations. On the other

hand, JMLOK2 is completely automatic and provides an automatic classification for noncon-

formances.

Korat [11] has the advantage over JMLUnit of being able to construct the objects which

invoke the method under test. However, test cases generated by Korat only consist of one

object construction and one method invocation over this object; furthermore, Korat requires

the implementation of an imperative predicate to specify the desired structural constraints,

and a bound to the desired test input size. JMLOK2 and CONTRACTOK, on the other hand,

do not require implementation of functions and generates more than one call for the meth-

ods under test; in addition, JMLOK2 provides an automatic classification for the detected

nonconformances.

Also semi-automatic, Jartege [89] is a tool for generating test cases, by a random ap-

proach with assigned weights to classes and methods under test; however, the user might

have to assign weights for methods under test and information about how to choose the

weights is not provided. Whilst, JMLOK2 is completely automatic and provides automatic

nonconformance classification.

On the other hand, JET [15] is completely automatic. The tool applies dynamic testing

for conformance checking in JML, by randomly generating test cases using contracts as

oracles. The tool applies genetic algorithms for automatically building all test data that

exercise runtime assertions. This choice is promisingly effective, although it raises the risk

of nondeterminism in generating test cases and data on successive executions of the tool.

Regarding purpose, JET is closely related to JMLOK2, since to the best of our knowledge

is the only tool for JML that does not require user inputs (as test data or implementation of

functions). However, JMLOK2 presents automatic nonconformance classification, a feature

not available at JET.

From the point of view of static approaches, ESC/Java2 [23] performs static verification

in JML programs, applying a logic-based technique that statically verifies the occurrence of

runtime violations of JML contracts. Nevertheless, ESC/Java2 is neither sound nor complete,

this tool presents a high rate of false positives. Whereas JMLOK2 is sound because all

nonconformances found are correct, but it is also incomplete because it is not ensured that

the tool will found all nonconformances.

6.4 Nonconformance Classification 99

For Javadoc context, Tan et al. [118] present @TCOMMENT approach. @TCOMMENT

is an approach for testing Javadoc comments, specifically method properties about null val-

ues and related exceptions. The approach is composed of two components. The first com-

ponent takes as input source files for a Java project and automatically analyzes the English

text in Javadoc comments to infer a set of likely properties for a method in the files. The

second generates random tests for these methods, checks the inferred properties, and re-

ports inconsistencies. They evaluated @TCOMMENT on seven open-source projects and

found 29 inconsistencies between Javadoc comments and method bodies. Their work fo-

cuses on method properties for null values and related exceptions in Java libraries/frame-

works; whereas JMLOK2 (with support to CONTRACTJDOC) and CONTRACTOK focus on

pre- and postconditions and invariants.

Table 6.3 summarizes those approaches with respect to (1) the kind of conformance

checking performed; (2) whether there are some classification of the nonconformances; (3)

whether the approach is automatic; (4) the specification language used in the approach.

Table 6.3: Related Work on conformance checking.

Conformance checking Classification Automation level Specification Language

AutoTest [77] dynamic – automatic Eiffel

Boogie [4] static – automatic Spec#

Clousot [36] static – automatic Code Contracts

Pex [122] dynamic – automatic Code Contracts

JMLUnit [17] dynamic – semi-automatictomatic JML

JMLUnitNG [133] dynamic – semi-automatic JML

Korat [11] dynamic – semi-automatic JML

Jartege [89] dynamic – semi-automatic JML

JET [15] dynamic – automatic JML

ESC/Java2 [23] static – automatic JML

@TCOMMENT [118] dynamic – automatic Java/Javadoc

JMLOK2 [84] dynamic automatic automatic JML

CONTRACTOK dynamic – heuristic-based Code Contracts

6.4 Nonconformance Classification

Regarding classification, Rosenblum [106] presents an early study about the main assertions

that reveal contract violations into C programs and a classification system for those asser-

6.4 Nonconformance Classification 100

tions. He used App – Annotation PreProcessor for C programs, similar to jmlc compiler.

His work presents two levels in which a problem (a contract violation) may happen: Speci-

fication of Function Interfaces, and Specification of Function Bodies, the first one is related

to 119 – considers the external behavior of methods, their pre- and postconditions, and in-

variants. To Specification of Function Interfaces level, the author presents eight main kinds

of assertion violations: Consistency Between Arguments (I1), Dependency of Return Value

on Arguments (I2), Effect on Global State (I3), Context in Which Function is Called (I4),

Frame Specifications (I5), Subrange Membership of Data (I6), Enumeration Membership of

Data (I7), and Non-Null Pointers (I8). Those kinds of assertions are related to the types we

consider in JMLOK2: I1, I3, and I7 are related to preconditions; I2 and I6 are related to

postconditions; and I4, I5, and I8 are related to invariants.

More recently, Polikarpova et al. [95] present three categories to classify nonconfor-

mances: specification faults, inconsistency faults, and real faults. In this work, we use a

three-level model to classify nonconformances composed by a category, a type, and a likely

cause for each nonconformance – the latter is a distinctive feature of our model.

Christakis et al. [18] present three cases for classifying invariant violations: (1) the object

invariant is stronger than intended. In this case, one should weaken the invariant. (2) the

invariant expresses the intended properties, but the program does not maintain it. This case

constitutes a bug that should be fixed. (3) the invariant expresses the intended properties and

can, in principle, be violated by clients of the class, but the entire program does not exhibit

such violations. Our classification model is more general: our likely causes are more abstract

than Christakis et al.’s classification. Their work can be integrated into our classification

model in order to provide more details on the invariant problems that are detected.

Table 6.4 summarizes those approaches with respect to (1) the classification scope –

whether the approach categorizes contract violations from external and internal behaviors of

the system under test; (2) whether the approach is automatic; (3) the specification language

for the classification proposed.

6.5 Automatic Test Generation 101

Table 6.4: Related Work on nonconformance classification.

Classification scope Automation level Language

Rosenblum [106] external and internal behaviors manual C

Polikarpova et al. [95] external and internal behaviors manual Eiffel

Christakis, Müller, and Wüstholz [18] invariant problems manual C#/Code Contracts

JMLOK2 [84] only external behavior automatic JML

6.5 Automatic Test Generation

Software testing, although not guaranteeing that the software is error-free, is a widely-used

approach to check software behavior. In contract-based programs, tests automatically gener-

ated can be used for conformance checking, as verification by formal proofs is hard to scale

and static analysis is limited.

In this context, test cases with automatically-generated data are important due to their

low cost and high precision in detecting conformance problems that need more than one

modification into the object under test. In our tools (JMLOK2 and CONTRACTOK), we use

a random-directed test generation approach, by means of Randoop [91]. In Randoop, the

feedback from the execution of sequence being constructed is used as pruning function –

only valid constructions are considered in the next sequence of generations. This approach

is similar to Adaptive Random Testing (ART) [14]. In ART, the test case generation is based

on the idea that tests more distant are more probable to detect problems than tests separated

by smaller distances; ART uses the Euclidean distance to calculate the distance between test

cases. An extension of ART ideas is presented in ARTOO [20], the adaptive random testing

for object-oriented programs; in ARTOO there is a modification of distance calculation to

consider properties related to object-oriented systems.

Other related work is presented on JET [15], where genetic algorithms are used in test

generation process. Genetic algorithms are based on feedback to the creation of new gener-

ations, similar to the feedback-directed approach from Randoop. Another approach to auto-

matic test generation is EvoSuite [45]. The tool uses an evolutionary search approach that

evolves whole test suites with respect to an entire coverage criterion at the same time. The

EvoSuite approach, similar to CONTRACTOK, uses a guided approach to tests generation, in

that case, a search-based approach.

Another approach for test generation is Parameterized Unit Tests (PUTs), proposed by

6.5 Automatic Test Generation 102

Tillman and Schulte [123]. PUT is a new methodology extending the current industry prac-

tice of closed unit tests. Test methods are generalized by allowing parameters. Parameterized

test methods are specifications of the behavior of the methods under test: they do not only

provide exemplary arguments to the methods under test but ranges of such arguments. In

addition, PUTs describe a set of traditional unit tests which can be obtained by instantiating

the parameterized test methods with given argument sets. Instantiations should be chosen so

that they exercise different code paths of the methods under test. This kind of test is used in

Pex [122] approach.

Xie et al. [130] present Symstra: a framework that achieves both test generation tasks –

generating method sequences that build relevant receiver object states – and generating rele-

vant method arguments – using the symbolic execution of method sequences with symbolic

arguments. Symstra uses symbolic execution to exhaustively explore bounded method se-

quences of the class under test and to generate tests that achieve high branch and intra-method

path coverage for complex data structures such as container implementations. Symstra ex-

ports concrete test sequences into a JUnit test class. It also exports a constraint associated

with the test as a comment for the test in the JUnit test class. The user can configure Symstra

to select only those generated tests that increase branch coverage or throw new uncaught

exceptions.

Table 6.5 summarizes those approaches with respect to test generation approach.

Table 6.5: Related Work on automatic test generation.

Test generation approach

ART [14] Based on the distance between test cases

ARTOO [20] Based on distance – considering properties from object-oriented programs

JET [15] Based on the feedback – from genetic algorithms

EvoSuite [45] Based on evolutionary search

PUT [123] Parameterized tests

Symstra [130] Symbolic execution

Randoop [91] Based on feedback from the execution of sequence being constructed

Chapter 7

Concluding Remarks

In this thesis, we address the problem of fostering Design by Contract [74] by exploiting the

relationship between code commentary and contracts. For this purpose, we propose and im-

plement a new way of writing comments in the context of Java programs (CONTRACTJDOC);

we also propose and implement an approach for automatically suggesting contracts based on

natural language tagged-comments (CONTRACTSUGGESTOR).

CONTRACTJDOC allows the use of Design by Contract in a format closed to traditional

Javadoc comments (see Chapters 2 and 3). In addition, we developed and evaluated an ap-

proach for automatically suggesting contracts based on natural language tagged-comments

(Chapter 4). We also performed conformance checking of the contracts automatically gener-

ated and performed conformance checking of contracts from a general point of view (Chap-

ter 5).

Moreover, by means of our approaches: CONTRACTJDOC, CONTRACTSUGGESTOR,

JMLOK2, and CONTRACTOK we are able to perform conformance checking and detect in-

consistencies in three levels of formality: informal – by generating contracts from Javadoc

plain comments; semiformal by applying CONTRACTJDOC to Java systems; and formal by

analyzing JML and Code Contracts systems.

We now summarize the main findings of this thesis (Sections 7.1 to 7.3) and present

prospects for future work (Section 7.4).

103

7.1 CONTRACTJDOC 104

7.1 CONTRACTJDOC

CONTRACTJDOC provides a new way for documenting source code in which a developer can

specify contracts by adding boolean-valued expressions into brackets and using specific tags

into the Javadoc. The CONTRACTJDOC approach tries to fulfill the gap between informal

documentation (such as JAVADOC) and formal specification (such as JML [68]) by enabling

the developer to write contracts by using default tags from JAVADOC (such as @param) and

some new tags (such as @inv) in a controlled way. CONTRACTJDOC supports precondi-

tions, postconditions, and invariants.

We performed three studies [129] for evaluating our extension to the Javadoc tagging

system, the approaches for detecting nonconformances and our classification model. First,

we evaluate CONTRACTJDOC by means of three studies: (a) a case study aiming to serve as

a proof of concept (Section 3.1); (b) an empirical study with Java developers (Section 3.2);

(c) a survey with Java developers for investigating the comprehensibility on three alterna-

tives for specifying behavior in a Java interface — Javadoc, JML, and CONTRACTJDOC

(Section 3.3). With the case study, we are able to write contracts to six open-source Java

projects previously annotated with Javadoc comments in natural language. The systems to-

talize 190,655 lines of code and we wrote a total of 3,994 contract clauses. Besides helping

us to evaluate the applicability of our language and its compiler, this study allowed us to

detect inconsistencies between Javadoc comments and source code, highlighting the impor-

tance of being able to check the comments runtime: without checking, those inconsistencies

will remain undiscovered.

Twenty-four Java developers with different experience levels participated in our empiri-

cal study. As results, 83% of the developers were able to perform the required task without

perceiving difficulties. When grouping the results by documenting approach, they consid-

ered Javadoc as the less complicated for performing the trial, followed by CONTRACTJDOC.

The comprehensibility survey confirmed the results from the empirical study: developers

tend to find Javadoc comments more understandable than JML or CONTRACTJDOC. Thirty-

eight percent of the survey respondents chose Javadoc as the most understandable approach

regarding interface’s behavior, others 32% chose ContractJDoc and 18% chose the same un-

derstanding level for all documenting approaches. When asked about the most understand-

7.2 CONTRACTSUGGESTOR 105

able approach in a general context, 51% answered Javadoc and 29% CONTRACTJDOC; and

for 13% the understanding is the same for all of them.

In summary, CONTRACTJDOC is intermediate between Javadoc and JML in terms of

comprehensibility. Moreover, survey results did not significantly differ for CONTRACTJ-

DOC and Javadoc, which is promising, since contracts are regarded as hard to read. There-

fore, CONTRACTJDOC is an approach that can foster contracts adoption, helping to improve

software quality. The approach may benefit freshman developers by providing a rich and

accurate description of the systems under development without requiring them to learn/un-

derstand a formal language, such as JML [68] or Eiffel [75].

7.2 CONTRACTSUGGESTOR

CONTRACTSUGGESTOR provides an approach for automatically suggesting contracts by

analyzing natural language tagged-comments. In this thesis, we applied CONTRACTSUG-

GESTOR for generating contracts for two properties: non-null and relational. For this, we

manually classified every tagged-comment from 21 open-source Java projects summing up

to 134,246 comment instances. In order to suggest contracts, we applied supervised machine

learning algorithms over the classified comments (Section 4.2).

After generating and checking the contracts (Section 4.3), we applied JMLOK2 over four

systems for conformance checking them. As a result, the tool detected six nonconformances:

five related to non-null property and one related to relational properties – greater than or

equal to (Section 5.1). All nonconformances detected were reported to systems developers,

however, they did not answer our contact.

Even in systems in which CONTRACTSUGGESTOR generated only a few contracts: four

contracts in Apache Collections, those contracts enabled JMLOK2 for detecting potential

nonconformances, highlighting the usefulness of CONTRACTSUGGESTOR. In addition, as

CONTRACTSUGGESTOR turns the use of contracts transparent to developers, they will ben-

efit from conformance checking of the code commentary without needing to change their

routine of daily work: write source code and natural language comments.

We also performed studies to increase the confidence on the results by JMLOK2 in check-

ing contracts: we run JMLOK2 over 12 Java/JML systems in order to detect and manu-

7.3 Review of the Contributions 106

ally classify nonconformances (Section 5.3). JMLOK2 detected and automatically suggested

likely causes for 119 nonconformances. From those, 51 are invariant problems and 47 are

postcondition problems. With respect to manual classification, Weak precondition and Code

error are the most commons: 51 and 38, respectively. We also collect B and D metrics [79]

as a proxy for characterizing the difficult for detecting nonconformances in JML programs:

2.68 for B and 2.44 for D, indicating the necessity of at least three changes in average for

detecting the nonconformance and the inspection of at least three methods for establishing

a likely cause. We also applied CONTRACTOK over 12 open-source systems (Section 5.3).

CONTRACTOK detected 63 nonconformances, being 28 precondition errors and 25 postcon-

dition errors. Regarding the likely causes, as for JML, Weak precondition and Code error

are the most commons: 40 and 18, respectively. The metrics B and D for the are 6.38 for

B and 4.08 for D, indicating the necessity of at more than six changes in average for detect-

ing the nonconformance and the inspection of at least four methods for establishing a likely

cause. According to these metrics, detecting nonconformances in Code Contracts systems is

harder than in JML systems; in addition, establishing a likely cause was also harder in Code

Contracts systems. Therefore, for detecting a nonconformance in Code Contracts systems

the developer will need a test more structured than in JML systems, and for classifying s/he

will spend more time on analyzing the Code Contracts project’s source code and contracts in

comparison to JML.

7.3 Review of the Contributions

In this work we provide the following contributions:

• We propose and evaluate a new approach for writing contracts (CONTRACTJDOC)

– We performed a case study in which we applied CONTRACTJDOC to six open-

source Java projects and generated 3,994 contract clauses;

– We carried out an experimental study and a survey with Java developers for eval-

uating the readability of CONTRACTJDOC. As results, CONTRACTJDOC was

considered intermediate between plain Javadoc and JML;

• We propose and evaluate a contract generation approach (CONTRACTSUGGESTOR)

7.4 Future Work 107

– We manually labeled 134,246 comment instances. Then, we created two datasets:

one with respect to the non-null property containing all instances, and one with

respect to the relational properties containing 1,808 instances;

– We evaluated the generated contracts with JMLOK2: we applied the tool for

conformance checking four Java systems with contracts automatically generated,

and it detected six nonconformances;

• We leverage JMLOK2 for C#/Code Contracts context by means of CONTRACTOK [82]

and we performed a case study with both tools over 24 systems (12 for each language)

in which the tools detected 182 nonconformances. We also manually established likely

causes for those nonconformances [80; 81]. The case study with CONTRACTOK over

12 systems was published as “Nonconformance between Programs and Contracts: A

Study on C#/Code Contracts Open Source Systems” into SAC’2017 [82].

7.4 Future Work

Concerning CONTRACTJDOC approach, we plan to integrate CONTRACTJDOC and CON-

TRACTSUGGESTOR for supporting autocomplete when writing the Javadoc comments. For

this purpose, we may use the Jaro-Winkler [59; 128] string distance and deep learning [50]

for autocompleting the comments.

We also intend to perform new experimental studies for evaluating the applicability of

CONTRACTJDOC in the practice of software development. Moreover, we will investigate

the relationship between system tests and code commentary by performing new case studies

in order to verify consistency between test suites and code commentary.

For dealing with one of CONTRACTSUGGESTOR limitations (Section 4.4), we plan to

consider comments not tagged in order to be able to generate invariants based on class fields

comments. A way of reducing this limitation is to improve extract_comments for collecting

all comments in the Java source code that are delimited by the /** ... */ delimiters and update

the datasets for considering those comments. Then, the approach for generating contracts

will need to use the information from comments for generating contract invariants. For

instance, consider the Source Code 7.1. Line 2 - 4 present a comment concerning a class

field name, declaring this field as being non-null. By updating CONTRACTSUGGESTOR for

7.4 Future Work 108

considering not tagged-comments the approach will be able to classify this text as related to

non-null and the approach for generating contracts will generate an invariant for this class.

Source Code 7.1: A code commentary for an invariant.

1 p u b l i c c l a s s P r o d u c t {

2 /∗ ∗

3 ∗ The name of a product , must not be n u l l

4 ∗ /

5 p r o t e c t e d S t r i n g name ;

6 / / . . .

7 }

Moreover, by performing new analysis in the datasets we already have (or even getting

new systems) we may discover new patterns for contracts in the natural language texts, e.g.

patterns for dealing with mathematical intervals such as “must be value1 <= varName >=

value2” and “must be in the range [value1 .. value2]”; these comments can produce con-

tracts like value1 <= varName && varName <= value2. In addition, we intend to apply

our contract generator in conjunction with JMLOK2 for generating contracts and confor-

mance checking Java APIs. We also plan to apply CONTRACTSUGGESTOR for more systems

largely used such as those from Apache and Mozilla foundations.

Another option for future work is to define a natural controlled language for being used in

Javadoc comments and to suggest contracts based on the defined constructs. This approach

will enable the generation of contracts for more properties and the possibility to mitigate

false positives into the generated contracts.

Concerning nonconformance detection, we intend to improve the detection phase of

our tools (JMLOK2 and CONTRACTOK) by using other test generation approaches such

as EvoSuite [45] or parameterized unit tests [123] and compare the effectiveness of those

approaches with the approach currently used. For analyzing the effect of changing the test

generation engine, we will perform new experiments with JMLOK2 and CONTRACTOK tools

over the same units already evaluated and compare the detection results with those achieved

by Randoop-based approaches. We also plan to formally define a conformance relation for

the purpose of dynamically conformance checking of contract-based programs.

Concerning conformance checking of contract-based programs, we identified that there

are no automated tools that consider refactoring [44] in this context; and the preservation of

behavior become a property hard to verify [72]. There are only formal approaches, such as

7.4 Future Work 109

presented by Freitas [46], but these approaches have a high cost; so we intend to develop

an automatic approach to consider the conformance problem in the context of refactoring,

contributing to use of Design by Contract methodology and to the construction of reliable

programs. This thesis results can also be extended for considering the problem of contracts

and programs refinement [3; 19]. Programs are composed of a tuple (Contract, Code), in

which Code must be in conformance with Contract. When a program is refined to (Con-

tract’, Code’) such that Contract’ refines Contract, it is likely that Code’ refines Code. In

other words, the refinement of contracts implies the refinement of codes – even though the

refinement of code may not imply the refinement of contracts.

Bibliography

[1] S. Acharya and V. Pandya. Bridge between Black Box and White Box - Gray Box

Testing Technique. International Journal of Electronics and Computer Science Engi-

neering, pages 175–185, December 2012.

[2] K. K. Aggarwal, Y. Singh, and J. K. Chhabra. An integrated measure of software

maintainability. In Annual Reliability and Maintainability Symposium, pages 235–

241, 2002.

[3] R.-J. J. Back, A. Akademi, and J. V. Wright. Refinement Calculus: A Systematic

Introduction. Springer-Verlag, 1998.

[4] M. Barnett, B. Chang, R. DeLine, B. Jacobs, and R. Leino. Boogie: A Modular

Reusable Verifier for Object-Oriented Programs. In Formal Methods for Components

and Objects, volume 4111, pages 364–387. Springer Berlin Heidelberg, 2006.

[5] M. Barnett, M. Fähndrich, R. Leino, P. Müller, W. Schulte, and H. Venter. Specifica-

tion and verification: The Spec# Experience. Communications of the ACM, 54(6):81–

91, 2011.

[6] G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman, J. Lanet, M. Pavlova,

and A. Requet. JACK – A Tool for Validation of Security and Behaviour of Java

Applications. In International Conference on Formal Methods for Components and

Objects, pages 152–174. Springer-Verlag, 2007.

[7] B. Beckert, R. Hähnle, and P. H. Schmitt. Verification of Object-oriented Software:

The KeY Approach. Springer-Verlag, 2007.

110

BIBLIOGRAPHY 111

[8] B. Beizer. Black-box Testing: Techniques for Functional Testing of Software and

Systems. John Wiley & Sons, Inc., 1995.

[9] J. Berg and B. Jacobs. The LOOP Compiler for Java and JML. In International

Conference on Tools and Algorithms for the Construction and Analysis of Systems,

pages 299–312. Springer-Verlag, 2001.

[10] R. V. Binder. Testing Object-oriented Systems: Models, Patterns, and Tools. Addison-

Wesley Longman Publishing Co., Inc., 1999.

[11] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated Testing Based on Java

Predicates. In ACM SIGSOFT International Symposium on Software Testing and Anal-

ysis, pages 123–133. ACM, 2002.

[12] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, R. Leino, and E. Poll.

An overview of JML tools and applications. International Journal on Software Tools

for Technology Transfer, 7(3):212–232, 2005.

[13] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Com-

put. Surv., 41(3):15:1–15:58, July 2009.

[14] T. Chen, H. Leung, and I. Mak. Adaptive Random Testing. In Asian Computing Sci-

ence conference on Advances in Computer Science: dedicated to Jean-Louis Lassez

on the Occasion of His 5th Cycle Birthday, volume 3321, pages 320–329. Springer

Berlin Heidelberg, 2005.

[15] Y. Cheon. Automated Random Testing to Detect Specification-Code Inconsistencies.

Technical report, International Conference on Software Engineering Theory and Prac-

tice, 2007.

[16] Y. Cheon and G. Leavens. A Runtime Assertion Checker for the Java Modeling Lan-

guage (JML). In International Conference on Software Engineering Research and

Practice, pages 322–328. CSREA Press, 2002.

[17] Y. Cheon and G. Leavens. A Simple and Practical Approach to Unit Testing: The

JML and JUnit Way. In European Conference on Object-Oriented Programming,

pages 231–255. Springer-Verlag, 2002.

BIBLIOGRAPHY 112

[18] M. Christakis, P. Müller, and V. Wüstholz. Synthesizing Parameterized Unit Tests to

Detect Object Invariant Violations. In International Conference on Software Engi-

neering and Formal Methods, pages 65–80, 2014.

[19] A. Cimatti, R. Demasi, and S. Tonetta. Tightening a Contract Refinement. In

R. De Nicola and E. Kühn, editors, Software Engineering and Formal Methods, pages

386–402. Springer International Publishing, 2016.

[20] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. ARTOO: Adaptive Random Testing

for Object-oriented Software. In International Conference on Software Engineering,

pages 71–80. ACM, 2008.

[21] J. Cohen. A coefficient of agreement for nominal scales. Educational and Psycholog-

ical Measurement, 20(1):37–46, 1960.

[22] D. Cok. OpenJML: JML for Java 7 by extending OpenJDK. In International Confer-

ence on NASA Formal methods, pages 472–479. Springer-Verlag, 2011.

[23] D. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML – Progress and issues

in building and using ESC/Java2. In International Conference on Construction and

Analysis of Safe, Secure, and Interoperable Smart Devices, pages 108–128. Springer-

Verlag, 2004.

[24] A. Corazza, V. Maggio, and G. Scanniello. Coherence of comments and method

implementations: a dataset and an empirical investigation. Software Quality Journal,

Nov 2016.

[25] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-

aggressive algorithms. J. Mach. Learn. Res., 7:551–585, Dec. 2006.

[26] O. Dahl, E. Dijkstra, and C. Hoare. Structured Programming. Academic Press Ltd.,

1972.

[27] A. Darvas and P. Müller. Faithful mapping of model classes to mathematical struc-

tures. IET Software, pages 477–499, 2008.

BIBLIOGRAPHY 113

[28] G. A. G. L. David Cok, John L. Singleton. Openjml. https://github.com/

OpenJML/OpenJML, 2018 (accessed April 24, 2018).

[29] J. developers. Jfreechart. https://sourceforge.net/projects/

jfreechart/files/1.%20JFreeChart/1.0.13/jfreechart-1.0.

13.zip/download?_test=goal, 2018 (accessed April 24, 2018).

[30] D. Dillman, J. Smyth, and L. Christian. Internet, Phone, Mail, and Mixed-Mode

Surveys: The Tailored Design Method. Wiley Publishing, 4th edition, 2014.

[31] A. Downey. Think Python. O’Reilly Media, 2012.

[32] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin. Dynamically discovering likely

program invariants to support program evolution. In International Conference on

Software Engineering, pages 213–224. ACM, 1999.

[33] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,

and C. Xiao. The Daikon System for Dynamic Detection of Likely Invariants. Sci.

Comput. Program., 69(1-3):35–45, Dec. 2007.

[34] H. Estler, C. Furia, M. Nordio, M. Piccioni, and B. Meyer. Contracts in practice. In

International Symposium on Formal Methods, pages 230–246. Springer-Verlag New

York, Inc., 2014.

[35] M. Fähndrich, M. Barnett, and F. Logozzo. Embedded contract languages. In ACM

Symposium on Applied Computing, pages 2103–2110. ACM, 2010.

[36] M. Fähndrich and F. Logozzo. Clousot: Static contract checking with Abstract In-

terpretation. In International Conference on Formal Verification of Object-oriented

Software, pages 10–30. Springer-Verlag, 2010.

[37] C. Flanagan, R. Leino, M. Lillibridge, G. Nelson, J. Saxe, and R. Stata. Extended

Static Checking for Java. In ACM SIGPLAN Conference on Programming Language

Design and Implementation, pages 234–245. ACM, 2002.

[38] E. Foundation. Swt: The standard widget toolkit. https://www.eclipse.org/

swt/, 2018 (accessed April 24, 2018).

BIBLIOGRAPHY 114

[39] T. A. S. Foundation. Apache commons collections. https://

archive.apache.org/dist/commons/collections/source/

commons-collections-3.2.1-src.tar.gz, 2018 (accessed April 24,

2018).

[40] T. A. S. Foundation. Apache commons math. http://commons.apache.

org/proper/commons-math/download_math.cgi, 2018 (accessed April

24, 2018).

[41] T. A. S. Foundation. Apache log4j. https://svn.apache.org/repos/asf/

logging/log4j/trunk, 2018 (accessed April 24, 2018).

[42] T. A. S. Foundation. Apache lucene. http://archive.apache.org/dist/

lucene/java/lucene-2.9.3-src.zip, 2018 (accessed April 24, 2018).

[43] T. A. S. Foundation. Apache xalan. http://svn.apache.org/repos/asf/

xalan/java/trunk, 2018 (accessed April 24, 2018).

[44] M. Fowler and K. Beck. Refactoring: Improving the Design of Existing Code.

Addison-Wesley, 1999.

[45] G. Fraser and A. Arcuri. EvoSuite: Automatic Test Suite Generation for Object-

oriented Software. In ACM SIGSOFT Symposium and the 13th European Conference

on Foundations of Software Engineering, pages 416–419. ACM, 2011.

[46] G. Freitas. Refactoring Annotated Java Programs: A Rule-Based Approach. Master’s

thesis, Universidade de Pernambuco, 2009.

[47] L. Friendly. The Design of Distributed Hyperlinked Programming Documentation,

pages 151–173. Springer London, 1996.

[48] P. Gibbins. What Are Formal Methods? Information and Software Technology,

30(3):131–137, 1988.

[49] A. Goffi, A. Gorla, M. D. Ernst, and M. Pezzè. Automatic Generation of Oracles for

Exceptional Behaviors. In International Symposium on Software Testing and Analysis,

ISSTA 2016, pages 213–224. ACM, 2016.

BIBLIOGRAPHY 115

[50] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[51] J. Guttag and J. Horning. Larch: Languages and Tools for Formal Specification.

Springer-Verlag New York, Inc., 1993.

[52] J. Guttag, J. Horning, and J. Wing. The Larch Family of Specification Languages.

IEEE Software, 2(5):24–36, 1985.

[53] M. L. Heuer. Dishevelled. https://github.com/heuermh/dishevelled,

2018 (accessed April 24, 2018).

[54] C. Hoare. An Axiomatic Basis for Computer Programming. Communications of the

ACM, 12(10):576–580, 1969.

[55] T. Hoare. Null references: The billion dollar mistake. Talk at QCon

London, 2009. https://www.infoq.com/presentations/Null-References-The-Billion-

Dollar-Mistake-Tony-Hoare.

[56] R. E. Holger Brands. Glazed lists. https://github.com/glazedlists/

glazedlists/releases/tag/glazedlists-1_8_0, 2018 (accessed April

24, 2018).

[57] iText Software team. itext. https://svn.code.sf.net/p/itext/code/

trunk/, 2018 (accessed April 24, 2018).

[58] J. v. Z. J. S. S. M. v. d. B. d. G. D. R. T. O. James Strachan, Robert Bur-

rell Donkin. Commons betwixt. http://commons.apache.org/dormant/

commons-betwixt/, 2018 (accessed April 24, 2018).

[59] M. A. Jaro. Advances in record-linkage methodology as applied to matching the

1985 census of tampa, florida. Journal of the American Statistical Association,

84(406):414–420, 1989.

[60] Joda.org. Joda time. https://github.com/JodaOrg/joda-time, 2018 (ac-

cessed April 24, 2018).

[61] P. Jorgensen. Software Testing: A Craftsman’s Approach. Auerbach Publications,

2013.

BIBLIOGRAPHY 116

[62] G. Kanji. 100 Statistical Tests. Sage, 2006.

[63] M. Khan. Different Approaches to White Box Testing Technique for Finding Errors.

International Journal of Software Engineering and Its Applications, 5(3):1–13, 2011.

[64] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. Getting

started with aspectj. Commun. ACM, 44(10):59–65, 2001.

[65] D. Kramer. Api documentation from source code comments: A case study of javadoc.

In Proceedings of the 17th Annual International Conference on Computer Documen-

tation, pages 147–153. ACM, 1999.

[66] J. Landis and G. Koch. The measurement of observer agreement for categorical data.

Biometrics, 33(1):159–174, 1977.

[67] G. Leavens, A. Baker, and C. Ruby. JML: A Notation for Detailed Design. Behavioral

Specifications of Businesses and Systems, pages 175–188, 1999.

[68] G. Leavens, A. Baker, and C. Ruby. Preliminary Design of JML: A Behavioral

Interface Specification Language for Java. SIGSOFT Software Engineering Notes,

31(3):1–38, 2006.

[69] G. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry,

P. Chalin, D. Zimmerman, and W. Dietl. JML Reference Manual, 2013.

[70] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.

Cambridge University Press, 2008.

[71] R. G. J. V. C. M. E. Matthew Horridge, Tania Tudorache. Webprotégé. https:

//github.com/protegeproject/webprotege, 2018 (accessed April 24,

2018).

[72] T. Mens and T. Tourwé. A Survey of Software Refactoring. IEEE Transactions on

Software Engineering, 30(2):126–139, 2004.

[73] B. Meyer. Design by Contract. In Advances in Object-Oriented Software Engineering,

pages 1–50. Prentice Hall, 1991.

BIBLIOGRAPHY 117

[74] B. Meyer. Applying "Design by Contract". Computer, 25(10):40–51, 1992.

[75] B. Meyer. Eiffel: the language. Prentice-Hall, Inc., 1992.

[76] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.

[77] B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei, and E. Stapf. Programs That Test

Themselves. IEEE Computer, 42(9):46–55, 2009.

[78] B. Meyer, A. Kogtenkov, and E. Stapf. Avoid a Void: The Eradication of Null Deref-

erencing, pages 189–211. Springer London, 2010.

[79] A. Milanez. Enhancing conformance checking for contract-based programs. Master’s

thesis, Federal University of Campina Grande, 2014.

[80] A. Milanez. A Case Study on Classifying Nonconformances in Java/JML Programs.

Technical Report SPLAB-2015-005, Software Practices Laboratory, Federal Univer-

sity of Campina Grande, Nov 2015.

[81] A. Milanez. A Baseline for Classifying Nonconformances in C#/Code Contracts Pro-

grams. Technical Report SPLAB-2016-002, Software Practices Laboratory, Federal

University of Campina Grande, May 2016.

[82] A. Milanez, B. Lima, J. Ferreira, and T. Massoni. Nonconformance between Pro-

grams and Contracts: A Study on C#/Code Contracts Open Source Systems. In ACM

Symposium on Applied Computing, pages 1219–1224. ACM, 2017.

[83] A. Milanez, T. Massoni, and R. Gheyi. Categorizing Nonconformances Between Pro-

grams and Their Specifications. In Brazilian Workshop on Systematic and Automated

Software Testing, 2013.

[84] A. Milanez, D. Sousa, T. Massoni, and R. Gheyi. JMLOK2: A tool for detecting and

categorizing nonconformances. In Brazilian Conference on Software: Theory and

Practice (CBSoft) - Tools Session, pages 69–76, 2014.

[85] A. F. Milanez. Fostering design by contract by exploiting the relationship between

code commentary and contracts. http://massoni.computacao.ufcg.edu.

br/home/jmlok/milanez-thesis, 2018.

BIBLIOGRAPHY 118

[86] D. Narayanan. Abc-music-player. https://github.com/deepakn94/

ABC-Music-Player, 2018 (accessed April 24, 2018).

[87] S. Nawar and A. M. Mouazen. Comparison between random forests, artificial neu-

ral networks and gradient boosted machines methods of on-line vis-nir spectroscopy

measurements of soil total nitrogen and total carbon. Sensors, 17(10), 2017.

[88] D. Nielsen. Tree boosting with xgboost why does xgboost win "every" machine learn-

ing competition? Master’s thesis, Norwegian University of Science and Technology,

2016.

[89] C. Oriat. Jartege: A Tool for Random Generation of Unit Tests for Java Classes. In

International Conference on Quality of Software Architectures and Software Quality,

pages 242–256. Springer-Verlag Berlin Heidelberg, 2005.

[90] C. Pacheco, S. Lahiri, and T. Ball. Finding Errors in .Net with Feedback-directed

Random Testing. In International Symposium on Software Testing and Analysis, pages

87–96. ACM, 2008.

[91] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball. Feedback-Directed Random Test Gener-

ation. In Proceeedings of the 29th International Conference on Software Engineering,

pages 75–84. IEEE Computer Society, 2007.

[92] Pase. Simpleshop. https://github.com/pase/simpleshop, 2018 (ac-

cessed April 24, 2018).

[93] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

[94] Y. Pei, C. Furia, M. Nordio, and B. Meyer. Automatic program repair by fixing con-

tracts. In International Conference on Fundamental Approaches to Software Engi-

neering, pages 246–260. Springer-Verlag New York, Inc., 2014.

BIBLIOGRAPHY 119

[95] N. Polikarpova, C. Furia, Y. Pei, Y. Wei, and B. Meyer. What Good Are Strong

Specifications? In International Conference on Software Engineering, pages 262–

271. IEEE Press, 2013.

[96] E. Poll, P. Hartel, and E. Jong. A Java Reference Model of Transacted Memory for

Smart Cards. In Smart Card Research and Advanced Application Conference, pages

75–86. USENIX Association, 2002.

[97] G. R Willi. Oop aufgabe3. https://github.com/rwilli/aufgabe3, 2018

(accessed April 24, 2018).

[98] J. Radatz, F. Jay, R. Mayer, S. Gloss-Soler, M. Migliaro, J. Daly, and A. Salem. Ieee

standard glossary of software engineering terminology. IEEE Std 610.12-1990, pages

1–84, Dec 1990.

[99] A. Rajaraman and J. D. Ullman. Mining of Massive Datasets. Cambridge University

Press, 2011.

[100] H. Rebêlo, G. Leavens, M. Bagherzadeh, H. Rajan, R. Lima, D. Zimmerman,

M. Cornélio, and T. Thüm. Aspectjml: Modular specification and runtime checking

for crosscutting contracts. In International Conference on Modularity, pages 157–

168. ACM, 2014.

[101] H. Rebêlo, R. Lima, M. Cornélio, G. Leavens, A. Mota, and C. Oliveira. Optimizing

JML Features Compilation in ajmlc Using Aspect-Oriented Refactorings. In Brazilian

Symposium on Programming Languages, pages 117–130, 2009.

[102] H. Rebêlo, S. Soares, R. Lima, L. Ferreira, and M. Cornélio. Implementing Java Mod-

eling Language Contracts with AspectJ. In ACM Symposium on Applied Computing,

pages 228–233. ACM, 2008.

[103] Z. Reitermanov. Data splitting. In WDS’10 Proceedings of Contributed Papers, pages

31–36, 01 2010.

[104] M. Riedel. Jenerics. https://github.com/mriedel/Jenerics, 2018 (ac-

cessed April 24, 2018).

BIBLIOGRAPHY 120

[105] R. Rodrigues. JML-Based Formal Development of a Java Card Application for Man-

aging Medical Appointments. Master’s thesis, Universidade da Madeira, 2009.

[106] D. Rosenblum. Towards a Method of Programming with Assertions. In International

Conference on Software Engineering, pages 92–104. ACM, 1992.

[107] R. Sanasam, H. Murthy, and T. Gonsalves. Feature selection for text classification

based on gini coefficient of inequality. In H. Liu, H. Motoda, R. Setiono, and Z. Zhao,

editors, Proceedings of the Fourth International Workshop on Feature Selection in

Data Mining, volume 10 of Proceedings of Machine Learning Research, pages 76–

85, 2010.

[108] A. Sarcar and Y. Cheon. A New Eclipse-Based JML Compiler Built Using AST

Merging. 2010 Second World Congress on Software Engineering, 2:287–292, 2010.

[109] T. Schiller, K. Donohue, F. Coward, and M. Ernst. Case Studies and Tools for Contract

Specifications. In International Conference on Software Engineering, pages 596–607.

ACM, 2014.

[110] P. Schmitt and I. Tonin. Verifying the Mondex Case Study. In International Confer-

ence on Software Engineering and Formal Methods, pages 47–58, 2007.

[111] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From The-

ory to Algorithms. Cambridge University Press, 2014.

[112] A. Shtof, A. Agathos, Y. Gingold, A. Shamir, and D. Cohen-Or. Geosemantic Snap-

ping for Sketch-Based Modeling. Computer Graphics Forum, 32(2):245–253, 2013.

[113] X. Shu and D. Yao. Program anomaly detection: Methodology and practices. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications

Security, pages 1853–1854. ACM, 2016.

[114] I. Sommerville. Software Engineering. Pearson, 2010.

[115] M. Staats, M. Whalen, and M. Heimdahl. Programs, Tests, and Oracles: The Foun-

dations of Testing Revisited. In International Conference on Software Engineering,

pages 391–400. ACM, 2011.

BIBLIOGRAPHY 121

[116] S. Subramanian, L. Inozemtseva, and R. Holmes. Live API Documentation. In Inter-

national Conference on Software Engineering, pages 643–652. ACM, 2014.

[117] L. Tan, Y. Zhou, and Y. Padioleau. aComment: Mining Annotations from Comments

and Code to Detect Interrupt Related Concurrency Bugs. In International Conference

on Software Engineering, pages 11–20. ACM, 2011.

[118] S. Tan, D. Marinov, L. Tan, and G. Leavens. @tComment: Testing Javadoc Comments

to Detect Comment-Code Inconsistencies. In International Conference on Software

Testing, Verification and Validation, pages 260–269, April 2012.

[119] C. team. Cobertura. https://github.com/cobertura/cobertura, 2018

(accessed April 24, 2018).

[120] E. S. team. Eclipse smarthomeTM project. https://github.com/eclipse/

smarthome, 2018 (accessed April 24, 2018).

[121] J.-M. team. Joda-money. https://github.com/JodaOrg/joda-money,

2018 (accessed April 24, 2018).

[122] N. Tillmann and J. de Halleux. Pex-White Box Test Generation for .NET. In Interna-

tional Conference on Tests and Proofs, pages 134–153, 2008.

[123] N. Tillmann and W. Schulte. Parameterized unit tests. SIGSOFT Software Engineering

Notes, 30(5):253–262, Sept. 2005.

[124] M. Torchiano. Documenting pattern use in Java programs. In Software Maintenance,

2002. Proceedings. International Conference on, pages 230–233, 2002.

[125] J. Tretmans. A Formal Approach to Conformance Testing. In International Workshop

on Protocol Test Systems VI, pages 257–276. North-Holland Publishing Co., 1994.

[126] J. Tretmans. Testing Concurrent Systems: A Formal Approach. In International

Conference on Concurrency Theory, pages 46–65. Springer-Verlag, 1999.

[127] C. Varjão, R. Gheyi, T. Massoni, and G. Soares. JMLOK: Uma Ferramenta para Ver-

ificar Conformidade em Programas Java/JML. In Brazilian Conference on Software:

Theory and Practice (Tools session), 2011.

BIBLIOGRAPHY 122

[128] W. E. Winkler. The state of record linkage and current research problems. Techni-

cal Report Statistical Research Report Series RR99/04, U.S. Bureau of the Census,

Washington, D.C., 1999.

[129] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén. Experi-

mentation in Software Engineering: An Introduction. Kluwer Academic Publishers,

2000.

[130] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A Framework for Generating

Object-oriented Unit Tests Using Symbolic Execution. In International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, pages 365–381.

Springer-Verlag, 2005.

[131] E. Yourdon. Techniques of Program Structure and Design. Prentice Hall PTR, 1st

edition, 1986.

[132] J. Zhai, J. Huang, S. Ma, X. Zhang, L. Tan, J. Zhao, and F. Qin. Automatic Model

Generation from Documentation for Java API Functions. In International Conference

on Software Engineering, pages 380–391. ACM, 2016.

[133] D. Zimmerman and R. Nagmoti. JMLUnit: The Next Generation. In Interna-

tional Conference on Formal Verification of Object-oriented Software, pages 183–197.

Springer-Verlag, 2010.

[134] H. Zou, J. Zhu, S. Rosset, and T. Hastie. Multi-class adaboost. Statistics and its

Interface, 2:349–360, 2009.

Appendix A

Evaluating the supervised machine

learning algorithms

Below we present the results of our evaluation of the supervised machine learning algorithms

available in Scikit-learn [93] package.

123

Results for the evaluation of the ML algorithms for supervised learning

Training set: 41,763 comment instances
Testing set: 13,921 comment instances

For this evaluation we considered a subset of the Non-null dataset composed of 13 projects:

From ContractJDoc Case Study:

- ABC-Music Player

- Dishevelled

- Jenerics

- OOP AufGabe

- SimpleShop

- WebProtégé

From @Comment paper:

- Collections

- GlazedLists

- JFreeChart

- JodaTime

- Log4J

- Lucene

- Xalan

Those projects totalize 55,684 comment instances: 5,961 non-null and 49,723 others.

AdaBoost. An AdaBoost classifier is a meta-estimator that begins by fitting a classifier on the

original dataset and then fits additional copies of the classifier on the same dataset but where

the weights of incorrectly classified instances are adjusted such that subsequent classifiers

focus more on difficult cases.

Accuracy: 0.99913799296

 precision recall f1-score support

 non-null 1.00 0.99 1.00 1449

 others 1.00 1.00 1.00 12472

124

avg / total 1.00 1.00 1.00 13921

Passive Aggressive Classifier: The passive-aggressive algorithms are a family of algorithms

for large-scale learning. They are similar to the Perceptron in that they do not require a

learning rate. However, contrary to the Perceptron, they include a regularization parameter

C.

Accuracy: 0.99877882336

 precision recall f1-score support

 non-null 0.99 1.00 0.99 1484

 others 1.00 1.00 1.00 12437

avg / total 1.00 1.00 1.00 13921

Multi-layer Perceptron classifier. This model optimizes the log-loss function using LBFGS or

stochastic gradient descent. The advantages of Multi-layer Perceptron are the capability to

learn non-linear models; capability to learn models in real-time (online learning).

Accuracy: 0.99877882336

 precision recall f1-score support

 non-null 1.00 0.99 0.99 1449

 others 1.00 1.00 1.00 12472

avg / total 1.00 1.00 1.00 13921

Linear Support Vector Classification: Similar to SVC with parameter kernel=’linear’, but

implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of

penalties and loss functions and should scale better to large numbers of samples. This class

supports both dense and sparse input and the multiclass support is handled according to a

one-vs-the-rest scheme.

Accuracy: 0.99870698944

 precision recall f1-score support

 non-null 0.99 0.99 0.99 1465

 others 1.00 1.00 1.00 12456

avg / total 1.00 1.00 1.00 13921

125

Voting Classifier. The idea behind the VotingClassifier is to combine conceptually different

machine learning classifiers and use a majority vote or the average predicted probabilities

(soft vote) to predict the class labels. Such a classifier can be useful for a set of equally

well-performing model in order to balance out their individual weaknesses. By using:

linear_model.PassiveAggressiveClassifier(C=1.0),

ensemble.AdaBoostClassifier(n_estimators=100), and svm.LinearSVC(random_state=0), the

result is presented below.

Accuracy: 0.99863515552

 precision recall f1-score support

 non-null 0.99 0.99 0.99 1449

 others 1.00 1.00 1.00 12472

avg / total 1.00 1.00 1.00 13921

A Bagging classifier. A Bagging classifier is an ensemble meta-estimator that fits the base

classifiers each on random subsets of the original dataset and then aggregate their individual

predictions (either by voting or by averaging) to form a final prediction. Such a

meta-estimator can typically be used as a way to reduce the variance of a black-box

estimator (e.g., a decision tree), by introducing randomization into its construction procedure

and then making an ensemble out of it.

Accuracy: 0.9985633216

 precision recall f1-score support

 non-null 0.99 1.00 0.99 1471

 others 1.00 1.00 1.00 12450

avg / total 1.00 1.00 1.00 13921

Gradient Boosting for classification. Gradient Tree Boosting is a generalization of boosting to

arbitrary differentiable loss functions. GBRT is an accurate and effective off-the-shelf

procedure that can be used for both regression and classification problems. Gradient Tree

Boosting models are used in a variety of areas including Web search ranking and ecology.

Accuracy: 0.998419653761

 precision recall f1-score support

 non-null 1.00 0.99 0.99 1449

 others 1.00 1.00 1.00 12472

126

avg / total 1.00 1.00 1.00 13921

DecisionTreeClassifier is a class capable of performing multi-class classification on a

dataset.

Accuracy: 0.998347819841

 precision recall f1-score support

 non-null 0.99 0.99 0.99 1471

 others 1.00 1.00 1.00 12450

avg / total 1.00 1.00 1.00 13921

Perceptron: The Perceptron is another simple algorithm suitable for large-scale learning. By

default: It does not require a learning rate. It is not regularized (penalized). It updates its

model only on mistakes.

Accuracy: 0.998060484161

 precision recall f1-score support

 non-null 0.99 0.99 0.99 1484

 others 1.00 1.00 1.00 12437

avg / total 1.00 1.00 1.00 13921

Extra Trees Classifier. An extra-trees classifier. This class implements a meta estimator that

fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the

dataset and use averaging to improve the predictive accuracy and control over-fitting.

Accuracy: 0.997701314561

 precision recall f1-score support

 non-null 0.99 0.98 0.99 1471

 others 1.00 1.00 1.00 12450

avg / total 1.00 1.00 1.00 13921

127

Stochastic Gradient Descent Classifier: Stochastic gradient descent is a simple yet very

efficient approach to fit linear models. It is particularly useful when the number of samples

(and the number of features) is very large.

Accuracy: 0.997701314561

 precision recall f1-score support

 non-null 0.99 0.99 0.99 1484

 others 1.00 1.00 1.00 12437

avg / total 1.00 1.00 1.00 13921

Random Forest Classifier. In random forests, each tree in the ensemble is built from a

sample drawn with replacement (i.e., a bootstrap sample) from the training set. In addition,

when splitting a node during the construction of the tree, the split that is chosen is no longer

the best split among all features. Instead, the split that is picked is the best split among a

random subset of the features. As a result of this randomness, the bias of the forest usually

slightly increases (with respect to the bias of a single non-random tree) but, due to averaging,

its variance also decreases, usually more than compensate for the increase in bias, hence

yielding an overall better model.

Accuracy: 0.997054809281

 precision recall f1-score support

 non-null 0.99 0.98 0.99 1471

 others 1.00 1.00 1.00 12450

avg / total 1.00 1.00 1.00 13921

Bernoulli Naive Bayes. Like MultinomialNB, this classifier is suitable for discrete data. The

difference is that while MultinomialNB works with occurrence counts, BernoulliNB is designed

for binary/boolean features.

Accuracy: 0.960563177933

 precision recall f1-score support

 non-null 0.75 0.95 0.84 1471

 others 0.99 0.96 0.98 12450

avg / total 0.97 0.96 0.96 13921

128

Gaussian Naive Bayes. GaussianNB implements the Gaussian Naive Bayes algorithm for

classification. The likelihood of the features is assumed to be Gaussian.

Accuracy: 0.65713669995

 precision recall f1-score support

 non-null 0.23 0.94 0.37 1471

 others 0.99 0.62 0.76 12450

avg / total 0.91 0.66 0.72 13921

Multinomial Naive Bayes. The multinomial Naive Bayes classifier is suitable for classification

with discrete features (e.g., word counts for text classification). The multinomial distribution

normally requires integer feature counts. However, in practice, fractional counts such as tf-idf

may also work.

Accuracy: 0.952158609295

 precision recall f1-score support

 non-null 0.93 0.59 0.72 1471

 others 0.95 0.99 0.97 12450

avg / total 0.95 0.95 0.95 13921

129

