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Resumo

A tarefa de Resolução de Entidades (RE) surge como um passo fundamental para integrar

múltiplas bases de conhecimento ou identificar semelhanças entre os dados (entidades). Para

evitar o custo quadrático da tarefa de Resolução de Entidades, técnicas de blocagem (ou in-

dexação) são amplamente aplicadas como uma etapa de pré-processamento. Neste contexto,

dados semiestruturados e grandes fontes de dados (Big Data) emergem como os principais

desafios enfrentados pelas técnicas de blocagem. No que diz respeito aos dados semiestru-

turados, o desafio está relacionado ao fato de que tais dados não compartilham um mesmo

esquema, inviabilizando a aplicação de técnicas tradicionais de blocagem. Neste contexto,

técnicas agnósticas de blocagem são aplicadas. Em relação às grandes fontes de dados (Big

Data), técnicas de blocagem e computação distribuída devem ser aplicadas com o intuito de

melhorar a eficiência da tarefa de RE. Nesse sentido, este trabalho propõe um modelo de

execução distribuída para blocagem de dados semiestruturados no contexto grandes fontes

de dados, capaz de atender às diferentes necessidades dos perfis de aplicação enfrentados

pela tarefa de RE. Esses perfis de aplicação estão relacionados às necessidades e caracterís-

ticas inerentes a cada aplicação, tais como a forma como os dados são recebidos (i.e., em

lotes ou streaming), qualidade dos dados e priorização da eficácia/eficiência da blocagem.

Além disso, o presente trabalho também propõe novas técnicas de blocagem que podem ser

acopladas ao modelo proposto. Tais técnicas de blocagem endereçam desafios em aberto

segundo a literatura, como técnicas agnósticas de blocagem em paralelo, processamento in-

cremental e blocagem de dados em streaming. As técnicas de blocagem foram avaliadas

experimentalmente com o objetivo de mensurar a eficiência e eficácia em relação às técnicas

de blocagem do estado da arte, utilizando fontes de dados reais. Com base nos resultados

experimentais, é possível destacar que as novas técnicas de blocagem apresentaram resulta-

dos mais promissores, podendo ser acopladas ao modelo de execução distribuída proposto,

de maneira a atender as diferentes necessidades inerentes aos perfis de aplicação.

Palavras-chave: Resolução de Entidades, Dados Semiestruturados, Técnicas Agnósticas

de Blocagem, Computação Distribuída, Streaming de Dados, Processamento Incremental.
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Abstract

The Entity Resolution (ER) task emerges as a fundamental step to integrate multiple knowl-

edge bases or identify similarities between data (entities). To avoid the quadratic cost of the

Entity Resolution task, blocking (or indexing) techniques are widely applied as a prepro-

cessing step. In this context, semistructured data and large data sources (Big Data) emerge

as the major challenges faced by blocking techniques. Regarding semistructured data, the

challenge is related to the fact that such data do not share the same scheme, difficulting the

application of traditional blocking techniques. In this context, schema-agnostic blocking

techniques are applied. For Big Data scenarios, blocking techniques and distributed com-

puting should be applied to improve the efficiency of the RE task. In this sense, this work

proposes a distributed execution model for blocking semistructured data in the context of

large data sources, capable of dealing with different needs of application profiles faced by

the ER task. These application profiles are related to the needs and characteristics inherent

to each application, such as how the data are managed (i.e., batch or streaming), data quality

and prioritization of effectiveness/efficiency. Furthermore, the present work also proposes

new blocking techniques that can be integrated into the proposed model. Such blocking

techniques address open challenges in the literature, such as parallel blocking techniques,

incremental processing, and streaming data blocking. The blocking techniques proposed

in this work were evaluated experimentally with the objective of measuring efficiency and

effectiveness against the state-of-the-art ones, using real data sources. Based on the experi-

mental results, it is possible to highlight that the novel blocking techniques presented better

results when compared to the state-of-the-art blocking techniques. Therefore, the proposed

techniques can be hosted to the proposed execution model, so that they can address different

necessities inherent to the application profiles.

Keywords: Entity Resolution, Semistructured Data, Schema-agnostic Blocking Tech-

niques, Distributed Computing, Streaming Data, Incremental Processing.
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Chapter 1

Introduction

Currently, there is an increasing number of information systems producing a large amount of

data continuously, such as Web systems (e.g., digital libraries and e-commerce), Social Me-

dia (e.g., Twitter and Facebook) and Internet of Things (e.g., mobiles, sensors and devices)

[45; 50]. These applications have become a valuable source of heterogeneous data [64;

19]. Such kind of data presents a schema-free behaviour and can be represented in dif-

ferent formats (e.g., XML, RDF and JSON). Commonly, the data is provided by different

data sources and may have overlapping knowledge. For instance, different social media will

report the same event and generate mass similar data [29]. The widespread generation of

data (resulting in large data sources, i.e., Big Data) and data that are constantly sent to sev-

eral data sources (i.e., streaming data), academia and industry focus on searching innovative

techniques that enable efficient data processing, analysis, management, and integration. In

this sense, several data matching tasks have been proposed in order to integrate or identify

similar data in multiple data sources. Among them, it is possible to highlight the task of

Entity Resolution (ER), due to its importance and application in various areas of knowledge,

such as health, safety, academic, smart cities, social media, Web, and spatial data [47].

A fundamental step to integrate multiple knowledge bases or identify similarities be-

tween entities is Entity Resolution (ER). ER (also known as entity reconciliation, entity

matching, record linkage or deduplication) is a task that matches records (the entity pro-

files) from several data sources (the entity collections) which refer to the same real-world

entity [21]. The ER task is widely used by the Web community because it is commonly

necessary to integrate multiple knowledge bases, which store semi-structured data [71;

1
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94]. Since ER is able to identify duplicate data or determine relationships between entities,

this task has gained detach in supporting and providing useful information to various areas of

knowledge, such as Data Quality, Data Integration and Data Mining [25]. More specifically,

ER has been used in numerous applications: Web page deduplication, crime prevention (e.g.,

terrorist identification), plagiarism and fraud detection [21]. However, traditional ER has a

quadratic behaviour since it requires that each entity in one data source be compared with

all entities in the other data source (i.e., Cartesian product) [21]. When ER is guided by the

Cartesian product, the execution time can achieve an asymptotic complexity of O(n2). This

computational cost is inefficient when placed in the context of Big Data, where data sources

usually contain thousands or millions of entities [21].

Regarding the different ways to process data, there are two main types of processing:

batch or streaming. Batch processing is characterised by receiving and processing the entire

input (i.e., set of entities) at once [69]. On the other hand, in streaming data processing, input

data is received continuously at short intervals. This type of processing is commonly related

to dynamic data sources that continually update. Here, we assume that not all data, from

all data sources, are available at once [64]. Therefore, we have to match the entities as they

appear, also considering the entities already matched previously. In this sense, the challenges

are potentiated when the ER task is inserted into the context of Big Data and Streaming Data

simultaneously, as the task has to deal with a huge amount of data and the continuous flow

of data received in a short time (for example, seconds or minutes) [84].

In the Big Data context, the ER task faces mainly three "Vs": volume, as it deals with a

large number of entities; velocity, related to the speed at which entities should be compared;

and variety, since different formats describe entity profiles (heterogeneous data) [37]. In

this sense, blocking techniques and distributed computing are applied in order to minimize

problems related to the large and continuous volume of data to be processed [31]. Blocking

techniques group similar entities into blocks and perform comparisons within each block,

avoiding comparisons guided by the Cartesian product. Even though blocking techniques

reduce the number of comparisons to be performed during the ER task, such techniques can

still result in a high amount of comparisons [37]. It occurs due to the size of the input datasets

and/or the distribution of entities within blocks. In some cases, the smallest block generated

by a blocking technique can still result in a large number of comparisons.
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When blocking techniques are not applied or their application is not sufficient to re-

duce the number of comparisons satisfactorily, the ER task tends to require hours or days

to be performed. However, nowadays, it is not reasonable that the ER task runs for several

hours or days [23]. Regarding the velocity of execution, the ER task can be performed in

parallel to reduce the overall execution time by distributing entity comparisons among the

various resources (for instance, computers or virtual machines) of a distributed infrastruc-

ture. In this context, the application of MapReduce (MR) based programmatic models (such

as Spark, Flink and Hadoop) emerges as a possible solution for the execution of the ER

task in parallel. MR models were developed in order to simplify the execution of parallel

tasks over distributed infrastructures. Common characteristics of these frameworks, such as

simplicity (in terms of usability), flexibility, fault tolerance, and the ability to scale high-cost

computational processing, able these frameworks become excellent resources for performing

data-intensive tasks efficiently (regarding time processing). In this work, Spark is applied for

batch data scenarios while Flink is applied for streaming data scenarios since relevant works

prove their efficiency (in terms of processing and scalability) for these scenarios [90; 64;

85].

Regarding variety, the heterogeneity of the data compromises the generation of en-

tity blocks (by the blocking techniques) since the entity profiles hardly share the same

schema. For this reason, in the context of heterogeneous data, it is not possible to de-

fine blocking keys (keys used to partition entities in blocks) based on the schema. There-

fore, traditional blocking techniques do not present satisfactory effectiveness, for instance,

Sorted Neighborhood [57] and Adaptive Window [69]). It occurs due to these techniques

perform the blocking based on the entity profile schema [83; 80]. In turn, the variety

challenge is addressed by schema-agnostic blocking techniques, which disregard attribute

names and consider the values related to the entity attributes to perform blocking [21;

25]. Furthermore, it is possible to highlight two new problems tackled by the ER task:

streaming data and incremental processing [30; 85]. Streaming data is related to dynamic

data sources (e.g., from Web Systems, Social Media and sensors), which are continuously

updated. When ER receives streaming data, we assume that not all data (from the data

sources) are available at once. Therefore, ER needs to match the entities as they arrive,

also considering the entities already matched previously. On the other hand, incremental
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ER is related to receiving data continuously over time and re-processing only the portion of

the matching results (i.e., similar entities) that were affected by the data increments. Thus,

the challenges are strengthened when the ER task is considered in the context of Big Data,

streaming data and incremental processing, simultaneously.

As previously discussed, the ER task in the context of Big Data presents challenges

(related to the three "Vs", streaming data and incremental processing) which motivate the

application of parallel computing. For instance, the application of frameworks such as Spark

or Flink, which provide data streaming libraries and allow processing large amounts of data

efficiently. Beyond these challenges, the ER task faces different scenarios associated with

the domain (e.g., health, Web, academic, smart cities) in which the task is inserted, such as:

how data is handled (batch or streaming); data quality (presence or absence of noise in the

data, such as typos and misspelling); and prioritization of effectiveness or efficiency (accord-

ing to application needs). Throughout this work, such scenarios (application associated) will

be referred to as application profiles. In the execution model proposed in this work, the user

(for example, a researcher or data specialist) will inform the execution model the applica-

tion profile, according to the application characteristics (batch/streaming, data with/without

noise, and focus on effectiveness/efficiency) identified by him/her.

1.1 Relevance

There is an increasing number of areas where ER application is needed, such as healthcare,

national censuses, national security, business systems and, more recently, digital libraries,

e-commerce and social networks. At the academy, ER has been applied in different areas of

computing such as Data Mining, Machine Learning, Information Retrieval, Databases, and

Data Quality [39]. The main challenge of ER is the lack of global identifiers (e.g., primary

keys) of entities to be compared. For this reason, the ER task must explore attributes that

contain partial identifying information for entities, such as name, description, address, or

venue. However, the identifying information is often of poor quality. For instance, personal

information (phone, marital status, and address) especially suffers from frequent variations

and typographical errors [21].

Although the ER task has been studied over several decades and has achieved several
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advances (e.g., blocking techniques), the emergence of new challenges inherent in new ways

of data manipulation and storage (such as Big Data, data streaming, and semi-structured

data) made this task relevant until nowadays [25]. In this context, the search for approaches

that enhance the efficiency of the ER task has been highlighted in recent years, since it is not

interesting that this task requires a long time to complete [80; 83; 37].

In the context of information systems, there is a growing need to integrate different data

sources in order to increase the amount of information available or supplement existing in-

formation in one of the data sources [25; 80; 21]. Therefore, as stated previously, the ER task

can be applied to support data integration tasks. Since nowadays the data sources commonly

store a large amount of data (i.e., Big Data) and the data is semi-structured, agnostic blocking

techniques should be applied in order to improve the efficiency of ER. For this reason, this

work aims to investigate challenges related to blocking techniques for ER in the context of

large semi-structured data sources.

The relevance of this work is due to the proposition of a distributed execution model for

agnostic blocking techniques, capable of addressing the needs of different application pro-

files. These application profiles are related to the characteristics of each application, such

as how data is received, data quality and prioritization of effectiveness/efficiency. Based on

the application profile informed by the user, the model will define the execution flow and the

blocking technique to be applied according to the needs of the application profile in ques-

tion. Furthermore, novel agnostic blocking techniques are proposed, which are coupled to

the execution model. The proposed blocking techniques also enable the efficient execution

of ER involving data sources containing thousands or millions of entities, by applying dis-

tributed computing. Moreover, the execution model can be extended and serve as a basis for

proposing other models or blocking techniques in future scientific investigations.

1.2 Objetives

In this section, the main objective and specific objectives of this work are presented.
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1.2.1 Main Objetive

Based on the challenges related to the context (semi-structured data, large data sources, and

batch/streaming data) in which this work is inserted, the scope of the thesis is related to

improving the efficiency of ER task without reducing the effectiveness of the results.

Therefore, the main objective of this work is to propose efficient blocking techniques

in the context of semi-structured data, large data sources, and batch/streaming data. In this

sense, parallel blocking techniques are investigated, proposed and evaluated in order to be

integrated with the distributed execution model also proposed in this thesis, which aims to

improve the efficiency of ER task in data integration scenarios involving semi-structured

data.

Thus, the main hypothesis of the work is to evaluate if the application of the proposed

blocking techniques is able to considerably improve the efficiency of the ER task without

decreasing effectiveness, in scenarios where the ER task faces the needs associated with the

application profiles (i.e., batch/streaming, data with/without noise, and focus on effective-

ness/efficiency).

1.2.2 Specific Objectives

Considering the proposed main objective, this work has the following specific objectives:

1. Propose a distributed execution model, whose steps will be used to guide the workflow

of the blocking techniques;

2. Propose and evaluate new efficient blocking techniques for parallel ER tasks, taking

into account each challenge stated in the scope of this work (semi-structured data, large

data sources and batch/streaming data);

3. Propose strategies, based on the execution model and application profile needs (in-

formed by the user), to select the schema-agnostic blocking technique and the best

execution workflow of the model (among the predefined workflows) related to the ap-

plication profile in question;

4. Propose a distributed architecture to describe the execution model steps and the exe-

cution workflow for blocking;
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5. Implement and evaluate blocking techniques based on the execution model so that

they are capable of handling large semi-structured data sources in the context of

batch/streaming data.

1.3 Methodology

In order to propose solutions for problems and challenges regarding ER task, in this work,

we apply a methodology that divides the doctoral research into smaller research projects. We

developed three research projects which resulted in three main blocking techniques proposed

in this thesis, as described in Sections 5, 6 and 7. For each research project, a prior planning

is performed to specify a detailed description and a schedule for the following activities: i)

theoretical foundation and relevance justification of the problem or area to be investigated; ii)

reading books, articles and technical reports related to the investigated problem; iii) propos-

ing new approaches and/or methodologies to address the challenges of ER; iv) definition

of hypotheses and planning of an experimental design to evaluate the research hypotheses

investigated; v) formatting and promoting a discussion of the results achieved in previous

activities; vi) listing of interpretations and conclusions as a result of the research conducted;

and vii) definition of future works.

During the studies conducted for the first research project (see Section 5), we investigated

several blocking techniques [25; 80; 83; 36; 37; 89]. In this sense, we noticed that these

techniques commonly follow a set of steps. Thus, a distributed execution model for parallel

blocking techniques emerges as a possible generic structure to guide the development of our

techniques. In this thesis, the concept of model is considered as a set of operations (i.e. steps)

to be used in a process [14]. Then, the proposed model defines a set of steps to perform the

blocking task and possible workflows to perform these steps (which will be described in

Section 4). Since aspects related to efficiency and the processing of large data sources are

explored in this thesis, the proposed execution model is based on a distributed infrastructure

to perform the blocking task in parallel. Thus, the three blocking techniques proposed in this

thesis follow the steps and the workflows defined in the distributed execution model.

In this work, parallel schema-agnostic blocking techniques are proposed assuming the

context addressed by this work. These blocking techniques use Spark and Flink as a pro-
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grammatic model to parallelize the entity blocking. During the four years of the Ph.D., the

research efforts were focused on four main objectives:

1. Define the problem to be addressed by our research;

2. Propose efficient schema-agnostic blocking techniques;

3. Develop parallel workflows to be followed by the proposed blocking techniques;

4. Explore the open problem related to handling streaming data (by proposing an incre-

mental schema-agnostic blocking technique for streaming data).

More specifically, we accomplished the following objectives:

1. Investigate solutions for RE in the context of semi-structured data;

2. Propose an efficient parallel-based blocking technique in the context of semi-structured

data;

3. Propose a noise-tolerant (able to tolerate typos and spelling errors on the data) blocking

technique in semi-structured data;

4. Propose a parallel-based blocking technique able to handle streaming data;

5. Conduct a case study involving a real scenario of streaming data, where the proposed

blocking techniques is applied.

Summary, we can highlight the three blocking technique proposed in this thesis. Since

the application profile explores aspects related to how data is handled (batch or streaming);

data quality (presence or absence of noise in the data) and prioritization of effectiveness

or efficiency, the proposed techniques aim to address these aspects. Hence, the first tech-

nique (see Section 5) addresses batch data, without noise and prioritizes the efficiency of the

blocking task. The second technique (see Section 6) aims to generate high-quality blocks

(i.e., prioritizes the effectiveness) in the context of noise data in batch. The third technique

(see Section 7) innovates in the sense of handle streaming data, with a focus on generating

high-quality blocks efficiently. However, the third technique does not consider noise on the

data. Although the proposed model can explore different combinations of application pro-

files (more specifically, eight combinations), we explore three combinations addressed by
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each proposed technique. However, it is important to highlight the generic behaviour of the

execution model. Thus, other blocking techniques, proposed by us or other researchers, can

be integrated into the execution model.

1.4 Main Results

Since the main purpose of this thesis is to propose a distributed execution model for parallel

blocking techniques, the efforts are related to the proposition and implementation of efficient

blocking techniques. Thus, the following results were achieved:

1. A blocking technique in the context of semi-structured data (i.e., schema-agnostic

technique) in parallel, using the Spark programmatic model;

2. A noise-tolerant blocking technique (e.g., typos and spelling errors) in the context of

semi-structured data. This technique seeks improvements in block generation, which

may favor other blocking techniques, as proposed in item 1;

3. An incremental schema-agnostic blocking technique for streaming data. This tech-

nique is able to process a large amount of streaming data in an incremental way through

a distributed computational infrastructure;

4. A case study involving a real scenario of streaming data. In this sense, data provided

by Twitter was explored in order to validate the application of the proposed blocking

techniques.

In addition, experimental evaluations were performed to evaluate the effectiveness and

efficiency of the blocking techniques proposed in this work. Based on the achieved results, it

is possible to detach that the novel blocking techniques present efficient solutions, regarding

the execution time, and maintain (or outperform) the efficacy results achieved by state-of-

the-art techniques.

1.5 Achieved Research Indicators

In summary, the following research indicators have been achieved:
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1. Publication and presentation of the article Spark-based Streamlined Metablocking [8]

in the 22nd IEEE Symposium on Computers and Communications (2017) in Heraklion

- Greece;

2. Publication and presentation of the article Towards Reliable Data Analyzes for Smart

Cities [7] in the 21st International Database Engineering & Applications Symposium

(2017) in Bristol - England;

3. Publication of the article Noisy-aware Blocking over Heterogeneous Data [6] in the

17th International Semantic Web Conference (2018) in Monterey - USA;

4. Publication and presentation of the article A Noise Tolerant and Schema-agnostic

Blocking Technique for Entity Resolution [10] in the 34th ACM/SIGAPP Symposium

on Applied Computing (2019), in Limassol - Cyprus;

5. Presentation of the poster A Parallel Approach for Data Matching over Streaming

Web Data in the 13rd Alberto Mendelzon International Workshop (2019) in Asunción

- Paraguay;

6. Publication of the article Incremental Blocking for Entity Resolution over Web Stream-

ing Data [16] in the 18th IEEE/WIC/ACM International Conference on Web Intelli-

gence (2019) in Thessaloniki - Greece;

7. Publication and presentation of the article A Parallel-based Map Matching Approach

over Urban Place Records in the 24th Brazilian Symposium on Databases (2019) in

Fortaleza - Brazil;

8. Publication and presentation of the article Parallel Blocking for Entity Resolution over

Heterogeneous Data in the Database Thesis and Dissertation Workshop hosted by 24th

Brazilian Symposium on Databases (2019) in Fortaleza - Brazil;

9. Acceptance of the article Schema-agnostic Blocking for Streaming Data to be pub-

lished in 35th ACM/SIGAPP Symposium on Applied Computing (2020), in Brno -

Czech Republic.

10. The article Incremental Blocking for Entity Resolution over Big Heterogeneous

Streaming Data will be submitted to a international journal.
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1.6 Document Structure

The remainder of this document is organized as follows:

Chapter 2 - Theoretical Foundation: addresses the main concepts inherent to the un-

derstanding of this thesis. This chapter describes the main concepts related to the following

topics: i) Semi-structured data; ii) Noise data; iii) Streaming data; iv) Entity Resolution; v)

Schema-agnostic blocking techniques; vi) Quality metrics of blocking techniques for ER;

vii) MapReduce; viii) MapReduce-based blocking techniques; ix) Locality Sensitive Hash-

ing (LSH); and x) Entropy of attributes.

Chapter 3 - Related Work: this chapter describes the main works present in the liter-

ature, as well as the approaches and blocking techniques proposed by each of these works.

For a better understanding, the related works are divided into three groups: i) blocking tech-

niques in the context of semi-structured data, ii) parallel blocking techniques in the context

of semi-structured data, and iii) incremental blocking techniques in the context of streaming

data.

Chapter 4 - Distributed Execution Model for Blocking Semi-structured Data:

presents the distributed execution model proposed in this thesis, capable of efficiently pro-

cessing a large number of entities, without reducing the quality of the generated blocks, for

the different application profiles.

Chapter 5 - Spark-based Metablocking Technique: in this chapter, we propose a

schema-agnostic parallel blocking technique, called Spark-based Streamlined Metablocking

(SS-Metablocking). In addition to the new blocking technique, this chapter also proposes a

new pruning algorithm (in order to improve the efficiency of the generated blocks) and a new

load balancing technique (in order to improve the efficiency of the blocking technique).

Chapter 6 - Noise Tolerant and Schema-agnostic Blocking Technique: the Noise-

aware Agnostic BLOCKing for Entity Resolution (NA-BLOCKER) technique is proposed

in this chapter. NA-BLOCKER is capable of tolerating noisy data to extract information

regarding the schema from the data (i.e., group similar attributes based on the data) and

enhance the quality of the generated blocks. To this end, the NA-BLOCKER applies hash

algorithms in order to hash the attribute values of the entities and enable the generation

of high-quality blocks (i.e., blocks that contain a significant number of entities with high
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chances of being considered similar/matches), even with the presence of noise in the attribute

values.

Chapter 7 - Incremental Schema-agnostic Blocking Technique for Streaming Data:

the objective of this chapter is to propose a schema-agnostic blocking technique able to han-

dle streaming data, named PaRallel-based Incremental MEtablocking (PRIME). The block-

ing technique implements strategies to process efficiently streaming data, considering the

incremental behaviour. To this end, strategies are developed to quickly receive and process

entities (sent continuously) and prevent the blocking task from consuming resources (e.g.,

CPU and memory) excessively.

Chapter 8 - Conclusions and Future Works: in this chapter, the conclusions related

to the proposed artefacts (i.e., execution model and blocking techniques) are presented. Fur-

thermore, future directions for this research are highlighted with the objective of detaching

open areas, identified during the development of this study.



Chapter 2

Theoretical Foundation

This chapter discusses the basic concepts inherent to the understanding of the topics ad-

dressed by this thesis. The main concepts presented are: i) Semi-structured data; ii) Noise

data; iii) Streaming data; iv) Entity Resolution; v) Schema-agnostic blocking techniques;

vi) Quality metrics of blocking techniques for ER; vii) MapReduce; viii) MapReduce-based

blocking techniques; ix) Locality Sensitive Hashing (LSH); and x) Entropy of attributes.

2.1 Semi-structured Data

Currently, part of data provided by data sources consists of records stored in database tables,

spreadsheets, or text files (with comma-separated values - CSV - or tab-separated values) [21;

59]. Each one of these records refers to an entity and contains the same attributes. There

is no hierarchy between the attributes in these records, i.e., the data is stored in a structured

manner. Relational database systems are usually standardized, so that, different components

are stored in different tables that are linked by foreign keys. To identify matches between

structured data, it is necessary to extract the data from the normalized databases through

queries, which combine the attributes of different tables into a single table or view model

[21].

However, the number of Web knowledge bases that do not store their data in database ta-

bles (i.e., structured) [102] is growing. Semi-structured data formats have gained popularity

in recent times including: XML (eXtensible Markup Language), RDF (Resource Descrip-

tion Framework) and JSON (JavaScript Text Object Notation). In these formats, the data

13
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does not follow a rigid structure (as in relational tables). Moreover, semi-structured schemas

can be represented by trees, where the attributes are composed of sub-attributes. Thus, for

a specific entity, each attribute has an associated value that describes information related to

the entity in question. Considering the example depicted in Figure 2.1, an entity Person con-

tains the attributes name and address. The attribute name contains sub-attributes such as first

name, surname and title, while the attribute address contains common sub-attributes related

to addresses, such as street, number, city, and country.

In the context of semi-structured data, the attributes of an entity can provide partial,

overlapping and sometimes contradictory information for the same entity (in the real world).

Thus, since semi-structured data does not follow a rigid schema, to identify the similarity

between two entities it is necessary to explore the similarities of the attribute values of each

of them. In other words, to compare an entity pair, it is necessary to consider the similarity

of their textual content (described by attribute values) [25]. In general, the high degree of

semantic heterogeneity reflected in different schemas makes ER, in the context of semi-

structured data, an intrinsically complex task [13].

2.2 Noisy Data

People are less careful about the lexical accuracy of content written in informal virtual envi-

ronments (e.g., social networks) or when they are submitted to some form of pressure (e.g.,

business reporting) [3]. For this reason, real-world data often suffers from noise that can im-

pair data interpretations, data manipulation tasks, and decision making [43]. In the context

of semi-structured data sources there is no difference. Typically, these data sources (mainly

from the Web) present noise in the data, such as pronunciation errors, typos, slang and/or

abbreviations1 [29].

In this context, blocking techniques face serious impacts on block construction, as truly

similar entities can be inserted into distinct blocks due to the spelling difference of their at-

tribute values. This scenario determines that these entities will not be compared in the ER

task and, consequently, these corresponding entities will not be identified. In order to address

this problem, noise-tolerant blocking techniques should be applied. These techniques eval-

1In this paper, we will consider the two most common types of noise: pronunciation errors and typos [3].
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Figure 2.1: Description of entity Person in JSON.

uate the entities seeking to establish an approximate similarity between the attribute values,

taking into account the potential presence of noise in the data. Therefore, it is possible to

decrease the chances of truly similar entities being inserted into distinct blocks. For this rea-

son, noisy data commonly reduce the effectiveness of the ER task and emerge as a challenge

to be faced [90]. However, the development of noise-tolerant (or noise-aware) techniques is

considered an open research area for many authors [62].

2.3 Streaming Data

Streaming data is continuously generated by one or more data sources. This data is usually

sent simultaneously by each data source [44; 33]. This kind of data includes a wide range

of data from different domains, such as mobile devices or sensors, websites, e-commerce,

social networks, financial trading, and geospatial applications.

Given the constant updating of data, streaming data must be processed continuously, se-
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quentially and incrementally. Data processing can be performed by record (as each record/-

data is received) or over a certain period of time (data is stored in small packets for process-

ing). Information extracted from this data can provide a wide variety of analytical data (for

example, correlations between data and sampling). Moreover, such data may provide crucial

information for companies, government agencies, and research agencies in real-time [107].

For example, a company can evaluate (in real-time) the public perception of its products

from streaming data provided by social networks.

Nowadays, streaming data processing is applied in all domains where data is dynamic

and continuously produced. For this reason, streaming data is related to a variety of Big

Data scenarios [107]. In the context of ER applications, streaming data empowers several

challenges already faced by the ER task [21]. Among them, we can highlight the scalability

of task processing, since applications that handle streaming data require response time in the

order of seconds or minutes. Therefore, new blocking techniques should be investigated in

order to provide the ER task with high runtime efficiency.

2.4 Entity Resolution

ER is the task of identifying records stored in one or more data sources that correspond to

the same real-world entities [21]. Entities can represent the most diverse records, depending

on the domain in which they are related, such as: people (e.g., patients, clients, contributors

or travellers), publications, movies, or products. In this sense, the ER task has emerged as a

support task for various applications related to data mining, information integration, and data

cleansing [12; 58; 104]. Over the years, several application domains and research fields have

developed their own solutions for the ER task, and as a result, this task is known by many

different names: record linkage, entity matching, object identification, or deduplication. A

particular case of ER arises when the goal is to find records that refer to the same entity within

a single data source, this task is commonly known as duplicate detection (deduplication).

In general, the ER task considers two data sources [21]. Thus, given two entity collec-

tions A ∈ S and B ∈ R from the data sources S and R, the purpose of ER is to identify all

matches between entities (e) of the data sources. In this sense, each entity e ∈ A or e ∈ B

can be denoted as a set of key-value elements that model its attributes (a) and the values (v)
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associated with each attribute: e = [(a1, v1), (a2, v2), . . . , (an, vn)]. Given sim(ei, ek) the

function that determines the similarity between the entities ei and ek, and Φ the threshold

(Φ ∈ Q) which determines whether the entities ei and ek are considered as a match (i.e.,

truly similar entities). Thus, the task of identifying similar entities (ER) can be denoted as

ER(S,R) = {(ei, ek) | ei ∈ S, ek ∈ R | sim(ei, ek) ≥ Φ}.

In traditional ER, entity comparisons are guided by the Cartesian product. In other words,

all entities from A are compared to all entities from B (A×B). For this reason, the ER task

is considered a data-intensive task. Therefore, it is possible to assume that the asymptotic

complexity of the ER task is quadratic O(n2), which clearly indicates inefficiency problems

when the collections A and B reach the order of millions of entities [37]. When ER deals

with large collections (i.e., Big Data), the application of blocking techniques is critical since

they reduce the search space and hence speed up the execution of the task. Considering the

challenges and problems inherent in the ER task, there is a necessity of proposing effective

new approaches to improve both quality results (detect similar entities) and execution time.

2.5 Schema-agnostic Blocking Techniques

In the context of large entity collections (order of tens of thousands or millions of enti-

ties), blocking techniques can be applied as a prior step to perform the ER task, in or-

der to prevent comparisons guided by the Cartesian product (A × B). Thus, blocking

techniques group entities so that similar entities are inserted into the same block. Conse-

quently, blocking techniques restrict the ER execution to a smaller subset of entity pairs that

have more chances to result in matches. Over the years, a wide number of blocking tech-

niques have been proposed in the context of structured data, such as Standard Blocking [22],

Sorted Neighborhood [57], Fuzzy Blocking [20], Canopy Clustering [67], Duplicate Count

Strategy (DCS) [34], Adaptive Window [69] and Machine Learning-based techniques [35;

72]. However, since in the context of semi-structured data entities rarely follow the same

schema, the block generation (in blocking techniques) is compromised. Therefore, tradi-

tional blocking techniques (e.g., sorted neighborhood and adaptive window) do not present

satisfactory effectiveness, since the blocking is based on the entity profile schema [83]. In

this sense, the challenges inherent in semi-structured data are addressed by schema-agnostic
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blocking techniques, which ignore scheme-related information and consider the attribute

values of each entity [25]. Following, the main schema-agnostic blocking techniques are

presented. The entity profiles (p) described in Figure 2.2, which describe people and their

jobs, will be used throughout this section.

Figure 2.2: Example of semi-structured entities, extracted from [39].

Token-based Blocking

Token-based blocking [77] assumes that similar entities must have at least a value (or part

of a value) of an attribute in common. In this way, the most repeating attribute values are

selected so that each of these values assumes the role of a token. Tokens are used as a kind

of identifier (key) for a block since each distinct token defines a new block. This blocking

essentially builds an inverted index of entity descriptions: each token is a key and each block

determines a list of entities associated with the key (i.e., token).

All entities that share the same token value (i.e., have some attribute value that contains

the token) are grouped into the same block. Consequently, this kind of blocking overlaps

entities between blocks. In other words, an entity may be contained in more than one block.

Thus, by applying the token-based technique to the entities illustrated in Figure 2.2, it is

possible to select the token "car", present in several attribute values. In this sense, all entities

that share the token "car" (i.e., have some attribute value that contains the token "car") are

inserted into this block. In this case, the entities p3, p4, p5, and p6 are inserted into the block

associated with the token "car". Figure 2.3 illustrates all blocks generated by the token-based

blocking technique considering the entities illustrated in Figure 2.2. Besides the traditional
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token-based blocking, two other token-based blocking techniques have been proposed: [79]

attribute blocking and prefix-infix(-suffix) [76; 78] blocking.

Figure 2.3: Blocks produced by the token-based blocking technique, extracted from [39].

Attribute-based blocking

The attribute-based blocking [79] exploits schematic information about the attributes of

each entity in order to minimize the amount of false-positive matches. To this end, before the

blocking step, an initial grouping of attributes is generated based on the similarities of their

values. External sources such as thesaurus can be consulted to determine similar attributes.

Thus, instead of searching for a common token, regardless of the attribute, only the tokens

generated by similar attributes (i.e., attributes contained in the same group) are considered.

In the example illustrated in Figure 2.2, it is possible to group the attributes accord-

ing to the semantic similarity. In this sense, to complement the example, the entity

p7 : {name : John Petter; job : Miller Beer seller} will be considered. The attributes

"FullName", "full name", "Full name" and "name" are grouped, so that only entities sharing

tokens associated with attributes belonging to the same set are inserted into the same block.

Afterwards, the blocking is performed considering the tokens associated with each block. In

the example, although the token "Miller" is present in p1, p3, and p7, the entity p7 will not

be included in the same block of the entities p1 and p3, since the attribute "job" (from p7)

is not in the same set of the attributes "FullName" and "full name" (from p1 and p3). For

this reason, the entities p1 and p3 are grouped in the block name.Miller and the entity p7 is

inserted into the block job.Miller.

Prefix-infix(-suffix) blocking

Prefix-infix(-suffix) blocking [76; 78] is widely used in the Web context, especially in
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the Semantic Web, since it exploits information from URIs (Uniform Resource Identifier)

associated with entity attributes. The key idea of this blocking technique is to analyze entity

URIs in order to identify which entities have a common token in their literal values. The main

disadvantage of prefix-infix(-suffix) blocking is the dependence of URIs on the description

of entities.

This technique partitions the URI of each entity into prefix, infix, and

suffix to identify the presence of common tokens. For example, the URI

"http://liris.cnrs.fr/Miller.company/seller: John Petter" is partitioned into three tokens:

"http://liris.cnrs.fr" (prefix), "/ Miller.company/" (infix), "/seller:John Petter" (suffix). Thus,

this prefix-infix(-suffix) blocking technique uses URI-based tokens to generate the blocks.

Join-based Blocking

Join-based blocking [101] appears as an alternative blocking technique to other kinds of

blocking since it applies linguistic similarity algorithms to determine the similarity between

entities [25]. This blocking technique generates blocks based on linguistic similarity (string-

similarity join [53]) between the attribute values of an entity. In other words, blocks are

constructed by identifying all pairs of entities whose set of attributes have similarities above

a certain threshold.

Unlike other techniques, join-based blocking selects keywords linguistically, from the

number of occurrences of a given value (word) in the attribute values. For instance, the top-

"n" values (words) that repeat among the entity attributes can be considered as keywords.

After defining the keywords, the blocking technique generates an inverted index and com-

pares the attribute values (of the entities) with the keywords, applying a linguistic similarity

algorithm (e.g., Jaro-Winkler, Jaccard or Levenshtein [23]). If the similarity value between

the attribute value and the keyword exceeds a predetermined threshold, the entity is inserted

into the block.

Given the example illustrated in Figure 2.2, one possible keyword to consider is "seller"

since it repeats twice among the attributes of the six entities in question. Then, the entity

whose attribute value has a similarity above 0.4 (for instance, using the Jaccard algorithm)

with the keyword "seller", will be inserted into the block. In this sense, the block represented

by the keyword "seller" will consist of the entities p1, p3, and p5.

Frequency-based blocking
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In this blocking technique, entities are grouped based on the occurrence of their attribute

values [60]. Blocking techniques such as [61; 55] select the values (of attributes) that most

repeat among the entities. Thus, after selecting the most frequent attribute values, the set

of tokens (most frequent) are determined. Each set of tokens determines the formation of a

block. Then, entities whose attribute values are contained in the set of tokens are inserted

into the block in question. Assuming the entities described in Figure 2.2, the set of tokens

[Jack,Miller, seller] can be defined. Thus, the entities p1 and p3 are inserted into the block

associated with the set ([Jack,Miller, seller]), since both entities share the Jack,Miller

and seller attribute values.

Although this technique considerably reduces the amount of comparisons between en-

tities with low chances of resulting in matches, the technique can also reduce the number

of truly similar entity pairs identified, especially involving entities with a few number of

attribute values in common.

Metablocking

The Metablocking technique initially applies a simpler schema-agnostic blocking (e.g.,

token-based) to identify possible pairs of entities to be compared. Token-based blocking

is sensitive to the similarity of attribute values. Therefore, even entities that do not have a

high similarity may belong to the same block. Moreover, this sensitivity to the similarity of

attribute values tends to generate blocks with a large number of entities and, consequently,

the amount of entity comparisons is not always reduced to a satisfactory quantity.

In order to minimize this problem, after the initial blocks are generated by the token-

based blocking, the Metablocking technique creates a similarity graph based on the previ-

ously generated blocks, as shown in Figure 2.4 (a). Each node in the graph is represented

by an entity and the edges represent similarity between nodes. The weight of edges between

nodes (entities) is determined from the number of blocks in common between the pair of

nodes (entity pair) linked by the edge. Then, as described in Figure 2.4 (b), the Metablock-

ing technique prunes the graph based on edge weights, discarding edges that have a weight

below a predetermined threshold. The resulting (pruned) graph is used to generate the new

entity blocks, so that entities (nodes) that still have relationships (edges) are grouped to-

gether, and disconnected entities (no edges) are discarded, as shown in Figure 2.4 (c).

This technique, which was initially proposed in [77], has gained visibility among the
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Figure 2.4: (a) Graph generated from the blocks in Figure 2.3, (b) Graph after the pruning

step, and (c) New blocks after applying Metablocking. Figure adapted from [39].

schema-agnostic blocking techniques and is considered the state-of-the-art technique. For

this reason, this technique has been improved both in terms of effectiveness [80; 83] and

efficiency through the application of distributed computing [37; 8].

2.6 Quality Metrics for Entity Resolution and Blocking

Techniques

The metrics Recall (R), Precision (P), and F-measure (F) are commonly used to measure

the effectiveness of the ER task. These metrics use a gold-standard (containing truly similar

entity pairs) to determine how close to the gold-standard the results given by an ER approach

can achieve. These metrics are defined as follows.

• Recall (R): the number of correctly entity pairs classified as similar by the approach

(C) divided by the total pairs of truly similar entities (G), defined by the gold-standard.

This quality metric is calculated as follows: R = C
G

.

• Precision (P): number of entity pairs correctly classified as similar by approach (C)

divided by total entity pairs classified as similar by approach (T). This quality metric
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is calculated as follows: P = C
T

.

• F-measure (F): the harmonic mean between precision and coverage. This quality met-

ric is calculated as follows: F = 2 ∗ R ∗ P
R + P

.

More specifically, four metrics are commonly used to evaluate blocking techniques: Pair

Completeness, Pair Quality, Reduction Ratio and F-score. Before describing each of the met-

rics, some variables must be defined: i) B : input block set, this set can consist of only two

blocks, where one block contains all entities of a data source, and the other block contains

all entities of the other data source; ii) |B| : total amount of comparisons between entities to

be performed on the set of blocks; iii) B′ : set of blocks generated after the execution of a

particular blocking technique; iv) D(B′) : amount of truly similar entity pairs that have been

preserved by the blocking technique (i.e., which will still be compared in the ER task); v)

G : amount of truly similar entity pairs contained in gold-standard. From the definition of

these variables, the metrics are defined below.

• Pair Completeness (PC): this metric indicates the proportion of truly similar entity

pairs that have been preserved by the blocking technique in relation to the total of truly

similar entities defined by the gold-standard. It is given by the formula: PC = D(B′)
G

.

• Pair Quality (PQ): measures the fraction between the number of truly similar entity

pairs that have been preserved by the blocking technique and the total amount of entity

comparisons determined by the blocking technique. It is calculated as follows: PQ =

D(B′)
|B′| .

• Reduction Ratio (RR): indicates the proportion of all possible pairs of entities that

were eliminated by the blocking technique, i.e., indicates how much the search space

has been reduced. It is determined by the formula: RR = |B|
|B′| .

• F-score (Fs): harmonic mean between the Pair Completeness and Pair Quality metrics.

It is calculated as follows: Fs = 2 ∗ PC ∗ PQ

PC + PQ
.

The above quality metrics will be used to evaluate the quality of the blocking techniques

proposed in this work.
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2.7 MapReduce Model

MapReduce (MR) is a scalable distributed model for data processing whose data workflow

is divided into the map and reduce phases [28]. In the map phase, map functions (tasks)

transform input records into temporary records, which are not necessarily the same input

data type. The map functions also map the entries with their respective keys, in order to

form a set of pairs (key, value) of a temporary record. In the reduce phase, reduce functions

are responsible for reducing a set of temporary values, which share the same key, in the final

output of the process. The reduce phase has the following steps:

• Sort: this is the initial step of the reduce phase, which has as input the outputs of the

map functions. The MR model groups the inputs of the reduce step by the keys, sorting

them;

• Shuffle: in this step, the MR model analyzes the most relevant part of the output key of

all map functions;

• Reduce: based on the pairs (key, value) generated by the map functions, the reduce

phase groups the data (values) which will be processed in the same reduce function,

grouping the data by the key.

In MapReduce, the data is initially partitioned between available infrastructure resources

and stored in the Distributed File System (DFS). Data is represented as pairs (key, value) and

calculations are expressed using two main functions:

• map : (keyinput; valueinput) → list(keytmp; valuetmp)

• reduce : (keytmp; list(valuetmp)) → list(keyoutput; valueoutput)

All execution involving map and reduce phases in MapReduce is called a job. In each

job, the map functions are applied in parallel on different partitions of the input data. The

pairs (key, value) resulting from the map functions are partitioned by the key. For each

reduce task, all incoming partitions are merged in a sorted order (sort), based on the keys.

For each partition, the pairs are sorted by their key and then submitted to the shuffle step. All

pair values that share the same key are sent to a single reduce function. The output of each

reduce function is written to a distributed file (DFS).



2.8 MapReduce-based Agnostic Blocking Techniques 25

In addition to the map and reduce functions, the MR framework also allows the user to

provide a combine function, which runs as internal mappers after the conclusion of the map

phase. Combine functions act as a local reducer, dealing with local pairs (key, value), which

decrease the amount of data transmitted in the network. Finally, MapReduce also allows

the user to configure (program) the map and reduce functions to address constraints and the

workflow that will be parallelized. In this sense, the user can customize how the pairs (key,

value) are partitioned and sorted [95].

Although there are several frameworks that implement the MapReduce programming

model, such as Hadoop [99], Spark [103], Flink [18], and Samza [73]. Currently, Spark and

Flink are the most efficient implementation of this paradigm in the open-source community.

For this reason, the blocking techniques presented in this paper, as well as their evaluations,

were implemented based on the Spark and Flink programmable model.

2.8 MapReduce-based Agnostic Blocking Techniques

In the context of structured data (i.e., where traditional blocking techniques are applied), a

lot of parallel blocking techniques have already been proposed, including the application of

MapReduce [68]. On the other hand, the main schema-agnostic blocking techniques have

been proposed in recent years and few studies propose the application of distributed com-

puting to improve the efficiency of these techniques. In this sense, recently published works

highlight the lack of parallel schema-agnostic blocking techniques and also indicate the ap-

plication of distributed computing in this context as an open research area [37].

Regarding the parallelization of blocking techniques, the approaches can be simple or

complex. In the first case, the blocking technique is performed in a distributed manner, but

without taking into account existing limitations in the MR model, such as load balancing

and excessive resource consumption of the infrastructure (these limitations will be further

discussed in the final part of this subsection). In the second case, the technique should be

able to minimize the impact of MR model limitations. In this section, to provide a better

understanding, we will use an example of a simple approach to the application of the MR

model in a Token-based blocking technique.

In the simplistic approach, the map step determines the blocking keys (i.e., the tokens)
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Figure 2.5: Example of a workflow for a Token-based blocking technique applying the MR

model.

and returns a list of key-value pairs (token, entity). Later, in the allocation phase (shuffle),

the blocking key is used to designate which key-value pairs will be sent for each available

reduce task. In the reduce step, entities that share the same blocking key (token) are grouped

into the same entity set. Thus, each of these entity sets represents a block.

In Figure 2.5, an example is illustrated where six entities from an input data source

are processed by the Token-based blocking technique, applying the MR model. Regarding

the MR model settings, three map tasks and two reduce tasks are used. Initially, in the

partitioning step, input entities are distributed into subsets, so that each subset is sent to

an available map task. In each map task, the data is read in parallel and the values of the

blocking keys K (i.e., the tokens) for each input entity are determined. It is important to

highlight that each entity can generate more than one token, and each token is associated

with a blocking key. Therefore, the token Jack of entity p1 assumes the role of key with the

entity p1 as the associated value. For a better visualization, in Figure 2.5 only a few tokens

of each entity were considered. Finally, all key-value (token-entity) pairs are dynamically

distributed by a partitioning function, so that all entities sharing the same key are sent to the

same reduce reduce task. For this reason, both key-value pairs 〈Jack, p1〉 and 〈Jack, p3〉

are sent to the task reduce1. In each reduce task, entities that share the same key are grouped

into the same entity set to define the block associated with the token in question. In this
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sense, the entities p1 and p3 are inserted into the block defined by the token Jack. Finally,

the outputs (i.e., generated blocks) from the reduce tasks are integrated and returned as the

final result of the blocking technique.

Although the MR model facilitates the development and implementation of parallel ap-

proaches, it is important to highlight that there are three inherent limitations of the model

that may degrade the efficiency (or make it impossible) of the execution of these approaches.

Minimizing the impacts of these limitations tends to increase the logical and computational

complexity of MR-based approaches. On the other hand, by addressing these limitations, it is

possible to achieve better efficiency in terms of performance and resource consumption. For

this reason, strategies that minimize the impacts of these limitations should be considered

whenever novel approaches are proposed. The limitations are described below.

Disjoint data partitions. Map and reduce tasks in the MR paradigm are responsible for

processing and sending data belonging to partitions specific to each of the tasks. For this

reason, it is not possible to exchange data or information with other tasks (even those that

have not yet been processed). This limitation directly impacts the entity mapping when there

is a necessity to compare with entities or obtain information contained in other partitions.

Therefore, it is necessary to ensure that all information necessary to perform the blocking

technique, which will be processed by the corresponding task, is properly sent to the task in

question, avoiding inconsistences and errors in the outputs of the blocking technique.

The frameworks Spark and Flink partially minimize this limitation by proposing two

types of variables: accumulators and broadcast. Accumulators allow creating variables that

accumulate values or information (e.g., counters). However, only the main program can read

the value of an accumulator, i.e., distinct tasks (separate partitions) cannot read the value

of an accumulator, only write to it. Broadcast variables allow data to be distributed across

the resources of a computing infrastructure (computers or virtual machines) so that this data

is stored in reading variables in the cache of each infrastructure resource. These variables

can be used to provide nodes of a cluster with copies of large data sets. However, these

variables cannot be dynamically edited by different tasks, only the main program can change

the values stored in a broadcast variable.

Load Balancing. Load balancing refers to how workloads are distributed among two

or more map/reduce tasks in an MR model [36]. The objective is a uniform distribution of
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workload among the task. Therefore, the tasks should receive similar loads (for example,

entity comparisons) to be computed. Load-balanced distribution enables better resource uti-

lization, maximizes approach performance, minimizes response time, and avoids overload-

ing of the computing infrastructure. In the context of blocking techniques, load balancing

for a MR-based technique seeks that each task performs approximately the same number of

comparisons between entities. In this sense, the proposition and application of load balanc-

ing over MR-based techniques are generally fundamental to achieve uniformity in workload

distribution [68].

The possibility of achieving a full load balancing (all tasks performing the same num-

ber of comparisons) depends on several factors pertinent to the problem in question (in this

case, blocking techniques). For instance, it is possible to consider the data bias (difference

in the size of entity blocks or number of attributes in each entity), the number of available

map/reduce tasks, and the heterogeneity of the nodes available in clusters (configuration,

processor, memory, operating system). Load unbalance directly impacts the total execution

time of the approach as the tasks responsible for processing most comparisons will be time

consuming, while other tasks will be idle due to the low workload allocated to them. There-

fore, it is clear that each approach based on the MR model addresses in particular (proposing

balancing strategies) the causes of load unbalance.

High Memory Consumption. As mentioned earlier, the entities to be compared must

be sent to the same map/reduce task. However, in the MR model, all entities to be compared

are loaded into memory before being processed in the task. Thus, after loading the entities in

memory, the schedule will divide the entities among the tasks. The memory consumption is

potentiated in scenarios where Token-based blocking techniques are applied, since the same

entity may be tied to hundreds or thousands of tokens. For this reason, in some scenarios

(especially in contexts involving Big Data) the memory available on each node is not suf-

ficient to store a large set of entities, slowing or making the processing impossible. Notice

that there is a strong relationship between high-memory consumption and load unbalance.

It occurs due to a good load balancing implies directly balancing the memory consumption

on each node, which avoids problems of high memory consumption by some computational

infrastructure nodes.

In scenarios involving streaming data, data sources provide an infinite amount of data
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continuously. In this sense, incremental approaches that handle streaming data commonly

suffer from memory issues since they need to maintain a large amount of data in memory [30;

85; 33]. It occurs due to incremental processing consumes information processed in previous

increments. Considering these behaviours, it is necessary to develop strategies that manage

the computational resources. In this sense, when blocking techniques face these scenarios,

memory consumption tends to be the biggest challenge to be handled by incremental ap-

proaches [86; 46; 30].

2.9 Locality Sensitive Hashing (LSH)

Commonly used to assist the task of finding duplicate or similar documents (for instance,

the ER task) from one or more data sources, LSH refers to a family of hash functions (i.e.,

functions able to map data of arbitrary size to fixed-size values) to hash records into a fixed-

size set so that similar records are located in the same sets with high probability. On the

other hand, low-similar records should be located in different sets. Hash values generated

by hash functions are named hash-signatures. In general, LSH is used for approximating

the near neighbour search in high-dimensional spaces [5]. It can be applied to reduce the

dimensionality of a high-dimensional space, preserving the similarity distances and reducing

significantly the number of the attribute values (or tokens) to be evaluated. Although LSH

algorithms do not guarantee to generate exact answers (in terms of similarity), they will

usually provide a good approximation with relevant results in terms of effectiveness.

Among the LSH-family of hash functions, it is possible to detach MinHash [87]. Min-

Hash function was proposed by Broder [17] in order to estimate the Jaccard similarity (i.e.,

Jaccard similarity from MinHash - JMH) between records (i.e., entities) of different data

sources. The main idea of MinHash is to replace the set of original values with a unique rep-

resentation. In other words, MinHash will use a single hash-signature to represent all values

(from the attributes) related to the entity in question. To determine the similarity (between

entities) from the attribute values of an entity (Va ∈ e), MinHash applies k hash functions

(MHk) in all values that the attribute assumes (i.e., ∀val ∈ Va). Finally, the algorithm selects

the final representation (i.e., the hash-signature) of these values based on the k hash func-

tions applied. Then, the hash-signatures (or MinHash signature - MS) is defined according



2.10 Entropy of Attributes 30

to Equation 2.1:

MSe = MHk(val)∀val ∈ Va, where Va ∈ e (2.1)

To calculate the similarity between two hash-signatures (from two entities e1 and e2), the

Jaccard similarity function is applied. Assume that the hash-signatures MSe1 and MSe2 , the

Jaccard similarity between them is expressed by Equation 2.2 [17]:

JMH(MSe1 ,MSe2) =
MSe1 ∩MSe2

k
(2.2)

with an error of θ = O( 1√
k
), taking into account the approximation error inherent to hash

functions.

2.10 Entropy of Attributes

To determine the relevance of a specific attribute of a data source regarding the other, it is

possible to use a well-known concept in Information Theory, called entropy [26]. Entropy

represents the information distribution of a random variable in an universe, in the context of

this thesis the universe is all values assumed for an attribute. Therefore, the entropy of an

attribute indicates how significant is the attribute, i.e., the higher the entropy of an attribute,

the more significant is the observation of a particular value for that attribute [90]. For in-

stance, the attribute gender (which assumes only two possible values - male and female) has

a low relevance when compared with the attribute name (which assumes a wide number of

possible values).

In this thesis, we specifically apply the Shannon entropy [63] to represent the information

distribution of a random attribute. Thus, since X is a discrete random variable with the

alphabet χ, and the probability distribution function p(x) = Pr{X = x}, x ∈ χ, then, the

Shannon entropy is defined as in Equation 2.3:

H(X) = −
∑

x∈χ
p(x) log p(x) (2.3)

In this thesis, entropy is applied in order to influence the similarity value between entities.

Since the similarity between entities is based on the similarity between their attribute values,
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low-relevant attributes commonly do not contribute to determine the similarity between en-

tities. In this sense, if the attribute assumes predictable values (for example, there are only

two possible values), observing the same value in two distinct entities has a little relevance.

On the other hand, if the attribute assumes on more unpredictable values (for example, there

are 100 probable values for the attribute in question), observing two entities that have the

same value for that attribute can be considered a significant indication that the entities are

similar. For example, determining that two entities are similar just based on the similarity of

the attribute gender may produce wrong matches, since this attribute is not so relevant when

compared with similarity based on the attribute name. Therefore, the main idea is to apply

entropy to emphasize similarities based on relevant attributes and minimize the impact of

low-relevant attributes on the final similarity between entities.

2.11 Final Considerations

This chapter presented an overview of the context in which this thesis is inserted and de-

scribed the main topics inherent to the domain of this research. First, the main concepts

related to the nature of the data were presented and described, such as semi-structured data,

noisy data and streaming data. Subsequently, the ER task was defined and described, as well

as the main challenges faced by the task. The application of distributed computing (through

MapReduce model) and blocking techniques were presented as possible solutions to min-

imize the problems related to the challenges faced by the ER task. Among the blocking

techniques, we detach the schema-agnostic blocking techniques since they are widely ap-

plied in the context of semi-structured data. Then, the MapReduce model was detailed in

order to highlight how blocking techniques can benefit, in terms of efficiency, from the ap-

plication of this model. The limitations related to the MR model were stated and discussed in

terms of the development of MR-based blocking techniques. Finally, LSH and entropy were

described and defined. Following, we will present the related work chapter, which discusses

the main works related to the ER task for semi-structured data.



Chapter 3

Related Work

In this chapter, we present the methodology to conduct the bibliography review. Moreover,

we describe the main works present in the literature, as well as the approaches and blocking

techniques proposed by each of these works. For a better understanding, the papers are

divided into three groups: i) blocking techniques in the context of semi-structured data,

ii) parallel blocking techniques in the context of semi-structured data, and iii) incremental

blocking techniques in the context of streaming data.

3.1 Methodology

In the literature, there is a wide number of works involving ER and blocking techniques.

The present work performed a formal systematic review to evaluate the main works related

to schema-agnostic blocking techniques for ER. During all the development of this thesis,

we performed a periodic searching using keywords in two platforms: GoogleScholar1 and

Mendeley2. Commonly, the keywords (or the combination of them) used for searching works

were: Entity Resolution, schema-agnostic blocking techniques, noisy data, streaming data,

and parallel blocking techniques. These searches resulted in a lot of works to be analyzed.

To refine our search, we apply several criteria, such as title, summary, authors, year of publi-

cation, venue and number of citations. Title and summary assisted us to understand what the

work proposes. From the authors, we can identify researchers that are working in the same

1https://scholar.google.com/
2https://www.mendeley.com/

32
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area. The year of publication is useful to find the recently published works. Using venue and

number of citations as a pruning criterion, we can identify the relevant works (i.e., with high

quality).

In a subsequent step, the papers were read to identify the main contributions of the works.

If the work is relevant and addresses the domain explored by this thesis, the work is in-

cluded as a related work. More specifically, to consider a work as a related work we took

into account the following criterion: i) the work addresses ER for semi-structured data, ii)

schema-agnostic blocking techniques are proposed or evaluated, iii) the work addresses par-

allel blocking techniques, iv) the blocking technique proposed in the work handle noisy data,

and v) the work proposes blocking techniques for streaming data. During the literature re-

view, we found several research groups working with schema-agnostic blocking techniques,

such as the groups guided by the Professors: George Papadakis, Giovanni Simonini, Kostas

Stefanidis, and Vassilis Christophides. This information was useful in the sense to apply

for the Ph.D. sandwich program, where we developed cooperative researches with the group

guided by Prof. Kostas Stefanidis.

3.2 Blocking Techniques in the Context of Semi-structured

Data

In the context of semi-structured data, the challenges inherent in blocking techniques (as

discussed in Section 2.5) become even more complicated as the data does not follow a rigid

and predefined schema [80]. For this reason, in recent years, a high number of works have

been developed to propose blocking techniques capable of dealing with semi-structured data

effectively and efficiently.

The work [77] emerges as one of the pioneers in proposing a blocking technique capable

of effectively blocking semi-structured data. In this paper, the authors propose a technique

capable of extracting tokens (i.e., keywords) from the attribute values of entities and grouping

the entities that share tokens in common. Tokens are used as a block identifier, as each

distinct token defines a new block. This blocking technique essentially builds an inverted

index of entity descriptions: each token is a key, and each block stores a list of entities

associated with a given token.
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After the proposition of blocking techniques based on tokens, other works were devel-

oped in order to propose novel blocking techniques more effective and efficient, such as the

works proposed in [55; 78; 79; 80; 89; 101]. In [75; 79], an attribute-based blocking tech-

nique is proposed, which also applies the strategy of using tokens as a blocking key. This

technique aims to reduce the number of redundant entities present in the blocks (problem

discussed in Chapter 2) and, consequently, to improve the performance of the work tech-

nique proposed in [77]. To this end, this technique initially groups similar attributes into the

same group. To determine attribute similarity, n-grams are generated from attribute names

and the linguistic similarity (for instance, by applying the Jaccard algorithm) between the

attributes determines the degree of similarity between them. From the generation of attribute

groups, entity blocks are constructed taking into account the attributes determined as similar

(i.e., attributes contained in the same group). To generate entity blocks, tokens are extracted

from attribute values. Thus, entities that share the same token are inserted into the same

block, following the rule that the token is provided by attributes considered as similar. This

strategy prevents linguistically identical tokens, but with distinct semantics, from determin-

ing the inclusion of entities in the same block. Therefore, this blocking technique further

reduces the number of comparisons to be performed in the ER task (i.e., efficiency gains).

On the other hand, attribute groups defined erroneously may prevent truly similar entities

from being grouped into the same block, impairing effectiveness.

In [78], the authors present a blocking technique whose main idea is to reduce the number

of redundant entity comparisons (i.e., entity pairs can be contained in more than one block)

to be performed. The proposed blocking technique is applied in the context of Web data,

which presents the Uniform Resource Identifier (URI) as one of their attributes. In this sense,

the blocking technique extracts from the URI (i.e., prefix, infix, and suffix, as described in

Chapter 2) information that will guide block generation. Such information is applied in order

to insert into the same blocks only entities that have URI with high similarity. Therefore, this

technique significantly reduces the number of comparisons to be performed in the ER task

and aims to generate satisfactory blocks in terms of effectiveness.

The work [101] proposes a blocking technique based on the linguistic similarity of the at-

tribute values. The proposed technique applies linguistic similarity algorithms (e.g., Jaccard,

Dice or Levenshtein) to measure the degree of similarity between the attribute values and,
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consequently, to determine the similarity between entities. Thus, entities that have a similar-

ity greater than a given threshold are inserted into the same block. The focus of this work is

to generate high-quality blocks (i.e., capable of achieving good effectiveness results). On the

other hand, due to the high number of comparisons between attribute values, the blocking

technique does not present good results related to efficiency.

In the work [55], a blocking technique based on the frequency of occurrence of certain

values is proposed. This work is an extension of the work which proposes blocking based

on tokens [77]. However, the blocking technique proposed in [55] extracts sets of tokens

based on the popularity of tokens among the entities. Then, each set of tokens is used as the

blocking key. In other words, entities that share tokens contained in a given set (of tokens)

are inserted into the block. The main purpose of this blocking technique is to improve the

Pair Quality (i.e., PQ) metric of the generated blocks. However, the blocking technique has

a limitation regarding the definition of token groups and the Pair Completeness (i.e., PC)

metric. Thus, if the technique does not include a token in the set, entities truly similar are

not contained in the same block, degrading the value of the PC metric.

In [80], the authors present the Metablocking technique, considered as one of the state-

of-the-art techniques. This blocking technique aims to reduce the amount of redundant com-

parisons resulting from the blocks generated by the token-based techniques, and to prevent

comparisons between entities with little chance of resulting in matches. Therefore, the tech-

nique in question seeks to improve results in terms of Pair Quality without degrading the

Pair Completeness metric. For this reason, Metablocking is commonly applied as a post-

processing step of the token-based blocking technique. Metablocking receives as input a set

of blocks generated by the token-based blocking technique and converts them into a block-

ing graph, so that each node represents an entity and each edge (between a pair of nodes)

denotes that the pair of nodes sharing at least one block in common. All edges are associated

with a weight based on the number of blocks in common between the pair of nodes (enti-

ties). After, the blocking graph is pruned (using pruning algorithms) in order to generate a

new set of blocks that involves significantly fewer comparisons (i.e., efficiency gains in the

ER task) while maintaining the original level of effectiveness. This blocking technique is

considered as one of the state-of-the-art techniques because the Metablocking achieves good

results in terms of effectiveness and efficiency. However, the technique has limitations re-
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garding efficiency when dealing with large data sources (Big Data). Such limitations led to

the proposition of new blocking techniques, as described in Section 3.2.

Moreover, the paper [80] proposes four pruning algorithms, which emerge as a starting

point for proposing new algorithms: i) Weighted Edge Pruning (WEP): individually evalu-

ates each edge of the blocking graph with based on an overall threshold given by the average

weight of all edges of the graph. All edges with a weight below the threshold are discarded;

ii) Cardinality Edge Pruning (CEP): all edges of the graph are evaluated based on their weight

and only the top-k highest edges are maintained; Weighted Node Pruning (WNP): evaluates

each node in the graph individually by applying a local weight threshold (average weight of

all edges connected to the node in question). Thus, the edges connected to the node, which

have weight below the threshold, are discarded; and iv) Cardinality Node Pruning (CNP):

edges connected to a specific node are evaluated based on their weight and only the top-k

highest weight edges of the neighborhood of the node in question are not discarded. This

process is performed for all nodes of the graph.

In [89], the authors propose a blocking technique called BLAST (Blocking with Loosely-

Aware Schema Techniques). It aims to extract statistical information about the schema from

the attribute values of the entities. Based on this statistical information, the attributes are

partitioned (grouped) according to the similarity of their values, following the strategy pro-

posed in [65]. After the attribute partition, BLAST applies a token-based blocking technique

and considers the attribute groups to semantically differentiate the generated tokens. For

this reason, entities are inserted into the same block only if they share the same token (lin-

guistically similar) and the token is derived from attributes of the same group (of attributes).

This strategy seeks to improve results related to the Pair Quality metric, since entities that

have linguistically similar tokens but semantically distinct ones will not be inserted into the

same block. After defining the blocks by the token-based blocking technique (respecting

the constraint imposed by BLAST), Metablocking is applied in order to discard redundant

comparisons and entity pairs with low similarity. In this sense, the BLAST blocking tech-

nique achieves effectiveness results superior to Metablocking work. However, in terms of

efficiency, Metablocking gives better results compared to BLAST since a new step to extract

schema information is added in BLAST.

The authors of [72; 106] propose the application of Machine Learning concepts over the
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ER task in order to improve effectiveness. In this sense, in the work [72], a novel entity

resolution framework (notice that this work addresses the ER task as a whole, not only the

blocking step), which can effectively solve the heterogeneous data challenges. To this end,

the proposed framework applies a deep align-compare-aggregate matching neural network

over the ER task, which can effectively learn the token representations, capture the semantic

relevance between tokens, and aggregate all matching evidence for accurate ER decisions in

an end-to-end manner. Regarding [106], the authors propose a hands-off blocking framework

for ER, based on similarity-preserving representation learning and nearest neighbor search.

To this end, the framework applies neural networks to guide the blocking keys generation.

However, this work does not directly address heterogeneous data challenges since it uses

schema-based information to feed the neural network.

Concerning the blocking techniques stated above, none of them address problems related

to streaming data or noisy data. For this reason, this thesis proposal treats such problems

as possible open areas of research. In addition, it is important to highlight that all blocking

techniques stated in this subsection detach limitations related to efficiency, especially for

large data sources (i.e., sources that store hundreds of thousands or millions of entities).

These challenges motivated the proposition of an execution model for blocking techniques,

capable of addressing different scenarios faced by blocking techniques in the context of

semi-structured data and large data sources.

3.3 Parallel Blocking Techniques in the Context of Semi-

structured Data

The proposition of various agnostic blocking techniques, such as those described in Section

3.1, indicated several limitations commonly faced by these techniques. Among these limi-

tations, it is possible to highlight the low efficiency achieved by blocking techniques in the

context of large data sources (Big Data). For example, the work [83] states that Metablocking

took more than 186 hours (8 days) to process a data source with approximately seven mil-

lion entities. Such scenarios motivate the development of parallel schema-agnostic blocking

techniques [36; 37; 90; 38], by applying programmable models such as MR.

Considering the proposition of schema-agnostic blocking techniques in parallel, these
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two works [36; 37] are the pioneers. Since Metablocking can face efficiency issues when

dealing with large data sources, the works [36; 37] propose Metablocking in parallel from

the application of the Hadoop framework. This blocking technique is divided into three steps,

which served as the basis for the development of other works [90; 38]. Each step consists of

a MapReduce job:

• Block Filtering: filters the input blocks to reduce the graph size used by Metablocking

to perform the blocking. This step calculates the number of entity comparisons to be

performed on each of the blocks and identifies which blocks each entity is contained.

Finally, for each entity, blocks are sorted (by cardinality) in descending order and

only the top-k (where "k" is a predetermined value) blocks are selected; the remaining

blocks are discarded.

• Preprocessing: organizes the input data in the appropriate format for processing by

the pruning algorithm (next step). The data provided by the block filtering step is

formatted in key-value pairs, such that the key is the block identifier and the value is a

set of entities (each entity has information about which blocks it is contained);

• Metablocking: in this step, the weighted blocking graph is generated and a pruning

algorithm is applied to discard the low weight edges. It is important to remember

that each node in the graph is represented by an entity, the edges represent the simi-

larity between the nodes and the weight of the edges between the nodes (entities) is

determined from the number of blocks in common between the pair of nodes (entities)

linked by the edge. For each key-value pair provided by the preprocessing step, enti-

ties that share the same key are compared to generate the graph and define the weight

of the edges. Finally, the pruning algorithm is executed and the low weight edges are

discarded. Thus, the pruned graph determines which entities should be compared in

ER task.

Regarding the load balancing technique (limitation discussed in Section 2.8) proposed

in [37], the technique aims to evenly distribute the entity pairs among the partitions, so that

each partition has a similar amount of comparisons to be performed. However, generating

partitions with a similar amount of entity comparisons is not a guarantee of good load bal-

ancing, since allocating partitions to nodes can also cause load unbalance [69]. In this sense,
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the work proposed in [37] has limitations regarding the efficiency of the use of resources

provided by the distributed infrastructure to be applied.

As an evolution of the work [89], the authors of [90] propose the parallelization of

BLAST technique. In this sense, the technique maintains the strategy to automatically ex-

tract the loose schema information by adopting an LSH-based step. Compared with the steps

proposed in [37], [90] added an extra step responsible to extract the loose schema informa-

tion. Thus, all steps of the blocking technique proposed in [90] are performed in parallel for

efficiently handling volume and schema heterogeneity of the data. To this end, the work em-

ployed Spark as the MR programmable model. The work [90] also appears as an evolution

of the NA-BLOCKER technique (to be seen in Chapter 6) since it addresses a future work

stated by us: the necessity of parallel techniques able to handle noisy data.

Regarding the work [38], it explores quality issues faced by ER task: incompleteness

(i.e., partial data), redundancy (i.e., overlapping data), inconsistency (i.e., conflicting data),

and incorrectness (i.e., data errors). To address these issues, the work proposes the Mi-

noanER framework. This framework takes into account not only the similarities between the

attribute values of the entity, but it explores semantic relations (i.e., neighborhoods) between

entities. Thus, as the similarity value of entity pairs may still be weak (considering only at-

tribute values), due to a highly heterogeneous description content, it is necessary to consider

additional sources of matching evidence; for instance, the similarity of neighboring entities,

which are interlinked through various semantic relations. To provide efficiency to the ER

task, all the process is performed in parallel through the application of Spark as MR pro-

grammable model. Notice that, although [38] proposes an ER approach for semi-structured

data, it explores different challenges related to complementary data, linking discovery, and

semantic enrichment. It is important to highlight that exploring semantic characteristics is

not in the scope of this thesis.

3.4 Incremental Blocking Techniques in the Context of

Streaming Data

As stated in the last two subsections, a wide number of blocking techniques in stand-alone

[79; 83; 102; 89; 27] and parallel [8; 37; 90; 42] modes have been proposed to deal with
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different types of data [84; 24]. In terms of incremental blocking techniques for relational

data sources, the authors of [30; 46; 70] propose approaches capable of blocking entities in

an incremental way. Thus, these works propose an incremental workflow to the blocking

task, considering the evolutionary behavior of data sources to perform the blocking. The

main idea of these papers is to avoid (re)processing the entire dataset during the incremental

ER to update the deduplication results. For doing so, different classification techniques can

be employed to identify duplicate entities. Therefore, these works propose new metrics for

incremental record linkage using collective classification and new heuristics (which combine

clustering, coverage component filters and a greedy approach) to speed up, even more, a

solution to incremental record linkage. However, these stated works do not deal with semi-

structured and streaming data.

Related to other incremental tasks that propose useful strategies for ER, we can detach the

works [54; 86] that propose incremental models to address the tasks of Name Disambiguation

and Dynamic Graph Processing, respectively. More specifically in ER context, the work [74]

proposes an incremental approach to perform ER on Social Media data sources. Although

such sources commonly provide semi-structured data, this work generates an intermediate

schema so that the extracted data from the sources follow such schema. Therefore, although

the data is originally semi-structured, it is converted to a structured format before being sent

to ER task. For this reason, [74] differs from our technique since it does not consider the

semi-structured data challenges and does not apply/propose blocking techniques to support

the ER task.

Regarding ER approaches that deal with streaming data, we can highlight the works

[64; 85; 56]. These works propose workflows to receive data from streaming sources and

perform the ER task. In these workflows, the authors suggest the application of time windows

to discard old data and, consequently, avoid the growing consumption of resources (e.g.,

memory and CPU). On the other hand, it is important to highlight that these works apply

time windows only in the sense of determining the entities to be processed together. Hence,

they do not consider incremental processing and therefore discard the previously processed

data. Thus, none of them deals simultaneously with the three challenges (i.e., semi-structured

data, streaming data and incremental processing) addressed by our work.

Based on the related work cited in this section (summarized in Table 3.1) and the in-
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formation provided by several works [25; 31; 44; 84; 24], it is possible to detach the lack

of works, in different areas, that address the challenges related to streaming data and incre-

mental processing simultaneously. The same occurs in the context of ER approaches for

semi-structured data. There is a lack of ER works that address challenges related to stream-

ing data and incremental processing simultaneously, as stated in recent works [25; 84; 24;

90]. In this sense, our work addresses an open research area, which can emerge as a useful

schema-agnostic blocking technique for supporting ER approaches in both scenarios.

3.5 Final considerations

Table 3.1 presents a comparative analysis of schema-agnostic blocking techniques in order

to highlight the new contributions proposed in this work in relation to already reported works

in the literature. Notice that, the last three works (in bold) of Table 3.1 are the three block-

ing techniques proposed in this thesis. Blocking techniques are compared according to the

following criteria:

• Classification: the type of blocking strategy applied in the proposed technique, based

on the classification described in Section 2.5;

• Technique Complexity: the level of complexity of the applied blocking strategy. For

this criterion, it is necessary to evaluate the consumption of computational resources

(memory and processing) when the blocking technique is executed and the asymptotic

complexity of the blocking algorithm. The techniques are classified into three cate-

gories: simple, medium and complex. Simple determines that the technique applies

simplistic blocking strategies, which do not consume many computational resources

and the blocking algorithm does not present high asymptotic complexity. Medium

means that the technique tends to consume a lot of computational resources, but the

blocking algorithm does not present high asymptotic complexity. Complex techniques

are related to a high resource consumption and high asymptotic complexity of the

blocking algorithm;

• Input Data: the way (batch or streaming) how the blocking technique handle the input

data;
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• Schema Information Extraction: determines whether (or not) the blocking technique

in question applies a strategy to extract schema-related information;

• Pruning of Comparisons: determines whether (or not) the blocking technique applies

a strategy related to comparisons pruning;

• Parallel: determines whether (or not) the blocking technique is performed in parallel

through a distributed computing infrastructure;

• Framework: name of the framework used by the work to parallelize the blocking tech-

nique;

• Load Balancing: the load balancing technique (only for parallel blocking techniques)

proposed by the paper;

• Incremental: determines whether (or not) the technique performs the blocking incre-

mentally (i.e., incremental processing).

Considering Table 3.1, it is possible to detach the works [75; 79; 89; 90], which propose

blocking techniques that benefit from information related to entity attributes. To this end,

the approaches exploit the loose schema information (i.e., statistics collected directly from

the data) to enhance the quality of blocks. Based on [89], we propose the work [10], which

outperforms the baseline in terms of effectiveness (as highlighted in Chapter 6). However,

another evolution of [89] is also proposed in [90], which provides effectiveness improve-

ments and proposes the parallelization of the blocking technique [89]. Although these works

propose strategies to extract information from the attributes, they do not use this information

to discard useless attributes. This idea is addressed in Chapter 8, which proposes a strat-

egy to extract information and perform a kind of attribute clusterization to guide the block

generation. In Chapter 8, we will discuss the use of schema information to discard useless

attributes and provide efficiency for blocking techniques in the context of streaming data.

Another point to be highlighted is related to the fact that the present thesis proposes in-

cremental blocking techniques to deal with streaming data, considered as an open area since

no work reported in the literature addresses both challenges simultaneously. Finally, it is im-

portant to highlight the robustness and innovative character of the schema-agnostic blocking
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techniques proposed in this paper, which outperform the results (in terms of effectiveness

and efficiency) achieved by state-of-the-art blocking techniques, as will be discussed in the

following chapters.
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Chapter 4

A Distributed Execution Model for

Blocking Semi-structured Data

Currently, the most part of the information systems have a growing necessity of integrating

different data sources to provide complete and consistent information for their users [25;

21]. Data sources related to these systems commonly have a large number of entities (Big

Data) and store semi-structured data. Moreover, such data typically has different character-

istics associated with the application profile in question (e.g., health, Web, academic, and

smart cities), such as: how the data is handled (batch or streaming); the quality of the data

(presence, or absence, of noise in data); and prioritization of effectiveness/efficiency of the

blocking (according to the necessity of the application).

As mentioned in previous chapters, ER is considered a complex task, not only be-

cause of its quadratic behavior, but also due to the nature of the data involved. Thus,

large semi-structured databases and streaming data enhance the challenges inherent to the

ER task, especially regarding efficiency. For this reason, blocking and distributed comput-

ing techniques can be used as solutions to improve efficiency. However, some studies [25;

37] report the lack of blocking techniques proposed in the literature capable of dealing with

semi-structured data, especially in the context of streaming and Big Data. Therefore, the

proposition of novel schema-agnostic blocking techniques is considered by many authors

as an open research opportunity [25; 89]. These factors motivated the proposition of a dis-

tributed execution model for schema-agnostic blocking techniques. As stated, in this thesis,

model is defined as a set of steps to perform the blocking task [14]. This execution model

45
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emerges as a robust, efficient and extensible solution to minimize the problems inherent to

the ER task. Each sequence of step execution is defined as a workflow. In this thesis, we de-

fine four workflows, as described in 4.3. The workflows guide the proposition of the blocking

techniques, which determines how (i.e., the strategies) to perform each step. For instance,

the three proposed blocking techniques follow different workflows and contribute with novel

strategies to be applied in the steps of the blocking task.

Figure 4.1: Distributed execution model for blocking semi-structured data.

The distributed execution model proposed in this work aims to enhance the efficiency of

the application of schema-agnostic blocking techniques. Thus, the model allows the tech-

niques to efficiently process a large number of entities without reducing the quality of the

generated blocks. The other steps of the ER task (i.e., comparison and classification of en-

tity pairs) are not covered by the model since the scope of this paper is limited to the entity

blocking.

As illustrated in Figure 4.1, the distributed execution model receives as input the appli-

cation profile provided by the user (e.g., a researcher or data expert) and the data sources.

In other words, the user will select (e.g., from the use of a form) the options based on the

characteristics defined by the application profiles: a) data provided in batch or streaming;
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b) whether the data present noise; and c) the blocking task should prioritize efficiency or

effectiveness. From the characteristics of the application profile (i.e., batch or streaming,

presence/absence of noise in data, and prioritization of the effectiveness/efficiency of the

blocking technique), we manually determine the workflow and the blocking technique that

best addresses the profile in question is defined. The workflows are predefined, as described

in Section 4.1 and illustrated in Figure 4.3. The workflows are related to the prioritization

of efficiency or effectiveness. Focus on efficiency implies on select workflows with less

number of steps. On the other hand, to improve effectiveness, other steps (such as, schema

information extraction and pruning) should be considered in the blocking task. The blocking

techniques address the different challenges related to data nature while the workflow will

guide which steps of the execution model (i.e., data reading and interpretation, schema in-

formation extraction, block generation and pruning of comparisons) will be performed, as

well as the order to execute each step. For instance, if a application profile involves batch

data, noisy data and prioritization of the effectiveness, in this case, a noise-tolerant blocking

technique able to handle batch data should be applied. Regarding the workflow, since effec-

tiveness is prioritized, all the steps illustrated in Figure 4.1 should be applied to generate as

high-quality blocks as possible.

At the distributed execution model, proposed by the present work, all entity blocking

steps are executed in parallel. Therefore, with respect to the distributed computing applica-

tion, the proposed execution model will use the MR programming model (more specifically

the frameworks Spark and Flink) to parallelize blocking techniques. Regarding data manip-

ulation, the proposed execution model will allow the application of blocking techniques for

both batch and streaming data. The purpose of the execution model is, based on the char-

acteristics of the informed application profile, to determine the workflow (from the set of

predefined flows, see Figure 4.3) and the most appropriate blocking technique. The output

of the execution model is composed of entity blocks generated from the blocking technique

applied. These entity blocks are further processed by approaches that address the following

steps of the ER task (i.e., comparison and classification).
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4.1 Overview

From the distributed execution model, it is possible to propose novel blocking techniques

or apply existing techniques, which follow the model workflow, in order to support the ER

task (in the context of semi-structured data) in terms of efficiency. In the component dia-

gram illustrated in Figure 4.2, it is easier to understand the different workflows of the pro-

posed model. The component diagram is used to describe the blocking steps (data reading

and interpretation, schema information extraction, block generation and pruning of compar-

isons) and the information transfer between each step, denoted by the connections between

the components. The application profile selected by the user influences the choice of the

workflow (from the predefined set of workflows), since the workflow that best fits the appli-

cation profile in question will be selected. Moreover, to maximize the efficiency of blocking

techniques, the execution model steps will use the MR programming model as a solution

for executing tasks in parallel. More specifically, in this thesis, we applied the distributed

frameworks Spark and Flink and the HDFS distributed file system (Hadoop Distributed File

System), described in Section 2.7.

Figure 4.2: Component diagram of the distributed execution model for blocking semi-

structured data.
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Regarding the specific characteristics of each application, it is possible to highlight three

profiles, related to how the data is handled (batch or streaming), data quality (noise level in

data) and prioritization of the effectiveness/efficiency of the blocking technique. Following,

we will describe the characteristics of each of these profiles.

• How is data handled? In general, data can be provided to the data reading step in two

ways: batch or streaming. Data in batch is consumed, manipulated and processed at

once. In other words, all data from data sources is sent at once to the data reading step.

Another characteristic is related to data processing, which occurs only once, without

the need of executing the execution model continuously. On the other hand, streaming

data is received continuously. Data sources simultaneously send data packages to the

data reading step at certain time intervals. In this sense, streaming data requires im-

provements in the execution model steps in order to address the efficiency restrictions

of the data processing (where the data is received continuously). The characteristics

(i.e., batch or streaming data) of this profile are fundamental for the model in order to

select the appropriate blocking technique, which manipulates and processes the input

data. In this sense, for batch data, the model should select blocking techniques which

receive and process the data at once (for instance, the blocking technique proposed in

Chapter 5). On the other hand, for streaming data, the model should select blocking

techniques able to continuously process the data, such as the technique proposed in

Chapter 7.

• Data Quality. This profile is related to the level and type of noise present in the data.

For instance, data from social networks often present various noises related to the

spelling of the words [62]. As described in Section 2.2, the presence of noise in data

may reduce the effectiveness of blocking techniques. For this reason, the model allows

the possibility of including blocking strategies that mitigate noise interference in the

block generation. Thus, data that has a high level of noise should be blocked so that

such noise minimally interferes with the quality of the generated blocks. Therefore, in

applications where noise is present in the data, the execution model will select noise-

tolerant blocking techniques (such as the technique proposed in Chapter 6). Otherwise

(i.e., there is no noise in the data or low levels of noise), blocking techniques such as
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the technique proposed in Chapter 5 can be applied.

• Effectiveness/efficiency. In the context of blocking techniques, effectiveness and ef-

ficiency are antagonistic metrics [25]. Commonly, to achieve good results related to

effectiveness metrics, it is necessary to apply sophisticated blocking strategies, which

require a longer execution time (i.e., degradation of efficiency metrics). On the other

hand, good results related to efficiency metrics can be achieved by applying simpler

blocking strategies. However, more simplistic strategies tend to generate low-quality

blocks and, consequently, low effectiveness values. In this sense, the necessities re-

lated to each application may influence the prioritization of the efficiency or effec-

tiveness of blocking techniques. For this reason, the execution model provides the

definition of alternative workflows, so that the efficiency or effectiveness of block-

ing techniques can be prioritized. Figure 4.3 illustrates the four possible workflows

to be executed according to the effectiveness/efficiency prioritization. In applications

whose focus is on the effectiveness of the generated blocks, the workflow 1 should

be executed, in which the schema information extraction and pruning of comparison

steps are applied in order to achieve better results related to the effectiveness of the

generated blocks. In applications that focus on efficiency, the workflow 4 should be

executed as the number of steps is reduced to minimize execution time. When the goal

is to achieve harmonious results between effectiveness and efficiency, the workflows 2

and 3 can be executed.

In the next section, we will detail all the steps present in the execution model, illustrated

in Figure 4.2. The application profiles detailed in this section will be covered in the descrip-

tion of each step in order to specify how each step will address the necessities inherent in

each of the profiles.

4.2 Architecture of the Distributed Execution Model

Figure 4.4 illustrates the architecture of the distributed execution model for blocking semi-

structured data, as well as the workflow of the model. All workflows are performed on a

distributed infrastructure which applies Spark/Flink and HDFS to process and store data in
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Figure 4.3: Possible workflows of the distributed execution model steps, according to the

prioritization of the blocking technique effectiveness/efficiency.

parallel, respectively. Next, the execution of each step of the execution model are detailed.

4.2.1 Data Reading and Interpretation

In this step, the input data provided by the data sources is read. From the interpretation of

these data, the entities of each data source are extracted, as well as the attribute names and

attribute values of each entity. In the example depicted in Figure 4.4, three entities from each

data source (D1 and D2) are identified. The entities e1 : {name: Jon Snow; house: Stark},

e2 : {name: Arya; house: Stark; adversary: Lennister} and e3 : {name: Tywin; house:

Lennister} belong to data source D1 while the entities e4 : {Full name: Jon Snow; family:

Stark}, e5 : {Full name: Aria; family: Stak; enemy: Lenister} and e6 : {Full name: Tywin;

family: Lennister} belong to data source D2.

Notice that, in this step, the application profile informed by the user is interpreted to iden-

tify its characteristics. From these characteristics, the workflow (given the set of predefined

workflows available in the model) and the schema-agnostic blocking technique that best fit

the application requirements are determined. Afterwards, the entities are sent to the next

step (i.e., schema information extraction), according to the selected workflow. Furthermore,
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Figure 4.4: Architecture of the distributed execution model for blocking semi-structured

data.
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depending on how data is handled (batch or streaming) and the presence/absence of noise in

data, the appropriate blocking technique is selected for the scenario in question.

4.2.2 Schema Information Extraction

This step receives as input the entities extracted from the two data sources D1 and D2 in the

previous step. Initially, for each entity, the attribute values are analyzed in order to extract

only the relevant data (tokens) associated with each attribute. In other words, punctuation,

special characters and irrelevant words (e.g., articles and prepositions) are removed from

attribute values. Thus, a set of values (keywords) V , extracted from the attribute value in

question, is associated with each attribute (〈a, V 〉) of the entity. This transformation of the

attribute values is important to remove characters or words that may degrade the computation

of similarity between attributes.

In this step, techniques such as the one proposed by the authors of [89], which iden-

tify similarities between attributes based on values (V ), can be applied. Such techniques

are applied in order to group similar attributes. Therefore, from the similarity of attribute

values, attribute groups are determined. In Figure 4.4, the attributes are evaluated and or-

ganized into three distinct groups: g1 = {name, Full name}, g2 = {family, house} and

g3 = {adversay, enemy}. These groups will be used in next steps to avoid that attribute

values derived from semantically distinct attributes determine the presence of similarity be-

tween two entities. In other words, attribute are considered similar only if their values are

linguistically similar and the attributes associated with the values in question are contained

in the same group. At the end of this step, the generated attribute groups are sent to the block

generation step.

Depending on the application profile provided by the user, the schema information ex-

traction step may be suppressed. This step directly influences the effectiveness of the block-

ing technique as it provides additional information related to the schema so that this infor-

mation improves the quality (in terms of effectiveness) of the generated blocks. However,

this step requires more computational resources (processing and memory) and time to be

executed. Therefore, the schema information extraction step tends to negatively influence

the efficiency of the model as a whole. In this sense, profiles that prioritize efficiency should

follow an alternate workflow (workflows 3 or 4 illustrated in Figure 4.3) in which this step is
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not performed, as described in Figure 4.4. Alternatively, this step should be considered for

profiles where noise is present in the data and/or profiles which prioritize the effectiveness

of the blocks to be generated.

4.2.3 Block Generation

In this step, the inputs are the entities from the data sources D1 and D2 (extracted in the data

reading and interpretation step) and the attribute groups generated in the schema information

extraction step (if this step was performed). Initially, attribute values from the entities are

evaluated in order to start the blocking of entities, so that similar entities are grouped into

the same block. To this end, different schema-agnostic blocking techniques (such as those

discussed in Section 2.5) can be applied. The extensible behavior of this step allows novel

schema-agnostic blocking techniques to be added and, consequently, coupled to the model

proposed in this work.

In the example illustrated in Figure 4.4, the blocking technique applied is based on to-

kens. Thus, tokens (keywords) are extracted from the attribute values of each entity. Then,

entities sharing the same token are grouped into the same block. Therefore, entities e1, e2,

and e4 are grouped into the block b3 since these entities share the token "Stark". It is impor-

tant to highlight that the entity e5 was not inserted into the block b3 due to the misspelling of

the attribute value "family", originating the token "Stak". For this reason, another block (i.e.,

block b4) is generated to store the entities that share the token "Stak" (in the example, only

entity e5). This scenario exemplifies how noisy data can directly influence the construction of

the blocks and, consequently, impact on the quality of the generated blocks (in terms of effec-

tiveness). This type of problem denotes the importance of applying noise-tolerant blocking

techniques to noisy data, such as the technique proposed in Chapter 6. Such techniques are

able to tolerate the noise in data in order to prevent negative impacts on the effectiveness of

the results (i.e., in the generated blocks).

The attribute groups determined in the previous step are applied to this step only if the

schema information extraction step has been performed. The absence of the attribute groups

does not invalidate the execution of the block generation step since attribute groups are only

used to improve the efficiency of the generated blocks, especially with respect to the pair

quality metric. To this end, the attribute groups guide the block generation to include in
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the same block only entities that share tokens from attributes contained in the same attribute

group. It is important to highlight that the application of attribute groups prevents entities that

have linguistically similar tokens, but with distinct semantic meanings, from being included

in the same block. For instance, in Figure 4.4, two blocks were generated from the key

based on the token "Lannister", one block based on the token "Lannister" derived from

the attribute "house/family" (∈ g2) while the other block is based on the token "Lannister"

derived from the attribute"adversary" (∈ g3). Therefore, entity blocking guided by attribute

groups prevents that tokens with distinct semantic meanings (for instance, derived from the

attributes "house/family" vs. "adversary") group entities into the same block.

Considering the different application profiles, this step should be performed regardless

of the profile provided by the user, as illustrated in the workflow of Figure 4.4. The block

generation step is indispensable to the model (which hosts schema-agnostic blocking tech-

niques) since this step is responsible for generating blocks and, consequently, determining

the pairs of entities to be compared. In application profiles where noise is present in the data,

noise-tolerant blocking techniques should be applied (e.g., the blocking technique proposed

in Chapter 6). Finally, the output of the block generation step is formed by entity blocks,

which may (or not) be refined in the pruning of comparisons step.

4.2.4 Pruning of Comparisons

The main objective of this step is to discard redundant comparisons and comparisons in-

volving entity pairs that rarely will result in matches. To this end, techniques based on

Metablocking [36; 80; 89] can be applied. Such techniques receive as input the blocks gener-

ated in the previous step and restructure the blocks into new blocks that involve significantly

fewer comparisons, maintaining the original level of effectiveness [80]. To determine which

pairs of entities have more chances to result in a match, Metablocking techniques are based

on the premise that the larger the number of blocks the pair of entities in question co-occur,

the greater the chances of this pair of entities being considered as a match.

As described in Section 2.5, the Metablocking technique generates a weighted graph to

restructure the input blocks. Thus, each node in the graph represents an entity and each edge

(between a pair of nodes) denotes that the pair of entities share at least one block in common.

In addition, all edges have an associated weight. The weight is determined based on the
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number of blocks in common between the pair of nodes (entities) connected by the edge.

After the graph generation, pruning algorithms are applied to the graph in order to discard

edges with a weight below a given threshold (usually determined by the pruning technique).

Finally, only the nodes (entities) that remained linked by edges will be structured in new

blocks. Such blocks are the output of the pruning of comparisons step.

In Figure 4.4, the entities e1 and e4 are contained in the blocks b1, b2, and b3. Therefore,

these entities must be compared three times (i.e., they represent redundant comparisons),

one comparison in each block. Thus, pruning techniques are applied in order to prevent such

pairs of entities from being compared more than once. Furthermore, based on the number

of blocks in common between entity pairs, only entity pairs with a high number of common

blocks (i.e., with a high-weight edge) will be maintained by the pruning algorithm; the others

will be discarded. In this sense, the entity pair e1 and e4 (contained in three blocks - b1, b2

and b3) generates the block b′1 and the entity pair e3 and e6 (contained in two blocks - b6

and b7) generates the block b′2. Therefore, only two blocks (b′1 and b′2) will be generated as a

result of the pruning of comparisons step.

This step is critical for application profiles that aim to generate high-quality blocks since

redundant comparisons and entity pairs with little chance of matching are discarded. How-

ever, there is a cost (i.e., increased execution time and resource consumption) associated with

this step regarding efficiency. For this reason, this step can be suppressed for application pro-

files that prioritize efficiency, as described in Figure 4.4.

4.3 Final Considerations

In this chapter, a distributed execution model for schema-agnostic blocking techniques is

proposed, as well as the definition of the different workflows of the execution model and the

architecture which describes the steps and components of the proposed model. The execu-

tion model is divided into four steps: data reading and interpretation, schema information

extraction, block generation, and pruning of comparisons. The steps of the execution model

served as a basis for implementing blocking techniques able to handle the different appli-

cation profiles described in this chapter. In the next chapters, schema-agnostic blocking

techniques proposed during the development of the thesis will be presented. The proposed
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blocking techniques were based on the execution model steps, implementing the particular

functionalities of each step of the model (as depicted in Figure 4.4). Depending of the con-

text addressed by the proposed blocking techniques, they can apply all or part of the steps

(see Figure 4.3).



Chapter 5

Spark-based Metablocking Technique

In the context of large data sources, the ER task faces different challenges related to data

volume and variety since blocking techniques need to process a large number of entities,

whose entity profiles follow different formats (i.e. heterogeneous data) [36]. For this reason,

blocking techniques and distributed computing are applied in order to minimize the problems

related to Big Data [68]. However, in Big Data scenarios, blocking techniques also present

efficiency-related limitations [36]. In this sense, the parallelization of blocking techniques

aims to reduce the overall execution time of entity blocking by distributing the process of

blocking entities among the various resources (e.g., computers or virtual machines) of a

computational infrastructure.

As stated in Chapter 2, there are several schema-agnostic blocking techniques, such as

Token-based blocking, Attribute-based blocking, Metablocking, and Join-based blocking

[25]. Among the schema-agnostic blocking techniques, Metablocking (described in Section

2.5) emerges as one of the most promising techniques in terms of efficiency and effectiveness

[83]. To enhance the efficiency of Metablocking, the work [37] proposes the parallel-based

metablocking technique by applying the Hadoop framework. In particular, parallel tech-

niques often face problems related to load imbalance (described in Section 2.8) [68]. For

this reason, the work [37] proposes the balancing technique called MaxBlock, which seeks

to evenly distribute the number of entity pairs to be compared in each partition. In this con-

text, this chapter aims to propose effective and efficient strategies to be applied in the block

generation and pruning of comparisons steps of the distributed execution model proposed in

Chapter 4. The main contributions described in this chapter are:

58
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• We propose an evolution of the work [37], called Spark-based Streamlined Metablock-

ing (SS-Metablocking). Although the novel technique is based on the workflow pro-

posed in [37], it applies parallel resources (e.g., accumulators and broadcast variables)

provided by Spark to assist the execution of the blocking task;

• We propose a Cardinality-based load balancing technique which is applied to SS-

Metablocking. Based on the amount of comparisons (cardinality) to be performed in

each block, the load balancing technique evenly rearranges the pairs of entities into

partitions that will be sent to the nodes (i.e., computers or virtual machines), such that

each node performs a similar number of comparisons;

• We propose the Global Weighted Node Pruning (GWNP), a novel pruning algorithm

that evaluates globally and locally the graph in order to improve the effectiveness of

the technique, without compromising the efficiency.

5.1 Spark-based Streamlined Metablocking

In this section, we describe the Spark-based Streamlined Metablocking1 technique with load

balancing. The GWNP pruning algorithm and the Cardinality-based load balancing tech-

nique are applied to SS-Metablocking in order to minimize the challenges reported in Sec-

tion 2.8. The novel technique is divided into three steps: block filtering, pre-processing, and

metablocking, as depicted in Figure 5.1.

The SS-Metablocking receives as input the blocks generated by a schema-agnostic block-

ing technique (for instance, token blocking). For each block, the amount of comparisons be-

tween entities is calculated in order to assist the Cardinality-based load balancing technique.

Blocks that contain a large number of entities tend to have low relevance, since they were

generally generated from tokens commonly found in entities. For this reason, in the block

filtering step, blocks that have a high cardinality are discarded. The Pre-processing step is

responsible for organizing the entities so that each entity contains the information of which

blocks have the entity in question, enabling the definition of similarity between the entities

(based on the number of blocks in common). In the Metablocking step, the blocking graph

1https://bitbucket.org/account/signin/?next=/tbrasileiro/ss-metablocking
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is generated and the GWNP pruning algorithm is applied. In order to improve the efficiency

of this step, the Cardinality-based load balancing evenly distributes comparisons among the

nodes. As a result of the blocking process, a pruned graph is generated containing the entities

to be compared in the next steps of the ER task. Following, we describe the execution flow

of each step and the execution of the proposed load balancing technique.

Figure 5.1: The workflow of the blocking technique Spark-based Streamlined Metablocking.

5.1.1 Step 1: Block Filtering

This step receives as input a set of agnostic blocks. Each agnostic block is formatted as

〈kb, E〉, where kb is the block identifier and E is a set of entities (represented by its identi-

fiers) contained in the block. In the map task, for each entity of a block kb a key-value pair

〈e, kb.||b||〉 is generated, where e is the entity identifier and ||b|| is the cardinality of the block.

Thereafter, at the groupBy task, the values (kb.||b||) are grouped by the key (e) and sorted by

the block cardinality in descending order. In turn, only the top-k blocks are considered in the

next step.

In the first map task depicted in Figure 5.1, the entities e1 and e2 of block b1 receive b1.1 as

value, since b1 contains only one entity pair to be compared. In the groupBy task, the values
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are grouped by the key e1 to generate the set B = {b1.1, b2.3, b3.6, b4.10}. Considering only

the top-3 blocks, the block b4 is discarded from the blocks of e1.

5.1.2 Step 2: Pre-processing

This step organizes the entities so that each entity contains the information of which blocks

have the entity in question, enabling the definition of similarity between the entities (based

on the number of blocks in common) in the Metablocking step.

In this step, the key-value 〈e, B〉 pairs, generated in the previous step, are transformed

into a format to favor the execution of the pruning algorithm, at the Metablocking step. As

illustrated in Figure 5.1, for each pair b ∈ B, a new key-value pair is generated in the format

〈b, e.B〉. Thus, in the map task, the key-value pairs 〈b1, e1.{b1, b2, b3}〉, 〈b2, e1.{b1, b2, b3}〉

and 〈b3, e1.{b1, b2, b3}〉 are generated from the pair 〈e1, {b1, b2, b3}〉. Moreover, for each pair

〈b, e.B〉, the blocks contained in B with an identifier lower than b are added in the set of

marked blocks (MB). Then, for the pair 〈b3, e1.{b1, b2, b3}〉, the blocks b1 and b2 (∈ B)

are added to MB since their identifiers are lower than b3 (the key). This information will

be consumed by the Marked Common Block Index (MaCoBI) condition in order to avoid

redundant comparisons. The MaCoBI condition is satisfied when there are no marked blocks

in common between the entities ei and ej , i.e., MBi ∩MBj = ∅.

In the groupBy task, the values that share the same key (b) are grouped. As output,

the groupBy task emits key-value pairs in the format 〈b, S〉, where S is a set of values e.B

that share the same block b. Furthermore, together with each entity e, the set B is also

emitted with all the blocks which contain the entity e. This information is necessary to

calculate the weight of edges between entities. Thus, since the values e1.{b1, b2, b3} and

e1.{b1, b2} share the key b1, the pair 〈b1, {e1.{b1, b2, b3}, e1.{b1, b2}}〉 is generated and sent

to the Metablocking step.

5.1.3 Step 3: Metablocking

In the Metablocking step, the weight of edges are calculated and the GWNP pruning algo-

rithm is applied in order to generate the pruned graph. The edges (between two entities) of

the graph correspond to pairs of entities that should be compared in the ER task.
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Based on the workflow of the Hadoop-based Metablocking, we can highlight some weak-

nesses regarding efficiency and effectiveness of the blocking technique. The use of local

pruning algorithm can include entity pairs with edges of low weight into the pruned graph

since the weights of edges for a certain neighborhood can be low. Consequently, the value of

the pruning threshold will be low. For instance, in Figure 5.2, the weight of the edges linked

to e1 can be considered low (the edge weight varies between 0 and 1). Assuming that the

pruning threshold for entity e1 is 0.13 (given by the average of weights), the edges that link

e1 to e3 and e1 to e4 are not discarded since their weight is higher than the pruning thresh-

old. Although the entity pairs 〈e1, e3〉 and 〈e1, e4〉 have edges with low weight, they will

be compared in the ER task. It is important to highlight that entity pairs whose edge have

low weight should be discarded since they have few chances of being considered a match.

This scenario directly affects the number of entity pairs that must be compared in the ER

task. Although WNP identifies a large number of matches, this pruning algorithm performs

more comparisons than the other algorithms (e.g., WEP, CEP and CNP), as evidenced by

experiments conducted in [37]. To discard the entity pairs with edges of low weight, a global

threshold can be applied, which considers the weight of all edges of the graph. However, in

the context of Hadoop-based Metablocking, the combination of global and local thresholds

requires increasing the number of MapReduce jobs and, consequently, enhancing the over-

all execution time. This scenario motivated the development of the Global Weighted Node

Pruning (GWNP) pruning algorithm. GWNP is an algorithm that evaluates the weight of

edges globally and locally without the necessity of additional MR jobs.

The GWNP emerges as a possible pruning algorithm to be applied in the Metablocking

step in order to achieve satisfactory effectiveness results without significant impacts on the

efficiency of the blocking technique. The Metablocking step applies two map tasks and

one groupBy task, as shown in Figure 5.1. The first map task receives the key-value pairs

provided by the Pre-processing step. For each block (key), all entities contained in the set

of entities (value) are compared following the Cartesian product. The comparison between

entities applies weighting schemes (e.g., Jaccard(ei, ej, B) =
‖Bij‖

‖Bi‖+‖Bj‖−‖Bij‖ ) to define

the weight of the edge that links the entities. The weighting scheme receives as input the

pair of entities 〈ei, ej〉 and the block collection B to estimate the corresponding weight.

Thus, considering the example, the weight of edge for the entity pair 〈e1, e2〉 is 2
3
, since
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Figure 5.2: WNP pruning algorithm in context of low weight edges.

e1 is contained in three blocks ({b1, b2, b3}), e2 is contained in two blocks ({b1, b2}), and

both entities have two blocks in common ({b1, b2}). Furthermore, for each entity pair to be

compared, the map task emits two key-value pairs 〈ei, ej.wij〉 and 〈ej, ei.wij〉, where wij is

the weight of the edge.

To avoid redundant comparisons, only entity pairs that satisfy the MaCoBI condition are

compared. Therefore, the entity pair 〈e1, e2〉 will not be compared in block b2, since the

marked block in common is b1 (MB1 ∩ MB2 6= ∅). Moreover, the entity pair 〈e1, e2〉 is

already compared in the block b1. During the comparisons between entities, the amount of

edges and the sum of edge weights are stored at two accumulator variables. This information

will be used to determine the global threshold. The global threshold is given by the average of

edges weight, which is stored in the accumulator variables. The value of the global threshold

is sent to the second map task through a broadcast variable.

In the groupBy task, all key-value pairs that share the same key e are grouped. Therefore,

all entities linked to e (key) are grouped in the same set of values. As output, the groupBy

task emits key-value pairs in the following format: 〈e, E〉, where E is the set of neighbouring

entities (of e) with their respective edge weights. Thus, in Figure 5.1, the pairs 〈e1, e2.23〉,

〈e1, e3.
1
3
〉 and 〈e1, e4.13〉 are grouped to generate the pair 〈e1, {e2.23 , e3.

1
3
, e4.

1
3
}〉.

The second map task prunes the edges according to a weight threshold. To define the

threshold, the GWNP pruning algorithm takes into account the weight of edges locally and
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globally. The global threshold (GT ), which was generated in the first map task, is provided

by the broadcast variable. To determine the local threshold (LT ), the map task evaluates

the key-value pairs, provided by the groupBy task. For each key-value pair 〈e, E〉, the local

threshold for the entity e is given by the average of the edge weights of all neighbouring

entities (contained in E). In order to define the weight threshold (WT ), we combine the

global and local threshold according to the following formula: WT = (α · LT ) + ((1 −

α) · GT ), where α ∈ [0, 1] defines the influence factor of each threshold. Thus, for the pair

〈e1, {e2.
2
3
, e3.

1
3
, e4.

1
3
}〉, the local threshold is 4

9
, i.e., LT = 0.44. Assuming that the GT =

0.46 and α = 0.7, the weight threshold is given by WT = (0.7 · 0.44) + (0.3 · 0.46) = 0.45.

Therefore, only the pair 〈e1, e2.23〉 is emitted, since the edge weight (0.67) is higher than

WT (0.45). In this sense, only the edges of the graph that have a weight above the weight

threshold will not be discarded. Finally, only the pairs of entities that remain connected after

pruning the graph will be compared in the ER task.

5.1.4 Cardinality-based Load Balancing Technique

Particularly, parallel-based techniques usually tackle load imbalancing problems [68], as de-

scribed in Section 2.8. This problem directly influences the efficiency of the whole parallel-

based process, since the slowest node dominates the overall execution time [9]. Therefore,

to minimize the load imbalancing problem, we propose the Cardinality-based load balance

technique.

Since the load imbalancing occurs in the first map task of the Metablocking step [37],

the Cardinality-based load balance technique is applied before this step in order to provide

balanced inputs. To guide the even distribution of comparisons (between entities) among

the nodes, the Cardinality-based technique takes into account the amount of comparisons

(cardinality) to be performed in each block. For this purpose, the Cardinality-based tech-

nique reads each pair 〈kb, E〉 (Step 1) and calculates the amount of comparisons (||E||) for

the block kb. After calculating the amount of comparisons to be performed in each block

kb, the blocks are sorted by the amount of comparisons in descending order. Then, a greedy

algorithm evaluates the amount of available nodes and defines to which node the entity pairs

(in E) of the block kb will be emitted.

First, n partitions are defined, where n is the number of nodes available in the computing
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infrastructure. Then, the greedy algorithm removes the first block (with the highest amount

of comparisons) and allocates the block to the emptiest partition. This step continues until

all blocks have been allocated. An allocation table T is generated as output, where each line

follows the format 〈kb, idPartition〉. The allocation table is shared among the nodes of the

cluster through a broadcast variable. Finally, the output of the Pre-processing step (〈b, S〉)

is partitioned based on the allocation table. Thus, each 〈b, S〉 will be emitted to the Spark

partition according to the idPartition, where kb = b in the allocation table. This allocation

evenly distributes the amount of comparisons among the available nodes of the cluster.

For instance, considering the example illustrated in Figure 5.1, the blocks b1, b2, b3 and

b4 perform 1, 3, 12 and 20 comparisons, respectively. Sorting the blocks by their cardi-

nalities (amount of comparisons), the allocation table is generated: T = {b4 = 20, b3 =

12, b2 = 3, b1 = 1}. Supposing that there are two available nodes, the blocks are al-

located to two partitions. After applying the greedy algorithm, the table T is modified:

T = {b4 = 1, b3 = 2, b2 = 2, b1 = 2}. Thus, the entity pairs belonging to block b4 are al-

located to the first partition whilst the other entity pairs are allocated to the second partition.

After the partitioning step, each partition is sent to its respective node and the two nodes will

perform 20 and 16 comparisons, respectively.

5.2 Experimental Evaluation

In this section, we evaluate the proposed spark-based technique and the application of the

Cardinality-based load balancing technique, using a cluster infrastructure. The experiments

address effectiveness and efficiency issues. We run our experiments on a cluster infrastruc-

ture with 16 nodes, each one with one core. Each node has an Intel(R) Xeon(R) 1.0GHz

CPU, 2GB memory, runs the 64-bit Debian GNU/Linux OS with a 64-bit JVM and Apache

Spark 2.0. Since the cluster has a limited amount of memory, to avoid the burst of memory,

we employed an excerpt of the token blocking output of the DBpedia (Ddbpedia) data source

[37]. This excerpt contains 1,189,424 blocks, 59,431,686 entity pairs to be compared and

it is possible to identify at most 749,773 correspondences. In the experiment regarding the

load balancing, we simulated the execution of the load balancing techniques applying all the

token blocking output of the Ddbpedia data source. The output contains 1,239,424 blocks,
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42,310,902,031 entity pairs to be compared and 892,579 correspondences.

5.2.1 Efficiency

In this experiment, we evaluated the efficiency of the SS-Metablocking technique applying

the GWNP pruning algorithm and the Cardinality-based load balancing technique against: i)

the same SS-Metablocking technique applying the WNP pruning algorithm (with and with-

out the Cardinality-based technique); and ii) the Hadoop-based technique [37] applying the

WNP pruning algorithm. The execution time results are given by the average of three exe-

cutions of each blocking technique. To execute the Hadoop-based technique, we configured

the cluster infrastructure (i.e., the same node configurations) with Hadoop 2.6.0, with one

map and one reduce task per node since each node has one core.

Figure 5.3: Execution time of SS-Metablocking and Hadoop-based Metablocking tech-

niques.

Figures 5.3 and 5.4 illustrate the results of the comparative efficiency analysis. Regard-

ing execution time (Figure 5.3), the SS-Metablocking technique with the Cardinality-based

technique outperformed the SS-Metablocking (without the Cardinality-based technique) and

Hadoop-based Metablocking techniques for all variations of the number of nodes. Al-

though the SS-Metablocking with GWNP algorithm presents greater execution times than
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Figure 5.4: Speedup of SS-Metablocking and Hadoop-based Metablocking techniques.

SS-Metablocking with WNP algorithm, SS-Metablocking with GWNP achieves better ef-

fectiveness results, as shows the effectiveness experiments.

To measure the efficiency of the blocking technique, the speedup metric was used, in

addition to the technique execution time. Speedup measures how fast a process runs in

parallel when compared to the time of the same process in sequential mode. In other words,

speedup is given by the fraction between the time required to execute a process on a single

node and the time required to execute the same process on n nodes, where n is the number

of nodes. When the value of speedup is equal to the number of nodes (n), the speedup

is considered ideal. However, the ideal speedup rarely occurs in real scenarios since to

parallelize a process there are execution time additions. It occurs due to the time required to

configure nodes and distribute (entity) comparisons between them.

Concerning speedup (Figure 5.4), the SS-Metablocking with the Cardinality-based tech-

nique has also obtained better results than the other two techniques. Based on these results,

we can highlight that applying more than four nodes does not present significant improve-

ments regarding the speedup results. Thus, four is the ideal number of nodes for this ex-

periment configuration (i.e., data source size and nodes configuration). Based on the exper-

imental results and the T-Student test (with 95% of confidence), we concluded that the SS-
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Metablocking technique (with and without the Cardinality-based technique) has achieved

a better efficiency when compared to the state-of-the-art parallel blocking technique (i.e.,

Hadoop-based technique).

5.2.2 Effectiveness

This experiment evaluated the effectiveness of the SS-Metablocking approach when the

GWNP or WNP pruning algorithms are applied. In this sense, three effectiveness metrics

described in Chapter 2 were applied: Pairs Completeness (PC), Pairs Quality (PQ) and Re-

duction Ratio (RR).

As described in Section 5.1, the GWNP algorithm applies a global threshold to minimize

the amount of comparisons between entities to be performed in the ER task. Therefore, the

pruned graph generated by GWNP results in fewer comparisons than the pruned graph of

WNP algorithm. In this sense, we can highlight the better results presented by the PQ and

RR metrics without decreasing the value of PC, as illustrated in Table 5.1. The most rigor-

ous pruning proposed in GWNP provides a reduction of more than 4,000,000 comparisons

when compared with the WNP algorithm. Thus, GWNP achieved better results regarding the

PQ and RR metrics due to the both metrics are directly influenced by the amount of compar-

isons resulted by the pruned graph. Although the value of PC has not been changed, GWNP

can impact negatively in this metric since it can discard entity pairs which are considered

correspondences. Based on the results, we can infer that the GWNP algorithm improves the

efficiency of the ER task since it minimizes the amount of comparisons to be performed.

Table 5.1: Effectiveness results of the pruning algorithms.

Pruning Algorithm PC PQ RR

WNP 0.99 0.03 0.59

GWNP 0.99 0.04 0.66

5.2.3 Load Balancing

This experiment evaluated the load balancing, regarding the amount of comparisons per-

formed at the nodes, for Cardinality-based and MaxBlock techniques. To this end, we ex-
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ecuted both techniques for two inputs: i) the excerpt of the token blocking output from

Ddbpedia and ii) all the token blocking output from Ddbpedia. To evaluate the load imbal-

ancing for the input ii), we performed only the allocation of the comparisons to the nodes,

without comparing the entity pairs (to avoid the burst of memory). We calculated the stan-

dard deviation of the amount of comparisons performed in each node to measure the load

imbalancing among the nodes of the distributed infrastructure.

The results of the comparative analysis are shown in Figure 5.5. To smooth the curves

and facilitate the understanding, the standard deviation values are plotted in log scale (base

10). Although MaxBlock generates several partitions with a similar amount of comparisons,

it does not consider the amount of available nodes. Consequently, the distribution of the

partitions among the nodes can cause imbalance. On the other hand, the Cardinality-based

technique evaluates the cardinality of the blocks and evenly distributes the entity pairs among

the nodes of the distributed infrastructure.

The standard deviation for the Cardinality-based technique is less than one for both out-

puts of Ddbpedia (excerpt and full) and all amounts of nodes. In more detail, the Cardinality-

based technique provides a load balancing mechanism in which the amount of comparisons

to be performed in each node differs by one comparison in the worst case. However, the

MaxBlock technique presents high values of standard deviation since the partitions were not

distributed evenly among the nodes. Therefore, we can infer that the Cardinality-based tech-

nique provides a better load balancing than the MaxBlock technique.

5.3 Final Considerations

In this chapter, a blocking technique based on Metablocking in parallel was proposed from

the Spark application. The proposed blocking technique (i.e., SS-Metablocking) applies the

GWNP pruning algorithm in order to provide efficiency to the ER task since this pruning

algorithm reduces the amount of comparisons to be performed on the ER task. Further-

more, the research described in this chapter proposes a load balancing technique based on

the cardinality of the blocks. This load balancing technique aims to improve the efficiency

of SS-Metablocking by providing a better utilization of the computational infrastructure re-

sources while avoiding the load imbalance problem. The contributions proposed in this
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Figure 5.5: Standard deviation of the load balancing techniques.

research are directly related to the block generation and pruning of comparisons steps of the

execution model proposed in Chapter 4. Based on the results obtained from the experimen-

tal evaluation, it is possible to highlight that the SS-Metablocking technique achieved better

results in terms of efficiency and effectiveness than the state-of-art blocking technique (i.e.,

Hadoop-based Metablocking). In the next chapter, another Metablocking-based blocking

technique will be proposed, called NA-BLOCKER. NA-BLOCKER is considered a noise-

tolerant technique since it is able to handle noisy data.



Chapter 6

A Noise Tolerant and Schema-agnostic

Blocking Technique

As described in previous chapters, a fundamental step to integrate multiple knowledge bases

or identifying similar entities is the application of the ER task. In the context of semi-

structured data, the ER task addresses challenges related to data variety since different for-

mats are used to represent entity profiles (heterogeneous data) [36]. Furthermore, regarding

challenges inherent in the ER task (discussed in Chapter 2), it is possible to highlight an-

other problem faced by ER task: noisy data (described in Section 2.2), such as pronunciation

errors, spelling errors, or typos in the attribute values of the entities [62]. In practice, noise

can impair data interpretations, data manipulation tasks and decision-making processes [43;

88]. In the context of ER task, noisy data has a direct impact on the identification of similar

entities, since the difference in the spelling of their attributes may determine that two truly

similar entities in the real world are not considered similar. In this chapter, we will consider

the two most common types of noise in the data: typos and misspellings [3].

Considering scenarios involving semi-structured data, schema-agnostic blocking tech-

niques should be applied. Among the schema-agnostic blocking techniques, those capable

of exploring possible schema information appear as the most promising in terms of effec-

tiveness [89]. Such techniques extract information related to the schema based on data (i.e.,

statistics collected directly from the data) in order to improve the quality of the generated

blocks. Among them, the BLAST blocking technique [89] emerges as the state-of-the-art

technique. It is important to highlight that the information related to the schema can be

71
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applied to Metablocking-based techniques in order to further improve the quality of the

generated blocks. However, the presence of noise in attribute values (noisy data) directly

compromises the effectiveness of blocking techniques, since these values are used to extract

schema information and to generate blocks.

In this chapter, the Noise-aware Agnostic BLOCKing for Entity Resolution (NA-

BLOCKER1) technique is proposed. Although the NA-BLOCKER technique is not per-

formed in parallel, it is possible to highlight that this blocking technique covers the steps

of schema information extraction, block generation and pruning of comparisons of the ex-

ecution model described in Chapter 4. Notice that NA-BLOCKER addresses these steps

because strategies for extracting schema information are proposed, in addition to applying a

Metablocking-based block.

The contribution of this chapter refers to propose a novel schema-agnostic blocking tech-

nique capable of tolerating noisy data to extract information regarding the schema from the

data (i.e., group similar attributes based on the data) and enhance the quality of the generated

blocks. To this end, the NA-BLOCKER applies algorithms in order to hash the attribute val-

ues of the entities and enable the generation of high-quality blocks (i.e., blocks that contain a

significant number of entities with high chances of being considered similar/matches), even

with the presence of noise in the attribute values.

Regarding the hash algorithm, NA-BLOCKER applies the Locality-Sensitive Hashing

(LSH) algorithm. As described in Section 2.9, such algorithm can be applied to reduce the

dimensionality (i.e., the amount of attribute values) of the objects, preserving the similarity

between objects and significantly reducing the number of attribute values (or tokens) to be

evaluated. Therefore, for each attribute of an entity, a hash function (for example, MinHash

[66]) converts the value of the attribute into a probability vector called signature (MinHash

signature). In this sense, the hash function is applied to avoid the quadratic complexity of

comparing all tokens derived from attribute values.

Since the hash function preserves the similarity of the attribute values, it is possible to

apply distance functions (e.g., Jaccard) to determine the similarity between attribute values

of two distinct entities [5]. In the context of schema-agnostic blocking, the hash function can

generate similarity vectors that would guide the block generation. Therefore, entities with

1https://bitbucket.org/tbrasileiro/matchingunstructureddata
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similar vectors will be inserted into the same block. To improve efficiency, signatures gen-

erated by the hash function can replace the tokens used by token-based blocking techniques.

This strategy will be further discussed throughout this chapter.

As previously discussed, the first contributions were focused on the impact of LSH on the

effectiveness of the generated blocks. In this sense, although the NA-BLOCKER technique

was not performed in parallel, the parallelization of the technique was planned for future

researches. Thus, NA-BLOCKER in parallel would appear as an efficient version (i.e., ad-

dressing the efficiency problems) of the technique proposed in this chapter. However, the

authors of [90] proposed the parallelization of the BLAST technique [89]. Moreover, the

work [90] proposed improvements in terms of effectiveness. For this reason, we decided

to focus on researches related to challenges involving streaming data and incremental pro-

cessing (to be discussed in Chapter 7) since it appears as an open area to explore [81]. In

turn, as described in Chapter 4, the distributed execution model proposed in our research can

host different blocking techniques since these techniques follow at least one of the proposed

workflows. For this reason, it is important to highlight that the blocking technique proposed

in [90] is compatible with the proposed execution model. Therefore, BLAST in parallel can

be included in our model in order to address scenarios involving noisy data (in batch) with

focus on efficiency (e.g., large data sources).

6.1 NA-BLOCKER: Noise-aware Schema-agnostic Block-

ing for Entity Resolution

In this section, the NA-BLOCKER blocking technique is described in detail as well as its

workflow. The main objectives of NA-BLOCKER are: efficiently extract schema informa-

tion from attribute values present in entities without user interference (e.g., review from a

specialist) or the application of thesaurus (lack of thesaurus for a wide number of domains

[21]); and generate high-quality blocks even in the presence of noisy data. Overall, NA-

BLOCKER is divided into three steps: i) schema information extraction, ii) block generation,

and iii) pruning, as depicted in Figure 6.1.

The proposed technique receives as input two data sources D1 and D2. Each data source

is an entity collection D = {e1, e2, e3, ..., en}, such that n is the number of entities in D.
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Figure 6.1: An instance of the NA-BLOCKER blocking technique workflow.
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The attributes contained in each data source are denoted by A(D) = {a1, a2, · · · , ak}, such

that k is the number of attributes in D. Notice that the value of k may vary for each data

source. Since the entities can follow different loose schemas, each entity e ∈ D has a specific

attribute set and a value associated to each attribute, denoted by Ae = {〈a1, v1〉, 〈a2, v2〉,

〈a3, v3〉, ..., 〈ak, vk〉}, such that k is the maximum amount of attributes associated with e.

In the schema information extraction step, all attributes associated to the schemes of the

entities belonging to D1 and D2 are extracted. Moreover, all values associated to the same

attribute (ai) are grouped into a set Vai , i.e., Vai =
⋃

e∈D(v | 〈ai, v〉 ∈ Ae). In turn, the

pair 〈ai, Vai〉 represents the set of values associated to a specific attribute ai. The attributes

present in D1 and D2 are grouped based on the similarity between their attribute values,

denoted by Equation 6.1. The sets Vai and Vaj are considered similar if sim(Vai , Vaj) ≥ Φ,

where sim(Vai , Vaj) calculates the similarity between the sets Vai and Vaj and Φ is a given

threshold2.

G(D1, D2) = {g1, g2, g3, ..., gm} | ∀g ∈ G(D1, D2) :

g ⊆ (A(D1)× A(D2)) and ∀g ∈ G(D1, D2)

∀〈ai, aj〉 ∈ g : Vai ≃ Vaj

(6.1)

In the block generation step, each set of attribute values V (associated with an attribute

a) is converted into a hash-signature S (provided by LSH), given by hash(〈a, V 〉) = 〈a, S〉.

To compute the similarity of all possible pairs of attributes, the process takes an overall

time complexity of O(|UD1
| · |UD2

|), such that UD1
=

⋃
ai∈A(D1)

(Vai | Vai ∈ 〈ai, Vai〉) and

UD2
=

⋃
aj∈A(D2)

(Vaj | Vaj ∈ 〈aj, Vaj〉). However, this time complexity is impractical for

semi-structured data that appear on the Web, since data sources can commonly have hundreds

of attributes and millions of attribute values [89]. For this reason, the LSH technique, which

has a linear cost in relation to the set size [97], is applied to reduce the dimensionality of

these sets, i.e., UD1
and UD2

, aiming to minimize the time complexity to a linear cost.

The set of LSH-signatures S (from 〈a, S〉) guides the block generation, since entities

with a similar LSH-signature are grouped into the same block. The loose-schema informa-

tion (i.e., G(D1, D2)) is applied to the block generation step in order to avoid that similar

LSH-signatures originated from attributes with different semantics (due to the fact that the

2In this work, we apply a threshold value equal to 0.35 (Φ = 0.35), since the experiments in [89] suggested

this threshold value as the best one.
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attributes are not in the same g) being inserted into the same block by the blocking technique.

The output of the block generation step is a collection of blocks B, as denoted by Equation

6.2.

B = {b1, b2, b3, ..., bx} |

∀b ∈ B : (e1 ∈ b ∧ e2 ∈ b)⇔

(∃〈a1, a2〉 ∈ (A(D1)× A(D2)) :

〈a1, a2〉 ∈
⋃

g∈G(D1,D2)

g ∧ hash(〈a1, v1〉 ∈ Ae1) ∼

hash(〈a2, v2〉 ∈ Ae2))

(6.2)

Finally, in the pruning step, Metablocking is applied in order to discard comparisons

between entities with low-weight edge (i.e., low similarity). In this sense, the collection

B provided by the block generation step is restructured relying on the intuition that the

more blocks two entities share, the more likely they result in a correspondence. Then, the

output of the pruning step is a restructured collection of blocks B′ with significantly fewer

comparisons. Next, we describe in details each step of the NA-BLOCKER technique.

6.1.1 Step 1: Schema Information Extraction

This step receives as input two data sources D1 and D2. As described in Algorithm 1, for

each entity, the attribute values are read in order to extract the tokens (only the relevant

words) associated with each attribute (illustrated by the function extractSignatures, lines 13

to 29). In other words, punctuation, special characters (e.g., @, $, *, and &) and stop words

(e.g., the, for, to, at, which, and on) are removed from the attribute values. Thus, a set of

values (keywords) (V ), extracted from the attribute values, is associated to each attribute

(〈a, V 〉) of an entity (lines 15 to 24). The transformation of the attribute values is important

in order to remove characters or words that can degrade the similarity between attributes. To

perform the attribute-match induction (i.e., group the similar attributes), the sets of keywords

are clustered (merged) according to the attributes (lines 19 and 21). For instance, in Figure

6.1, all keywords of the attribute name are merged into the same set of values. The sets of

values are used to measure the similarity between the attributes. In this sense, given two
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attributes and their respective sets of keywords, the Jaccard3 function evaluates the similarity

between the sets of values and, consequently, determines the similarity values between the

attributes.

To enhance the efficiency of the attribute-match induction (i.e., avoid the quadratic com-

plexity of comparing all possible attribute values in this step), the LSH algorithm is applied

[5]. As a result, the hash function (MinHash, in our case) generates a signature (MinHash

signature) for each set of values 〈a, V 〉 → 〈a, S〉, where S denotes the MinHash signature

(lines 25 to 28). Since the hash function preserves the similarity between the sets of values, it

is possible to apply a similarity function (e.g., Jaccard) to the signatures in order to determine

the similarity between the attributes (line 6). It is important to highlight that computing the

similarity (e.g., applying Jaccard) between attributes based on the signatures is faster than

computing it based on the sets of keywords, since the quadratic cost is avoided. This fact

motivates the application of LSH in the first two steps of NA-BLOCKER.

In order to perform the attribute-match induction, the similarities between the attributes

are evaluated. Therefore, attributes with high similarity are inserted into the same group g

(lines 4 to 11). For example, based on the similarities of the sets of keywords, the attribute

groups g1 = {name, Full name}, g2 = {family, house} and g3 = {adversary, enemy}

are built, as illustrated in Figure 6.1.

Moreover, this step calculates the entropy of each attribute (line 7). As described in

Section 2.10, the entropy of an attribute indicates how significant is the attribute, i.e., the

higher the entropy of an attribute, the more significant is the observation of a particular value

for that attribute [89]. We specifically apply here the Shannon entropy [63] to represent the

information distribution of a random attribute.

Thereafter, the aggregated entropy ε is generated from the entropy of each attribute con-

tained in a particular attribute group (line 8). Thus, in Figure 6.1, the entropies ε asso-

ciated with each attribute group are: 〈g1, 3.0〉, 〈g2, 1.5〉, and 〈g3, 1.5〉. The entropy of an

attribute group influences the weighting of the blocking graph, as will be discussed in the

next steps. Finally, since in this step we need to evaluate all possible attributes contained in

our data sources, namely, A(D1) and A(D2), and the cost to compare the attributes (given

by 〈a, S〉) is linear in relation to the size of S, the time complexity of this step is expressed

3Jaccard(a1, a2) =
|V1∩V2|

|V1|+|V2|−|V1∩V2|
.
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as O(|A(D1)| · |A(D2)| · |S|).

6.1.2 Step 2: Block Generation

In this step, the inputs are the entities (provided by D1 and D2) and the attribute groups

generated by the previous step (with their respective entropies), as illustrated in Algorithm

2. Initially, the entities are read and, for each attribute of a particular entity, the LSH algo-

rithm is applied to generate a signature for the attribute value (lines 2 to 5 and 15 to 18).

Then, an entity e is denoted as follows: e = {〈a1, S1〉, 〈a2, S2〉, 〈a3, S3〉, ..., 〈ak, Sk〉}. For

instance, to generate the attribute signatures of entity e1, in Figure 6.1, the attribute values

〈aname, Jon Snow〉 and 〈ahouse, Stark〉 are converted into the signatures 〈aname, [4, 9, 4, 6]〉

and 〈ahouse, [1, 1, 6, 9]〉, respectively. Notice that the hash function always generates signa-

tures with the same size, in terms of elements.

Once the signatures are defined, the blocks are generated based on each of the signa-

tures. To this end, the signatures are split into α equal parts, termed subsignatures s. The

subsignatures are used as the key for each block to be generated (lines 5 and 18). Thereafter,

the entities that share a particular subsignature originated from attributes contained in the

same attribute group (provided by the previous step) are inserted into the same block (lines

6 to 12 and 19 to 26). Furthermore, since each group of attributes has an associated entropy,

the blocks generated from attributes contained in a particular group will assume the same

entropy value of the attribute group.

Regarding the time complexity, in this step, it is necessary to evaluate all 〈a, S〉 (de-

rived from Ae, defined in Section 3) of each entity e ∈ D to generate the blocking keys.

Furthermore, to evaluate each 〈a, S〉, it is necessary to take into account the number of sub-

signatures s derived from S, denoted by α. Therefore, the time complexity of this step is

O((||AD1
|| + ||AD2

||) · α), where ||AD1
|| is given by

∑
e∈D1
|Ae| and ||AD2

|| is given by
∑

e∈D2
|Ae|.

In Figure 6.1, the NA-BLOCKER technique generates two blocks (b5 and b6) with the

key [5, 5] since one subsignature is provided by the attributes house/ family (∈ g2) and

the other one by the attributes adversary/enemy (∈ g3). In this sense, the entities e2 and

e5 are inserted into b5 since both entities contain the subsignature [5, 5] and the attributes

adversary (in e2) and enemy (in e5) are contained in the same attribute group (g3). Simi-
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Algorithm 1: Schema Information Extraction step
Data: D1, D2 and Φ: the input data sources and the similarity threshold

Result: G: attribute groups

1 attribSignaturesD1 ← extractSignatures(D1);

2 attribSignaturesD2 ← extractSignatures(D2);

3 attribGroup← ∅;

4 foreach a1 in attribSignaturesD1 do

5 foreach a2 in attribSignaturesD2 do

6 if sim(a1.S, a2.S) > Φ then

7 ε← shanonEntropy(a1, a2);

8 attribGroup.append(〈a2, a1, ε〉);

9 end

10 end

11 end

12 return attribGroup

13 Function extractSignatures(D) : map〈a, S〉 do

14 attribSignatures← ∅;

15 foreach e in D do

16 foreach a in Ae do

17 V ← keyWords(avalue);

18 if attribSignatures.contains(a) then

19 attribSignatures.get(a).union(V );

20 else

21 attribSignatures.put(a, V );

22 end

23 end

24 end

25 foreach 〈a, V〉 in attribSignatures do

26 S ← minHash(V );

27 attribSignatures.replace(a, S);

28 end

29 return attribSignatures

30 end
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larly, the entities e3 and e6 are inserted into b6 because both entities contain the subsignature

[5, 5] and the attributes house (in e3) and family (in e6) are contained in g2. It is important

to highlight that, even though there exists noisy data in data source D2 (e.g., “John Sn0w”,

“Stak”, “Aria”, “Lanister”, and “Tiwin”) the entities with similar attributes have been in-

serted into the same blocks. This occurs due to the fact that the NA-BLOCKER technique

benefits from the application of LSH, which generates signatures of the attributes. The sig-

natures maintain the degree of similarity between attribute values even though the set of

keywords is transformed into an array of integers. Thereby, entities whose attribute values

are similar, even with the presence of noisy data, present high chances to share several sub-

signatures and, consequently, will be inserted into the same blocks. On the other hand, if

a token blocking technique is applied, entity pairs, such as 〈e2, e5〉 and 〈e3, e6〉, will not be

inserted into the same block since they do not share the same tokens.

6.1.3 Step 3: Pruning

The goal of this step is to discard redundant comparisons between entities, as well as com-

parisons with few chances of resulting in correspondences, as illustrated in Algorithm 3. To

this end, Metablocking-based techniques [80; 89; 36] are applied. These techniques receive

as input the blocks generated at the previous step. In Figure 6.1, notice that the entities e1 and

e4 are contained in blocks b1, b2 and b3. Therefore, these entities should be compared three

times (i.e., redundant comparisons). To avoid the redundant comparisons, the Metablocking

technique restructures the input blocks into new ones that involve significantly fewer com-

parisons, while maintaining the original level of effectiveness [80]. Then, the input blocks

are converted into a blocking graph (lines 2 to 15), such that each node represents an en-

tity and each edge (between a pair of nodes) denotes that the pair of nodes sharing at least

one block in common (lines 4 to 14). Every edge is associated with a weight, based on the

number of blocks in common between the pair of nodes (entities) linked by the edge and the

entropy value associated with the blocks in common (line 7).

Regarding the influence of entropy in the weight of edges, the entropy value determines

the relevance of the blocks, since not all the blocks have the same importance. Therefore,

the edge weight is given by the sum of entropies ε associated with each block in common

between the pair of nodes linked by the edge (lines 9 and 11). For instance, in Figure 6.1, the
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Algorithm 2: Block Generation step
Data: D1, D2, G: the input data sources and the attribute groups

Result: B: blocks of entities

1 mapOfBlocks← ∅;

2 foreach e1 in D1 do

3 foreach a1 in Ae1 do

4 S ← LSH(a1.value);

5 blockKeys← splitSignature(S);

6 foreach blockKey in blockKeys do

7 if mapOfBlocks.contains(blockKey.a1) then

8 mapOfBlocks.get(blockKey.a1).append(e1);

9 else

10 mapOfBlocks.put(〈blockKey.a1, [e1]〉);

11 end

12 end

13 end

14 end

15 foreach e2 in D2 do

16 foreach a2 in Ae2 do

17 S ← LSH(a2.value);

18 blockKeys← splitSignature(S);

19 attribOfD1InSameGroup← attribGroup.get(a2);

20 foreach blockKey in blockKeys do

21 foreach a1 in attribInSameGroup do

22 if mapOfBlocks.contains(blockKey.a1) then

23 mapOfBlocks.get(blockKey.a1) .append(e2);

24 end

25 end

26 end

27 end

28 end

29 return mapOfBlocks
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edge that links nodes e1 and e4 assumes the weight of 6, since the pair of entities shares three

blocks: b1 (from group 〈g1, 3.0〉), b2 (from group 〈g2, 1.5〉), and b3 (from group 〈g2, 1.5〉).

Thus, the edge weight, which links e1 and e4, is given by 3.0 + 1.5 + 1.5 = 6.

Once the graph is built, it is pruned according to a pruning criterion, which eliminates

low-weighted edges to skip part of the redundant comparisons. Regarding the pruning cri-

teria, the works [80; 89] propose different pruning algorithms that can be applied in this

step. Particularly, in this work, we apply the WNP-based pruning algorithm [80] since it has

achieved better results than other competitors [36]. The WNP algorithm applies the node-

centric pruning algorithm with a local weight threshold that is given by the average edge

weight of each neighborhood.

Concerning the time complexity, in this step, the complexity is given by the sum of

the cost to evaluate the entity pairs in each block b ∈ B (i.e., the cardinality of B) and

the cost of the WNP pruning algorithm. The time complexity of the WNP algorithm is

O(|NB| · |EB|) [80], where |NB| is the number of nodes and |EB| is the number of edges in

the graph generated from B. Therefore, the time complexity of the pruning step is O(||B||)

+ O(|NB| · |EB|).

In Figure 6.1, the pruning criteria evaluates locally the weight of the edges and discards

the low-weighted comparisons (i.e., comparisons with few chances to result in correspon-

dences). Hence, the resulting graph (pruned graph) infers only three comparisons: 〈e1, e4〉,

〈e2, e5〉, and 〈e3, e6〉. The significant decrease in the number of comparisons occurs due to

the enhancing in the quality of blocks built in the Block Generation step (Step 2), which

includes in each block only truly similar entities. Therefore, such step becomes fundamental

in order to provide high-quality blocks, in terms of effectiveness, especially in the presence

of noisy data, since the blocks built in the Block Generation step directly influence the edge

weight of the graph (in Pruning step). The overview of the NA-BLOCKER technique, with

the application of each step described previously, is summarized in Algorithm 4.
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Algorithm 3: Pruning step
Data: G, B: the attribute groups and the blocks of entities

Result: B′: pruned blocks

1 mapEntities← ∅;

2 foreach block in mapOfBlocks do

3 entities← block.values;

4 while entities.size > 1 do

5 ecurrent ← entities.pop();

6 foreach e in entities do

7 ε← attribGroup.getEntropy(block.key);

8 if mapEntities.contains(ecurrent.e) then

9 mapEntities.get(ecurrent.e).sumWeight(ε);

10 else

11 mapEntities.put(ecurrent.e, ε);

12 end

13 end

14 end

15 end

16 B′ ← WNP (mapEntities);

17 return B’

6.2 Experimental Evaluation

In this section, we evaluate the NA-BLOCKER4 technique against BLAST5 [89], the state-

of-the-art method. Although the focus of the contributions proposed in this work is to im-

prove the effectiveness of the generated blocks, the efficiency of the NA-BLOCKER tech-

nique is also evaluated. We run our experiments on a Windows 7 computer with 16GB of

memory and Intel Core I7-4790 3.60 GHz. In our experimental evaluation, five real-world

pairs of datasets6 (provided by [89]) were used, as described in Table 7.1: i) Abt-Buy: prod-

4https://bitbucket.org/tbrasileiro/matchingunstructureddata
5http://stravanni.github.io/blast/
6Available at the project repository.
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Algorithm 4: NA-BLOCKER
Data: D1, D2: input data sources

Result: B′: set of pruned blocks

1 G← SchemaInformationExtraction(D1, D2);

2 B ← BlockGeneration(D1, D2, G);

3 B′ ← Pruning(G,B);

4 return B’

Table 6.1: Datasets characteristics.
Pairs of datasets |D1| |D2| Duplicates |A1| |A2|

Abt-Buy 1,076 1,076 1,076 3 3

Amazon-GP 1,354 3,039 1,104 4 4

DBLP-ACM 2,616 2,294 2,224 4 4

DBLP-Scholar 2,516 61,353 2,308 4 4

IMDB-DBpedia 27,615 23,182 22,863 4 7

uct profiles provided by abt.com and buy.com; ii) Amazon-GP: product profiles provided

by amazon.com and google.com; iii) DBLP-ACM: scientific article profiles provided by

dblp.org and dl.acm.org; iv) DBLP-Scholar: scientific article profiles provided by dblp.org

and scholar.google.com; and v) IMDB-DBpedia: movie profiles provided by imdb.com and

dbpedia.org. Table 7.1 shows the amount of entities (D) and attributes (A) contained in each

dataset as well as the number of duplicates (i.e., matches) present in each pair of datasets.

To measure the effectiveness of the techniques, three quality metrics (described in Chap-

ter 2) were applied: i) Pair Completeness (PC), ii) Pair Quality (PQ); and iii) F-score (Fs).

To evaluate the effectiveness results of the techniques in different scenarios of noisy data, we

synthetically insert typos and misspellings (i.e., noise) into the attribute values of the entities

contained in one dataset of each pair of datasets. In order to simulate the occurrence of ty-

pos/misspellings [62], for all attributes of an entity, one character of each token (i.e., relevant

words) present in the attribute values is randomly exchanged by other characters, or addi-

tional characters are inserted into the tokens7. In this sense, we vary the level of noise in the

dataset. The noise level ranges between 0 (i.e., no noise is inserted into the attribute values

7All data sources (with/without noise) are available at the project repository.



6.2 Experimental Evaluation 85

of any entity) to 1 (i.e., noise is inserted into the attribute values of all entities). For instance,

the noise level of 0.4 indicates that 40% of the entities (contained in the first dataset) had

their attribute values modified (i.e., noise was inserted). For these experiments, the execu-

tion time results are given by the average of three executions (of the blocking techniques) for

each dataset pair.

Figures 6.2, 6.3, 6.4, 6.5 and 6.6 illustrate the results of the effectiveness comparative

analysis for each pair of datasets. Regarding the effectiveness metrics (i.e., pair complete-

ness, pair quality and F-Measure), NA-BLOCKER outperforms BLAST for all variations of

noise level. It is important to highlight that, as the noise level increases, the effectiveness

metrics decrease for both techniques. This decrease occurs due to the fact that the noise on

the data negatively interferes on the block generation, as discussed in Section 6.1. However,

the decrease in effectiveness metrics for BLAST occurs abruptly when compared to NA-

BLOCKER. Since the latter applies strategies to tolerate noisy data, the effectiveness de-

crease is amortised. Even for a high level of noise (i.e., a noise level of 1.0), NA-BLOCKER

has achieved a pair completeness greater than 60% for the first three pairs of datasets, as

depicted in Figures 6.2, 6.3 and 6.4.

Regarding F-score (Fs), NA-BLOCKER reaches an average, with respect to all pairs of

datasets, of 48% in the proportional decrease8, whereas BLAST reaches 90%. The most

significant result achieved by NA-BLOCKER was in terms of pair quality. In this case, it

achieved an average pair quality (considering all pairs of datasets) two times better than the

BLAST technique, in scenarios without noisy data. The main reason for that is the generation

of multiple tokens per entity attribute (based on a particular attribute value) as blocking keys,

in the BLAST technique. Since non-matching entities eventually share multiple tokens, they

are included in the same block erroneously. On the other hand, the proposed technique gen-

erates a single hash value based on a particular attribute value. Thus, non-matching entities

sharing the same hash value are harder to occur than non-matching entities sharing tokens in

common. For this reason, NA-BLOCKER enhances the pair quality metric. Finally, based

on the experimental results and the pair-wise (considering the level of noise) distribution

T-Student test (with 95% of confidence), we concluded that our technique has achieved a

8Proportional decrease = 1− FM(noise=1.0)
FM(noise=0.0)
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better9 effectiveness than the BLAST technique.

Figure 6.2: Effectiveness results for data sources Abt vs. Buy.

Regarding efficiency, the execution time (in seconds) of the NA-BLOCKER and BLAST

techniques are evaluated for each pair of datasets, as depicted in Figure 6.7. BLAST achieves

better results than NA-BLOCKER for all pairs of datasets. On average, the NA-BLOCKER

increased the execution time around 30% (or seven seconds). These results are already ex-

pected, since the proposed technique requires more time to block the entities. This is due to

the fact that our technique needs more time to generate the LSH-signatures and determine

the similarity of their attribute values based on the approximate similarity.

On the other hand, it is important to highlight that NA-BLOCKER achieved better re-

sults compared to BLAST regarding the aggregate cardinality (i.e., ||B′||) for all dataset

pairs, as depicted in Figure 6.8. In other words, NA-BLOCKER requires less comparisons

to be executed in the ER task. On average, the blocks generated by NA-BLOCKER indi-

cate a total number of comparisons 34% (or more than seven thousand comparisons) less

when compared to the blocks generated by BLAST. Thus, the efficiency results achieved

by NA-BLOCKER may be compensated by efficiency gains generated by the execution of

9In the best case, NA-BLOCKER achieved an effectiveness 60% higher than BLAST.
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Figure 6.3: Effectiveness results for data sources Amazon vs. Google Product.

Figure 6.4: Effectiveness results for data sources DBLP vs. ACM.
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Figure 6.5: Effectiveness results for data sources DBLP vs. Google Scholar.

Figure 6.6: Effectiveness results for data sources IMDB vs. DBpedia.



6.2 Experimental Evaluation 89

Figure 6.7: Execution time of NA-BLOCKER and BLAST techniques.

Figure 6.8: Aggregate Cardinality of NA-BLOCKER and BLAST techniques.
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fewer comparisons between entities to be performed in the following steps of the ER task,

particularly the Comparison step. For instance, considering that the comparison of an entity

pair in the ER task requires one unit of time, then NA-BLOCKER will provide a reduction

of 34% in the execution time of the Comparison step. Therefore, NA-BLOCKER does not

significantly affect the efficiency of the ER task as a whole, since the Comparison step is the

most costly step (in terms of execution time) of the ER task [21].

6.3 Final Considerations

In this chapter, a noise-aware blocking technique was proposed, which is able to extract

schema information from the data in order to improve the quality (effectiveness) of the gen-

erated blocks. The NA-BLOCKER blocking technique applies LSH in order to generate

signatures (from a hash function) that can guide the block generation. The application of

LSH benefits the NA-BLOCKER technique since the technique generates blocks capable of

achieving good effectiveness results even in the presence of noisy data. Based on the results

obtained by the NA-BLOCKER technique in the experimental evaluation, it is possible to

highlight that such technique achieved better results in terms of effectiveness compared to

the state-of-the-art blocking technique (i.e., BLAST), also considering scenarios of noisy

data. The contributions proposed in this chapter are part of the development of blocking

techniques that can be coupled with the execution model proposed in Chapter 4. In partic-

ular, the NA-BLOCKER technique is directly related to the schema information extraction

steps, block generation and pruning of comparisons of the proposed execution model.

As stated in this chapter, during the development of the NA-BLOCKER technique, the

first contributions were focused on the impact of LSH on the effectiveness of the generated

blocks, whose results were disclosed in [6] and [10]. Although the NA-BLOCKER technique

was planned to be parallelized, the publication of the article [90] forced us to change our

original plans. Considering that [90] proposed the parallelization of the BLAST technique

with improvements in terms of effectiveness, the focus of the thesis was updated to face the

challenges involving streaming data and incremental processing (see Chapter 7). However,

it is important to highlight that the blocking technique proposed in [90] can also be included

in the proposed model (see Chapter 4) to address scenarios involving noisy data (in batch)



6.3 Final Considerations 91

with focus on efficiency (e.g., large data sources). In the next chapter, the novel blocking

technique (called PRIME) able to handle streaming data incrementally will be proposed.

PRIME is considered an innovative technique since in the best of our knowledge none of the

proposed blocking techniques faces the challenges involving Big Data, streaming data and

incremental processing, simultaneously.



Chapter 7

An Incremental Schema-agnostic

Blocking Technique for Streaming Data

Considering the main aspects highlighted in Chapter 2 faced by the ER task, we detach four

in this Chapter: semi-structured data, large volume of data, streaming data and incremental

process. Among them, this chapter focuses on streaming data and incremental process, since

they are considered as an open area for the ER task [81; 90]. Streaming data is related

to dynamic data sources (e.g., from Web systems, Social media and Sensors), which are

continuously updated. When the ER task receives streaming data, we assume that not all

data (from the data sources) are available at once. Therefore, ER needs to match the entities

as they arrive, also considering the entities already matched previously. On the other hand,

incremental ER is related to receiving data continuously over time and re-processing only the

portion of the matching results (i.e., similar entities) that was affected by the data increments.

Regarding incremental ER, new challenges need to be considered, such as i) how to manage

the entities already processed since they can be infinite? and ii) how to execute efficiently

the ER task considering the whole stream of entities? [46]. The challenges are strengthened

when the ER task is considered in the context of Big Data, streaming data and incremental

processing, simultaneously.

Streaming data is related to our daily life in different contexts: personal devices (mo-

bile phones and wearable devices such as smartwatches), vehicles (intelligent transportation

systems, navigation, theft prevention, and remote vehicle control), day-to-day living (track-

ing systems, various meters, boilers, and household appliances), and sensors (weather data

92
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temperature, humidity, air pressure, and measured data) [85]. Particularly for social data,

in a single minute, 456,000 tweets are posting, 2,460,000 pieces of content are shared on

Facebook, Google conducts 3,607,080 searches, the weather channel receives 18,055,555

forecast requests, Uber riders take 45,787.54 trips, and 72 h of new videos are uploaded to

YouTube while 4,146,600 videos are watched [51]. Therefore, streaming data is generated

every second, and such data can be utilized in various areas of study as they are linked with a

large amount of information (oil price, exchange rate, social data, music, videos, and articles)

that are found on the Web. For this reason, the development of efficient blocking techniques

able to handle streaming data appears as an open problem.

Notice that the challenges are strengthened when the ER task is placed in the context

of heterogeneous data, streaming data and incremental processing, simultaneously. In this

sense, the objective of this chapter is to propose a schema-agnostic blocking technique to be

applied in the proposed execution model (described in Chapter 4), named PaRallel-based In-

cremental MEtablocking (PRIME). The blocking technique implements strategies to process

efficiently streaming data, considering the incremental behaviour. To this end, strategies are

developed to quickly receive and process entities (sent continuously) and prevent the block-

ing task from consuming resources (e.g., CPU and memory) excessively. Therefore, the

general hypothesis of our work is to evaluate whether (or not) the application of PRIME is

able to improve the efficiency of the ER task without decreasing the effectiveness for incre-

mental processing and streaming data scenarios.

Overall, the contributions of this chapter are the following: i) an incremental and parallel-

based schema-agnostic blocking technique (i.e., PRIME). PRIME is able to deal with stream-

ing and incremental data, as well as to minimize the challenges related to both scenarios; ii)

a parallel-based workflow for entity blocking, which reduces the number of parallel steps

and the memory consumption without affecting the effectiveness of generated blocks; iii) a

time-window strategy to discard entities already processed based on the time they were re-

ceived, avoiding problems related to excessive memory consumption; iv) an attribute selec-

tion algorithm, which discards useless attributes from the entities, enhancing efficiency and

minimizing memory consumption; and v) a top-n neighborhood strategy, which maintains

only the “n" most similar entities (i.e., neighbor entities) of each entity, enabling PRIME to

deal with large data sources.
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7.1 Theoretical Foundations for Incremental Blocking in

Streaming Data Scenarios

A blocking technique receives two data sources D1 and D2 as input. Since data is sent incre-

mentally, the ER task processing is divided into a set of increments I = {i1, i2, i3, ..., i|I|},

where |I| is the number of increments. Given that the sources provide data in streams,

each increment is associated with a time interval τ . Thus, the time interval between two

increments is τ , i.e., time(i|I|) − time(i|I|−1) = τ , where time returns the timestamp the

increment was sent. For instance, in a scenario where data sources provide data every 30 sec-

onds, we can assume that τ = 30 seconds. For each i ∈ I , each data source sends an entity

collection Ei = {e1, e2, e3, ..., e|Ei|}. Since the entities can follow different loose schemes,

each e ∈ Ei has a specific attribute set and a value associated to each attribute, denoted by

Ae = {〈a1, v1〉, 〈a2, v2〉, 〈a3, v3〉, ..., 〈a|Ae|, v|Ae|〉}, such that |Ae| is the amount of attributes

associated with e (|Ae| can be different for distinct e). Moreover, in order to generate the

entity blocks, tokens (e.g., keywords) are extracted from the attribute values.

Definition 1 (Token extraction) All tokens associated to an entity e are grouped into a set

Λe, i.e., Λe =
⋃
(Γ(v) | 〈a, v〉 ∈ Ae), such that Γ(v) is a function to extract the tokens from

the attribute value v.

For instance, given two entities from distinct data sources D1 and D2, e1 =

{〈name, Linus Torvalds〉, 〈creator, Linux〉, 〈nationality, F inland〉} and e2 =

{〈developer, Torvalds〉, 〈system,Linux OS〉, 〈age, 49〉}. Then, after the token

extraction, the sets Λe1 = {Linus, Torvalds, Linux, F inland} and Λe2 =

{Torvalds, Linux, OS, 49} are generated.

To generate the entity blocks, a similarity graph G(X,L) is created, in which each e ∈ Ei

is mapped to a vertex x ∈ X and a non-directional edge l ∈ L is added. Each l is repre-

sented by a triple 〈x1, x2, ρ〉, such that x1 and x2 are vertices of G and ρ is the similarity

value between the vertices. Thus, the similarity value between two vertices (i.e., entities)

x1 and x2 is denoted by ρ = Φ(x1, x2)
1. The attribute selection algorithm aims to discard

1In this work, the similarity value between x1 and x2 is given by the average of common tokens between

them, Φ(x1, x2) =
|Λx1

∩Λx2
|

max(|Λx1
|,|Λx2

|) .
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useless attributes in the sense of providing tokens that will hardly assist the blocking task to

find similar entities. For instance, consider two general entities e1 ∈ Ei and e2 ∈ Ei, where

e1 ∈ D1 and e2 ∈ D2. Let Ae1 = {〈a1, v1〉, 〈a2, v2〉, 〈a3, v3〉} and Ae2 = {〈a4, v4〉, 〈a5, v5〉},

if only the attributes a1 and a5 have the same meaning (i.e., contain attribute values regarding

the same content), the tokens generated from a2, a3 and a4 will hardly result in significative

blocking keys (in terms of representing similarity between the entities). To this end, the

attribute selection algorithm determines the similarity between attributes based on their val-

ues. Then, the algorithm discards attributes (and consequently their values) that do not have

similarity between each other.

Definition 2 (Attribute selection) All attributes associated to the entities belonging to data

sources D1 and D2 are extracted. Moreover, all values associated to the same attribute (ai)

are grouped into a set Vai =
⋃

e∈D(v | 〈ai, v〉 ∈ Ae). In turn, the pair 〈ai, Vai〉 represents

the set of values associated to a specific attribute ai. Let R be the list of discarded attributes

and two general attributes ai ⊂ D1 and aj ⊂ D2, ai ∈ R ⇐⇒ ∄aj : sim(Vai , Vaj) ≥ β,

where sim(Vai , Vaj) calculates the similarity between the sets Vai and Vaj and β is a given

threshold. Therefore, the token extraction considering attribute selection is given by Λe =
⋃
(Γ(v) | 〈a, v〉 ∈ Ae ∧ a /∈ R).

For example, considering the attributes name, creator and nationality of data source D1

and the attributes developer, system and age of data source D2, it is possible to determine the

similarity between them based on their attribute values. Based on the running example with

the entities e1 = {〈name, Linus Torvalds〉, 〈creator, Linux〉, 〈nationality, F inland〉}

and e2 = {〈developer, Torvalds〉, 〈system,Linux OS〉, 〈age, 49〉}, we can add into

the set R the attributes nationality and age since both do not present similar values with

the other attributes. For this reason, the set of tokens should be updated to remove the

values derived from the attributes contained in R. Therefore, the new token sets are:

Λe1 = {Linus, Torvalds, Linux} and Λe2 = {Torvalds, Linux, OS}.

In the ER task, a blocking technique aims to group the vertices of G into a set of blocks

denoted by BG = {b1, b2, ..., b|BG|}. In turn, a pruning criterion Θ(G) is applied to remove

redundant comparisons, resulting in a pruned graph G′ [80].

Definition 3 (Pruning) The vertices of G′ are grouped into a set of blocks denoted by
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B′
G′ = {b′1, b

′
2, ..., b

′
|B′

G′
|}, such that ∀b′ ∈ B′

G′(b′ = {x1, x2, ..., x|b′|}), ∀〈x1, x2〉 ∈ b′ :

∃〈x1, x2, ρ〉 ∈ L and ρ ≥ θ, where θ is a similarity threshold defined by a pruning criterion

Θ(G).

For instance, considering the running example, the blocks BG = {bLinus =

{e1}, bTorvalds = {e1, e2}, bLinux = {e1, e2}, bOS = {e2}} are generated based on the to-

kens. Then, a pruning criterion Θ(G) is applied to remove redundant comparisons, which

results in a set of blocks B′
G′ = {b′1 = {e1}, b

′
2 = {e1, e2}, b

′
3 = {e2}}.

When blocking techniques deal with streaming and incremental behavior, other theoret-

ical aspects need to be considered. Intuitively, each data increment, denoted by ∆Ei, also

affects G. Thus, we denote the increments over G by ∆Gi. Let {∆G1,∆G2, ..., ∆G|I|}

be a set of |I| data increments on G. Each ∆Gi is directly associated with an entity col-

lection Ei, which represents the entities in the increment i ∈ I . The computation of BG,

for each ∆Gi, is performed on a parallel distributed computing infrastructure, composed

by multiple nodes (e.g., computers or virtual machines). In this context, it is assumed that

N = {n1, n2, ..., n|N |} is the set of nodes used to compute BG. The execution time using a

single node n ∈ N is denoted by T n
∆Gi

(BG). On the other hand, the execution time using the

whole computing infrastructure N is denoted by TN
∆Gi

(BG).

Definition 4 (Execution time for parallel blocking) Since blocking is performed in paral-

lel over the infrastructure N , the whole execution time is given by the execution time of

the node that demanded the highest time to execute the task for a specific increment ∆Gi:

TN
∆Gi

(BG) = max(T n
∆Gi

(BG)), n ∈ N .

Definition 5 (Time restriction for streaming blocking) Considering the streaming be-

haviour, where each increment arrives in each τ time interval, it is necessary to determine a

restriction of execution time to process each increment, given by TN
∆Gi

(BG) ≤ τ .

The restriction denoted in Definition 5 aims to prevent the blocking execution time from

overcoming the time interval of each data increment. To achieve this restriction, blocking

must be performed as quickly as possible. As stated previously, one possible solution to

minimize the execution time of the blocking step is to execute it in parallel over a distributed

infrastructure. To this end, the proposed blocking technique needs to be efficient, as denoted

in Definition 6.
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Definition 6 (Blocking efficiency in distributed environments) Given as input: Ei, N ,

BG, ∆Gi, Γ, Φ, and Θ. The blocking task aims to generate B′
G′ over a distributed infras-

tructure N in an efficient way. To enhance the efficiency, the blocking task needs to minimize

|N | −
Tn
∆Gi

(BG)

TN
∆Gi

(BG)
.

7.2 Streaming Metablocking

The state-of-the-art blocking techniques (either stand-alone or parallel-based) do not work

properly in scenarios involving incremental and streaming data, since they were developed

to work with batch data [11]. In this chapter, to define a baseline which will be compared

against PRIME, we also implemented a Metablocking technique capable to deal with stream-

ing and incremental data, called Streaming Metablocking. Streaming Metablocking is based

on the parallel workflow for Metablocking proposed in [37]. However, it was adapted to take

into account challenges involving streaming and incremental data (e.g., time restrictions,

increasing amount of data and resource consumption). Since the Streaming Metablocking

technique (as well as PRIME) considers the incremental behavior, we need to update the

blocks in order to consider the arriving entities (i.e., new entities).

Using a brute-force strategy, after the arrival of a new increment, Streaming Metablock-

ing needs to rearrange all blocks, including blocks that did not suffer any update (e.g., inser-

tion of new entities). Clearly, this strategy is costly in terms of efficiency since it performs

a huge number of unnecessary comparisons that have already been performed. To avoid

this kind of unnecessary comparisons, Streaming Metablocking only considers the blocks

that suffered at least one update for the current increment. Notice that the original work-

flow proposed in [37] does not consider the incremental behavior. Therefore, the idea of

(re)processing the blocks generated previously is discussed in this chapter. Regarding the

streaming behavior, Streaming Metablocking was implemented following the MapReduce

workflow proposed in [37]. However, a specific MapReduce framework (i.e., Flink) is able

to handle streaming data was applied.
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Figure 7.1: A model for incremental blocking over streaming data.

7.3 Incremental Blocking Technique for Streaming Data

Considering the distributed execution model proposed in Chapter 4, it is important to note

the necessity of a Sender component to connect the streaming data source (e.g., social me-

dia API, sensor network, news feed) to the Blocking task, as depicted in Figure 7.1. The

Blocking component is related to the steps of the distributed execution model responsible

for blocking semi-structured data. Regarding the Sender component, it consumes the data

provided by the data sources in a streaming way, buffers it in micro-batches and sends to

the Blocking component. In this work, the streaming processing platform Apache Kafka2 is

applied to connect the Sender and the Blocking components.

Regarding the blocking step, unlike previous parallel Metablocking approaches [37], the

proposed blocking technique (i.e., PRIME) applies a different workflow to reduce the num-

ber of MapReduce jobs and improve efficiency. In turn, this workflow is composed of two

MapReduce jobs (Figure 7.2), i.e., one job less than the method available in [37] (will be

discussed in Token Extraction step). Besides, the proposed workflow does not affect nega-

tively on the effectiveness results since the block generation is not modified. The workflow

is divided into three steps (as illustrated in Figure 7.2): token extraction, blocking generation

and pruning. Considering the steps of the execution model (i.e., data reading and interpre-

tation, schema information extraction, block generation and pruning of comparisons), it is

possible to detach that the PRIME steps (proposed in this chapter) are compatible with the

execution model ones. Notice that, the token extraction step (in PRIME workflow) covers

2https://projects.apache.org/projects.html
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Figure 7.2: Workflow of the streaming blocking technique.

the data reading and interpretation step (in the execution model workflow). Therefore, due

to efficiency reasons in the streaming data context, the schema information extraction step

(in the execution model workflow) is not considered in this chapter.

7.3.1 Token Extraction step

This step is responsible for extracting the tokens from the attribute values (of the input en-

tities), where each token will be used as a blocking key, as illustrated in Algorithm 5. For

each increment, the blocking step receives a pair of entity collections ED1
and ED2

provided

by data sources D1 and D2 (lines 2 and 3). For each entity e ∈ ED1
∪ED2

(lines 6 to 10), all

tokens Λe associated with e are extracted and stored in memory.

Each token in Λe will be considered a blocking key that determines a specific block

b ∈ B and the set Λe will be applied to determine the similarity between the entities in the

next step. It is important to highlight that, from this step, every entity e contains information
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Algorithm 5: Token Extraction
Data: ED1

and ED2
: increments provided by input data sources

Result: B: blocks based on tokens

1 B ← ∅;

2 tokenBlocking(ED1
);

3 tokenBlocking(ED2
);

4 return B

5 Function tokenBlocking(ED) do

6 foreach e in ED do

7 foreach t in Λe do

8 B.put(t, 〈e,Λe, D〉);

9 end

10 end

11 end

regarding its tokens (blocking keys) Λe and the data source D that it comes from (lines 7

and 9). From the Λe stored in each entity during the Token Extraction step, it is possible to

discard one MapReduce job (compared with the workflow proposed in [37]). In [37], the

workflow applies an extra job to process the entities in each block and determine all blocks

which contain each entity. In other words, an extra job is used to compose the Λe. On the

other hand, our blocking technique determines Λe in this step and spreads this information

to the next steps, avoiding the necessity of another MapReduce job.

The time complexity of token extraction step is directly related to the generation of block-

ing keys. This step evaluates all tokens in Λe of each entity e ∈ ED to generate the blocking

keys. Therefore, the time complexity of this step is O(||ΛED1
|| + ||ΛED2

||), where ||ΛED1
||

is given by
∑

e∈ED1

|Λe| and ||ΛED2
|| is given by

∑
e∈ED2

|Λe|. We guarantee that the pro-

duced blocking keys are the same as the ones produced by Metablocking, with the following

lemma.

Lemma 1 Considering the same entity collection Ei as input, if PRIME and Metablocking

techniques apply the same function Γ(v) to extract tokens from attribute values, then both

techniques will produce the same blocking keys Λe.
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Proof 1 In the token extraction step, PRIME receives as input the entity collection Ei. Dur-

ing this step, the entities provided by Ei are processed to extract tokens, applying a function

Γ. For each entity e ∈ Ei, a set of blocking keys Λe is produced from the application of Γ(v)

over the attribute values v of e. If Metablocking receives the same Ei and applies the same

Γ(v) over the attribute values v of e ∈ Ei, the technique will produce the same tokens and,

consequently, the same blocking keys Λe, even if the parallel workflows differ.

In Figure 7.2, there are two different increments (i.e., Increment 1 and Increment 2) con-

taining the entities that will be processed by the blocking technique. For the first increment

(top of the figure), D1 provides entities e1, e2 while D2 provides entities e3, e4. From entity

e1, the tokens A, B and C are extracted. To clarify our example, e1 can be represented as

e1 = {〈name, Linus Torvalds〉 〈creator, Linux〉}. Thus, the tokens A, B and C repre-

sent the attribute values “Linus”, “Torvalds” and “Linux”, respectively. Since the generated

tokens work as blocking keys, the entities are arranged in the format 〈k, e〉 such that k rep-

resents a specific blocking key and e represents an entity linked to the key k.

7.3.2 Blocking Generation step

In this step, the blocks are created and a weighted graph is generated from the blocks in order

to define the level of similarity between entities, as described in Algorithm 6. Initially, the

entities are arranged in the format 〈e,Λe〉, implicitly Λe denotes the blocks that contain entity

e. Based on the blocking keys (i.e., tokens), all entities sharing the same key are grouped in

the same block. Then, a set of blocks B is generated, so that a block b ∈ B is linked with

a key k and all 〈e,Λe〉 ∈ b share (at least) the key k (lines 2 to 14). For instance, in Figure

7.2, b1 is related to the key A and contains entities e1 and e4 since both entities share the key

A. The set of blocks B generated in this step is stored in memory to be used for the next

increments. In this sense, new blocks will be included or merged with the blocks previously

stored.

Afterwards, entities stored in the same block are compared (lines 3 to 13). Thus, entities

provided by different data sources (line 7) are compared to define the similarity ρ between

them (line 8). The similarity is determined based on the number of co-occurring blocks

between the entities. After defining the similarity between the entities, the entity pairs are
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Algorithm 6: Blocking Generation
Data: B: blocks generated in the token extraction step

Result: G: blocking graph

1 G← ∅;

2 foreach k in B.keys do

3 entities← B.get(t);

4 while entities is not ∅ do

5 e1 ← entities.pop();

6 foreach e2 in entities do

7 if e1.D is not e2.D then

8 ρ← Φ(e1.Λe1 , e2.Λe2);

9 G.put(e1, 〈e2, ρ〉);

10 G.put(e2, 〈e1, ρ〉);

11 end

12 end

13 end

14 end

15 return G

16 Function Φ(Λe1 ,Λe2) do

17 ρ←
|Λe1

∩Λe2
|

max(|Λe1
|,|Λe2

|) ;

18 return ρ

19 end

inserted into the graph G (lines 9 and 10) such that the weight of an edge linking two entities

is given by the similarity ρ (computed in lines 16 to 18) between them. The blocking gener-

ation step is the most computationally costly in the workflow, since the comparison between

the entities is performed in this step. The time complexity of this step is given by the sum

of the cost to compare the entity pairs in each block b ∈ B. Therefore, the time complexity

of the blocking generation step is O(||B||), such that ||B|| is given by
∑

b∈B ||b|| and ||b|| is

the amount of comparisons to be performed in b. Furthermore, to guarantee that the graphs

generated by our technique and Metablocking are the same, the following lemma states the

conditions formally.
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Lemma 2 Assuming that PRIME and Metablocking techniques apply the same similarity

function Φ over the same set of blocks B (derived from the blocking keys Λe), both techniques

will produce the same set of vertices X and edges L. Therefore, since the blocking graph G

is composed by vertices (i.e., X) and edges (i.e., L), the techniques will generate the same

graph G.

Proof 2 During the blocking generation step, the set of blocks B (based on the blocking keys

Λe) is given as input. The goal of this step is to generate the graph G(X, L). To this end, each

entity e ∈ b (such that b ∈ B) is mapped to a vertex x ∈ X . Thus, if the Metablocking

technique receives the same set of blocks B, the technique will generate the same set of

vertices X . To generate the edges l ∈ L (represented by 〈x1, x2, ρ〉) between the vertices, the

similarity function Φ(x1, x2) (such as x1 and x2 ∈ X) is applied to determine the similarity

value ρ. Therefore, assuming that the Metablocking technique applies the same Φ over the

vertices of X , the set of edges L will be the same produced by PRIME. Since both techniques

produce the same X and L sets, the generated blocking graph G will be identical, even

though they apply different workflows.

In Figure 7.2, block b1 contains entities e1, e4. Therefore, these entities must be compared

to determine the similarity between them. The similarity is one since they co-occur in all

blocks in which each one is contained. On the other hand, in the second increment (bottom

of the figure), b1 receives entities e5 and e7. Thus, in the second increment, b1 contains

entities e1, e4, e5 and e7, since all of them share token A. For this reason, entities e1, e4,

e5 and e7 must be compared with each other to determine their similarity. However, since

e1 and e4 were already compared in the first increment, they should not be compared twice.

This would be considered an unnecessary comparison.

Incremental approaches that handle streaming data commonly suffer from memory issues

since they need to maintain a large amount of data in memory [30; 85]. To avoid excessive

consumption, we propose a top-n neighborhood strategy to be applied during the creation

of graph G. The main idea of this strategy is to create a directed graph where each node

(i.e., entity) maintains only the n most similar nodes (neighbor entities). To this end, each

node will store only a sorted list of its neighbor entities (in descending order of similarity).

For example, for the first increment of Figure 7.2, e1 has {〈e4, 1〉, 〈e2, 1/3〉, 〈e3, 1/3〉} as the
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set of neighbor entities. If we hypothetically apply a top-1 neighborhood, entities e2 and

e3 will be removed from the neighbor entities. Clearly, considering large graphs (generated

from by Big Data sources), the reduction of information stored in each node will result in

a significant decreasing of memory consumption as a whole. Therefore, the application

of the top-n neighborhood strategy can optimize the memory consumption of our blocking

technique, which enables the processing of large data sources.

During the incremental blocking, three types of unnecessary comparisons should be

avoided. First, due to the block overlapping, an entity pair can be compared in several

blocks (i.e., more than once). To avoid this, we apply the Marked Common Block Index

(MaCoBI) [8; 37] condition. The MaCoBI condition aims to guarantee that an entity pair

will be compared in only one block. To this end, it uses the intersection of blocking keys

(stored in both entities) to determine the block in which the entity pair should be compared.

Second, some blocks may not suffer updates for a specific increment, during the incremental

process. Therefore, entities contained in such blocks must not be compared again. To solve

this issue, the proposed workflow applies an update-oriented structure to store the blocks

previously generated. This structure, provided and managed by Flink, loads only blocks that

have been updated for the current increment. Third, updated blocks also contain entity pairs

that have been compared in previous iterations, which should not be compared again. The

solution for this third type is to mark the entity pairs that have already been compared. Thus,

an entity pair must only be compared if at least one of the entities is not marked as already

compared.

To illustrate how our technique deals with the three types of unnecessary comparisons,

we will consider the second iteration (bottom of Figure 7.2). The entity pair 〈e1, e4〉 should

be compared in blocks b1, b2 and b3 (i.e., first type). However, the MaCoBi condition is

applied to guarantee that 〈e1, e4〉 is compared in only one of the possible blocks (b1, b2 or

b3). Regarding the second type, notice that only the updated block b1 and the new blocks b6,

b7 and b8 are considered for the second increment. To avoid the third type, during the first

increment, entities e1 and e4 are marked (with the symbol *) at block b1. Therefore, for the

second increment, the pair 〈e1, e4〉 will not be compared again.
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7.3.3 Pruning step

After generating the graph G, the pruning step is responsible to discard entity pairs with low

similarity values, as described in Algorithm 7. To this end, a pruning criterion is applied

over G to generate the set of high-quality blocks B′ (lines 1 to 3). As a pruning criterion,

we apply the WNP-based pruning algorithm [83] since it has achieved better results than its

competitors [83; 37]. The WNP is a vertex-centric pruning algorithm, which evaluates each

node (of G) locally (lines 5 to 17), considering a local weight threshold (based on average

edge weight of the neighborhood - lines 6 to 11). Therefore, the neighbor entities whose edge

weight is greater than the local threshold are inserted into B′ (lines 12 to 16). Otherwise, the

entities (i.e., whose edge weight is lower than the local threshold) are discarded. Notice that

the application of the top-n neighborhood strategy (in the previous step) does not turn the

pruning step useless. On the contrary, the top-n neighborhood strategy can provide a refined

graph, in terms of high-quality entity pairs and smaller neighborhood, to be pruned in this

step.

The time complexity of this step is given by the cost of the WNP pruning algorithm,

which is O(|X| · |L|) [83], where |X| is the number of vertices and |L| is the number of

edges in the graph G. Therefore, the time complexity of the pruning step is O(|X| · |L|).

Finally, the following lemma and theorem state the conditions to guarantee that PRIME and

Metablocking produce the same output (i.e., B′) and, therefore, present the same effective-

ness results.

Lemma 3 Considering that PRIME and Metablocking apply the same pruning criterion Θ

for the same input blocking graph G, both techniques will produce the same pruned graph

G′. Since the output blocks B′ are directly derived from G′, both techniques will produce the

same output blocks B′.

Proof 3 In the pruning step, PRIME receives as input the blocking graph G(X,L). This

step aims to generate the pruned graph G′ according to a pruning criterion Θ(G). To this

end, the edges l ∈ L (represented by 〈x1, x2, ρ〉) whose value ρ < θ are removed and,

the vertices x ∈ X that have no associated edges are discarded. Note that θ is given by a

pruning criterion Θ(G). Therefore, if the Metablocking technique receives the same blocking
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Algorithm 7: Pruning
Data: G: graph generated in block generation step

Result: B′: pruned block

1 B′ ← ∅;

2 B′ ←WNP (G);

3 return B’

4 Function WNP(G) do

5 foreach e in G.keys do

6 neighbors← G.get(e);

7 sum← 0;

8 foreach pair in neighbors do

9 sum← sum+ pair.ρ;

10 end

11 θ ← sum
|neighbors| ;

12 foreach pair in neighbors do

13 if pair.ρ ≥ θ then

14 B′.put(e, pair);

15 end

16 end

17 end

18 end

graph G(X,L) as input and applies the same pruning criterion Θ(G), both techniques will

generate the same pruned graph G′ and, consequently, the same output blocks B′.

Theorem 1 For the same entity collection Ei, if PRIME and Metablocking apply the same

function Γ(v) to extract tokens, the same similarity function Φ(x1, x2) and the same pruning

criterion Θ(G), both techniques will generate the same output blocks B′.

Proof 4 Based on Lemma 1, with the same Ei and Γ(v), PRIME and Metablocking will

generate the same blocking keys Λe and, consequently, the same set of blocks B. Based on

Lemma 2, if both techniques receive the same set of blocks B and apply the same Φ(x1, x2),

they will generate the same blocking graph G. Based on Lemma 3, when PRIME and
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Figure 7.3: Time-window strategy for incremental blocking.

Metablocking techniques prune the same graph G using the same Θ(G), both techniques

generate the same pruned graph G′ and, consequently, the same output blocks B′.

7.4 Window-based Incremental Blocking

In scenarios involving streaming data, data sources provide an infinite amount of data con-

tinuously. In addition, incremental processing consumes information processed in previous

increments. Considering these behaviours, it is necessary to develop strategies that manage

the computational resources. In this sense, when blocking techniques face these scenarios,

memory consumption tends to be the biggest challenge to be handled by incremental ap-

proaches [86; 46; 30]. For this reason, a time window is used in the blocking generation step

of PRIME, where blocks are incrementally stored in the update-oriented data structure (see

Section 7.3). Time windows are at the heart of processing infinite streams since they split

the stream into buckets of finite size. The memory consumption of PRIME is reduced by

discarding entities that exceeded the time threshold.

In this work, we apply a sliding (time) window strategy, which defines a time interval

that the entities should be maintained in the update-oriented data structure, preventing the

structure from consuming memory excessively. For instance, consider the example of Figure

7.3, where the entities are divided into three increments and sent at three different time

points T1, T2 and T3. The size of the sliding window (i.e., the time threshold) is given by

the time interval of two increments. Therefore, entities that exceeded the time equivalent

to the time of two increments will be discarded. In the first increment (T1), e1 and e3 are
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blocked, generating blocks b1, b2 and b3. In T2, e2 and e4 are blocked. Considering the blocks

previously created, e2 and e4 are added to b1 and b3. Since the size of the window is equivalent

to two increments, for the third increment, the window slides for the next increment (T3). For

this reason, entities e1 and e3 (sent in the first increment) are removed from the blocks that

contain them. Block b2 is discarded since all entities contained in it were removed. Regarding

the entities of the third increment, entity e5 is inserted into b1 and b3, while e6 is also inserted

into b1 and triggers the creation of a new block b4.

7.5 Attribute Selection

Real-world data sources can present useless attributes, which can be ignored by the blocking

task [25]. We denote useless attributes those attributes whose tokens will generate low-

quality blocks (i.e., with entities with low chances of matching). In this work, we explore

two types of useless attributes: attributes of low representativeness and unmatched attributes

between the data sources. The former are related to attributes whose content does not con-

tribute to determine the similarity between entities. For example, the attribute gender has

a low impact on the similarity between entities (such as two male users from different data

sources) since its values are commonly shared by a huge number of entities. Moreover, the

tokens extracted from this attribute will generate huge blocks that consume memory unnec-

essarily since these tokens are shared by a large number of entities. Therefore, this type of

attribute is discarded by our blocking technique to optimize memory consumption without

significant impact on the effectiveness of generated blocks.

Unmatched attributes between data sources are the attributes that do not have a corre-

sponding attribute (i.e., with similar content) in the other data source. For instance, assume

two data sources D1 and D2, where D1 contains the attributes full name and age, and D2 the

attributes name and surname. Since full name, name and surname address the same content,

probably it is possible to find several similar values provided by these attributes. However,

D2 does not have any attribute related to age. That is, age will generate blocks from its val-

ues, but these blocks will hardly be relevant to determine similarities between entities. For

this reason, this type of attribute is also discarded by our blocking technique.

To handle useless attributes, we developed an attribute selection strategy applied in the
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Sender component (see Figure 7.1). For each increment received by the Sender, the entity

attributes are evaluated and the useless ones are discarded. Thus, the entities sent by the

Sender component are modified by removing the useless attributes (and their values). To

identify the attributes of low representativeness, the attribute selection strategy measures the

attribute entropy. Notice that, the entropy of an attribute indicates how significant is the

attribute (see Section 2.10). The attributes with low entropy value3 (i.e., low representative-

ness) are discarded. For the unmatched attributes, attribute selection extracts and stores the

attributes values. Hence, for each attribute, a set of attribute values is generated. Based on

the similarity between the sets, a similarity matrix is created denoting the similarity between

the attributes of D1 and D2. Then, the matrix is evaluated and the attributes without corre-

sponding attributes from the other data source are discarded. After removing these attributes

(and their values), the entities are sent to the Blocking task.

In an overview, the attribute selection algorithm can be useful to other blocking tech-

niques, including the techniques proposed in this thesis, which claim for efficiency. However,

it is necessary to adapt to handle batch data. In this sense, the attribute selection algorithm

should be applied at the schema information extraction step, similar to the blocking tech-

nique proposed in Section 6 (i.e., NA-BLOCKER).

7.6 Experimental Evaluation

Streaming data is continuously generated by one or more data sources in a specific time

interval. This behavior inserts the idea of data frequency, which estimates the frequency

(i.e., time interval) at which the data source sends data. Low-frequency data sources are

related to sources that send data with a low frequency (i.e., large time intervals). In contrast,

high-frequency data sources are related to sources that send data with a high frequency (i.e.,

short time intervals).

Considering incremental ER for streaming data (which receives data from two data

sources), we can highlight three main scenarios regarding the data frequency: two low-

frequency data sources, one low-frequency data source vs. one high-frequency data source

3In this work, we remove the attributes whose entropy values are in the first percentile (i.e., 25%) of the

lowest values.
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and two high-frequency data sources. In the first, both data sources provide the data in large

time intervals (for instance, in hours or at the end of the day). In this sense, the ER can be

performed without challenging time constraints, which potentiates all the other challenges

discussed in this chapter. For these reasons, the first scenario is the easiest one in terms of

computational challenges.

The second scenario is more challenging since one of the sources sends data in a short

time interval. It means that the incremental ER task needs to match data from the data source

respecting the time constraint given by the high-frequency data source. The second scenario

will be addressed in Section 7.7.

The most chaotic scenario is the last one since both data sources send data in a short

time interval. In this sense, the third scenario tends to increase the volume of data to be

processed due to both data sources send data simultaneously. Therefore, ER tends to han-

dle challenges involving high-volume of data and high-frequency data sources. Following,

we will conduct experimental analyses addressing the third scenario to evaluate PRIME4 in

terms of effectiveness and efficiency.

We run our experiments in a cluster infrastructure with 21 nodes (one master and 20

slaves), each one with one core. Each node has an Intel(R) Xeon(R) 2.10GHz CPU, 4GB

memory, runs the 64-bit Ubuntu/Linux 16.04.5 OS with a 64-bit JVM, Apache Kafka 2.1.0

and Apache Flink 1.7.1. Notice that PRIME and Streaming Metablocking apply Flink as

a MR framework. We use three real-world pairs of data sources4 as described in Table

7.1: i) Amazon-GP: includes product profiles provided by amazon.com and google.com; ii)

IMDB-DBpedia: includes movie profiles provided by imdb.com and dbpedia.org; and iii)

DBPedia1-DBPedia2: consists of two different versions of the DBPedia Infobox dataset5

(snapshots from October 2007 and 2009, respectively). Table 7.1 also shows the amount of

entities (D) and attributes (A) contained in each dataset as well as the number of duplicates

(i.e., matches - M) present in each pair of data sources.

Since working with large data sources requires a huge amount of resources (e.g., memory

and CPU), DBPedia1-DBPedia2 is a sample from the whole data source containing millions

of entities. The cluster used in this experiment is able to process at most tens of thousands

4https://github.com/brasileiroaraujo/PRIME-F
5https://wiki.dbpedia.org/Datasets
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Table 7.1: Data sources characteristics.
Pairs of datasets |D1| |D2| |M| |A1| |A2|

Amazon-GP 1,354 3,039 1,104 4 4

IMDB-DBpedia 27,615 23,182 22,863 4 7

DBpedia1-DBpedia2 100,000 200,000 76,424 13,492 23,284

of entities per increment. Therefore, data sources containing millions of entities will sig-

nificantly increase the number of increments (several hundreds) unnecessarily. To avoid

problems involving lack of resources in our cluster, we randomly select a sample of 100,000

entities from DBPedia1 and 200,000 entities from DBPedia2. It is important to highlight

that the samples maintain the proportionality in terms of the number of duplicates and the

difference in the amount of entities between the data sources.

To simulate the streaming data behavior, a data streaming sender was implemented. This

sender reads entities from the data sources and sends entities in each τ time interval6 (i.e.,

increment). Notice that the data streaming sender assumes the role of the data provider, such

as feeds of news, movie/product reviews, weather information or twitters. Therefore, the

Sender component (see Figure 7.1) is able to receive data from any feed providing data in

streaming. To measure the effectiveness of blocking, we use the following quality metrics:

Pair Completeness (PC), Pair Quality (PQ) and Reduction Ratio (RR), which take values in

[0, 1], with higher values indicating a better result. It is important to highlight that schema-

agnostic blocking techniques (even the state-of-the-art ones) yield high recall (i.e., PC), but

at the expense of precision (i.e., PQ) [25; 90]. For schema-agnostic blocking techniques, the

low PQ is due to the unnecessary comparisons defined by the generated blocks: redundant

comparisons entail the comparison of entities more than once and superfluous comparisons

entail the comparison of non-matching entities [90].

For efficiency, we comparatively evaluate the maximum number of entities processed per

increment for the proposed technique (PRIME) and Streaming Metablocking. To measure

the maximum number of entities processed per increment, we monitored the Back Pressure

metric. This metric takes values in the interval [0, 1], where a high Back Pressure (e.g.,

higher than 0.5) means that the task is producing data faster than the downstream operators

(in the cluster) can consume. Thus, from the Back Pressure, it is possible to define the

6In this work, τ = 1 min (i.e., one increment per minute) is used for all experiments.
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computational limit (in number of entities per increment) of the cluster for each blocking

technique. Next, we use the acronyms PRIME for the proposed technique, SM for Streaming

Metablocking, AS for Attribute Selection and Top-n for the Top-n neighborhood strategy.

7.6.1 Effectiveness

In Figures 7.4, 7.5 and 7.6, we evaluate the effectiveness of the PRIME and SM techniques.

Since the window size is a limitation of streaming processing and affects the effectiveness

(truly matches will never be compared if they are not covered by the window size), we

implement the Sender so as to always send truly matches (according to the ground-truth) in

a time interval covered by the window size. Note that the effectiveness of SM and PRIME

are exactly the same (see Theorem 1), when PRIME does not apply the top-n neighborhood

and/or attribute selection strategies.

Figure 7.4: Effectiveness results of the techniques for the data sources Amazon vs. Google

Product.

For PQ and RR, the application of the top-n neighborhood and attribute selection strate-

gies in PRIME outperforms the results of SM for all data sources. It occurs due to the fact

that the application of these strategies decreases the number of entity pairs to be compared

within the blocks. Note that top-n neighborhood aims to reduce the number of neighbor
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Figure 7.5: Effectiveness results of the techniques for the data sources IMDB vs. DBpedia.

Figure 7.6: Effectiveness results of the techniques for the data sources DBpedia1 vs.

DBpedia2.
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entities in the similarity graph. For this reason, the size of the blocks (in number of entities)

tends to decrease and, consequently, the number of entities to be compared after the blocking

step. The attribute selection strategy decreases the number of blocks since it discards some

tokens that would generate new blocks. Therefore, the application of these strategies im-

proves PQ and RR, which are directly related to the number of comparisons generated from

the blocks (i.e., ||B′||). We can also analyze RR as an efficiency metric since it estimates

the number of comparisons to be executed in the ER task. In this sense, we can detach the

efficiency gains (for the ER task as a whole) provided by the application of both strategies,

which produces blocks with fewer comparisons.

Regarding PQ and RR, notice that as the value of n in top-n neighborhood strategy

decreases, these metrics achieve better results. This behavior occurs due to the reduction

in the number of neighbor entities, which decreases the number of entities to be compared

in ER task. For this reason, low values of n imply good results for PQ and RR. However,

PC decreases when top-n neighborhood is applied, in the worst case for Amazon-GP, PC

achieved 0.72 for n = 25. Thus, top-n neighborhood may decrease PC significantly to very

low n values (e.g., n = 25). On the other hand, we can detach that, even for large data

sources (e.g., DBPedia1-DBPedia2), n values between 100 and 400 present reasonable PC

values (PC higher than 0.95) for all data sources. For instance, top-n neighborhood, with

n = 400, decreases PC only 1.6%, on average, for all data sources. In this experiment, we

select the best top-n value to be applied together with the attribute selection (i.e., PRIME +

AS + top-n). In this sense, the application of both strategies maintains efficiency, enhancing

RR and PQ with a small decrease in PC, when compared with the baseline technique.

When attribute selection is applied, PC decreases, in the worst case for IMDB-DBpedia,

only 1.5%. Thus, it is possible to infer that AS discards only attributes that do not signifi-

cantly affect PC results (i.e., in fact, useless attributes). Regarding PQ and RR, the applica-

tion of attribute selection implies in small improvements in these metrics since this strategy

reduces the number of generated blocks and, consequently, the number of comparisons to

be performed in ER task. The application of top-n neighborhood and attribute selection to-

gether achieved reasonable results in terms of effectiveness for all data sources, since PQ and

RR increased comparing with PC, which suffered only a decreasing of 1%, in average.
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7.6.2 Efficiency

To evaluate the PRIME against SM (see Figures 7.7, 7.8 and 7.9), we apply a sliding window

with a size of four minutes for all data sources, since this size achieves reasonable effective-

ness results even if the entities are sent in the order stored in the data sources. To evaluate

the efficiency, we measure the maximum number of entities processed by the techniques per

increment, varying the number of nodes between 1 and 20. Notice that the maximum number

of processed entities denotes the efficiency of the techniques in terms of resource manage-

ment (e.g., CPU and memory), as well as the variation in the number of nodes demonstrates

the scalability of techniques. Since the pair Amazon-GP is composed of small data sources,

we vary the number of nodes up to four. After that, the number of nodes does not interfere

in the results and all data from the data source is consumed in only one increment.

Based on the results shown in Figures 7.7, 7.8 and 7.9, PRIME outperforms SM for all

data sources, even without the application of top-n neighborhood or attribute selection strate-

gies, due to the reduction of MapReduce jobs (see Section 7.3), which saves computational

resources and improves efficiency. On average, PRIME increases the number of processed

entities in 12% when compared with SM.

Since the attribute selection strategy aims to reduce the number of tokens and, conse-

quently, the number of generated blocks, we evaluated the application of attribute selection

regarding the reduction in the number of tokens. Therefore, evaluating PRIME with attribute

selection (i.e., PRIME + AS), the removal of attributes resulted in a reduction of 10% for

Amazon-GP, 34% for IMDB-DBpedia and 2% for DBpedia1-DBpedia2 in the number of

generated tokens comparing when attribute selection is not applied. It is important to high-

light that 2% of reduction for DBpedia1-DBpedia2 results in more than 18,000 tokens less.

In other words, attribute selection avoids the creation of more than 18,000 blocks during the

blocking phase. Specifically, attribute selection discarded the following number of attributes

for each data source: one from Amazon, one from GP, one from IMDB, four from DBpedia,

3,375 from DBpedia1, and 5,826 from DBpedia1. This reduction in the number of blocks

affects directly the number of entities processed per increments since it reduces resource

consumption. Therefore, based on the results present in Figures 7.7, 7.8 and 7.9, notice that

PRIME + AS outperform PRIME for all data sources. On average, PRIME + AS increase

the number of entities processed per increment in 20% compared with PRIME.
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Figure 7.7: Efficiency results of the techniques for the data sources Amazon vs. Google

Product.

Figure 7.8: Efficiency results of the techniques for the data sources IMDB vs. DBpedia.
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Figure 7.9: Efficiency results of the techniques for the data sources DBpedia1 vs. DBpedia2.

Regarding the top-n neighborhood strategy, we evaluate PRIME with top-100 and top-

400, the two most promising values in terms of effectiveness. Low "n" values (in top-n)

negatively impact PC since a small number of neighboring entities reduces the chances to

find true matches. On the other hand, high "n" values do not decrease the PQ metric, since

high "n" values probably will achieve the original number of neighboring entities for each

entity. Thus, the application of high "n" values tend to achieve similar results (in terms of

effectiveness) to PRIME without the top-n neighborhood strategy. Regarding efficiency, the

lower the "n" values (in top-n), the greater the number of entities processed per increment.

It occurs due to the reduction of neighboring entities linked to each node (i.e., entity) in

the similarity graph and, consequently, the reduction of consumed computational resources.

For this reason, in DBpedia1-DBpedia2, PRIME applying top-100 neighborhood increased

the number of entities processed per increment in 85%, on average, when compared with

PRIME while the application of top-400 increased 47% the number of processed entities.

The application of the attribute selection and top-n neighborhood strategies over PRIME

enables to achieve better results in terms of efficiency for all data sources. For instance,

in DBpedia1-DBpedia2, the combination of attribute selection and top-400 neighborhood

provides to PRIME an increasing of 56%, on average, in the number of entities processed

per increment. On the other hand, PRIME + AS increased 20% the number of processed
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entities while PRIME + top-400 increased 47%. Therefore, based on the results presented

in Figures 7.7, 7.8 and 7.9, we highlight the efficiency improvements promoted by both

strategies for all data sources. The efficiency gains are due to the reduced number of blocks

and the generation of smaller blocks, which reduce resource consumption and increase the

capacity to process more entities per increment.

7.7 A Real-world Case Study

As stated in Section 7.6, we explore two scenarios involving streaming data. In the first

experiment (see Section 7.6), involving two high-frequency data sources, we evaluate the

PRIME technique against Streaming Metablocking (the baseline) in terms of effectiveness

and efficiency. Here, to explore other research opportunities and scenarios, we apply PRIME

over a real-world scenario with one low-frequency data source vs. one high-frequency data

source. Moreover, we use a (time) window size of five min over PRIME since it achieved

the best results in terms of effectiveness when compared with the application of window

sizes equals to two and ten min. Overall, the main objectives of this experimental evaluation

are: i) validate the application of PRIME in real-world scenarios in terms of effectiveness,

and ii) evaluate the influence of different sets of attributes (which are considered during

the blocking step) over the effectiveness results of PRIME. More specifically, in order to

evaluate the application of PRIME in real-world scenarios, which consider streaming data,

we conducted an experimental analysis involving events. The idea is to apply the proposed

technique in order to define similarity relations between records (i.e., events) produced by

two (or more) data sources. In other words, given a set of event records provided (in a

streaming way) by two data sources, PRIME should identify and group into the same block

records related to the same event in the real world. It is important to highlight that blocks

generated by PRIME will represent the connected events provided by data sources for a

specific time window, since this case study addresses streaming data incrementally (see the

time window strategy discussed in Section 7.4). More specifically, during this case study, we

explore football games of the Brazilian Championship 2019 as the events to be evaluated. To

this end, we collected real-world data: tweets posted at Brazil (high-frequency data source)

and information regarding football games from a sports monitoring API (low-frequency data
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source). Then, PRIME technique is applied as a clustering strategy to define which tweets

(among all the tweets posted during the football game) are related to a specific football game.

7.7.1 Contextualization

Social media (e.g., Twitter, Facebook and Instagram) have become a valuable data source

of news for journalists, publishers, stakeholders and consumers. For journalists, social net-

works are an important channel to distribute news and engage with their audiences [40].

According to the survey [1], more than half of journalists stated social media was their pre-

ferred mode of communication with the public. Over social networking services, millions

of users share information on different aspects of everyday life (e.g., traffic jams, weather

or sports events). The information provided by these services commonly address personal

point of views (e.g., opinions, emotions, pointless babbles) about newsworthy events, as well

as updates and discussions on these events [48]. For instance, journalists use social media

frequently for sourcing news stories since the data provided by social media are faster access

to elites, to the voice of the people, and to regions of the world that are otherwise difficult

to access [96]. Regarding consumers, according to the survey [2], social networks outper-

formed print media (e.g., magazines, newspapers, flyers and newsletters) as their primary

source of newsgathering.

Among social networking, we can detach Twitter. Twitter is a popular microblogging

service with around 310 million monthly-active users, where users can post and read short

text messages (known as tweets), as well as publish Web site links or share photos. For

this reason, Twitter emerges as an important data source producing content from all over the

world continually and as an essential host of sensors for events as they happen. An event, in

the context of social media, can be understood as an occurrence of interest in the real world

which instigates a discussion associated topic at a specific time [49]. The occurrence of an

event is characterised by topic and time, and often associated with entities such as people

and location. Commonly, the occurrence of an event causes a change in the volume of data

workflow [32].

Events can be related to different contexts such as sports, concerts, festivals, natural dis-

asters, terrorist attacks, and elections. In this sense, official data sources (e.g., governmental

sources, official event website, or event monitoring companies) can be supplemented with in-
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formation provided by social networks. For instance, given a final match of a championship

whose information is provided by a sports website, it is possible to get real-time information

from Twitter data related to this match. From this data, different analysis can be explored:

the opinion provided by fans can influence odds of bookmakers, sentiment analysis regarding

the match, identification of riots and accidents, and micro-events related to the match (e.g.,

goals, red cards, penalties, and the winner). Therefore, social networks are fundamental in

the context of enriching event information provided by official data sources. Assuming the

semi-structured characteristics of the data provided by Web sources and Social Media [25;

92], schema-agnostic blocking techniques can be used to cluster (i.e., as a clustering strat-

egy) records from different data sources (for instance, the official sources and Twitter) that

refer to the same real-world event [41; 105].

7.7.2 Results

As stated, in these experiments, we use two real-world pairs of data sources: a low-

frequency source (i.e., information about a game from the monitoring sports API) and a

high-frequency source (i.e., tweets from Twitter), as described in Table 7.2. Concerning the

data provided by the monitoring sports API, we collected 20 records (i.e., games) referred

to two rounds (20th and 23rd) of the Brazilian football championship 2019 (i.e., 10 games

per round). The games provided by the sports API have seven attributes: stadium, name of

the home team, name of the away team, name or nickname of the football players of the

home team, name or nickname of the football players of the away team, nickname of the

home team, and nickname of the away team. Regarding the tweets, we collected 591,900

tweets posted during the games of the two rounds of the Brazilian championship (the same

rounds collected from the sports API). For each tweet, we consider three attributes (the

others - e.g., id, source device, URLs and images links - are not useful for blocking):

user name, full text of the tweet, and hashtags. For a first view, three attributes may

seem to represent a small amount of data. However, notice that the full text of a tweet

(with 280 characters) can provide a significant number of tokens (i.e., keywords) for each

tweet. The amount of data is further increased due to the high-frequency behavior of

Twitter, which provides 406,8 tweets per minute, on average. To explore the influence of

attributes in the PRIME technique, we divided the attributes of the sports API into three
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attribute sets: Set1 = {stadium, name_home_team, name_away_team}, Set2 = Set1∪

{name_or_nickname_players_home_team, name_or_nickname_players_away_team},

and Set3 = Set1 ∪ Set2 ∪ {nickname_home_team, nickname_away_team}. Regarding

the computational infrastructure, we run our experiments in a cluster with six nodes (one

master and five slaves), each one with one core. Each node has an Intel(R) Xeon(R)

2.10GHz CPU, 3GB memory, runs the 64-bit Windows 10 OS with a 64-bit JVM, Apache

Kafka 2.1.0 and Apache Flink 1.7.1.

To evaluate PRIME in terms of effectiveness, we apply two metrics: Pair Quality (PQ)

and Pair Coverage (PCov). PQ measures the accuracy/precision of a blocking technique, as

described in Section 2.6. To calculate PQ, it is necessary to know the number of matches

correctly identified by the blocking technique. For this reason, in this experiment, the en-

tity blocks generated by PRIME were submitted to a human review in order to check which

tweets were correctly linked to each specific game. Therefore, it is possible to determine the

number of matches correctly identified among all matches determined by PRIME and, conse-

quently, calculate PQ. Regarding PCov, it is a quality metric based on Pair Completeness (see

Section 2.6) to measure the recall of the blocking technique. Notice that we just calculate the

number of matches correctly identified by the blocking technique since computing the num-

ber of true matches (for the real-world) among almost 600,000 tweets is an extremely costly

and error-prone work. Thus, this scenario does not provide a gold-standard, making Pair

Completeness impossible to calculate. For this reason, we apply the Pair Coverage metric.

PCov estimates the level of recall (of a blocking technique) considering the maximum num-

ber of matches correctly identified among all matches determined by a blocking technique.

Thus, in this experiment, we consider as a gold-standard the maximum number of matches

correctly identified among the results generated by PRIME taking into account the three sets

of attributes. For instance, if PRIME with Set1 achieved 25 matches correctly identified,

PRIME with Set2 achieved 50 matches correctly identified and PRIME with Set3 achieved

100 matches correctly identified, applying PCov is possible to determine the proportional

level of recall among the attribute sets used in PRIME. Therefore, PCovPRIME+Set1 = 0.25,

PCovPRIME+Set2 = 0.5 and PCovPRIME+Set3 = 1.

In Figures 7.10 (a) and (b), it is possible to note the average of PQ and PCov for the three

attribute sets in each round of the championship. Notice that, in terms of PCov, PRIME+Set3
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Table 7.2: Data sources characteristics.
Round |Twitter| |Sport API| |Identified by PRIME| |Correctly identified|

20th round 294,039 10 4,174 3,391

23rd round 297,861 10 4,414 3,011

achieved the best results when compared with PRIME+Set1 and PRIME+Set2 for both

rounds. It occurs due to Set3 considers other semantical information (i.e., the nicknames of

the teams) beyond the information already considered by Set1 and Set2. However, evalu-

ating the results of PRIME+Set1 and PRIME+Set2, PRIME+Set1 achieved better results

for both rounds, especially for the 23rd round (Figure 7.10 (b)). The main reason for this

behavior is related to the semantic context of this scenario. The attribute Set2 adds the infor-

mation regarding the name of the football players involved in the game. On the other hand,

people name is a piece of common information in tweets. For instance, a tweet may mention

the name "Ronaldo", but this "Ronaldo" is just a friend of the user that posted the tweet, not

the famous football player. Thus, the application of the football players’ names can insert

non-similar tweets into the cluster (related to a specific game) by considering similar names

and, consequently, decrease the effectiveness of PRIME.

Figure 7.10: PCov and PQ results of PRIME for each attribute set. The results are given by

the average of all games per round.

Regarding PQ, the results maintain a standard for both rounds, as illustrated in Figures

7.10 (a) and (b). PRIME+Set1 achieved better results when compared with PRIME+Set2

which in turn achieved better results than PRIME+Set3. This behavior can be ex-

plained if we consider the amount of semantic information contained in each attribute

set. Since PRIME+Set3 takes into account more attributes (and semantic information)
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than PRIME+Set2, PRIME+Set3 tends to insert more tweets into the clusters and some

of them can be wrongly inserted (decreasing the PQ). The same occurs for PRIME+Set2

and PRIME+Set1. Analyzing PCov and PQ simultaneously, we can highlight that consider-

ing a small number of attributes (e.g., PRIME+Set1), PRIME tends to achieve high values

for PQ, but low values for PCov. On the other hand, taking into account a higher number of

attribute values (e.g., PRIME+Set3), the blocking technique tends to achieve low values for

PQ, but high values for PCov. In this sense, it is necessary to determine strategies to select

(or consider) attributes in order to positively impact the effectiveness results. For instance,

based on the results, the application of the football players’ names (in Set2) decreases the

PCov instead of increasing. Therefore, the development of strategies and algorithms able to

select relevant attributes to benefit the blocking techniques emerges as an open problem.

Figure 7.11: Average of PCov results of PRIME for each game.

In Figures 7.11 (a) and (b), it is possible to analyze in more details the PCov results for

each game. The columns represent the average (per game) of PCov values for the three at-

tribute sets and the red line denotes the average of PCov for the round in question. Regarding

round 20 (see Figure 7.11 (a)), only the games 94668 and 94661 present results significantly

lower than average (i.e., PCov between 0.5 and 0.63). It means that, on average, PRIME

achieved only 50-63% of the best result (i.e., applying an attribute set able to reach the best

PCov value). Clearly, these results indicate a high disparity between the results reached by

PRIME applying the different attribute sets. For a better understanding, the results illus-

trated in Figure 7.12 (a) demonstrate the PCov values achieved by PRIME for each attribute

set and the lines denote the average of PCov values for each attribute set in the round. Eval-

uating the games 94668 and 94661 again, notice the disparity between the results reached
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by PRIME applying the three attribute sets. For instance, PRIME+Set1 identified less than

20% of the tweets related to the game 94668 when compared with PRIME+Set3 (the best

result). Regarding round 23 (see Figure 7.11 (b)), we can highlight the game 94695, which

presents PCov results significantly lower than average. Analyzing the results of the game

94695 in Figure 7.12 (b), the reason for the low PCov value (on average) is motivated by the

low PCov achieved by PRIME+Set2, which identified less than 40% of the tweets related

to the game 94695 when compared with PRIME+Set3 (the best result). Regarding PCov,

we can detach the different levels of PCov depending on the attributes considered by the

blocking technique. Therefore, the selection (or not) of an attribute (even that the attribute is

apparently relevant, such as the names of the players) to be considered during the blocking

can be decisive to achieve good effectiveness results.

Figure 7.12: PCov results of PRIME for each attribute set per game.

In Figures 7.13 (a) and (b), the columns represent the average (per game) of PQ values for

the three attribute sets and the red line denotes the average of PQ for the round in question.

For the rounds 20 (see Figure 7.13 (a)) and 23 (see Figure 7.13 (b)), it is possible to highlight

the games 94665 and 94693, which achieved low PQ values. PRIME reached a PQ value of

0.51 for the game 94665 and 0.45 for the game 94693. To understand better the reason for

these low values for PQ it is necessary to take into account two aspects: the attribute sets

applied to PRIME (see Figures 7.14 (a) and (b)) and the number of tweets related to these

games. In Figure 7.14 (a), for the game 94665, PRIME+Set1 achieved a PQ value near 1

since in Set1 only the name of the teams and the name of the stadium are considered. Notice

that the attributes of Set1 provide specific information regarding the game. For this reason,

the precision of the blocking technique tends to be better when compared, for instance, with
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the PRIME+Set3. For PRIME+Set3, which achieved a PQ value of 0.23, the attributes of

Set3 provide information related to the name or nickname of the players and nicknames of

the teams. As stated, names and nicknames commonly provide generic information, not only

related to specific content of the game. The same occurs for game 94693, as illustrated in

Figure 7.14 (b). For instance, one of the nicknames of the team Ceará (in the games 94665

and 94693) is "Vovô" (in English, grandfather). Thus, any tweet that mentions "Vovô", even if

it is being used to designate grandfather, can be inserted into the cluster related to the games

94665 and 94693.

On the other hand, the pruning algorithms are applied in order to discard low similar en-

tities. Thus, the scenario where a tweet mentions "Vovô" to designate grandfather will hardly

have other similar tokens with the game 94665. Therefore, pruning algorithms should dis-

card this tweet. However, considering that PRIME applies a WNP-based pruning algorithm,

the pruning strategy discards entities based on the average similarity (i.e., the threshold) of

neighboring entities. For this reason, in scenarios with a low number of tweets with high

similarity with a game, the pruning strategy tends to maintain some tweets with low simi-

larity with the game due to the low value for the threshold. This fact clearly affects games

94665 and 94693, whose number of tweets truly similar related to the games are 80 and 58

(from an average of 341), respectively. Considering the real-world aspect, this scenario can

be explained by the size (in number of fans) of these teams in Brazil. The games 94665

and 94693 involve the teams Ceará, Goiás and CSA, which summing the fans represent a

little more 1% of the Brazilian population, according to a survey conducted by Datafolha7.

Thus, considering the low number of fans of these teams, the number of tweets related to

these games tends to be low and, consequently, cause the problem of few similar tweets re-

lated to a game (impacting the effectiveness of pruning algorithms). Summarizing, we would

like to highlight the scenario involving a few number of similar entities as a challenge to be

addressed by novel pruning algorithms and blocking techniques.

7http://media.folha.uol.com.br/datafolha/2019/09/17/77975ecbd43522f8fe59b29b8f93d09atdp.pdf (ac-

cessed in Nov, 18th 2019)
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Figure 7.13: Average of PQ results of PRIME for each game.

Figure 7.14: PQ results of PRIME for each attribute set per game.
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7.8 Final Considerations

In this chapter, we address the challenges involving heterogeneous data, parallel computing,

incremental processing, and streaming data. To the best of our knowledge, there is a lack of

blocking techniques proposed to address all these challenges simultaneously. In this sense,

we propose a novel schema-agnostic blocking technique capable to incrementally process

streaming data in parallel. In order to enhance the efficiency of the proposed technique,

we also propose the strategies: attribute selection (which discards useless attributes from the

entities) and top-n neighborhood (which maintains only the top “n" neighbor entities for each

entity). Based on the experimental results, we can highlight that our technique presents better

efficiency results than the state-of-the-art technique (i.e., Streaming Metablocking) without

significant impacts on the effectiveness. This main result was achieved due to the reduction

in the number of MapReduce jobs in the proposed workflow. Moreover, the application of

the proposed strategies improved the results achieved by our blocking technique in terms

of efficiency and effectiveness. The contributions proposed in this chapter are part of the

development of blocking techniques that can be coupled with the execution model proposed

in Chapter 4. In particular, the PRIME technique is directly related to the data reading and

interpretation, block generation and pruning of comparisons steps (of the proposed execution

model) in the context of streaming data and incremental processing. To this end, in this

chapter, we propose novel strategies to allow blocking techniques to face both challenges. In

the next chapter, final considerations and future works are discussed.



Chapter 8

Conclusions and Future Works

In this chapter, the conclusions related to the proposed artefacts (i.e., execution model and

blocking techniques) are presented. Furthermore, the weaknesses and topics do not address

by the proposed artefacts are highlighted as future directions of this research, with the objec-

tive of detaching open areas, identified during the development of this study.

8.1 Conclusions

Taking into account the challenges described during the previous chapters, all of them are

considered as opportunities to explore and develop researches. In this sense, the scope of

this thesis is related to trade-off of how to provide efficiency to the ER task without reducing

the effectiveness of the results. Thus, the main objective of the present work is to propose a

distributed execution model for schema-agnostic blocking techniques in scenarios involving

noisy/clean data, large data sources, and batch/streaming data. In this context, the proposed

model assists the ER task in data integration scenarios involving Web data. Furthermore,

parallel blocking techniques are investigated, proposed and evaluated in order to be coupled

to the proposed model, aiming to improve the efficiency of ER task. Such blocking tech-

niques seek to achieve better results in terms of effectiveness and efficiency, when compared

with other state-of-the-art techniques. In this sense, the present work achieved the following

results:

• A distributed execution model for schema-agnostic blocking techniques capable of

addressing the necessities inherent to the application profile selected by the user (e.g.,

128
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a data specialist);

• An architecture, with different workflows (see Figure 4.3), to execute parallel schema-

agnostic blocking techniques, based on the proposed execution model;

• SS-Metablocking: a Metablocking-based technique in parallel, which applies the

framework Spark as a programmable model. The parallelization of the technique aims

to improve efficiency, and reduce the execution time as a whole;

• GWNP: a pruning algorithm capable of evaluating the weight of blocking graph edges

locally and globally, in order to improve the effectiveness of the generated blocks (i.e.,

high-quality blocks);

• A load balancing technique that takes into account the cardinality (i.e., number of com-

parisons) of the blocks to guide the distribution of comparisons between the nodes of a

distributed infrastructure. The application of the load balancing technique aims to en-

hance the efficiency of the blocking technique and optimize the resource consumption

of the distributed infrastructure;

• NA-BLOCKER: a schema-agnostic blocking technique capable of tolerating noisy

data and extracting schema information from the data to improve the effectiveness

of the generated blocks;

• PRIME: an incremental and parallel-based schema-agnostic blocking technique able

to deal with streaming and incremental data, as well as to minimize the challenges

related to both scenarios;

• Top-n strategy: a top-n neighborhood strategy, which maintains only the “n" most

similar entities (i.e., neighbor entities) of each entity, enabling the proposed technique

to deal with large data sources;

• Attribute Selection: an attribute selection algorithm, which discards useless attributes

from the entities to enhance efficiency and minimize memory consumption.

In addition, experimental evaluations were conducted to validate the efficacy and effi-

ciency of the proposed blocking techniques. Based on the results obtained from the ex-

periments, the novel blocking techniques present solutions that significantly decrease the
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execution time of the ER task and achieved effectiveness results equivalent (or higher) to

those achieved by the competing techniques. Therefore, the evaluation results have given

support to the general hypothesis of the work.

To deal with the scenario involving semi-structured data in batch, without noise (in the

data) and large data sources, we propose the SS-Metablocking technique. This novel tech-

nique, an evolution of the work [37], applies parallel resources (e.g., accumulators and broad-

cast variables) provided by Spark to enhance efficiency and effectiveness of the blocking

task. Also, we exploit these resources to propose the GWNP pruning algorithm and the

Cardinality-based load balancing technique. The GWNP emerges as a possible pruning al-

gorithm to be applied in the Metablocking in order to improve effectiveness results without

significant impacts on the efficiency of the blocking technique. Regarding the load balanc-

ing, to guide the even distribution of comparisons (between entities) among the nodes, the

Cardinality-based technique takes into account the amount of comparisons (cardinality) to

be performed in each block. Based on the block cardinality, a greedy algorithm evaluates the

amount of available nodes and defines to which node the entity pairs will be emitted. Based

on the experimental results, we can highlight that the SS-Metablocking presents better results

regarding efficiency and effectiveness than the state-of-the-art approach [37].

Regarding scenarios involving semi-structured data (in batch) and noisy data, we pro-

pose the NA-BLOCKER technique. This novel schema-agnostic blocking technique was

developed to block entities that present noise in its attribute values. To this end, the NA-

BLOCKER applies LSH in order to hash the attribute values of the entities and enable the

generation of high-quality blocks, even with the presence of noise in the attribute values.

Moreover, NA-BLOCKER applies attribute clustering strategies, by extracting information

regarding the schema from the data (i.e., group similar attributes based on the data) and

enhance the quality of the generated blocks. Based on the experimental results, we can

highlight that NA-BLOCKER presents better results regarding effectiveness and aggregate

cardinality (i.e., the number of comparisons to be performed after blocking) than the state-of-

the-art technique. Considering that the proposed distributed execution model can host other

blocking techniques, notice that the work [90] can be applied to address scenarios involving

large data sources and noisy data.

To address scenarios involving semi-structured streaming data, large data sources and
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incremental processing, we propose the PRIME technique. PRIME is a schema-agnostic

blocking technique capable to incrementally process entities received in streaming way. To

improve efficiency, PRIME applies a novel parallel workflow, which reduces the number of

MR jobs when compared with state-of-the-art techniques. Moreover, we propose an attribute

selection algorithm and a top-n neighborhood strategy to better manage the computational

resources and improve efficiency to the blocking technique. Considering the results obtained

by the experimental results, it is possible to detach that PRIME presents better efficiency

results than the state-of-the-art technique without significant impacts on the effectiveness.

These results were achieved by the reduction in the number of MapReduce jobs in the pro-

posed workflow and the application of the attribute selection algorithm and the top-n neigh-

borhood strategy, which enhance efficiency and effectiveness of the PRIME technique.

On the other hand, it is important that the research also provides the weaknesses of the

contributions. Thus, in this thesis, we can highlight the following weaknesses:

• In the execution model, the selection of the workflow and the blocking technique is

done manually. Therefore, it is inefficient and susceptible to errors since each scenario

requires different workflows and blocking techniques to meet their needs.

• The proposed techniques were evaluated using clusters with a small number of nodes.

For instance, we did not conduct experiments involving hundreds or thousands of

nodes. With a large number of nodes, it is possible to better evaluate the behavior

of the proposed techniques and the results in terms of efficiency.

• The SS-Metablocking, described in Section 5, proposes the application of GWNP al-

gorithm to prune the similarity graph. However, this algorithm depends on broadcast

variables and accumulators, resources provided by some parallel frameworks (e.g.,

Spark), but do not provide by others (e.g., Hadoop). Thus, this contribution is not

generic and completely depends on the parallel framework applied in the cluster.

• The NA-BLOCKER, proposed in Section 6, is executed in a standalone mode and

present efficiency issues to achieve better results for effectiveness. Thus, efficiency

aspects did not explore in this research. Moreover, only typos inserted synthetically in

the data sources were evaluated, which can be considered as a threat to validation.
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• The PRIME, illustrated in Section 7, is a pioneer blocking technique for handle stream-

ing data. In this sense, several aspects did not consider, such as different frequency of

sending data, dynamic resource allocation and a huge mass of data being processed in

each increment.

• A toolkit, based on the proposed execution model and able to integrate different block-

ing techniques, has not been implemented. This toolkit would have helped in the vali-

dation and integration of the contributions of this thesis.

8.2 Future Works

Considering the weaknesses stated in Section 8.1, in this section, we highlight the main open

areas, research opportunities, and future work in the context of the developed work.

Load balancing techniques. As future work in terms of load balancing, it is possible to

highlight improvements of the Cardinality-based technique proposed in this thesis. In this

sense, the technique should consider internal comparisons, i.e., the comparisons performed

by similarity functions (e.g., Jaccard) to estimate the weight edge in the Metablocking step.

The load balancing technique could provide a fine-grained level of distribution since it takes

into account the lowest level of comparison (i.e., the comparison of attribute values in sim-

ilarity functions). Moreover, another possible future work is related to propose a load bal-

ancing technique for scenarios involving streaming data. Notice that, in the streaming data

context, the blocking task should be executed quickly since the data is received in short time

intervals. On the other hand, load balancing techniques tend to increase the time execution

since they need time to compute the number of comparisons and distribute the comparisons

among the nodes. Therefore, load balancing techniques in the context of streaming data

should take into account the harmonic relation between a fair distribution of comparisons

and execution time.

Token extraction. Considering that the tokens guide the block generation (in token-

based techniques), the extraction of tokens from the attribute values directly impacts on

blocking step. In this sense, the development of novel strategies of token extraction is

an open area to be explored. For instance, for long-text descriptions (in attribute val-
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ues), such as tweets1 and product descriptions, content extraction algorithms [98; 100;

15] can be applied. These algorithms aim to extract only the main content (i.e., relevant

words) of a text and discard irrelevant information. Then, content extraction algorithms

can be applied to consider only relevant keywords (i.e., tokens) from the long-text descrip-

tions and, consequently, minimize the number of tokens considered during the blocking step.

Hence, the application of content extraction algorithms tends to minimize resource consump-

tion and improve efficiency.

Pruning algorithms. Since Metablocking emerged as a promising technique in the semi-

structured data context, a wide number of Metablocking-based techniques were proposed. In

this sense, the pruning step (in Metablocking) is fundamental in terms of improving the effec-

tiveness of blocking techniques. On the other hand, complex pruning algorithms, which tend

to improve the effectiveness, commonly handle more information or apply costly pruning

strategies and, therefore, increase the execution time of the blocking technique as a whole.

Then, the development of efficient pruning algorithms is considered as an open area to be

explored. These new pruning algorithms should aim to improve the effectiveness results

without meaningly increasing the execution time.

Different types of noisy data. The NA-BLOCKER technique proposed in this work (see

Chapter 6) deals with noisy data. However, this technique considers two types of noise in the

data: typos and misspellings. Clearly, there are other types of noise present on the data, such

as pronunciation errors, slang, and abbreviations. Hence, the development of noise-aware

blocking techniques able to handle different types of noise is a possible future work. Another

point to be explored in the context of noisy data is related to propose efficient techniques. As

stated in Chapter 6, noise-aware blocking techniques need more time to be executed since

they apply additional steps to manage the data and generate high-quality blocks even in the

presence of noise. Therefore, the application of parallel computing emerges as a possible

solution to propose new efficient noise-aware blocking techniques, as discussed in [90].

Incremental blocking techniques over streaming data. Considering that there is a

lack of blocking techniques dealing with streaming data in an incremental way, this con-

text clearly appears as a promising area to be explored. Although PRIME (see Chapter

7) addresses the context of streaming data and incremental processing, several issues are

1https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/entities-object
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still uncovered and can be explored, such as the application of different kinds of windows

(e.g., based on the amount of data), management of noisy data, exploration of schema in-

formation, and application of machine learning techniques to assist the blocking technique.

Regarding the different kinds of windows, it is necessary to remember the importance of

discarding some parts of the information (entities in our case). The application of win-

dows aims to avoid the high consumption of computational resources since entities are re-

ceived infinitely and processed incrementally. However, different kinds of window strate-

gies (i.e., not only time window, such that applied in PRIME) can be proposed and ap-

plied to the blocking techniques (e.g., PRIME). For instance, one possible window strategy

is to maintain (and prioritize) blocks constantly updated during the increments. Another

future work is related to noisy data. In this sense, the strategies developed in this work

(as well as the strategies proposed by other works) to handle noisy data can be combined

with PRIME in the sense of addressing streaming and noisy data simultaneously. Block-

ing techniques that address streaming and noisy data are directly related to the application

profiles described during this thesis. For this reason, such techniques can be applied to the

execution model proposed in Chapter 4. Regarding explore schema information, although

the PRIME technique applies an attribute selection algorithm, which explores information

related to the schema to discard useless attributes from the entities, the application of at-

tribute grouping (see Chapter 6) is still open. Therefore, efficient strategies for attribute

grouping can be proposed and applied in PRIME in order to improve effectiveness. Finally,

we would like to highlight the possibility of adapting other existing blocking techniques in

the proposed execution model (see Chapter 4), such as progressive blocking techniques [4;

92] and blocking based on machine learning concepts [52; 82].

Unbalance in data increments. One aspect does not addressed by this thesis is re-

lated to the unbalance in data increments. In this context, the number of entities present in

each micro-batch to be processed by blocking techniques varies over time. This behavior

commonly occurs in streaming sources which present load peaks. For instance, traffic sen-

sors commonly send a high number of data during the rush hours. On the other hand, the

number of produced data is reduced during low-traffic hours. In this sense, parallel-based

blocking techniques should be able to consume resources dynamically. Therefore, dynamic

schedulers that provide an on-demand allocation of resources in distributed infrastructures
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should be applied [91; 93]. These schedulers control the number of resources (e.g., number

of nodes) according to the amount of data received by the blocking technique in question.

Since unbalance in data increments is a problem faced by incremental techniques, the de-

velopment of dynamic schedulers for blocking techniques emerges as an open area to be

explored.

Real-world applications. To validate the PRIME technique in real-world scenarios,

we apply PRIME to clustering events using data from Twitter and a football game API.

In this sense, it is possible to highlight the opportunity to apply schema-agnostic blocking

techniques over other real-world streaming sources, such as news feeds, social networks, and

sensors [47]. More specifically, we would like to explore scenarios involving two streaming

sources with high latency of data (i.e., a large amount of data is provided by the source in a

small period of time). Such scenarios potentiate the challenges involving streaming data and

large data sources, as discussed in Chapter 7.

Development of a toolkit for schema-agnostic blocking techniques. Based on the ex-

ecution model and the parallel architecture proposed in Chapter 4, it is possible to develop

a toolkit for parallel schema-agnostic blocking techniques. In this sense, the toolkit can

receive from the user (e.g., a data specialist) the application profile. Considering the appli-

cation profile, the best workflow (see Figure 4.3) and blocking technique are selected and,

posteriorly, executed according to the application characteristics. This toolkit should host

different schema-agnostic blocking techniques (such as the three techniques proposed in this

thesis) in order to address different scenarios faced by blocking techniques (for instance,

noisy data, streaming data, focus on efficiency/effectiveness). Finally, the toolkit can benefit

from the parallel architecture and be implemented over a distributed infrastructure, providing

efficiency to the blocking techniques hosted by the toolkit.
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